Do Natural Disasters Affect Growth? A Macro Model-Based Perspective on the Empirical Debate

Laura Bakkensen & Lint Barrage U. of Arizona Brown U. & NBER

IMF Workshop on Macroeconomic Policy and Income Inequality

February 10, 2017

(LB)² (U. of Arizona & Brown)

Disasters & Growth

- How do natural disasters affect macroeconomic outcomes?
- Rich, growing body of empirical work featuring:
 - Wide range of results:
 - positive impacts (e.g., Skidmore & Toya, 2002, "ST")
 - negligible impacts (e.g., Strobl, 2011; Hochrainer, 2009)
 - large negative impacts (Hsiang & Jina, 2015, "HJ"): Tropical cyclones reduce annual GDP growth by 1.27% (world), 7.3% (Philippines)
 - ② Limited connections to macroeconomic models
 - Unclear how to compare different empirical results (HJ, 2015)

 \Rightarrow We develop a stochastic endogenous growth model with regional cyclone shocks to review empirical evidence through structural lens

Natural Disasters and Growth: Theory

- Limited theory explicitly focused on natural disasters and growth
 - Ikefuji & Horii (2012): Lit "still in its infancy"; Akao & Sakamoto (2015)
- However, large macroeconomic literature on idiosyncratic income risk:
 - Ayiagari (1994), Krusell & Smith (1998): Uninsurable labor income risk
 - Krebs (2003a,b; 2006): Uninsurable human capital risk
 - Angeletos (2007): Uninsurable investment risk
- \Rightarrow We build on this literature to model cyclone impacts on growth:
 - Storms as potentially uninsurable risk to individual locations
 - Storms destroy human, physical, entrepreneurial capital
 - ightarrow Change growth by altering level, composition, returns to investments

1. Model can reconcile empirical methods as identifying different effects

- Cyclone risk may increase growth, while cyclone strikes reduce it
 - (+) in cross-section (ST) vs. (-) in panel (HJ)
 - Intuition: Precautionary savings vs. rate of return effects
- Different risk measures can affect growth in opposite ways
 - (-) for avg. capital damage (HJb) vs. (+) for avg. # disasters (ST)
- 2. Explore combined estimator of overall disaster growth impacts
 - Avg. effects: Strikes: -0.72%, Risk: +0.63%, Overall: -0.09%
- 3. Risk can have opposite effects on growth and welfare

Part I: Theory

- Model Setup
- Ø Disaster Risk and Long-Run Growth
- Oisaster Strikes and Growth

Part II: Empirical Analysis

2 Empirical Implications & Analysis

- Unit masses of households (HHs) $i \in [0, 1]$ and "corporate" firms $j \in [0, 1]$ spread across continuum of locations
- HHs can invest in: (1) human capital h_{it}, (2) financial savings s_{it}, (3) local / entrepreneurial capital k_{2it}
 - Growth rate depends on level and composition of investments
- Each period, each location faces log-Normal risk of cyclone strike \rightarrow Depreciation shocks to human η_{it}^{h} , local $\eta_{it}^{k_2}$, corporate $\eta_{it}^{k_1}$ capital

- Each firm *j* rents human capital *n_{jt}* and physical capital *k*_{1*jt*} in competitive *national* market
 - Pays gross return R_{ht} on human capital
 - Pays R_{k1t} plus depreciation as net return on financial capital
- Firms face *iid* cyclone capital damage risk $\eta_{it}^{k_1} \sim \ln N(\mu_{k1}, \sigma_{k1}^2)$
- Risk-neutral firm maximizes expected profits:

$$\max_{k_{1jt},n_{jt}} (A_1 k_{1jt}^{\alpha} n_{jt}^{1-\alpha}) - R_{ht} n_{jt} - (R_{k1t} + \delta_{k1} + \mu_{k1}) k_{1jt}$$

• Corporate firm *j*'s profit-maximization problem yields:

$$R_{ht} = (1-\alpha)A_1 \left(\frac{n_{jt}}{k_{1jt}}\right)^{-\alpha}$$
$$R_{k1t} = (\alpha)A_1 \left(\frac{n_{jt}}{k_{1jt}}\right)^{1-\alpha} - \delta_k - \mu_{k1}$$

- National capital market \rightarrow HH financial savings diversified \rightarrow Return on corporate capital R_{k1t} is risk-free
- Entrepreneurial sector uses local capital: $y_{2it} = A_2 k_{2it}$
 - ightarrow Return $A_2 \delta_{k2} \eta_{it}^{k_2}$ vulnerable to uninsurable cyclone shocks

 Representative HH in region *i* chooses state-contingent plans for consumption c_{it} and investments in financial (x_{sit}), human (x_{hit}), and entrepreneurial (x_{k2it}) capital to maximize expected lifetime utility:

$$\max E_0 \sum_{t=0}^{\infty} \beta^t U(c_{it})$$

subject to sequence of constraints:

$$c_{it} + x_{st} + x_{ht} + x_{k2t} = s_{it}R_{k1t} + h_{it}R_{ht} + (A_2k_{2it})$$

$$k_{2it+1} = (1 - \delta_{k2} - \eta_{it}^{k_2})k_{2it} + x_{k2it}$$

$$h_{it+1} = (1 - \delta_h - \eta_{it}^h)h_{it} + x_{hit}$$

$$s_{it+1} = s_{it} + x_{sit}$$

$$h_{i0}, s_{i0}, k_{20} \text{ given}$$

• Overall return on HH's assets r_{it}: Share-weighted sum of returns on financial, human, entrep. capital net of disaster damages Details

Let:
•
$$\widetilde{h_{it}} \equiv \frac{h_{it}}{s_{it}} \sim \text{human-financial capital ratio}$$

• $\Theta_{k2it} \equiv \frac{k_{2it}}{(s_{it}+h_{it}+k_{2it})} \sim \text{entrepreneurial capital-wealth ratio}$
• $\widetilde{c}_{it} \equiv \frac{c_{it}}{(1+r_{it})(s_{it}+h_{it}+k_{2it})} \sim \text{consumption-wealth ratio}$

And assume:

$$U(c_{it}) = \frac{c_{it}^{1-\gamma}}{1-\gamma}$$

 \Rightarrow Construct stationary equilibrium following Krebs (2003a,b)

Part 1.2: Disaster Risk and Long-Run Growth

Result 1

In stationary equilibrium, aggregate growth = expected local growth:

$$\frac{C_{t+1}}{C_t} = E\left[\frac{c_{it+1}}{c_{it}}\right] = (1 - \tilde{c})(1 + E[r(\tilde{h}_i', \Theta_{k2i}', \eta_i^{h\prime}, \eta_i^{k2\prime})])$$

 \Rightarrow Disaster risk affects long-run growth through two channels:

- (Precautionary) Savings Effect: If uninsurable storm risk increases savings $(1 \tilde{c}) \rightarrow$ higher consumption growth, ceteris paribus.
- ② Rate of Return Effect: If uninsurable storm risk decreases expected returns E[r(.)] → lower consumption growth, ceteris paribus.

- HH investment \rightarrow Portfolio choice problem (Campbell and Viceira, 2001)
- \Rightarrow Equations defining optimal investment shares in corporate, human, and entrepreneurial capital
 - Example: Optimal entrepreneurial capital share in risky investments =

$$\frac{((R_{k2}-\mu_{k2})-(R_{k1}-\mu_{k1}))\sigma_{h}^{2}-((R_{h}-\mu_{h})-(R_{k1}-\mu_{k1}))\rho_{h,k2}\sigma_{h}\sigma_{k2}}{((R_{k2}-\mu_{k2})-(R_{k1}-\mu_{k1}))[\sigma_{h}^{2}-\rho_{h,k2}\sigma_{h}\sigma_{k2}]+((R_{h}-\mu_{h})-(R_{k1}-\mu_{k1}))[\sigma_{k2}^{2}-\rho_{h,k2}\sigma_{h}\sigma_{k2}]}$$

 \Rightarrow Differential effects of avg. storm damage measures $(\mu_{k2}, \mu_{k2}, \mu_h)$

• To assess impacts of storm variables on growth:

Implicitly differentiate optimal investment share equations

- How does change in storm risk affect HH investments?
- **②** Given effect of storm risk on investment shares Θ_{k2i} , \tilde{h}_i , aggregate growth impact predictions follow from Result 1:

$$\frac{C_{t+1}}{C_t} = (1 - \widetilde{c}(\Theta_{k2i}, \widetilde{h_i}))(1 + E[r(\widetilde{h_i}', \Theta_{k2i}', \eta_i^{h\prime}, \eta_i^{k2\prime})])$$

Consumption Growth Impacts: Full Characterization

- Cannot sign comparative statics in fully general benchmark case
- Assumption: Disaster damages to human and local capital are each proportional to a fundamental cyclone strength measure $\varepsilon_{it} \sim \ln N(\mu_{\varepsilon}, \sigma_{\varepsilon}^2)$ (iid over time and space), with:

$$\begin{aligned} \eta_{it}^{h} &= \xi^{h} \varepsilon_{it} \\ \eta_{it}^{k2} &= \xi^{k2} \varepsilon_{it} \end{aligned}$$

- Further need to partition parameter space into different cases:
- Case 1: (i) $\xi^{k_2} > \xi^h$, (ii) $0 < \widetilde{r_h} r_{k1} < \sigma_{\varepsilon}^2 \gamma[\xi^h]^2$, (iii) $(1 \alpha) < \frac{\widetilde{h}}{1 + \widetilde{h}}$

Proposition (1)

- A mean-preserving increase in cyclone variance $\sigma_{\varepsilon}^{2\prime} > \sigma_{\varepsilon}^{2}$ leads to the following:
 - A decreased human-financial capital ratio: $\frac{dh}{d\sigma_c^2} < 0$
 - A lower equilibrium return on corporate capital R_{k1}(h̃) < R_{k1}(h̃) and a higher equilibrium (gross) return on human capital R_h(h̃) > R_h(h̃)
 - A lower expected return on the HH's overall portfolio: $E[r(\tilde{h_i}', \Theta'_{k2i}, ...)] < E[r(\tilde{h_i}, \Theta_{k2i}, ...)] \Rightarrow \text{Rate of Return Effect}$
 - A lower, equal, or higher consumption-out-of-wealth ratio:
 - $\widetilde{c} < \widetilde{c}'$ if $\gamma < 1$ • $\widetilde{c} = \widetilde{c}'$ if $\gamma = 1$ • $\widetilde{c} > \widetilde{c}'$ if $\gamma > 1$

 \Rightarrow Savings rate $(1 - \widetilde{c}')$ higher if $\gamma > 1 \Rightarrow$ Precautionary Savings Effect ...

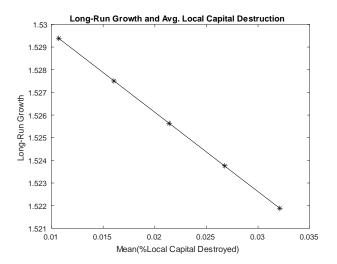
Proposition (1, ctd.)

A mean-preserving increase in cyclone risk $\sigma_{\varepsilon}^{2\prime} > \sigma_{\varepsilon}^{2}$ leads to the following:

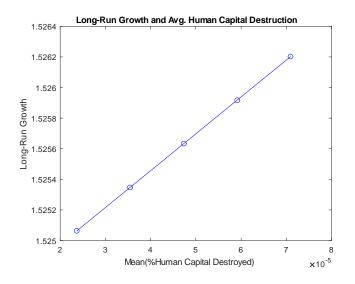
- Larger cyclone risk can increase, leave unaffected, or decrease consumption growth (and thus output growth), depending on whether Precautionary Savings Effect outweighs the Rate of Return Effect.
- O However, larger cyclone risk unambiguously decreases welfare:

$$E_0 \sum_{t=0}^{\infty} \beta^t \frac{c_{it}^{1-\gamma}}{1-\gamma} \leq E_0 \sum_{t=0}^{\infty} \beta^t \frac{c_{it}^{\prime 1-\gamma}}{1-\gamma}$$

 \Rightarrow Hazard risk increases can affect growth and welfare in opposite ways


Consumption Growth Impacts: Average Risks

- Proposition 1: Effect of cyclone variance σ_{ε}^2 on long-run growth
- Next: Effect of cyclone damage *averages* μ_{k2} , μ_h
- Numerical example (Data Sources: EM-DAT, World Bank)


	$\mu_{k2} = 2.14\%$	$\sigma_{k2} = 9.67\%$	$(\widetilde{r_2} - \widetilde{r_{k1}}) = 3.5\%$
٠	$\mu_{h} = 0.0047\%$	$\sigma_h = 0.03\%$	$(\widetilde{r_h} - \widetilde{r_{k1}}) = 0.0004\%$
	$\gamma=1~(log)$	$\beta = 0.96$	$ \rho_{h,k2} = 0.34 $

- Benchmark: HH invests 36% of wealth in entrep. capital
 - Could increase avg. growth by investing more, but too risky
- Long-run growth impacts of changing μ_{k2} , μ_{h} each by $\pm 50\%$, $\pm 25\%$?

Avg. Entrep. Capital Destruction and Long-Run Growth

Avg. Human Capital Destruction and Long-Run Growth

(LB)² (U. of Arizona & Brown)

Disasters & Growth

February 10, 2017

 $\Rightarrow\,$ Different damage measures can affect growth in opposite ways

 $g \sim f(\mathsf{Portfolios}) \sim g(R_{k2}(\mu_{k2}(\mu_{\varepsilon})), R_h(\mu_h(\mu_{\varepsilon})), R_{k1}(\mu_{k1}(\mu_{\varepsilon})), \sigma_{k2}, \sigma_h, \rho_{h,k2})$

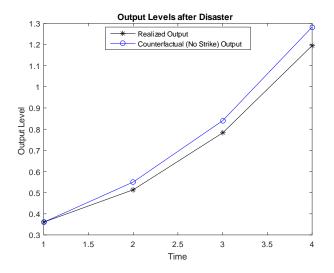
• Connect to empirical studies: $g = \beta_0 + \beta_1 \mu_i + \beta_2 X + \varepsilon$

• $\widehat{\beta_1} < 0$ for $\mu_j \sim avg$. capital depreciation (Hsiang & Jina, 2015b) • $\widehat{\beta_1} > 0$ for $\mu_j \sim avg$. #disasters (Skidmore & Toya, 2002) • $\widehat{\beta_1} < 0$ for $\mu_j \sim avg$. capital loss, $\widehat{\beta_1} \ge 0$ for #fatalities (Noy, 2009)*

• Model can reconcile empirical results as identifying different effects

Part 1.3: Disaster Strikes and Growth

3

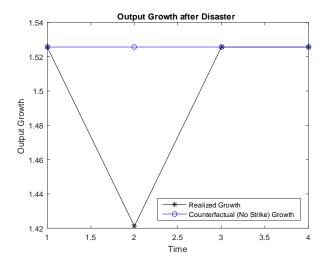

Result 3

A cyclone *shock* (*strike* $\bar{\epsilon}_{it} > \mu_{\varepsilon}$) decreases contemporaneous local growth relative to the average:

$$\frac{c_{it}}{c_{it-1}} = (1 - \tilde{c})(1 + r(\tilde{h}_i, \Theta'_{k2i}, \xi^h \bar{\varepsilon}_{it}, \xi^{k2} \bar{\varepsilon}_{it})) < E_{t-1}[\frac{c_{it}}{c_{it-1}}]$$

- Note: Only above-average disasters lead to below-average growth
 - \rightarrow In line with empirical evidence (e.g., Hochrainer, 2009; Cavallo et al., 2013)
- Transitional/Medium Term Impacts:
 - Contemporaneous growth returns to long-run levels
 - $\bullet\,$ However, output gap never recovered \rightarrow As in HJ (2015)

Disaster Strikes and Growth



(LB)² (U. of Arizona & Brown)

February 10, 2017

24 / 42

Disaster Strikes and Growth

Comparison: Solow Growth Model

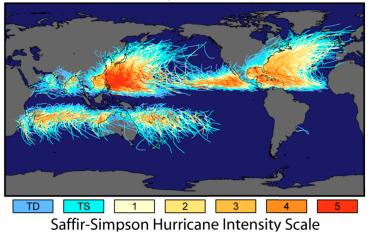
(LB)² (U. of Arizona & Brown)

February 10, 2017

- ∢ ⊢⊒ →

э

25 / 42


Part 2: Empirical Analysis

- (A 🖓

э

- Estimate the impact of disaster strikes and risk on growth
- Step 1: Estimate effect of cyclone *strikes* on growth in FE panel
- **Step 2**: Estimate effect of cyclone *risk* on avg. no-strikes growth
 - \rightarrow Remove cyclone-risk effect from avg. no-strikes growth (panel fixed effects) to compute no-cyclones growth
- \Rightarrow (i) Observed growth, (ii) no-strikes growth, (iii) no-cyclones growth

Tracks and Intensity of All Tropical Storms

Source: NASA Earth Observatory

Data

Step 1: Panel FE

- Country-level per capita GDP growth: World Bank's WDI
- Cyclones: IBTrACS (1950-2015)
 - Generate (i) max. landfall windspeed, (ii) sum of max. landfall windspeeds, (iii) energy \sim sum of (max. windspeed)^3

Step 2: Cross-Sectional

- Average no-strikes growth: estimated from Step 1
- Identification concern in cross-section: cyclone activity not randomly distributed; correlated with geography/institutions
 - Controls: country latitude (PSU Geography Data), domestic credit by financial sector as %GDP (World Bank WDI), corruption perceptions index (Transparency International), additional controls (World Bank)

Estimation: Step 1

• Panel fixed effect specification in spirit of Hsiang and Jina (2015):

$$G_{i,t} = \sum_{L=0}^{20} [\beta_L \times S_{i,t-L}] + \gamma_i + \delta_t + \theta_i \times t + \epsilon_{i,t}$$

 $G_{i,t} \sim \text{real p.c. GDP growth for country } i \text{ in year } t, S_{i,t} \sim \text{cyclone}$ exposure, $\gamma_i \sim \text{country FE}$, $\delta_t \sim \text{time FE}$, $(\theta_i \times t) \sim \text{country trend}$

 \Rightarrow Counterfactual no-strikes growth rates $\widehat{G_{i,t}}^{NS}$:

$$\widehat{G_{i,t}}^{NS} = \sum_{L=0}^{20} [\hat{\beta}_L \times 0] + \hat{\gamma}_i + \hat{\delta}_t + \hat{\theta}_i \times t$$

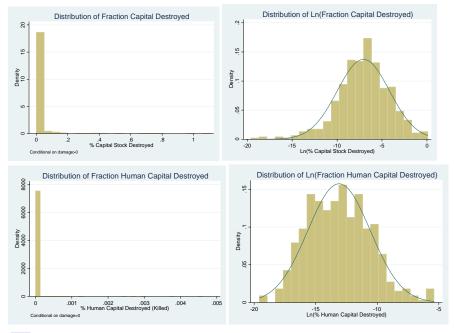
$$\overline{\widehat{G_{i,t}}^{NS}} = \hat{\gamma}_i + (\hat{\theta}_i \times \overline{t})$$

Cross-sectional

$$\overline{\widehat{G_{i,t}}^{NS}} = \widetilde{\alpha} + \widetilde{\lambda_1}L_i + X_i \times \beta + \widetilde{\delta_{Ri}} + \epsilon_i$$

where $L_i \sim \text{long-run cyclone } risk$, $X_i \sim \text{controls}$, $\delta_{Ri} \sim \text{regional FE}$.

- Bootstrapped standard errors
- \Rightarrow Counterfactual no-cyclone growth rates $\widehat{G_{i,t}}^*$


$$\widehat{G_{i,t}}^* = \widehat{G_{i,t}}^{NS} - \widetilde{\widehat{\lambda_1}} L_i$$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Dependent Variable	$\overline{\widehat{G_{i,t}}}$	$\overline{\widehat{G_{i,t}}}$	$\overline{\widehat{G_{i,t}}}$	$\overline{\widehat{G_{i,t}}}$	$\overline{\widehat{G_{i,t}}}$	$\overline{\widehat{G_{i,t}}}$	$\overline{\widehat{G_{i,t}}}$
Average Max Wind	0.0203***	0.0230***	0.0184**	0.0202***	0.0197***	0.0149*	0.0140
Variance Max Wind	(0.00686)	(0.00711)	(0.00719)	(0.00492)	(0.00741)	(0.00878) 0.000932 (0.00141)	(0.0104) 0.00114 (0.00156)
Absolute Latitude		-0.00362	-0.00168	-0.0612*	-0.0470	-0.0747*	`-0.0671´
Corruption Perception Index		(0.0464) 0.0582* (0.0335)	(0.0308) 0.0248 (0.0250)	(0.0363) 0.0294 (0.0213)	(0.0480) 0.0209 (0.0224)	(0.0409) 0.0333 (0.0227)	(0.0553) 0.0260 (0.0226)
Constant	3.082*** (0.450)	0.183 (0.811)	3.234*** (0.827)	-1.695 (6.397)	2.905 (7.010)	-1.322 (6.507)	4.014 (7.356)
Region FE	N	N	Y	Ν	Y	Ν	Y
Additional Controls	N	N	N	Y	Y	Y	Y
Observations	203	149	149	74	74	74	74
R-squared	0.017	0.064	0.106	0.464	0.539	0.464	0.540
Bootstrapped standard errors in parentheses. Additional controls: Ln Initial GDP pc, Avg Tertiary Eduction of Labor Force, Avg Birth Rate, Avg Capital Formation, Avg Gov Consumption, Avg Trade, Ln Land Area, Ln Population, Ln Urbanization, Pct Tropical. *** p<0.01, ** p<0.05, * p<0.1							

э

- Unweighted average (conditional on having cyclones)
 - Strikes: -0.72%, Risk: +0.63%, Overall: -0.09% Figure
- In line with literature and theoretical model, overall impact estimate between strike and risk effects
- Caveats:
 - Welfare effects remain open question
 - As always, econometric concerns in cross-country regression

- We review the empirical evidence on natural disasters and growth through the lens of a macroeconomic model
 - Use incomplete markets literature to build stochastic endogenous growth model with (partly) uninsurable cyclone risk
- Model can match, reconcile several key empirical results
 - Predicts different growth impacts for e.g., cyclone risks vs. strikes
- Highlight estimation of overall cyclone impacts
- Future steps
 - Welfare mapping
 - Empirically test underlying model mechanisms Credit
 - Aggregate shocks (small vs. large country impacts)

Back

(LB)² (U. of Arizona & Brown)

æ

(日) (同) (三) (三)

Cyclone Strikes in Panel Regressions

Dependent Variable	(1) GDP PC Growth	(2) GDP PC Growth			
Cyclone Variable Years	Max Wind 1970-2015	Energy 1970-2015			
rears	1970-2015	1970-2015			
Cyclone t	-0.00220	-9.22e-08*			
	(0.00455)	(5.41e-08)			
Cyclone t-1	-0.00134	1.95e-08			
	(0.00382)	(5.03e-08)			
Cyclone t-2	-0.00420	-4.22e-08			
	(0.00382)	(4.90e-08)			
Cyclone t-3	-0.00163	-5.53e-08			
	(0.00409)	(4.93e-08)			
Cyclone t-4	-0.00379	4.29e-09			
	(0.00376)	(4.55e-08)			
Cyclone t-5	-0.00188	-8.44e-08			
	(0.00392)	(5.21e-08)			
Cyclone t-19	-0.00989	8.15e-08			
-, -	(0.00506)	(7.41e-08)			
Cvclone t-20	0.00120	5.73e-08			
	(0.00415)	(6.04e-08)			
Country FE	Y	Y			
Year FF	Ý	Ý			
Country-Year Trend	Ý	Ý			
Observations	7.348	7,348			
R-squared	0.268	0.268			
Robust standard errors in parentheses.					
*** p<0.01, ** p<0.05, * p<0.1					

Back

э

Cyclone Strike Cumulative Impacts

• Following HJ, compute cumulative impact as:

$$\Omega_j = \sum_{L=0}^{20} \widehat{\beta}_L$$

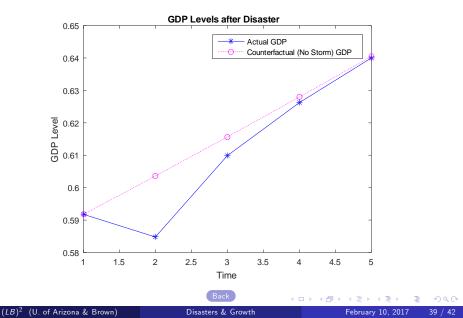
Results:

	Max Wind	Max Wind	Energy	Energy
Lags	Coefficient Sum	P-Values	Coefficient Sum	P-Values
5	-0.015	0.1902	-1.58E-07	0.0862
10	-0.022	0.0831	-3.56E-07	0.0284
15	-0.037	0.0348	-4.61E-07	0.0151
20	-0.039	0.0851	-2.14E-07	0.1369

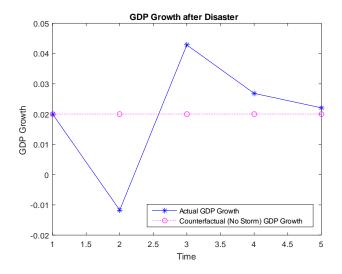
37 / 42

Stationary Equilibrium

- Aggregate capital stocks: $K_{1t} \equiv \int k_{1jt} dj = \int s_{it} dj$ and $H_t \equiv \int h_{it} di$
- Stationary equilibrium \rightarrow constant aggregate $\tilde{h} \equiv \frac{H}{K_1}$


 \rightarrow Constant factor returns $R_h(\widetilde{h})$, $R_{k1}(\widetilde{h})$

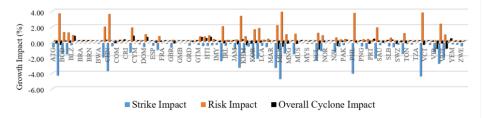
• Recursive formulation of HH's problem: Back


$$V(w_i, \widetilde{h}_i, \Theta_{k2i}, \eta_i^h, \eta_i^{k2}) = \max u(c_i) + \beta E[V(w_i', \widetilde{h}_i', \Theta_{k2i}', \eta_i^{h\prime}, \eta_i^{k2\prime})]$$

s.t. law of motion for wealth: $w'_i = [1 + r(\widetilde{h}_i, \Theta_{k2i}, \eta^h_i, \eta^{k2}_i)]w_i - c_i$ $r(.) = (1 - \Theta_{k2it})\{(1 - \theta_h(\widetilde{h}_{it}))R_{k1t} + \theta_h(\widetilde{h}_{it})(R_{ht} + 1 - \delta_h - \eta^h_{it})\}$ $+\Theta_{k2it}(A_2 + 1 - \delta_{k2} - \eta^{k2}_{it})$

Illustration: Solow Growth Model

Illustration: Solow Growth Model



(LB)² (U. of Arizona & Brown)

February 10, 2017

40 / 42

Growth Impacts of Cyclones: Strikes, Risk, and Overall

Back

Growth Impact Reduction: Credit

	(1)	(2)	(3)	(4)		
Dependent Variable	Avg Growth	Avg Growth	Avg Growth	Avg Growth		
Avg Max Wind	0.0374***	0.0477***	0.0365***	0.0339***		
Ang max wind	(0.0137)	(0.0136)	(0.0102)	(0.0100)		
Avg Credit	-0.000261	-0.00276	0.00446	-0.00300		
	(0.00581)	(0.00526)	(0.00488)	(0.00468)		
Avg Max Wind X Avg Credit	-6.80e-06	-3.71e-05	-0.000133*	-9.49e-05		
	(9.82e-05)	(7.90e-05)	(7.88e-05)	(7.44e-05)		
Abs Latitude		0.0182		0.0148		
		(0.0231)		(0.0163)		
Corruption Perception Index		0.00646		0.0174		
		(0.0166)		(0.0147)		
Constant	1.341***	0.593	0.604	2.152***		
	(0.502)	(0.493)	(0.598)	(0.602)		
Region FE	N	N	Y	Y		
Observations	112	87	92	87		
R-squared	0.055	0.107	0.164	0.188		
Robust standard errors in parentheses.						

*** p<0.01, ** p<0.05, * p<0.1

Image: Image:

3