Trade-induced structural change and the skill premium

Javier Cravino and Sebastian Sotelo University of Michigan

IMF/DFID Workshop on Macroeconomic Policy and Income Inequality February 2017

How does trade affect structural change and the skill premium?

- Policy concerns in developed countries:
 - Manufacturing jobs moving overseas
 - Competition from developing countries lowering unskilled wages
- Predictions of standard trade theory (Heckscher–Ohlin):
 - Exporting sectors grow
 - ► Skill premium increases in skill-abundant countries, decreases elsewhere
- ▶ This paper: Propose and quantify an alternative mechanism
 - ► Manufacturing trade reduces relative price of manufactures in all countries
 - ▶ Share of manufacturing in value added declines in all countries
 - Rewards to factors used intensively in manufacturing decline

What we do: Data

Document 3 differences across broad sectors:

- 1. Trade integration between 1995-2007
 - Share of expenditures in domestic goods declined in agriculture, mining, manufacturing
 - ▶ Share of expenditures in domestic services constant in service sectors

What we do: Data

Document 3 differences across broad sectors:

- 1. Trade integration between 1995-2007
 - Share of expenditures in domestic goods declined in agriculture, mining, manufacturing
 - ▶ Share of expenditures in domestic services constant in service sectors
- 2. Skilled- and unskilled labor intensities
 - Agriculture, mining and manufacturing are unskilled labor intensive
 - ► Some services (construction, retail) are unskilled labor intensive
 - Other services (FIRE, health) are skilled labor intensive

What we do: Data

Document 3 differences across broad sectors:

- 1. Trade integration between 1995-2007
 - Share of expenditures in domestic goods declined in agriculture, mining, manufacturing
 - ▶ Share of expenditures in domestic services constant in service sectors
- 2. Skilled- and unskilled labor intensities
 - ► Agriculture, mining and manufacturing are unskilled labor intensive
 - Some services (construction, retail) are unskilled labor intensive
 - Other services (FIRE, health) are skilled labor intensive
- 3. Use of capital and intermediate inputs
 - Low-skilled intensive sectors (highly traded and not) use more inputs from good producing sectors

What we do: Model

- Multi-country, multi-sector Ricardian model of trade
 - Heterogeneous workers
 - 3 sectors differ in factor and inputs intensities and tradability
 - Allow for trade imbalances across sectors
 - Low substitutability across sectors
- 2 counterfactual exercises
 - 1. Changes in trade costs between 1995-2007
 - 2. Sufficient statistics approach: changes in trade patterns
- Results (C1)
 - ▶ Manufacturing share decline in average country 8% model vs 21% data
 - ► S-P increases in most countries (2.1% on average, up to 10% for some developing countries)

Literature

- ► Trade and skill premium:
 - ► Theory and empirics on H-O: Summary in Goldberg and Pavcnik [2007]
 - Quantitative models other mechanisms: Burstein, Cravino and Vogel [2013]; Parro [2013]; Burstein and Vogel [2015]; Lee [2016]

- ► Trade and structural change: Matsuyama [2009]; Uy, Yi and Zhang [2013]; ; Fajgelbaum and Redding [2014]; Kehoe, Ruhl and Steinberg [forthcoming]
- ▶ Skill-biased structural change: Buera, Kaboski and Rogerson [2015]

Observation 1: Fast growth in goods and services trade...

► Goods: Agriculture + Manufacturing + Mining. Source: WIOD.

Observation 1: ...but share of expenditures on domestic services roughly constant

- lacktriangledown Domestic expenditure share: $\pi_t^j \equiv 1 \mathit{Imports}_t^j / \left(\mathit{Output}_t^j + \mathit{Imports}_t^j \mathit{Exports}_t^j\right)$
- Y-axis: $\pi_{2007}^j/\pi_{1995}^j$;

Observation 2: Decline in domestic expenditure shares in unskilled-labor intensive sectors

World average. H: college graduates. Source: WIOD SEA

Observation 3: Unskilled-labor intensive sectors use more inputs from manufacturing, agriculture and mining

World average. Input shares from WIOD.

Model

- i = 1, ..., I countries, j = 1, ..., 3 sectors
- ► Production uses
 - ightharpoonup skilled labor, L_i
 - intermediate inputs from each sector X_i^j
- Labor endowments are fixed
- Factors and goods markets perfectly competitive
- ► Iceberg trade costs

Preferences

Utility of the representative household in country i

$$C_i = \left[\sum_j ar{\phi}_i^{jrac{1}{
ho}} \left[C_i^j
ight]^{rac{
ho-1}{
ho}}
ight]^{rac{
ho}{
ho-1}}$$

► Budget constraint

$$s_i H_i + w_i L_i = \sum_j P_i^j C_i^j + NX_i$$

▶ NX_i < 0 country is running a deficit

Technologies: Sectorial output

► Sector *i* combines tradeable intermediate goods

$$Y_i^j = \left[\int_0^1 q_i^j(\omega)^{\frac{\eta_i-1}{\eta_i}} d\omega\right]^{\frac{\eta_i}{\eta_i-1}}$$

► Final goods are non-tradeable

$$Y_i^j = C_i^j + X_i^j$$

Technologies: Intermediate goods

► Technology for intermediate goods

$$q_i^j(\omega) = A_i^j z_i^j(\omega) m_i^j(\omega)^{1-\beta_i^j} e_i^j(\omega)^{\beta_i^j}$$

• Sectoral productivity A_i^j ; idiosyncratic productivity: $z_i^j(\omega)$

$$z_i^j(\omega) = u^{-\theta^j}, \ u \sim \exp(1)$$

► Labor bundle

$$e_{i}^{j}(\omega) \equiv \left[\left[ar{\mu}_{i}^{j}\right]^{rac{1}{\gamma}}f_{i}^{j}(\omega)^{rac{\gamma-1}{\gamma}}+\left[1-ar{\mu}_{i}^{j}
ight]^{rac{1}{\gamma}}f_{i}^{j}(\omega)^{rac{\gamma-1}{\gamma-1}}
ight]^{rac{\gamma}{\gamma-1}}$$

▶ Intermediate inputs bundle

$$m_i^j(\omega) \equiv \left[\sum_{l=1}^J \left[\bar{\alpha}_i^{lj}\right]^{\frac{1}{\rho}} x_i^{lj}(\omega)^{\frac{\rho-1}{\rho}}\right]^{\frac{\rho}{\rho-1}}$$

Equilibrium

Unit cost of producer (ω) in sector j

$$c_{in}^{j}(\omega) = \frac{\bar{\beta}_{i}^{j} \left[p_{v,i}^{j} \right]^{\beta_{i}^{j}} \left[p_{b,i}^{j} \right]^{1-\beta_{i}^{j}} \tau_{in}^{j}}{A_{i}^{j} z_{i}^{j}(\omega)}$$

Prices

$$p_n^j(\omega) = min_i \left\{ c_{in}^j(\omega) \right\}$$

▶ Trade shares

$$\pi_{in}^{j} = rac{\left[au_{in}^{j} c_{i}^{j}/A_{i}^{j}
ight]^{-1/ heta^{j}}}{\sum_{s} \left[au_{si}^{j} c_{s}^{j}/A_{s}^{j}
ight]^{-1/ heta^{j}}}$$

Price indexes

$$P_i^j = \Xi_i^j \left[c_i^j / A_i^j \right] \pi_{ii}^{j \, \theta^j}$$

Sectoral value-added shares and the skill premium

▶ Log-change in skill premium

$$ilde{\mathbf{s}}_i - ilde{\mathbf{w}}_i = rac{1}{ar{\gamma}} \left[ilde{L}_i - ilde{H}_i
ight] + rac{1}{ar{\gamma}} \sum_j \left[rac{H_i^j}{H_i} - rac{L_i^j}{L_i}
ight] ilde{\mathbf{v}}_i^j$$

- \mathbf{v}_{i}^{j} is share of sector j in value added
- $\bar{\gamma}_i \equiv \gamma \sum_j \frac{\mu_i^j}{\mu_i} \frac{H_i^j}{H_i} + \left[1 \sum_j \frac{\mu_i^j}{\mu_i} \frac{H_i^j}{H_i} \right] > 0$
- $ightharpoonup rac{s_i}{w_i}$ decreasing in v_i^j if $rac{L_i^j}{L_i} > rac{H_i^j}{H_i}$

Relative prices and revenue shares

Special case: same β_i , α_i , ϕ_i across sectors.

► Log-change in value-added shares:

$$\tilde{v}_i^j = [1-
ho] \left[\tilde{P}_i^j - \sum_j v_i^j \tilde{P}_i^j \right] + \frac{\tilde{\lambda}_i^j}{r_i^j} - \sum_j v_i^j \frac{\tilde{\lambda}_i^j}{r_i^j},$$

 $\lambda_i^j = 1 + NX_i^j/R_i$: ratio of sectorial net exports to revenues. r_i^j : share of sector j in revenues

- $\triangleright v_i^j$ increases in λ_i^j
- v_i^j increasing in P_i^j if $\rho < 1$
 - $\triangleright P_i^j$ determined in equilibrium

Result

Proposition: Given parameters, a country skill premium can be calculated using only

- 1. Domestic expenditure shares π_{ii}^{j} 's
- 2. Sectoral net exports to revenues ratios $1+NX_i^j/R_i\equiv \lambda_i^j$'s
- 3. Domestic endowments and technologies H_i , L_i A_i^j
- Implication: π_{ii}^J 's and λ_i^J 's are sufficient statistics for all international forces affecting revenue shares and the skill premium Equilibrium Characterization

Trade and the skill premium

► Log-change in skill premium

$$\tilde{s}_i - \tilde{w}_i = \frac{1}{\Gamma_i} \left[\tilde{L}_i - \tilde{H}_i \right] + \sum_j \xi_{i,\pi}^j \left[\tilde{\pi}_{ii}^j - \tilde{A}_i^j \right] + \sum_j \xi_{i,\lambda}^j \tilde{\lambda}_i^j$$

- ▶ Special case: β_i , α_i , ϕ_i constant across sectors
 - $ightharpoonup \Gamma_i \equiv \gamma_i \gamma + [1 \gamma_i] \rho > 0$
 - $\blacktriangleright \ \xi_{i,\pi}^j = \frac{\theta^j [1-\rho]}{\Gamma_i} \left[\frac{H_i^j}{H_i^j} \frac{L_i^j}{L_i^j} \right] < 0 \text{ if } \rho < 1 \text{ \& } \frac{H_i^j}{H_i^j} < \frac{L_i^j}{L_i^j}$

Trade and the skill premium

► Log-change in skill premium

$$\tilde{s}_i - \tilde{w}_i = \frac{1}{\Gamma_i} \left[\tilde{L}_i - \tilde{H}_i \right] + \sum_j \xi_{i,\pi}^j \left[\tilde{\pi}_{ii}^j - \tilde{A}_i^j \right] + \sum_j \xi_{i,\lambda}^j \tilde{\lambda}_i^j$$

- ▶ Special case: β_i , α_i , ϕ_i constant across sectors
 - $\Gamma_i \equiv \gamma_i \gamma + [1 \gamma_i] \rho > 0$

$$\blacktriangleright \ \xi_{i,\pi}^j = \frac{\theta^j [1-\rho]}{\Gamma_i} \left[\frac{H_i^j}{H_i} - \frac{L_i^j}{L_i} \right] < 0 \text{ if } \rho < 1 \ \& \ \frac{H_i^j}{H_i} < \frac{L_i^j}{L_i}$$

Trade and the skill premium

► Log-change in skill premium

$$\tilde{s}_i - \tilde{w}_i = \frac{1}{\Gamma_i} \left[\tilde{L}_i - \tilde{H}_i \right] + \sum_j \xi_{i,\pi}^j \left[\tilde{\pi}_{ii}^j - \tilde{A}_i^j \right] + \sum_j \xi_{i,\lambda}^j \tilde{\lambda}_i^j$$

- ▶ Special case: β_i , α_i , ϕ_i constant across sectors
 - $\Gamma_i \equiv \chi_i \gamma + [1 \chi_i] \rho > 0$
 - $\xi_{i,\pi}^{j} = \frac{\theta^{j}[1-\rho]}{\Gamma_{i}} \left[\frac{H_{i}^{j}}{H_{i}} \frac{L_{i}^{j}}{L_{i}} \right] < 0 \text{ if } \rho < 1 \text{ \& } \frac{H_{i}^{j}}{H_{i}} < \frac{L_{i}^{j}}{L_{i}}$
 - $\blacktriangleright \xi_{i,\lambda}^j = \frac{1}{r_i^j \Gamma_i} \left[\frac{H_i^j}{H_i} \frac{L_i^j}{L_i} \right] < 0 \text{ if } \frac{H_i^j}{H_i} < \frac{L_i^j}{L_i}$

Taking the model to the data

Allow for many industries within each sector

$$Y_i^j = \prod_{k \in K^j} Y_i^j(k)^{\sigma_i^j(k)}$$

- Identical production function across industries within sector
 - Industries only differ in $\theta^{j}(k)$, $\sigma_{i}^{j}(k)$
 - but $\mu_i^j(k) = \mu_i^j$

Parameterization

- 3 sectors:
 - \rightarrow j = G (manufacturing, agriculture, mining)
 - $\downarrow j = F$ (FIRE, health, education)
 - j = S (other services)
- lacktriangle Sectorial labor intensities $[\frac{H_i^l}{H_i},\frac{L_i^l}{L_i}]$ aggregate labor shares μ_i from WIOD SEA
- Sectorial input intensities $[\beta_i^j, \alpha_i^{jl}]$ from WIOD
- $\hat{\pi}_{ii}^{j}$ and $\hat{\lambda}_{i}^{j}$ from WIOD
- Elasticities constant across countries:
 - Goods across sectors: ho=0.2, match prices and expenditure shares ho
 - Workers within sectors: $\gamma = 1.51$, match Katz-Murphy [1992]
 - ▶ Trade elasticities θ^j from Caliendo-Parro [2015]

Data summary

► Sample: 33 countries, 1995-2007

Data summary: Average country								
	$\hat{\pi}^{j}_{ii}$	$\frac{H_i^j}{H_i} - \frac{L_i^j}{L_i}$	β_i^j	$\alpha_i^{G,j}$				
S	0.98	-0.09	0.55	0.37				
G	0.82	-0.23	0.38	0.67				
F	0.98	0.32	0.68	0.23				

Counterfactual 1

- ▶ Changes in trade costs between 1995-2007, fixing other fundamentals
- ► Estimate trade costs following Head and Reis (2001)

$$\hat{ au}_{ni}^j\hat{ au}_{in}^j=\left[rac{\hat{\pi}_{in}^j\hat{\pi}_{ni}^j}{\hat{\pi}_{nn}^j\hat{\pi}_{ii}^j}
ight]^{- heta^j}$$

- ► Compute counterfactual changes in equilibrium following hat algebra apprach in Dekle, Eaton and Kortum (2008)
 - No need or calibrate initial productivity or trade costs levels

C1: Changes in domestic expenditure trade shares - π_{ii}^{j}

C1: Changes in value-added and employment share of the goods sector

▶ Average change: $\simeq -8$ percent in C1 vs. $\simeq -20$ percent in data

C1: No price effects ($\rho = 1$)

▶ Average decline: $\simeq 0$ percent vs. $\simeq -8$ percent in C1

C1: Changes in skill premium

Counterfactual 2

Sufficient statistic approach: Take observed changes in π^j_{ii} and λ^j_i between 1980/1995-2007 as given

- ▶ How would sectorial shares and real wages change?
- From previous result:
 - We can conduct exercise without solving for multi-country general equilibrium
 - Only need data for domestic country

Counterfactual 2: Interpretation

- ▶ Between t and t' change in primitives $\left[\tilde{\mathcal{A}}_{i}^{j}, \tilde{H}_{i}, \tilde{\mathcal{L}}_{i}, \tilde{\tau}_{in}^{j}, \tilde{NX}_{i}\right]_{i,n}^{j}$ ⇒ resulting change skill premium: $\tilde{s}_{i} \tilde{w}_{i}$
- Counterfactual autarkic economy, same factor shares and elasticities but $\tau_{in} = \infty$ for $n \neq i$, $NX_i = 0$. Same changes in primitives $\left[\tilde{A}_i^j, \tilde{H}_i, \tilde{L}_i\right]_i^j \Rightarrow$ resulting change skill premium: $\tilde{s}_i^A \tilde{w}_i^A$
- ► To a first order approximation:

$$[\tilde{s}_i - \tilde{w}_i] - \left[\tilde{s}_i^A - \tilde{w}_i^A\right] = \sum_j \xi_{i,\pi}^j \tilde{\pi}_{ii}^j + \sum_j \xi_{i,\lambda}^j \tilde{\lambda}_i^j$$

► Exercise answers: What are the additional effects of changes in primitives on the skill premium in an open economy relative to a closed economy?

C2: Changes in share of the good sector in value added and employment

C2: Changes in skill premium

Skill premium increases in most countries

C2: Earlier periods

Country	Period	Percent change in:		
Country		π^G_{ii}	v_{ii}^G	s_i/w_i
USA	77-07	-10.8	-20.1	3.1
UK	79-07	-20.1	-23.9	6.6
Canada	81-07	-22.2	-15.6	4.4
ltaly	85-07	-7.8	-0.8	2.0
Japan	80-07	-2.6	1.4	-0.1
Netherlands	81-07	-34.5	-20.2	6.6

The skill premium and the factor content of trade

Payments to skilled labor:

$$w_i L_i = \sum_i \mu_i^j \beta_i^j R_i^j = \sum_i \mu_i^j \beta_i^j Y_i^j + w_i FCT_i^L$$

where
$$FCT_i^L \equiv \frac{1}{w_i} \sum_j \mu_i^j \beta_i^j \left[R_i^j - Y_i^j \right]$$

The skill premium and the factor content of trade

► Payments to skilled labor:

$$w_i L_i = \sum_i \mu_i^j \beta_i^j R_i^j = \sum_i \mu_i^j \beta_i^j Y_i^j + w_i FCT_i^L$$

where $FCT_i^L \equiv \frac{1}{w_i} \sum_j \mu_i^j \beta_i^j \left[R_i^j - Y_i^j \right]$

► Then

$$w_i = \frac{\sum_j \mu_i^J \beta_i^J Y_i^J}{L_i - FCT_i^L}.$$

▶ The skill premium can be written as

$$\frac{s_i}{w_i} = \frac{L_i - FCT_i^L}{H_i - FCT_i^H} \times \frac{\sum_j \left(1 - \mu_i^j\right) \beta_i^j Y_i^j}{\sum_i \mu_i^j \beta_i^j Y_i^j}.$$

If $Y_i^j = \alpha_i^j Y_i$ and $\mu_i^j = \bar{\mu}_i^j$ all we need is change in FCT (Deardorff-Staiger 1988, Burstein-Vogel 2011)

The skill premium prediction based on FCT

Alternative parameterizations

- 1. Two sector model:
 - Aggregate all services into one sector
- 2. No Intermediate inputs
 - $\qquad \qquad \beta_i^j = 1$
- 3. Non-Homothetic preferences to allow for income effects (Comin et al., 2015; Hanoch, 1975):

Change in skill premium C2 : Alternative parameterizations

Taking stock

- 1. Data: Low skilled intensive sectors are more tradeable or use more intermediate inputs (or both)
- 2. New mechanism linking trade to the skill premium
 - Trade lowers prices and value added in unskilled-labor intensive sectors in all countries
 - Rewards for factor used intensively in these sector decline
 - Quantitative calculations country by country
- Channel quantitatively important for various developing and developed countries

Relative prices vs. Relative shares

Relative prices vs. Relative shares II

High skilled services vs goods Low skilled services vs goods Input bundle used in the goods sector

Estimation Results

$$\log \left(\frac{P_i^j C_i^j}{P_i^{j'} C_i^{j'}} \right) = \log \left(\frac{\bar{\phi}_i^j}{\bar{\phi}_i^{j'}} \right) + (1 - \rho) \log \left(\frac{P_i^j}{P_i^{j'}} \right) + (\varepsilon_j - \varepsilon_{j'}) \log C_i.$$

$$\log \left(\frac{P_i^l x_i^{lj}}{P_i^{l'} x_i^{lj}} \right) = \log \left(\frac{\bar{\alpha}_i^{lj}}{\bar{\alpha}_i^{l'j}} \right) + (1 - \rho) \log \left(\frac{P_i^l}{P_i^{l'}} \right).$$

		Joint			
	Consumption	Unskilled	Skilled	Goods	
$1-\rho$	0.451**	0.987***	0.938***	1.085***	1.004***
	(0.142)	(0.138)	(0.132)	(0.171)	(0.056)

Estimation Fit

Consumption Bundle

Goods input bundle

Unskilled-labor intensive services input bundle

Skilled-labor intensive services input bundle

