Japan-IMF Scholarship Program for Asia 2021-2022 Basic Mathematics Aptitude Test Test A

(Full score: 40)

Please Note:

- You have 60 minutes to complete
- Calculators are not allowed
- Please show all your work and write your answers in the designed space

Thank you

Country:	
Reference Number:	
Name:	

Problem 1. Compute the following:

$$\frac{500 + \frac{5}{2}}{5 + \frac{10}{2}} - \frac{1}{4}$$

Name:

Answer:

Problem 2. Assume that α is some constant which satisfies $1 > \alpha > 0$. Solve for x:

$$\frac{x^{\alpha-1}}{x^{\alpha}} = \frac{1}{1-x}$$

Answer:_____

Problem 3. Let e denote Euler's constant. Solve for x:

$$\frac{e^{2x-5}}{e^x} = 1$$

Answer:_____

Problem 4. Solve for *x*:

$$2\ln(x+1) + \ln\left(\frac{1}{x+1}\right) = \ln(5)$$

Answer:_____

Problem 5. Compute f(11.5):

$$f(x) = \frac{4x^2(x+5)}{2x^2+10x}$$

Answer:

Problem 6. Assume that a and b are both positive constants and restrict x > 0. Under what conditions is f(x) an increasing function?

Name:

$$f\left(x\right) = \frac{a+x}{b+x}$$

Answer:

Problem 7. Assume that a, b, c are all constants and $a + b \neq 0$. Solve for x:

ax + bx = c

Answer:

Problem 8. Suppose there are two goods (good 1 and good 2). Let x_i and p_i denote the quantity purchased and the price of good *i* respectively. The household's income is M. The household's budget constraint is

$$p_1 x_1 + p_2 x_2 = M.$$

Solve for x_2 as a function of income, prices, and x_1 :

Answer:

Problem 9. Assume that a and b are positive constants and restrict x > 0. Calculate the derivative of f(x):

$$f\left(x\right) = \ln\left(ax^2 + bx\right)$$

Answer:_____

Problem 10. Assume that $1 > \alpha > 0$, and that M and p are both positive parameters (constants). Calculate the derivative of u(x):

$$u(x) = \ln [x^{\alpha}] + \ln \left[(M - px)^{1-\alpha} \right]$$

Answer:_____

3

Problem 11. Suppose that $A = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix}$. Compute AB:

Problem 12. Suppose that a, b, c, d are all constants and

$\begin{bmatrix} y_1 \end{bmatrix}$	_	a	b	$\begin{bmatrix} x_1 \end{bmatrix}$
$\begin{bmatrix} y_2 \end{bmatrix}$		c	$d \rfloor$	$\begin{bmatrix} x_2 \end{bmatrix}$.

Write y_1 as a function of the constants and x_1 and x_2 :

Problem 13. Solve for x_1 , x_2 , and x_3 , where:

[1]	5	10]	$\begin{bmatrix} x_1 \end{bmatrix}$		[1]
2	1	2	x_2	=	2
3	0	1	x_3		5

Answer:

Problem 14. Assume that $\kappa > 1$ and b > 0. Compute:

$$\int_{b}^{\infty} x\left(\frac{\kappa b^{\kappa}}{x^{\kappa+1}}\right) dx$$

Answer:

Problem 15. Assume that

$$\int_{-\infty}^{\infty} f(z) dz = 1;$$
$$\int_{-\infty}^{a} f(z) dz = \frac{1}{3}.$$
$$\int_{a}^{\infty} f(z) dz.$$

Provide a numerical answer for

|--|

Answer:

Answer:_____

Name:

Problem 16. Suppose that

$$S(\beta_0, \beta_1) = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i)^2.$$

Name:

Compute the partial derivatives $\frac{\partial S(\beta_0,\beta_1)}{\partial \beta_0}$ and $\frac{\partial S(\beta_0,\beta_1)}{\partial \beta_1}$:

Answer:

Problem 17. Refer to the previous question. Solve for the β_0 and β_1 which minimize $S(\beta_0, \beta_1)$ and denote them $\hat{\beta}_0$ and $\hat{\beta}_1$ respectively. Suppose that we have the following three pairs of data (x, y): (0, 1), (1, 1), (2, 2) and hence N = 3. Given this data, provide a numerical answer for $\hat{\beta}_1$:

Answer:

Problem 18. Suppose that you would like to build a fence for a farm. Because of regulations you can only build the fence in the form of a rectangle. You seek to maximize the area of farmland protected by the fence. The formula for the area (A) is

A = xy

where x is the length and y is the width of the fence. You must spend the entire budget to build the fence. You have \$100 to spend. Each meter of fencing costs \$2. Solve for the optimum x and y:

Answer:

Problem 19. Suppose that we have 20 observations

 $X = \{10.4, 5.4, 11.8, 12.2, 9.9, 10.9, 10.5, 9.5, 12.2, 8.6, 8.9, 13.3, 11.2, 8.9, 13.5, 11.1, 7.0, 8.3, 6.7, 6.7\}$

The mean of all of the observations is $\bar{x} = 9.85$. What is the sum of all of the observations?

Answer:

Problem 20. Refer to the previous question. Let x_i denote each element in X (10.4, 5.4, ... 6.7). Calculate:

$$\sum_{i=1}^{20} \left(x_i - \bar{x} \right)$$

Answer:_____