Japan-IMF Scholarship Program for Asia 2021-2022 Basic Mathematics Aptitude Test
 Test A

(Full score: 40)

Please Note:

- You have 60 minutes to complete
- Calculators are not allowed
- Please show all your work and write your answers in the designed space

Thank you

Country:

\qquad
Reference Number:
Name: \qquad

Referecene Number:

Country:

Problem 1. Compute the following:

$$
\frac{500+\frac{5}{2}}{5+\frac{10}{2}}-\frac{1}{4}
$$

Answer: \qquad

Problem 2. Assume that α is some constant which satisfies $1>\alpha>0$. Solve for x :

$$
\frac{x^{\alpha-1}}{x^{\alpha}}=\frac{1}{1-x}
$$

Answer: \qquad

Problem 3. Let e denote Euler's constant. Solve for x :

$$
\frac{e^{2 x-5}}{e^{x}}=1
$$

Answer:

Problem 4. Solve for x :

$$
2 \ln (x+1)+\ln \left(\frac{1}{x+1}\right)=\ln (5)
$$

Answer:

Problem 5. Compute f (11.5):

$$
f(x)=\frac{4 x^{2}(x+5)}{2 x^{2}+10 x}
$$

Answer: \qquad

Referecene Number:

Country:

Problem 6. Assume that a and b are both positive constants and restrict $x>0$. Under what conditions is $f(x)$ an increasing function?

$$
f(x)=\frac{a+x}{b+x}
$$

Answer: \qquad

Problem 7. Assume that a, b, c are all constants and $a+b \neq 0$. Solve for x :

$$
a x+b x=c
$$

Answer: \qquad

Problem 8. Suppose there are two goods (good 1 and good 2). Let x_{i} and p_{i} denote the quantity purchased and the price of good i respectively. The household's income is M. The household's budget constraint is

$$
p_{1} x_{1}+p_{2} x_{2}=M .
$$

Solve for x_{2} as a function of income, prices, and x_{1} :

Answer: \qquad

Problem 9. Assume that a and b are positive constants and restrict $x>0$. Calculate the derivative of $f(x)$:

$$
f(x)=\ln \left(a x^{2}+b x\right)
$$

Answer: \qquad

Problem 10. Assume that $1>\alpha>0$, and that M and p are both positive parameters (constants). Calculate the derivative of $u(x)$:

$$
u(x)=\ln \left[x^{\alpha}\right]+\ln \left[(M-p x)^{1-\alpha}\right]
$$

\qquad

Referecene Number:

Country:

Problem 11. Suppose that $A=\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]$ and $B=\left[\begin{array}{l}2 \\ 4 \\ 5\end{array}\right]$. Compute $A B$:

Answer: \qquad
Problem 12. Suppose that a, b, c, d are all constants and

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

Write y_{1} as a function of the constants and x_{1} and x_{2} :

Answer: \qquad
Problem 13. Solve for x_{1}, x_{2}, and x_{3}, where:

$$
\left[\begin{array}{ccc}
1 & 5 & 10 \\
2 & 1 & 2 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right]
$$

Answer: \qquad
Problem 14. Assume that $\kappa>1$ and $b>0$. Compute:

$$
\int_{b}^{\infty} x\left(\frac{\kappa b^{\kappa}}{x^{\kappa+1}}\right) d x
$$

Answer: \qquad

Problem 15. Assume that

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(z) d z=1 \\
& \int_{-\infty}^{a} f(z) d z=\frac{1}{3}
\end{aligned}
$$

Provide a numerical answer for

$$
\int_{a}^{\infty} f(z) d z
$$

\qquad

Referecene Number:

Country:

Problem 16. Suppose that

$$
S\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{N}\left(\beta_{0}+\beta_{1} x_{i}-y_{i}\right)^{2} .
$$

Compute the partial derivatives $\frac{\partial S\left(\beta_{0}, \beta_{1}\right)}{\partial \beta_{0}}$ and $\frac{\partial S\left(\beta_{0}, \beta_{1}\right)}{\partial \beta_{1}}$:

Answer: \qquad
Problem 17. Refer to the previous question. Solve for the β_{0} and β_{1} which minimize $S\left(\beta_{0}, \beta_{1}\right)$ and denote them $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ respectively. Suppose that we have the following three pairs of data $(x, y):(0,1),(1,1),(2,2)$ and hence $N=3$. Given this data, provide a numerical answer for $\hat{\beta}_{1}$:

Answer: \qquad
Problem 18. Suppose that you would like to build a fence for a farm. Because of regulations you can only build the fence in the form of a rectangle. You seek to maximize the area of farmland protected by the fence. The formula for the area (A) is

$$
A=x y
$$

where x is the length and y is the width of the fence. You must spend the entire budget to build the fence. You have $\$ 100$ to spend. Each meter of fencing costs $\$ 2$. Solve for the optimum x and y :

Answer:
Problem 19. Suppose that we have 20 observations

$$
X=\{10.4,5.4,11.8,12.2,9.9,10.9,10.5,9.5,12.2,8.6,8.9,13.3,11.2,8.9,13.5,11.1,7.0,8.3,6.7,6.7\}
$$

The mean of all of the observations is $\bar{x}=9.85$. What is the sum of all of the observations?

Answer: \qquad
Problem 20. Refer to the previous question. Let x_{i} denote each element in X (10.4, 5.4, ... 6.7). Calculate:

$$
\sum_{i=1}^{20}\left(x_{i}-\bar{x}\right)
$$

Answer: \qquad

