Basic Mathematics Aptitude Test

(Full score: 40)

Please Note:

- You have 60 minutes to complete.
- No calculators are allowed.

■ Please show all your work and write your answers in the designated space.

Country:

\qquad

Reference Number:

Name: \qquad

Name:
Reference Number:

In each question below, choose the correct answer from A-E (2 points for each question):

1. Calculate $11-(-6)^{3} \div(-2)^{2}$.
2. Calculate $\frac{(x-2)^{5}}{(3 x-6)^{4}}$ for $x=2756$.

Answer:
3. Calculate $\frac{\sqrt{3}}{3+2 \sqrt{2}}+\frac{\sqrt{3}}{3-2 \sqrt{2}}$.

Name:
Reference Number:
4. Solve for x and y in the following system of equations.

$$
\begin{gathered}
-0.5 x+0.4 y=-\frac{7}{15} \\
\frac{1}{3} x+0.25 y=1
\end{gathered}
$$

5. Solve for x in the following equation.

$$
4 x^{-0.25}=12
$$

Name:
Reference Number:
6. Solve for x in the following equation.

$$
2 \log _{3}(x+13)-\log _{3}(-2 x+1)=2
$$

7. Find the largest integer x that satisfies $\left|2-\log _{3} x\right|<3$.

Answer:

8. Evaluate the following sum.

$$
\sum_{t=1}^{\infty} t(0.5)^{t}
$$

Name:
Reference Number:
9. Find the equation of a line that is tangential to $y=-2(x-1)^{3}+1$ at $(x, y)=(2,-1)$.

Answer:
10. Find the first derivative of $f(x)=(2 x-1)\left(3 x^{2}+x-2\right)$.

Answer:
11. Evaluate the second derivative of $f(x)=2 e^{-2 x+2}+\ln (3 x+1)$ at $x=1$.

Answer:

Name:
Reference Number:
12. Find the cross partial derivative $\frac{\partial^{2} f(x, y)}{\partial x \partial y}$ of $f(x, y)=x \ln (2 x+y)$.
13. Evaluate the integral $\int_{-1}^{5}\left(x^{2}-2 x+3\right) d x$.

Answer:
14. Evaluate the integral $\int_{-2}^{0} e^{-2 x} d x$, where e denotes Euler's constant.

Name:
Reference Number:
15. Given matrices \mathbf{A} and \mathbf{B} below, find the matrix \mathbf{X} that satisfies $\mathbf{A X}=\mathbf{B}$.

$$
\mathbf{A}=\left[\begin{array}{cc}
2 & -1 \\
-2 & 3
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{cc}
5 & 4 \\
-3 & -8
\end{array}\right]
$$

16. Solve for x_{1}, x_{2}, and x_{3}, where

$$
\left[\begin{array}{ccc}
2 & -3 & -1 \\
-1 & 5 & 2 \\
1 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-4 \\
3 \\
8
\end{array}\right]
$$

Answer:

Name:
Reference Number:
17. Find the values of x and y that solve the following problem.

$$
\begin{aligned}
& \text { maximize } \ln (x+8)+2 \ln (2 y-5) \\
& \text { subject to } x+4 y=8
\end{aligned}
$$

Answer:
18. Find the values of x and y that solve the following problem.

```
maximize \(3 \ln (x-2)+y\)
subject to \(2 x+y=10, x \geq 4, y \geq-6\)
```


Name:

Reference Number:
19. Suppose you roll two fair dice. What is the probability that the sum of two numbers is at least 8 ?

Answer:

20. Suppose you randomly pick an integer from 500 to 999 . What is the probability that the integer you picked is divisible by both 4 and 6 ?

Answer:

