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Abstract 

We present a novel approach that incorporates individual entity stress testing and losses from 

systemic risk effects (SE losses) into macroprudential stress testing. SE losses are measured 

using a reduced-form model to value financial entity assets, conditional on macroeconomic 

stress and the distress of other entities in the system. This valuation is made possible by a 

multivariate density which characterizes the asset values of the financial entities making up 

the system. In this paper this density is estimated using CIMDO, a statistical approach, which 

infers densities that are consistent with entities’ probabilities of default, which in this case are 

estimated using market-based data. Hence, SE losses capture the effects of 

interconnectedness structures that are consistent with markets’ perceptions of risk. We then 

show how SE losses can be decomposed into the likelihood of distress and the magnitude of 

losses, thereby quantifying the contribution of specific entities to systemic contagion. To 

illustrate the approach, we quantify SE losses due to Lehman Brothers’ default. 
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GLOSSARY 

 

ABM  Agent-Based Models 

BCBS  Basel Committee on Banking supervision 

CCoB  Capital Conservation Buffer 

CCyB  Countercyclical Capital Buffer 

CDS  Credit Default Swap 

CIMDO Consistent Information Multivariate Density Optimizing 

FIs  Financial Institutions 

FSAP  Financial Sector Assessment Program 

G-SIB  Global Systemically Important Bank 

MicroST Microprudential Stress Test 

PoD  Probabilities of Distress 

PRA  Prudential Regulatory Authority 

RWA  Risk-Weighted Assets 

SCB  Stress Capital Buffer  

SE  Systemic Effects 

SIB  Systemically Important Bank 
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I.   INTRODUCTION 

 

The global financial crisis demonstrated that relatively small initial losses in the financial 

system can be magnified to systemic dimensions. In response, authorities have, over the past 

few years, prioritized the development of tools that attempt to quantify losses due to 

contagion effects and due to the feedback mechanisms between the financial sector and the 

macroeconomy (what we will call losses from systemic risk effects, or SE losses). Systemic 

effects have the potential to magnify moderate exogenous shocks into substantial negative 

financial outcomes with large welfare effects. However, data constraints, the understanding 

of the intricacies of amplification mechanisms, how best to model those mechanisms, and 

how they might interact in complex financial systems impose significant impediments to both 

researchers and policymakers trying to develop stress-testing frameworks that can adequately 

quantify SE losses.  
 

We propose an easily implementable and robust method that incorporates individual entity 

stress tests and losses from SE into macroprudential stress tests. The proposed 

“encompassing” method aims to support the development of macroprudential stress tests by 

combining the positive features of stress tests run on individual entities with an empirical 

approach to systemic risk measurement using publicly-available information. In the proposed 

framework, losses from SE are quantified using a reduced-form model that values financial 

entities’ losses, conditional on macroeconomic adverse scenarios and the distress of other 

entities in the system. 2 These losses can then be added to those estimated from 

microprudential stress tests in order to assess the total losses that could occur in a systemic 

event. 
 

The quantification of losses from SE relies on the estimation of a multivariate density that 

typifies the asset values of the financial entities in a system. While it is possible to use 

different parametric approaches to estimate this density (e.g., t-distributions, mixed 

distributions, etc.), we recommend the use of the Consistent Information Multivariate 

Density Optimizing (CIMDO) approach (see Section VI.B and Appendix III for a 

description).3 Importantly, the CIMDO approach infers interconnectedness structures that are 

consistent with empirical probabilities of distress (PoDs). Since PoDs can be estimated with 

market-based or supervisory information, CIMDO can be implemented in a variety of data 

environments, covering a broad set of countries. When PoD estimations are done with market 

                                                 
2 A reduced form model in this paper refers to a model that allows inferring from market data the 

interconnectedness structures across entities (that define systemic risk losses) without explicitly modeling the 

mechanisms that generate such structures.  

3 The CIMDO methodology is based on the minimum cross-entropy approach, where a posterior multivariate 

distribution—the CIMDO density—is recovered using an optimization procedure by which a prior density 

function is updated with empirical information via a set of constraints. In this implementation, the empirical 

estimates of the probability of distress of individual banks act as the constraints, and the derived CIMDO 

density is the posterior density that is the closest to the prior distribution and consistent with these constraints. 

This methodology and its advantages relative to other parametric multivariate densities are presented in detail in 

Segoviano (2006) and Segoviano and Espinoza (2017). 
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data, losses from SE take account of interconnectedness structures that are consistent with 

markets’ perceptions of risk. Capturing these structures properly quantifies the nonlinear 

increases in losses observed in crises.  

Systemic risk amplification mechanisms are complex and change across time. These 

mechanisms are fueled by intricate macrofinancial loops and interconnectedness across 

financial entities and markets, which pave the road for loss contagion. Therefore, when 

modeling systemic risk, it is essential to identify such structures and how they might change 

at different stages of the financial cycle. Interconnectedness structures are defined by both 

direct interconnectedness (usually through contractual exposures across entities) and by 

indirect interconnectedness (usually caused by agents’ behavioral responses due to exposures 

to common risk factors and market price channels), which might not be apparent in normal 

times but can become significant in periods of financial distress, when agents’ reactions 

change, possibly giving rise to the nonlinear increases in magnitude and the speed of loss 

propagation observed during financial crises.  
 

The applied literature has taken two main approaches to quantifying systemic risk. These are 

(i) the development of simulated models (network or agent-based (ABM)) that attempt to 

explicitly model agents’ behavioral responses that implicitly underpin the interconnectedness 

structures among FIs, and (ii) the estimation of empirical reduced form models that attempt 

to infer from market data, the interconnectedness structures that result of agents’ actions 

without explicitly modeling their behavior. 
 

Simulated models have made important contributions to the analysis of contagion and have 

highlighted specific systemic risk channels due to agents’ behavior. These frameworks, 

however, require highly granular data that does not exist in many countries. Moreover, the 

explicit modeling of agents’ behavior makes these models complex; therefore, they 

frequently assess limited sets of amplification mechanisms and often become highly intricate 

when such sets are expanded. This may have limited their role for policy analysis Basel 

Committee on Banking Supervision (2015).4  
 

Alternatively, empirical reduced-form models infer the interconnectedness structures (direct 

and indirect) across entities that result of agents’ actions, which get reflected on market 

prices. Systemic risk metrics estimated from these models are “reduced-form” meaning that 

although they capture the effects of agents’ behavior, they do not provide information of the 

specific agents’ behaviors that define channels of contagion that can lead to the 

materialization of systemic risk. Moreover, metrics derived from empirical models might be 

subjected to issues related to market data, especially when markets are illiquid. Nevertheless, 

these models have proven useful to quantify a variety of systemic risk measures. 

                                                 
4 Elsinger and others (2013) also noted that the losses predicted by network models of interbank exposures were 

too small and thus had not been useful for policymaking during the 2008–09 financial crisis. 
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However, one issue with many of these metrics is that they are usually not comparable to 

metrics obtained from standard stress tests; thus, empirical models to quantify systemic risk 

have not been embedded into macroprudential stress tests frameworks. 
 

The proposed framework characterizes financial systems as portfolios of interconnected 

entities. This allows us to typify the asset values of the individual entities in the system and 

the association across the asset values of such entities (what we call the interconnectedness 

structure) in a multivariate density.5 The asset value multivariate density and an asset 

valuation model allow us to quantify expected losses suffered by specific entities conditional 

on other entities in the system falling in distress. We define these conditional losses as the 

losses due to SE losses.6 SE losses can be added to the losses of individual entities estimated 

by microprudential stress tests. As a result, after a microprudential stress test identifies, under 

a specific macrofinancial scenario, the set of entities that would fall into distress due to a 

“first round” of shocks, the proposed approach would permit an identification of the set of 

entities that would fall into distress after the losses due to SE are also incurred (“second 

round” effects). 
 

Our approach to estimating SE losses maintains the benefits of empirical models while 

offering several advantages for implementation. As with other empirical approaches, our 

model can be estimated with publicly available data (without the need for highly detailed or 

granular supervisory information). When estimated with market-based information, it 

embeds market perceptions of direct and indirect asset value interconnectedness structures. 

Moreover, such structures are inferred without the need to explicitly model agents’ 

behavioral responses. However, in contrast with other empirical models, the multivariate 

distribution underpinning the model allows us to quantify the probabilities of the distress 

events happening and the intensity of losses under these events. The multivariate framework 

also permits an easy integration of nonbank financial intermediaries into the analysis of 

systemic risk, therefore capturing the interactions between banks, insurance companies, 

pension funds, investment funds, and hedge funds when quantifying systemic risk 

amplification losses.7  

 

                                                 
5 Other empirical models focus on pairwise metrics of dependence, and in most cases, linear dependence—that 

is, on correlations. However, CIMDO infers the entire multivariate density that characterizes the complete 

systems’ asset value interconnectedness structure (copula function) that incorporates linear and nonlinear 

dependence across the asset values of the FIs making up the system. 

6 Although these conditional losses may appear to be akin to contagion losses in network models, our approach 

is very different. Our method does not make structural assumptions about the amplification mechanisms in the 

system and does not assume causality of contagion. Instead our method infers the implied direct and indirect 

channels of contagion from publicly available data and is stochastic (see Appendix IV for a more detailed 

description of the differences between contagion in network models and our approach). 
 

7 Cortes and others (2018) present an extension of the model that incorporates into the analysis of systemic risk 

insurance companies, pension funds, investment funds and hedge funds. 
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Lastly, we briefly discuss how the proposed method can be extended as proposed in Hiebert 

and others (2018) to calibrate countercyclical capital buffers.  
 

The structure of the paper is as follows. Section II explores the theoretical foundations 

behind SE in greater detail and discusses their implementation in stress-testing frameworks. 

Section III formalizes the encompassing method that we propose and explains how it can be 

implemented. In Section IV, we analyze expected SE losses, and decompose them by their 

factors (likelihood of systemic effect and magnitude of SE losses). Section V presents the 

asset valuation and CIMDO methods that we use to quantify SE losses. The results of an 

application to the U.S. financial system at the time when Lehman Brothers defaulted are 

presented in Section VI. A brief discussion on the implications of the proposed method for 

the calibration of countercyclical capital buffers is presented in Section VII. Section VIII 

concludes the paper. 

II.   SYSTEMIC RISK 

 

Systemic effects are diverse and complex, and can vary in structure and magnitude at 

different points in time. Theoretically, SE are due to various causes. They can be due to 

generalized shocks that affect several entities or markets and can enter into negative feedback 

loops between the macroeconomic outlook and financial sector losses (Bernanke and others 

1999, Kiyotaki and Moore 1997, and Adrian and Shin 2014). Systemic effects can also be 

caused by contagion due to direct and indirect interconnectedness across financial entities 

and markets. Direct interconnectedness due to contractual obligations among financial 

entities (Allen and Gale 2000, Freixas and others 2000, Eisenberg and Noe 2001, 

Bhattacharya et al. 2007) can cause “falling dominos” that amplify initial losses. Indirect 

interconnectedness can be caused by exposures to common risk factors, by asset fire sales,  

especially when agents’ financial positions are bounded by capital or collateral constraints 

(Bhattacharya and Gale 1987, Aspachs et al. 2007, Lorenzoni 2008) and asset sell-offs, due 

to information asymmetries across agents (Jacklin and Bhattacharya 1988, and Khandani and 

Lo 2011). Indirect interconnectedness might not be apparent during calm periods but can take 

great relevance in periods of high volatility. Hence, interconnectedness structures are 

complex and likely unstable in periods of financial distress, possibly giving rise to the 

nonlinear increases in magnitude and speed of loss propagation observed during financial 

crises. 

The applied literature has taken two main approaches to modelling SE. These include the 

development of simulated models of the banking system and the estimation of reduced-form 

indices of systemic risk in empirical models applied to market and publicly available data.  
 

Simulated models have incorporated network features to integrate SE. Simulated models 

(Alessandri and others 2009 and Aikman and others 2009) embed different SE. These include 

direct contagion through interbank loan exposures (Eisenberg and Noe 2001), the role of 

common exposure and fire sales externalities (Cifuentes, Ferrucci, and Shin 2005) or 

liquidity runs (Tressel 2010). These models have been useful to understanding specific 
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amplification mechanisms as they allow modelers to trace the impact of a shock through the 

various channels. However, due to the complexity of modeling SE effects, these models 

usually focus on specific mechanisms and frequently omit the inclusion of simultaneous 

effects, which likely play a role in real crises. Data at the level of granularity required to 

implement many of these models does not exist in many countries or might be difficult to get 

for arm’s-length entities (such as the IMF). These models rely on key structural assumptions 

that are difficult to model or calibrate, for instance for the elasticities of asset prices to fire 

sales and for the bank behavioral response to shocks.8 These limitations may explain why the 

implementation of these models is complex and why these models have not been able to 

generate realistic estimates of contagion losses of the magnitude witnessed during the global 

financial crisis (Elsinger and others 2013). Nonetheless, important improvements have been 

incorporated in recent models (Cont and Schaanning 2016). Appendix IV presents a 

summary of the models in Eisenberg and Noe (2001) and Cifuentes and others (2005) as 

these models have been at the core of many simulated network models used in central banks’ 

macro stress test models.9  
 

The development of simulated models has recently shifted its attention to agent-based models 

(ABM). These models try to explain behavioral responses among agents in the system and 

build on the contributions of behavioral economics in order to better explain microeconomic 

behavior of agents in financial markets.10 These models include a heterogeneous set of 

agents, as well as a topology that describes their methods of interaction within an 

environment. They, therefore, attempt to go further than network models by departing from 

mechanical behavior and incorporating the heterogeneity of agents, banks and their behavior. 

ABM computational complexity and data requirements increase very rapidly as more 

features are added to the models. However, these obstacles may matter less in the future 

given the increasing availability of detailed data and the progress in computer power. 

                                                 
8 These models usualy assume deterministic (mechanistic) reaction functions; e.g., banks’ deleveraging 

behavior. Such assumptions may lead to biased estimates of contagion. 

9 Three differences can be highlighted between network models and the proposed reduced-form approach. The 

proposed approach makes no structural assumption about the amplification mechanisms in the financial system. 

The network models are structural; that is, they make assumptions about the structure of the financial network 

and contagion mechanism, whereas the proposed framework infers from market-based data the implied 

connections, and thus makes no structural assumptions about the amplification mechanisms in the system. The 

reduced-form approach is stochastic; hence, it allows us to consider a large set of events conditioning on a given 

event. Network models are deterministic. Finally, when estimated with market-based data, the proposed 

reduced-form approach embeds all possible direct and indirect amplification mechanisms captured by market 

data, whereas network models only consider (usually direct) amplification mechanisms explicitly modelled.  
 

10 Krishnamurthy (2010) designs a model to analyze how the uncertainty of investors in certain types of assets, 

especially assets coming from recent financial innovations, can lead to a run to safety after the shock occurs 

occurred and a sudden escape from these innovative products. Similarly, Kaszowska and Santos (2014) show 

that some methods from the sociological and behavioral sciences can be applied to more effectively model how 

market participants’ risk perceptions about the state of the market, and their expectations about other 

participants’ reactions to a shock, may cause a vicious feedback loop, and therefore accentuate the 

consequences of the initial shock. 
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Empirical models attempt to infer from market-based information the interconnectedness 

structures that can pave the road for contagion. Because empirical models build on co-

movements observed in market prices, these models are, in principle, better at incorporating 

the effects of direct and indirect contagion channels; however, these models rely on the 

quality of market-based data. These models usually require less granularity in the data than is 

needed for their implementation. Combined with the availability of high frequency market 

data, this makes these models adequate for high frequency monitoring of systemic risk. 

However, because these models are reduced form, they are not useful for singling out 

specific amplification mechanisms. Recent academic contributions to the measurement of 

systemic risk include, Diebold and Yilmaz (2009), Segoviano and Goodhart (2009), Adrian 

and Brunnermeier (2016), and Acharya and others (2017).11 However, such metrics are 

usually not comparable to metrics estimated by stress tests, nor easily transformable into 

systemic risk amplification losses.  

 

III.   THE ENCOMPASSING METHOD 

 

The proposed encompassing method aims to develop an operational macroprudential stress 

test. It combines the positive features of both established microprudential stress tests and 

systemic risk, reduced-form, models.  
 

• The method makes use of microprudential stress tests that are already implemented 

(either as bottom-up or top-down) by authorities (central banks, supervisors, 

regulators, etc.) or IMF staff,12 with supervisory or publicly available data that 

focuses on fundamentals of individual entities. Thus, microprudential stress tests that 

vary in complexity and sophistication, depending on the financial system for which 

they have been developed, can be easily incorporated into our framework.  

 

• For the estimation of SE losses, the method relies on a reduced-form approach that 

incorporates market perceptions of financial systems’ interconnectedness structures. 

Hence, SE loss estimates embed realistic market reactions and become 

computationally simple and relatively light on data requirements. When high 

frequency market-based data are available, the proposed framework is a cost-efficient 

approach to implementing macroprudential stress tests.  

 

• Moreover, even in cases where authorities have decided to follow the path of 

developing alternative simulated models, estimates of SE losses produced by the 

proposed framework can be helpful to policymakers by improving calibrations of 

                                                 
11 It should be noted that, while sharing some common elements, these models are conceptually different. Since 

it is not the objective here to survey this extensive literature, we refer to the detailed survey of such methods 

that is available in Bisias and others (2012). 
 

12 See “The IMF Framework for Banks’ Balance Sheet Stress Test.” IMF (2016). 
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such models. The cost efficiency of the proposed encompassing method allows easy 

parallel running of frameworks that provide policymakers with enhanced insights in 

addition to those produced by the alternative models. 

 

Microprudential stress tests assess the ability of an individual FI to overcome a distressed 

macroeconomic situation. Using a detailed description of the balance sheet of the FI under 

scrutiny, the microprudential stress test (MicroST) analyzes how the components of the 

balance sheet react under an adverse macroeconomic scenario (denoted adv), providing a 

valuation of the FI’s assets under the stress scenario. The stress test thus provides an 

estimation of the conditional expected valuation of the individual firm, under an adverse 

macroeconomic scenario. The value of the firm’s assets is formalized as: 

 

𝑉𝐴
𝑀𝑖𝑐𝑟𝑜𝑆𝑇 = 𝐸(𝑉𝐴|𝑎𝑑𝑣 )        (1) 

 

The adverse scenario can be defined by specific values of a vector of adverse macroeconomic 

outcomes (deterministic scenario), in which case adv = {A} is a singleton. Alternatively, the 

adverse scenario can be defined as a distribution of adverse values for the vector of 

macroeconomic outcomes (stochastic scenario). In the practice of stress testing, the first 

option is typically used. However, both definitions of adverse scenarios can be considered 

under the proposed framework. 

 

It is worth noting that microprudential stress tests do not specify whether additional financial 

stress is (or is not) occurring in the system, beyond the financial stress that is consistent with 

the assumed stressed macroeconomic scenario.13 

 

The proposed framework identifies and describes SE losses by conditioning the valuation of 

an institution on additional financial events. The conditioning set can be based on the 

information provided by a microprudential stress test or by any other type of information that 

would prompt the regulatory authority to explore the amplification loss induced by the 

realization of a given event. We formalize these ideas with the following three definitions 

(see also Venn diagram in Figure 1, introduced now in preparation of Section IV): 

 

• The microprudential stress-test loss of bank A is the difference between the value of 

bank A in normal times and its value under an adverse macroeconomic scenario 

(hatched rectangle in Figure 1): 

                                                 
13 One may also think that micro prudential stress tests exclude de facto some events when assessing the value of 

a financial institution under an adverse macroeconomic scenario (for instance they may exclude the defaults of 

other banks). In this case, the micro stress tests valuation should be defined as  𝑉𝐴
𝑀𝑖𝑆𝑇 = 𝐸(𝑉𝐴|𝑎𝑑𝑣 ∩ 𝐷̅) where 

the events excluded in a micro stress test are denoted by the set D. The SE loss, introduced below, would then be 

consistently defined as follows:  

𝐿𝑜𝑠𝑠𝑆𝐸(𝐴|𝑆) = 𝐸(𝑉𝐴|𝑎𝑑𝑣 ∩ 𝐷̅) − 𝐸(𝑉𝐴|𝑎𝑑𝑣 ∩ 𝑆). 

With this formula, it is still possible to decompose the SE loss using the approach proposed in this paper. 
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𝐿𝑜𝑠𝑠𝑚𝑖𝑐𝑟𝑜(𝐴) = 𝐸(𝑉𝐴) − 𝐸(𝑉𝐴|𝑎𝑑𝑣 )     (2) 

 

• The SE loss of bank A, assuming the realization of any given financial contagion 

event S (for instance, the default of a bank that failed the microprudential stress test), 

is the difference between the value of bank A under an adverse macroeconomic 

scenario and its value assuming the realization of a financial distress event S as well 

as of the adverse macroeconomic scenario (dark-circled area in Figure 1): 

 

𝐿𝑜𝑠𝑠𝑆𝐸(𝐴|𝑆) = 𝐸(𝑉𝐴|𝑎𝑑𝑣 ) − 𝐸(𝑉𝐴|𝑎𝑑𝑣 ∩ 𝑆)    (3) 

 

• The total loss under a systemic event (TS) is then the loss assuming the realization of 

a financial event S in the stressed macro scenario, and it is the sum of the micro stress 

test loss and the SE loss: 

 

𝐿𝑜𝑠𝑠𝑇𝑆(𝐴|𝑆) = 𝐿𝑜𝑠𝑠𝑚𝑖𝑐𝑟𝑜(𝐴) + 𝐿𝑜𝑠𝑠𝑆𝐸(𝐴|𝑆) = 𝐸(𝑉𝐴) − 𝐸(𝑉𝐴|𝑎𝑑𝑣 ∩ 𝑆)    (4) 

 

The main reasons why losses due to systemic effects are usually not captured by 

microprudential stress tests; hence, we expect  𝐿𝑜𝑠𝑠𝑇𝑆(𝐴|𝑆) > 𝐿𝑜𝑠𝑠𝑚𝑖𝑐𝑟𝑜(𝐴)  

• Losses in MicroST do not usually capture adequately non linearities. This affects the 

link between macro scenarios and risk parameters (assets’ probabilities of default, 

loss given default parameters, etc.) and the treatment of portfolio diversification 

effects; 

 

• The contagion mechanisms across entities and markets as discussed in Section II; 

 

• The macro-financial nexus: when the adverse scenario is defined as a distribution, the 

information that specific financial entities are in default narrows the set of adverse 

scenarios that are consistent with these events, which is why the calculation of 

conditional losses is made on a narrower (and most likely more stringent) set of 

adverse scenarios  (𝑎𝑑𝑣 ∩ 𝑆). 

 

The implementation to a macroprudential stress test when the scenario is deterministic would 

follow Figure 2: 

• Given the assumptions regarding the scenario, risk parameters (probabilities of 

default, loss given default, and exposures at default for different assets and entities) 

are individually estimated for each of the FIs analyzed (see the left-hand side block of 
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Figure 2).14 We note that under the proposed framework, the integration of banks and 

nonbanks is straightforward. 

• These parameters are used as inputs to estimate losses and profitability for each entity 

under the microprudential stress test and scenario. Note that these parameters are also 

used to estimate SE losses; thus, identifying the set of entities that can experience 

capital shortfalls after second-round effects.  

 

Figure 1. Characterization of SE Losses in a Venn Diagram 
 
 
 

 
Source: Authors. 

Notes: The states of nature of the adverse macroeconomic scenario are represented by the 

hatched rectangle. The financial stress event S is represented by the dark-circled area. The total 

loss under a systemic event is the difference between its value in normal times and its value 

assuming an adverse macroeconomic scenario and the realization of the contagion event S. 

This is the total loss for a bank under the adverse macroeconomic scenario and the event S. 

 

 

 

 

                                                 
14 There is a suite of models that can be used to estimate these parameters, including Merton model–-type 

approaches, Value at Risk approaches, nonarbitrage models that rely on credit default swap spreads and bond 

spreads. 
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Figure 2. Encompassing Method for Macroprudential Stress Tests 
 

 
Source: Authors. 

Note: Under specific macrofinancial scenarios, the encompassing method allows analysts to quantify losses 

from contagion across entities (banks and nonbanks); identify if specific entities would be able to “survive” 

(that is, if their capital would be above the hurdle rate) the additional losses brought by SE given default of 

specific entities; and calculate the contribution to contagion losses from each “connecting” entity in the system, 

permitting the decomposition of contributions into the likelihood of the event and the intensity (amount) of 

induced contagion losses. 

 

IV.   LOSSES DUE TO SYSTEMIC EFFECTS: ANALYSIS 

In this section, we explore further the quantification of SE losses when the financial S event 

is the distress of a specific bank. Equations (3) and (4) become: 15 

𝐿𝑜𝑠𝑠𝑆𝐸(𝐴𝑖|𝐴𝑗) = 𝐸(𝑉𝐴𝑖 |𝑎𝑑𝑣) − 𝐸(𝑉𝐴𝑖 |𝐴𝑗 ∩ 𝑎𝑑𝑣)     (5) 

 

𝐿𝑜𝑠𝑠𝑇𝑆(𝐴𝑖|𝐴𝑗) = 𝐿𝑜𝑠𝑠𝑚𝑖𝑐𝑟𝑜(𝐴𝑖) + 𝐿𝑜𝑠𝑠𝑆𝐸(𝐴𝑖|𝐴𝑗) = 𝐸(𝑉𝐴𝑖
) − 𝐸(𝑉𝐴𝑖

|𝐴𝑗 ∩ 𝑎𝑑𝑣) (6) 

 

We define a vulnerability index that represents the impact on the SE losses experienced by a 

specific entity given default of another entities. In this example, we focus on the losses 

experienced by the financial institution 𝐴𝑖: 

𝑉(𝐴𝑖|𝐴𝑗) =
𝐿𝑜𝑠𝑠𝑇𝑆(𝐴𝑖|𝐴𝑗)

𝑇𝐴(𝐴𝑖)
        (7) 

                                                 
15 To simplify the conditioning notations, we do not explicitly condition on the occurrence of the distressed 

macroeconomic scenario throughout the rest of the paper. However, all the values and losses considered in this 

paper are computed assuming the occurrence of a distressed macroeconomic scenario. 
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where 𝑇𝐴(𝐴𝑖) refers to the total assets of  𝐴𝑖. The higher this index, the stronger the impact 

of Aj’s default on the losses experienced by 𝐴𝑖. Computing this index for any financial 

institution provides an estimate of the vulnerability to a given contagion event for all the FIs 

that form a financial system. 

 

The SE loss thus represents the overall impact of SE on a specific FI. This measure considers 

all the potential loops and feedback effects from a set of defaulting banks on the FI whose 

loss is assessed. Note that since the entire system of FIs is considered, a high SE loss of A 

assuming the realization of the default of B does not necessarily mean that there is a strong 

direct connection between A and B. The path of contagion may, for instance, include another 

FI strongly connected to A and B and explain the high conditional loss of A given that B 

defaulted. These effects are explored further in the following section. 

A.   Decomposing SE Losses 

SE losses can be decomposed to assess the impact of shocks through various connecting links 

in the financial network. In addition, the decomposition helps identify the most likely 

contagion events and provides an assessment of the intensity of those events (the event 

should represent a situation or scenario in which the state—defaulting or surviving—of each 

FI is clearly defined). We propose such a decomposition in an example with four firms 

before generalizing the formula to a set of N firms. 

 

In our example, we consider four FIs: A, B, C, and D. As before, the rectangle in Figure 3 

represents the states of nature corresponding to the adverse macroeconomic scenario, and 

inside each circle are the states of nature in which the bank labelling the circle is defaulting.  

To decompose the SE loss of A assuming the default of B, we partition the area in which B 

defaults as follows. In each subset of the partition, each financial institution (except A, since 

we are assessing its loss) is either defaulting or surviving (B is always defaulting). The 

partition of the set of possible events when 𝐵 defaults is:  

 

{𝐵} = {𝐵 ∩ 𝐶 ∩ 𝐷, 𝐵 ∩ 𝐶̅ ∩ 𝐷, 𝐵 ∩ 𝐶 ∩ 𝐷̅, 𝐵 ∩ 𝐶̅ ∩ 𝐷̅}    (8) 
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Figure 3. Decomposition of Conditional Losses: Four Financial Institutions 

 
 Source: Authors. 

 

Using the law of total expectation, the SE loss of A assuming B defaults is decomposed as 

follows:  

𝐿𝑜𝑠𝑠𝑆𝐸(𝐴|𝐵)    

=    𝑃(𝐵 ∩ 𝐶 ∩ 𝐷|𝐵)𝐿𝑜𝑠𝑠𝑆𝐸(𝐴|𝐵 ∩ 𝐶 ∩ 𝐷)  

+    𝑃(𝐵 ∩ 𝐶̅ ∩ 𝐷|𝐵)𝐿𝑜𝑠𝑠𝑆𝐸(𝐴|𝐵 ∩ 𝐶̅ ∩ 𝐷)   

+    𝑃(𝐵 ∩ 𝐶 ∩ 𝐷̅|𝐵)𝐿𝑜𝑠𝑠𝑆𝐸(𝐴|𝐵 ∩ 𝐶 ∩ 𝐷̅) 

                                                     +    𝑃(𝐵 ∩ 𝐶̅ ∩ 𝐷̅|𝐵)𝐿𝑜𝑠𝑠𝑆𝐸(𝐴|𝐵 ∩ 𝐶̅ ∩ 𝐷̅)               (9)          

 

This decomposition provides important information on the probability and intensity of losses 

of different defaulting sets. Under the assumption that B defaults, this decomposition 

highlights the factors explaining the SE loss suffered by A: 

 

• The probability of a specific event can be high (for instance, the probability that C 

and D default), and 

 

• The expected loss suffered by A under that event (B, C, D default together) can be 

high. 

Note that the proposed framework can be expanded to estimate the magnitude of 

amplification of systemic risk conditional on the severity of financial imbalances, usually 

quantified as the level of leverage, mispricing of risk, liquidity and maturity mismatches; see 
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Hiebert et al (2018). With this extension, SE losses would not only be a function of a given 

macrofinancial stress scenario (that describes shocks to macrofinancial variables), the 

magnitude of amplification of losses would also be affected by the underlying financial 

imbalances. That is, for a given shock, SE losses would be larger (smaller) if the severity of 

imbalances is larger (smaller); see Figure 4.16 

 

Figure 4. Macrofinancial Imbalances and Systemic Risk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Authors. 

 

  

                                                 
16 This extension requires the inclusion of additional marginal densities (that describe the the level of financial 

imbalanes) to the multivariate distribution that characterizes the financial system. This allows to quantify SE 

losses conditional on realizations of financial imbalances. This extension allows to bring together in a consistent 

manner the “time dimension” of systemic risk (usully characterized by the level of financial imbalances) to the 

“structural” dimension of systemic risk (characterized by the interconectedness structures that define SE losses), 

usually adressed separately in the systemic risk literature. 

 

Low Financial Imbalances 

High Financial Imbalances 

Distribution of imbalances 

Systemic events more likely 

Systemic events less likely 
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B.   Generalizing the SE Loss Formula 

We provide here a generalization of the SE loss formula. For a financial network that is made 

of a set of N firms denoted by {𝐴1, … , 𝐴𝑁} , we write as 𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙) the event of Aj and 

{𝐴𝑘1,…,𝐴𝑘𝑙
} defaulting with all the other FIs not defaulting (except the 𝐴𝑖, for which no 

assumption is made). The SE loss is:   

𝐿𝑜𝑠𝑠𝑆𝐸(𝐴𝑖|𝐴𝑗) = 𝐸(𝑉𝐴𝑖 ) − 𝐸(𝑉𝐴𝑖 |𝐴𝑗)                       

= 𝐸(𝑉𝐴𝑖 ) − ∑ 𝑃(𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙)

{𝑘1,…,𝑘𝑙}∈𝒫(⟦1,𝑁⟧\{𝑖,𝑗})

|𝐴𝑗)𝐸 (𝑉𝐴𝑖 |𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙)) 

= ∑ 𝑃(𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙)

{𝑘1,…,𝑘𝑙}∈𝒫(⟦1,𝑁⟧\{𝑖,𝑗})

|𝐴𝑗) [𝐸(𝑉𝐴𝑖 ) − 𝐸 (𝑉𝐴𝑖 |𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙))] 

    =   ∑ 𝑃(𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙)

{𝑘1,…,𝑘𝑙}∈𝒫(⟦1,𝑁⟧\{𝑖,𝑗})

|𝐴𝑗)  𝐿𝑜𝑠𝑠𝑆𝐸 (𝐴𝑖|𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙))    (10) 

 

The SE loss of 𝐴𝑖, if 𝐴𝑗 defaults, can thus be decomposed as the sum of the products 

between: 

 

• The probability of default of any set of FIs, given 𝐴𝑗
′𝑠 default: 𝑃(𝐷𝑗

𝑖(𝑘1, … , 𝑘𝑙)|𝐴𝑗) 

 

• The SE loss induced by the default of this set of FIs: 𝐿𝑜𝑠𝑠𝑆𝐸(𝐴𝑖|𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙)) 

The SE loss is the weighted average across all possible combinations of banks defaulting. 

Appendix II extends this formula for any conditioning event S (made of the default of k FIs 

and the non-default of N-k-1 FIs). 

The contribution to SE losses of the different connecting entities can be assessed as follows. 

Given the linearity of the SE loss formula, it is straightforward to construct a measure of the 

contribution of the different events to the SE loss of Ai given Aj:   

 

𝐶𝑜(𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙)|𝐴𝑗) =

 𝑃(𝐷𝑗
𝑖(𝑘1,…,𝑘𝑙)|𝐴𝑗) 𝐿𝑜𝑠𝑠𝑆𝐸(𝐴𝑖|𝐷𝑗

𝑖(𝑘1,…,𝑘𝑙))

𝐿𝑜𝑠𝑠𝑆𝐸(𝐴𝑖|𝐴𝑗)
  (11) 

 

• The index 𝐶𝑜(𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙)|𝐴𝑗) is the contribution to the conditional loss 

experienced by the set 𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙) due to the default of 𝐴𝑗.17 As a contribution, Co 

                                                 
17 Since the multivariate distribution framework cannot identify causality, the word ‘‘due’’ should not be 

interpreted as suggesting a causal link. 
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is between 0 and 1. For a policymaker, this measure is particularly informative since 

it identifies the “connecting” entities that contribute most to the SE losses from Aj to 

Ai.  

 

• As already explained, this contribution can be large either because the connecting 

banks are likely to default or because the intensity of the losses experienced by Ai are 

large given a default of the connecting FIs. That is, Co represents the intensity of 

losses for the set of defaults 𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙), weigthed by the probability of occurance 

of such event. 

The intensity of losses can be assessed using the ratio: 

 

                       𝐼𝑛(𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙)|𝐴𝑗) =

  𝐿𝑜𝑠𝑠𝑆𝐸(𝐴𝑖|𝐷𝑗
𝑖(𝑘1,…,𝑘𝑙))

𝐿𝑜𝑠𝑠𝑆𝐸(𝐴𝑖|𝐴𝑗)
   (12) 

 

• This is the ratio of the SE loss assuming the realization of the event 𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙) to 

the SE loss given Aj’s default. This ratio indicates the relative weight of the 

conditional losses induced by a given set of defaults over the SE loss induced by the 

default of bank 𝐴𝑗. It is larger the higher the losses due to the default event 

𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙). It lies between zero and infinity.  

V.   QUANTIFYING SE LOSSES 

A key distinction of our approach is the representation of the financial system as a portfolio 

of financial entities. This feature allows us to define SE losses as the losses suffered by 

specific entities conditional on distress of other entities in the system. This quantification 

requires the estimation of conditional and unconditional entities’ asset expected values, 

which entail the use of a model for asset valuation (presented in section VI.A) and the 

estimation of multivariate densities (presented in section VI.B). 

 

A.   Asset Valuation Model 

The asset valuation model is based on the structural approach to corporate default. The basic 

premise of the structural approach of Merton (1974) is that a firm's underlying asset value 

evolves stochastically over time, following a log-normal process, and default is triggered by 

a drop in the firm's asset value below a prespecified barrier, henceforth called the default 

threshold, which is modeled as a function of the firm's leverage structure.18 For our 

framework, the Merton’s univariate approach is extended to a multivariate case. For 

presentation purposes, we develop the model for a portfolio of two FIs; however, in 

Appendix I, we generalize the model for portfolios of N FIs. We assume that a multivariate 

                                                 
18 Moody's-KMV methodology (Crosbie and Bohn 2003) is a widely-known implementation of this approach. 
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distribution of the asset returns of the FIs A and B, 𝑝(𝑥, 𝑦) has already been estimated and 

that we know the default thresholds 𝑋𝑥
𝑑 and 𝑋𝑦

𝑑 for the asset returns x and y. The expected 

valuations are presented here without conditioning specifically on the adverse 

macroeconomic scenario because the formulas are valid whether this conditioning is included 

or not—when conditioning on the adverse macroeconomic scenario, the only required change 

to the formulas is to replace 𝑝(𝑥, 𝑦) by 𝑝(𝑥, 𝑦|𝑎𝑑𝑣). 

 

Unconditional valuation 

 

The (unconditional) expected value of the assets of firm A is given by: 

 

E0(VA,t) = ∬ 𝑉𝐴,t (𝑥, 𝑦)𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦       (13) 

 

𝑉𝐴,t (𝑥, 𝑦) is unknown but can be calculated as the sum of the value of debt 𝐷𝑡 and the value 

of equity (for which we know the initial value 𝐸𝑞0
 as well as the growth rate −𝑥): 

 

𝑉𝐴,t (𝑥, 𝑦) = 𝐸𝑞𝑡
(𝑥, 𝑦) + 𝐷𝑡(𝑥, 𝑦)       (14) 

 

The value of bank 𝐴′𝑠 debt (discounted appropriately given a book value 𝐷𝑇 at time 𝑇) 

depends on whether bank 𝐴 defaults or not: 

 

• in the zone where bank 𝐴 defaults (𝑥 > 𝑋𝑥
𝑑), 𝐷𝑡(𝑥, 𝑦) = (𝑅𝑅)𝐷𝑇𝑒−𝑟(𝑇−𝑡) 

 

• in the zone where bank 𝐴 does not default (𝑥 < 𝑋𝑥
𝑑), 𝐷𝑡(𝑥, 𝑦) = 𝐷𝑇𝑒−𝑟(𝑇−𝑡) 

where r is the discount rate and RR is recovery rate (that is, one minus the loss given default).  

 

Splitting between debt and equity, the expected value of the firm is thus: 

𝐸0(𝑉𝐴,t ) = 𝐸𝑞0 ∬ 𝑒−𝑥𝑝(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 + 𝑃(𝐴)(𝑅𝑅)𝐷𝑇𝑒−𝑟(𝑇−𝑡) + 𝑃(𝐴̅)𝐷𝑇𝑒−𝑟(𝑇−𝑡) (15) 

 

where P(A), the (marginal) probability of default of A, can be estimated by integrating the 

density p(x,y) in the zone of default of A, and 𝑃(𝐴̅) = 1 − 𝑃(𝐴).  

 

Conditional valuation 

 

Given the multivariate distribution p(x,y), we can also calculate the conditional valuation. In 

this case, this is the expected value of the assets of 𝐴 given the default of 𝐵 (denoted by the 

indicator function 1B): 

𝐸0(𝑉𝐴,t |𝐵) =
1

𝑃(𝐵)
𝐸(𝑉𝐴,t 1𝐵) =

1

𝑃(𝐵)
∬ 𝑉𝐴,t (𝑥, 𝑦)𝑝(𝑥, 𝑦)𝐼(𝑦 > 𝑋𝑦

𝑑)𝑑𝑥𝑑𝑦  (16) 
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where 𝑋𝑦
𝑑 is the threshold value (for the asset return of B) above which B is considered in 

default. 

 

Splitting again the value of the firm’s assets between the value of debt and equity, today’s 

total assets value of 𝐴 conditioning on the default of B is: 

 

𝐸0(𝑉𝐴,t |𝐵) =
1

𝑃(𝐵)
∬ 𝐸𝑞𝑡

(𝑥, 𝑦)𝑝(𝑥, 𝑦)𝐼(𝑦 > 𝑋𝑦
𝑑)𝑑𝑥𝑑𝑦 

   +
1

𝑃(𝐵)
∬ 𝐷𝑡 (𝑥, 𝑦)𝑝(𝑥, 𝑦)𝐼(𝑦 > 𝑋𝑦

𝑑)𝑑𝑥𝑑𝑦   (17) 

 

Thus, we have: 

 

𝐸0(𝑉𝐴,t |𝐵) =
1

𝑃(𝐵)
∬ 𝐸𝑞0

𝑒−𝑥𝑝(𝑥, 𝑦)𝐼(𝑦 > 𝑋𝑦
𝑑)𝑑𝑥𝑑𝑦 

+
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
(𝑅𝑅)𝐷𝑇𝑒−𝑟(𝑇−𝑡) 

   +
𝑃(𝐴̅∩𝐵)

𝑃(𝐵)
𝐷𝑇𝑒−𝑟(𝑇−𝑡)        (18) 

 

As shown in Section V, the difference between the conditional and the unconditional 

valuation allows us to quantify the systemic risk amplification loss. In this case, the SE losses 

for A under event S are represented by: 

𝐿𝑜𝑠𝑠𝑆𝐸(𝐴|𝑆) = 𝐸(𝑉𝐴|𝑎𝑑𝑣 ) − 𝐸(𝑉𝐴|𝑎𝑑𝑣 ∩ 𝑆)      (19) 

 

Appendix I provides the general formulas when the event S is any combination of k FIs 

defaulting and N-k-1 FIs not defaulting.  
 

B.   The CIMDO Method 

The main difficulty in modelling the asset valuation of FIs is the lack of data, especially for 

tail events. And it is precisely in distress situations—that is, when FIs implied asset values 

fall simultaneously to significantly low levels (represented in the multivariate density at its 

“tails”)—when we are most interested in assessing adequately expected losses. Usually, the 

probabilities of distress (PoD) of individual institutions are the only available data. 

Information on the dependence structure defining joint distress in the system is not 

observable. 
 

Therefore, a key challenge in extending the structural valuation model to a system of firms is 

due to the choice of the multivariate density characterizing the systems’ implied asset values. 

Although Merton's univariate approach, which relies on a Gaussian distribution, can readily 

be extended to consider the multivariate distribution of asset valuations in a portfolio, the 
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normality assumption and the fixed dependence structure defining interconnectedness 

structures across entities in a portfolio, on which standard models rely, do not appear to be 

adequate model choices. Because financial assets’ returns exhibit heavier tails than would be 

predicted by the normal distribution and interconnectedness structures change across time, 

different parametric statistical models have been proposed to model the multivariate density. 

However, when data for calibration is constrained, as is the case in modeling systemic risk, 

such models are difficult to calibrate and are subject to significant model error.19  
 

Therefore, rather than imposing convenient distributional assumptions, we make use of the 

CIMDO method, as an alternative route to recover multivariate distributions. The CIMDO 

method (Segoviano 2006, Segoviano and Goodhart 2009, and Segoviano and Espinoza 

2017), based on the Kullback (1959) cross-entropy approach, reverses the process of 

modeling data information. Instead of assuming parametric probabilities to characterize the 

information contained in the data, the entropy approach uses the data information to infer 

values for the unknown probability density. The CIMDO method incorporates the limited 

observed information on the entities’ equity returns and individual PoDs to infer the 

(unobserved) dependence structure of the system (embedded in the multivariate density) that 

best captures comovement when financial entities simultaneously fall in distress.  
 

In statistical terms, CIMDO recovers a posterior multivariate distribution—the CIMDO 

density—using an optimization procedure. This implies that a prior density function 

(calibrated as a multivariate t-distribution using FIs equity returns data) is updated with 

empirical information via a set of constraints. In this implementation, the empirical estimates 

of the PoDs of individual FIs act as the constraints, and the derived CIMDO density is the 

posterior density that is the closest to the prior distribution and consistent with these 

constraints. Figure 5 shows the process of obtaining a CIMDO density p from a prior density 

q, under the objective that p remains as close as q as possible, under the constraints that q is a 

distribution that sums to 1 (additivity constraint) and that q is consistent with the observed 

PoD data (marginal constraints). Appendix III presents a technical summary of the CIMDO 

method. Further technical details are presented in Segoviano and Espinoza (2017). 
 

CIMDO provides important benefits relative to parametric approaches in terms of 

implementation feasibility and estimation robustness. CIMDO allows analysts to infer the 

(unobserved) dependence structure of the system (embedded in the multivariate density) that 

is consistent with the (observed) individual PoDs at specific times. Thus, CIMDO seems to 

reduce the risk of density misspecification because it recovers densities that are consistent 

                                                 
19 Koyluoglu and others (2003) present an interesting analysis of the consequences of the improper calibration 

of risk models. 

 

 



 22 

 

with empirical PoD observations.20  It also infers interconnectedness structures that are 

updated as empirical PoDs change. Therefore, the method enables analysts to incorporate in a 

timely manner updates in systems’ interconnectedness structures that can reflect nonlinear 

increases in periods of high volatility.21  
 

Figure 5. Consistent Information Multivariate Density (CIMDO) 

 

 
Source: Authors. 

Note: In a system made of firm x and y, the probability of distress of firm x is the probability that the asset 

value for x falls in a “tail zone” of distress (the interval [ Xx
d, ∞[), independently of what happens to firm y. 

Thus, the constraint that the multivariate distribution of asset returns is consistent with an observed PoDx is a 

constraint on the tail of the marginal distribution. If information on the PoD of firm y is also available, a similar 

constraint is added to the optimization problem of finding p, the posterior distribution closest to q that is also 

consistent with the observed data PoDx and PoDy. 

 

Moreover, since CIMDO can be estimated using readily available market information, it 

incorporates market views of risk spill-overs due to direct contagion or indirect contagion 

across financial entities. However, PoDs can also be estimated from supervisory information. 

In such cases, SRA losses would embed the impact of indirect interconnectedness via 

                                                 
20 Using an extension of the Probability Integral Transformation (PIT) criterion advocated by Diebold, Gunther, 

and Tay (1998), the paper shows that CIMDO-inferred density forecasts perform better than parametric 

distributions forecasts, even when they are calibrated with the same information set. 
 

21 CIMDO-inferred dependence structures embody both linear and nonlinear distress dependence among FIs and 

are time-varying. They are thus superior to dependence structures from Gaussian models that capture only linear 

dependence (correlations) and from other parametric models that while expanding to nonlinear dependence, 

assumingassume structures to remain constant though time. 
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exposures to common risk factors.22 As it is the case with other empirical methods, CIMDO 

does not need highly detailed and granular supervisory information, which is not available in 

many countries, nor to arm-length institutions.  

VI.   APPLICATION TO THE U.S. BANKING SYSTEM 

In this Section we apply the proposed framework to estimate SE losses in the U.S. financial 

system at the time of Lehman’s default (we assume the losses from a micro-prudential stress 

test are known). We present a case study on a simplified system composed of four banks: 

Citibank (C), Lehman Brothers (LB), Wells Fargo (WF), and Morgan Stanley (MS) during 

2008, and compute the expected losses for C, WF and MS assuming a LB default. This 

calculation is what is needed to move from a microprudential stress-test that would show a 

high probability of LB defaulting to a macroprudential stress estimating the losses for the 

banking system were a LB default to occur. Before presenting our results, we discuss crucial 

aspects related to important inputs for estimation. 

A.   Key Features Related to Inputs 

Important aspects related to inputs to estimate SE losses should be taken into consideration. 

We discuss below important features on the probabilities of distress of the different entities 

and sectors under analysis and aggregation of sectors when estimations of SE losses involve 

investment funds. 

Probabilities of Distress 

 

The quantification of SE losses is based on the notion of firms’ distress. Probabilities of 

distress can be estimated using different models and types of data (market-based and 

supervisory information). Hence, the framework can be easily adapted to cater to a very high 

degree of institutional granularity and data availability in different jurisdictions. The meaning 

of distress depends on the type of entity and data employed. Events of distress usually 

include default; however, distress events can be broader than default and comprise, among 

others, debt restructuring, government intervention, recapitalization, and credit agencies’ 

downgrades. Nevertheless, an observed common feature of these events is that financial 

entities’ asset values decrease significantly on the realization of distress.  
 

Probabilities of distress for banks and insurance companies. These can be estimated using 

market-based information and supervisory information. 

                                                 
22 It should be emphasized that the individual PoDs used as input to the calculation of the multivariate density 

function are exogenous to the model. Any methodology could in principle be used to estimate them, including 

balance sheet–based methodologies, which can be usually implemented in countries where no market data is 

available or reliable. Using market data is thus not a necessary feature of this model. However, as the time-

varying nature of the CIMDO interconectedness structure is a key strength of this approach, high-frequency 

market data, such as CDS spreads or stock returns, are typically used to calculate the probabilities of distress or 

default for individual FIs. 
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• Market-based information: The most common models are the following: 
  

 Merton-type. In this case distress is equivalent to default in the sense of the 

 Merton’s model (1974), which focuses on the capability of a bank to service its debt  

            obligations, i.e., credit risk. 
 

Credit Default Swap (CDS)-spreads and bond spreads. PoDs can be estimated using 

credit default swap spreads. In these cases, distress will be defined by the event that 

triggers the payment of a CDS. The no-arbitrage theorem can also be used to deduce 

PoDs from bond spreads since the yield of a bond that is subject to credit risk is a 

function of the probability of default. Espinoza and Segoviano (2011) provide a 

method for computing the market price of risk and convert risk neutral PoDs 

estimated from market-based indicators to subjective probabilities. 
 

• Supervisory information: PoDs can be constructed from supervisory information (that 

in several countries is publicly available) when market-based data are not available 

nor adequate. For example, in countries where subsidiaries of foreign banks operate, 

it might not be possible to get market-based indicators on the subsidiary (such 

indicators might exist for the consolidated bank, but this is not adequate). In these 

cases, Segoviano and Padilla (2006) show how to simulate banks’ portfolio loss 

distributions and generate estimates of bank’s PoDs, which indicate the probability 

that losses experienced by a bank portfolio would violate a supervisory-defined 

capital buffer.23  
 

Probabilities of distress for investment funds. Cortes and others (2017) define the probability 

of distress for investment funds as the probability of events that would require funds to 

liquidate assets to meet redemption demands. Thus, when funds experience strong outflows, 

they are likely to sell their assets to meet such demands, transmitting shocks to other 

financial entities in a system via the direct exposure and asset liquidation channels. The 

authors propose a Value at Risk approach to estimate PoDs for investment funds.  
 

Systemic risk amplification might be captured differently in SE losses depending on input 

data. When based on market based indicators, SE loss quantification embeds markets’ 

perceptions of financial systems’ interconnectedness that include indirect interconnectedness, 

usually caused by exposures to common risk factors and market price channels. When based 

on publicly available supervisory data that is non-market based, SE loss quantification might 

                                                 
23 Risk parameters of banks’ loan portfolios (loans’ probabilities of default, exposures and loss-given default) 

are used to estimate banks’ loss distributions (PLD). Supervisory information is used to define thresholds of 

capital buffers that if violated would indicate a distress event, e.g., supervisory intervention. PLDs and 

thresholds are then used to estimate the banks’ probability of distress, e.g., the probability of violating the 

supervisory threshold. 
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still capture indirect interconnectedness due exposures to common risk factors; however, 

market-price channels might be omitted.  

 

In the application to the US banking system, we used the probability of default obtained from 

CDS spreads for the day before Lehman Brothers defaulted. 

 

B.   Results 

To illustrate the implementation of the approach, we estimate SE losses in the U.S. banking 

system due to  the default of Lehman Brothers. 

 

• Table 1 presents our estimates of the SE losses expected to impact Citi (C), Wells 

Fargo (WFC), and Morgan Stanley (MS) because of the default of Lehman Brothers 

(LB) in September 2008.24 SE losses by C, WFC and MS if Lehman were respectively 

around 6.7, 5.6, and 10.0 percent of each bank’s total assets.  

 

• Table 1 also presents the capital injections made by the US government to major 

US banks. To define the amount of capital injections for large banks, US authorities 

estimated potential losses based on proprietary frameworks, detailed supervisory 

information, and expert judgment. Anecdotal evidence (Geithner 2014) indicates that 

injection amounts for some of the large banks (e.g., Citi) went through a thorough 

analysis and discussion, while for other banks, injection amounts were determined as 

a proportion of the banks’ balance sheets (e.g., Morgan Stanley). 

 

• Results of the approach were consistent under different checks (see discussion 

below). While SE losses were of a similar order of magnitude to capital injections, SE 

loss estimations were larger than actual capital injections. This might be because SE 

losses estimates represented markets’ expectations of losses right after Lehman’s 

default (September 2008), weeks before recapitalization took effect (November 

2008). A possible interpretation is that the U.S. government recapitalization program 

was effective to contain default cascades and systemic risk losses (Geithner 2014); 

hence, the capital injections that were actually needed were smaller than the market’s 

initial expectations of losses in the aftermath of Lehman’s default.  

                                                 
24 SE losses were estimated using equation 5. 
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Table 1. TARP Capital Injections and SE Losses given the 
Default of Lehman Brothers 

Capital 
Injections 

Date 
Capital 

Purchase 
Program* 

Targeted 
Investment 
Program* 

Total 
Injection* 

Total Injection/ 

SE Losses 
assuming LB 

default/ 
Total Assets** 

 Total Assets** 

             
C 11/13/2008 25,000 20,000 45,000 2.3 6.7 

WFC 11/13/2008 25,000 0 25,000 4.0 5.6 

MS 11/13/2008 10,000 0 10,000 1.0 10.0 

Note: * In millions of USD; ** in percent. 

Source: U.S. Department of the Treasury 

 

Decomposition of SE losses 

 

As explained in Section V.A, the framework allows to decompose SE losses into the 

probability (Pr), intensity (In) and the contribution (Co) of conditional losses due to specific 

defaulting sets. Table 2 shows the decomposition of SE losses expected on Citi conditional 

on Lehman Brothers defaulting. 

 

The greatest contribution to SE losses on C given LB default is shown by the conditional loss 

of the defaulting set including a joint default of LB and MS but not WFC (48 percent). The 

probability of this defaulting set is approximately 28 percent and its loss intensity is 1.76. 

This implies that the connection between LB and MS was a significant factor to explain SE 

losses on C given the LB default; hence, it was relevant to follow developments on MS as LB 

defaulted. While the defaulting set including LB and WFC but not MS shows a larger loss 

intensity (2.02), the probability of occurrence of this event is around 1 percent; therefore, the 

contribution of this defaulting set is the lowest (3 percent) among all the defaulting sets 

analyzed. These results highlight the usefulness of the SE decomposition. The quantification 

of Co helps identify events involving the default of other banks highly interconnected to LB 

that can contribute significantly to the SE losses given the default of LB. 

 

Table 2. Decomposition of SE losses on Citibank given the 
Default of Lehman Brothers 

C  LB WFC MS LB WFC MS LB WFC MS LB WFC MS 

Pr(C|LB) 66.7 27.5 1.3 3.7 

In(C|LB) 0.52 1.76 2.02 3.89 

Co(C|LB) 34.5 48.4 2.7 14.5 

Note: (Pr) in probability, (Co) in percent of conditional loss; (In) index units (from 0 to infinity), 

Non-defaulting entities are underlined and bold. 

Source: Authors' calculations 
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Results are consistent under alternative checks.  

 

• Consistency of SE loss decomposition. From Table 2, it is easy to check that Co is 

equal to the probability of the event, multiplied by the intensity of losses, and that the 

sum of Co is equal to 100 percent. 

 

• Increasing conditional losses as defaulting sets increase. Table 3 presents losses 

experienced by Citi conditioning on different subsets of entities defaulting. As the 

number of entities defaulting in different subsets increase, conditional losses increase.  

 

Table 3. Conditional Losses under Different Defaulting Sets, in Millions of USD 

L(C/D) LB, WFC, MS LB, MS, WFC LB, WFC, MS LB, WFC, MS 

Dec-08 41,049.24 191,397.00 303,513.05 460,935.80 

Note: Non-defaulting entities are underlined and bold. 

Source: Authors' calculations 

 

• Expected Asset Values. The estimation of the unconditional expected value of firms 

under analysis (formula 15) is presented in Table 4a. We see that these values are 

consistent with the book value of assets reported for these entities in Table 4. 

Table 4. Asset Values 
 
Table 4a. Expected Asset Value, in Millions USD 

  C WFC MS 

Sep-08  2,052,764 650,171 982,022 

Dec-08  1,896,820 1,319,273 653,108 

Source: Authors’ calculations 

Table 4b. Book Value of Assets, in Millions USD 

  C WFC MS 

Sep-08  2,050,131 622,361 987,403 

Dec-08  1,938,470 1,309,639 658,812 

Source: Company reports 

 

VII.   IMPLICATIONS FOR THE CALIBRATION OF CAPITAL BUFFERS 

The Basel III framework includes multiple layers of capital buffers to ensure the resilience of 

financial systems.25 Banks are required to meet the minimum total capital ratio of 8 percent 

of risk-weighted assets (RWA) always. Additionally, banks are required to maintain the 

following capital requirements: 

                                                 
25  Basel Committee on Banking Supervision 2011. 
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• A capital conservation buffer (CCoB). This buffer requires banks to hold at 

2.5 percent of RWA on top of the minimum capital requirement outside periods of 

stress. The buffer, however, can be drawn down in stress periods.26  
 

• A countercyclical capital buffer (CCyB). This buffer aims to enhance the resilience 

of the financial system to systemic risks emanating from the financial cycle, while 

also reducing the procyclicality of bank lending. The CCyB can vary between zero 

and 2.5 percent of RWA and should build up extra capital in boom times to absorb 

potential losses in economic downturns. The CCyB is based on the prevalent state of 

the macro-financial environment. Ideally, authorities should increase the CCyB 

during a lending boom and reduce capital requirements during a contraction. 

• A systemically important bank (SIB) capital surcharge. The SIB capital surcharge 

was introduced to protect the system from the structural dimension of systemic risk, 

therefore requiring an additional buffer commensurate to a bank’s contribution to 

systemic risk.  

The Basel Committee on Banking Supervision (BCBS) has proposed indicator-based 

approaches along with judgment to calibrate capital buffers.  
 

• CCyB. The BCBS provides a reference guide based on the aggregate private sector 

credit-to-GDP gap (Basel Committee on Banking Supervision, 2010).27 

• SIB capital surcharges. The BCBS has published a methodology for assessing and 

identifying globally systemically important banks, G-SIBs, (Basel Committee on 

Banking Supervision, 2013) and proposed a similar framework for domestically 

systemically important banks (Basel Committee on Banking Supervision, 2012). The 

identification of SIBs uses indicators that capture four dimensions of systemic 

importance: size, interconnectedness, level of substitutability, and complexity. For G-

SIBs, there is a fifth indicator: global scope of activities. Banks are ranked by their 

systemic importance based on the indicators and supervisory judgment and placed in 

five buckets with a gradual scale of surcharge ranging from 1 to 3.5 percent. 

                                                 
26 The CCoB is comprised of Common Equity Tier 1 (CET1) and imposes distribution constraints on banks as 

their capital ratio deteriorates. Specifically, banks that draw on this buffer but are not yet in violation of 

minimum capital requirements can continue their operations but must retain a significant portion of their 

earnings to rebuild the capital stock. 

27 This guide was based on an analysis that showed that a credit-to-GDP ratio of 10 percentage points or more 

above trend issues the strongest signal of an impending crisis (in terms of noise-to-signal ratio). Per the BCBS 

buffer guide formula, when the credit gap breaches a “lower threshold” of 2 percent, a decision to start 

increasing the buffer could be merited if surveillance supports the judgment that systemic risk may be building 

up; and, when it reaches the “upper threshold” of 10 percent, the CCyB should be set at 2.5 percent of RWA. It 

can also be set higher, based on broader macroprudential considerations (International Monetary Fund, 2014). 
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As indicated above, the CCyB and SIB are intended to protect banks against systemic risk; 

hence, macroprudential stress tests represent a useful tool that can be used to calibrate these 

buffers.   

• In the United Kingdom, authorities intend to set capital requirements for the system 

wide CCyB and CCoB, as well as for the bank-specific Prudential Regulatory 

Authority (PRA) buffer based in part on stress test results (Bank of England 2015). 

The specific sizes of the CCoB and the CCyB are set by the Financial Policy 

Committee and the size of the PRA buffer is set by the PRA, both of which are within 

the BoE. 

• In the United States, one idea is to introduce a bank-specific stress capital buffer 

(SCB) that can replace the 2.5 percent CCoB of the Basel III framework. The SCB 

would be set at least as high as the CCoB and would be equivalent to the maximum 

decline of a bank’s tier 1 capital ratio under a severe adverse scenario (Tarullo, 2016).  

 

The difficulty, however, is in estimating SE losses. Hence, estimates from the proposed 

framework can be useful tool to calibrate capital buffers.  An example is the calibration of 

the CCyB. As described in Section VI, Hiebert and others (2018) augment the framework to 

quantify the magnitude of SE amplification as a function of the severity of financial 

imbalances. The authors map levels of financial imbalances to different stages of financial 

cycles. This mapping allows to estimate SE losses conditional on large financial imbalances 

observed at cycle peaks. This quantification would prove useful to ensure that CCyB are set 

in a manner to allow banks to withstand such losses; see Figure 6.   

 

Figure 6. Calibration of CCyB 

 
Source: Authors. 
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VIII.   CONCLUSION 

Authorities have, over the past few years, prioritized the development of tests that attempt to 

quantify losses from SE. However, the modeling of losses from SE remains challenging. 

Amplification mechanisms are diverse and complex and can vary in structure and magnitude 

at different points in time. Data are usually both scarce and deficient, and models constrained 

by data availability are often subject to model error. Given the complexity of modeling and 

implementing stress tests that capture SE, we propose a framework aimed at integrating 

diverse types of data and approaches to maximize the information content of heterogeneous 

data sources and minimize potential model error.  

 

The encompassing method is a pragmatic way to develop robust and implementable 

macroprudential stress tests. These stress tests should permit the quantification of SE losses, 

even when highly granular data to model amplification mechanisms is not available. 

Specifically, the proposed framework offers important benefits: 

 

• It combines the use of microprudential stress tests that are already implemented with 

the proposed reduced-form approach to estimate SE losses; therefore, it is possible to 

leverage on models and expertise already existing in many countries. 

 

• SE loss estimation can be performed with publicly available data. This is of high 

relevance given the data limitations faced by the IMF and some authorities. 

Moreover, when based on market based indicators, SE loss quantification embeds 

markets’ perceptions of financial systems’ interconnectedness which includes indirect 

interconnectedness, usually caused by exposures to common risk factors and market 

price channels. These estimates incorporate non-linear changes in interconnectedness 

structures consistent with market perceptions across different stages of macrofinancial 

cycles.  

 

• The framework is reduced-form. It does not require one to explicitly model agents’ 

behavioral reactions that are difficult to incorporate in a comprehensive way and 

complex to properly calibrate.  

 

• It is a stochastic framework. This permits an estimation of the firms’ asset values 

conditional on different states of nature, including specific valuations of other firms 

in the financial system. The stochastic nature of the model allows us to quantify the 

probabilities of these events happening and the intensity of losses under these events. 

 

• The multivariate dimension facilitates the integration of nonbank financial 

intermediaries into the analysis of systemic risk; thus, interactions between banks and 

nonbanks can be considered when quantifying systemic risk amplification losses.  
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• It is cost-efficient and robust. The model is simple and relatively light on data 

requirements.  

  

To conclude, we mention two extensions of the framework that can be of significant value to 

policymakers.  

First, in Section VI, we note that Hiebert and others (2018) propose to augment the 

framework to estimate the magnitude of amplification of systemic risk conditional on the 

severity of financial imbalances. That is, for a given shock, SE losses would be larger 

(smaller) if the severity of imbalances is larger (smaller); we briefly discuss in Section VII 

how this extension can be useful to calibrate the CCyB.  

 

Second, Espinoza and others (2018) combine a general equilibrium model with the reduced 

form approach presented in this paper to develop a systemic risk framework, which 

incorporates systemic risk endogeneity and amplification mechanisms through 

macroeconomic and systemic risk interactions. The authors use measurements of SE losses to 

calibrate the parameters of the theoretical model that incorporates various systemic risk 

amplification channels, including interbank lending, common asset exposures and a “Minsky 

effect.” Such calibrations appear to be very useful to incorporate the non-linear effects (e.g., 

decrease in prices, increase in probabilities of distress) and changes in behavioral 

assumptions, especially in times of distress, that can lead to systemic risk materializing. 

Importantly, the proposed framework is easily implementable with data that is publicly 

available in numerous jurisdictions.  
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APPENDIX I. GENERALIZATION OF CONDITIONAL EXPECTED VALUATION FORMULAS 

 

We provide in this appendix the generalization of the value computed in Section VI.  

 

Allowing for any conditioning event.  

 

Let the CIMDO posterior density of assets of banks {𝐴1, … , 𝐴𝑁} be 𝑝(𝑥1, … , 𝑥𝑁). This is the 

density on equity annualized returns (but it is not normally distributed). Given this 

distribution, we want to calculate the expected value of the assets of the bank 𝐴𝑖 given the 

defaults of the banks {𝐴𝑘1
, … , 𝐴𝑘𝑙

}, the other banks not defaulting. This is equivalent to 

assessing the expected value of the bank 𝐴𝑖 assuming the realization of the following event:  

 

𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙) = 𝐴𝑗 ⋂ 𝐴𝑘𝑖

𝑘𝑖∈{𝑘1,…,𝑘𝑙}

⋂ 𝐴𝑘𝑖

𝑘𝑖∈{⟦1,𝑁⟧\{𝑖,𝑗,𝑘1,…,𝑘𝑙}}

 

 

It is important to note that we do not make any assumption on the value of the bank 𝐴𝑖 since 

we want to assess its value and the probability of its default.  

 

The expected value of the bank 𝐴𝑖 assuming the realization of the event 𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙) is then 

defined as follows: 

 

𝐸0 (𝑉𝐴𝑖,t |𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙)) =

1

𝑃 (𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙))

𝐸 (𝑉𝐴𝑖,t 1𝐷𝑗
𝑖(𝑘1,…,𝑘𝑙))

=
1

𝑃 (𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙))

∬ 𝑉𝐴𝑖,t (𝑥1, … , 𝑥𝑁)𝑝(𝑥1, … , 𝑥𝑁) ∏ 𝐼(𝑥𝑠

𝑠∈{𝑗,𝑘1,…,𝑘𝑙}

> 𝑋𝑠
𝑑) ∏ 𝐼(𝑥𝑠 < 𝑋𝑠

𝑑)𝑑𝑥1

𝑠∈{⟦1,𝑁⟧\{𝑖,𝑘1,…,𝑘𝑙}}

… 𝑑𝑥𝑁 

 

We don't know 𝑉𝐴𝑖,t (𝑥1, … , 𝑥𝑁),  but we can calculate it as the sum of the value of debt 𝐷𝑡 

and the value of equity (for which we know the initial value 𝐸𝑞0
) as well as the growth rate 

−𝑥 (note that using the CIMDO notations in Segoviano (2006), a high x is a low return since 

the region of default is with high x): 

𝑉𝐴𝑖,t (𝑥1, … , 𝑥𝑁) = 𝐸𝑞𝑡
(𝑥1, … , 𝑥𝑁) + 𝐷𝑡(𝑥1, … , 𝑥𝑁) 
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Thus, today’s total assets value of the bank 𝐴𝑖 conditioning on the event 𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙) is: 

𝐸0 (𝑉𝐴𝑖,t |𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙))

=
1

𝑃 (𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙))

∬ 𝐸𝑞𝑡
(𝑥1, … , 𝑥𝑁)𝑝(𝑥1, … , 𝑥𝑁) ∏ 𝐼(𝑥𝑠

𝑠∈{𝑗,𝑘1,…,𝑘𝑙}

> 𝑋𝑠
𝑑) ∏ 𝐼(𝑥𝑠 < 𝑋𝑠

𝑑)𝑑𝑥1

𝑠∈{⟦1,𝑁⟧\{𝑖,𝑘1,…,𝑘𝑙}}

… 𝑑𝑥𝑁

+
1

𝑃 (𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙))

∬ 𝐷𝑡 (𝑥1, … , 𝑥𝑁)𝑝(𝑥1, … , 𝑥𝑁) ∏ 𝐼(𝑥𝑠

𝑠∈{𝑗,𝑘1,…,𝑘𝑙}

> 𝑋𝑠
𝑑) ∏ 𝐼(𝑥𝑠 < 𝑋𝑠

𝑑)𝑑𝑥1

𝑠∈{⟦1,𝑁⟧\{𝑖,𝑘1,…,𝑘𝑙}}

… 𝑑𝑥𝑁 

 

The value of the bank 𝐴𝑖 's debt (discounted appropriately given a book value 𝐷𝑇 at time 𝑇) 

depends on whether the bank 𝐴𝑖 defaults or not: 

 

In the zone where the bank 𝐴𝑖 defaults (𝑥𝑖 > 𝑋𝑖
𝑑), 𝐷𝑡(𝑥1, … , 𝑥𝑁) = (𝑅𝑅)𝐷𝑇𝑒−𝑟(𝑇−𝑡) 

 

In the zone where bank 𝐴𝑖 does not default (𝑥𝑖 < 𝑋𝑖
𝑑), 𝐷𝑡(𝑥1, … , 𝑥𝑁) = 𝑒−𝑟(𝑇−𝑡) 

where RR is recovery rate (that is, one minus the loss given default). Thus, we have: 

 

𝐸0 (𝑉𝐴𝑖,t |𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙))

=
1

𝑃 (𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙))

𝐸𝑞0
∬ 𝑒−𝑥1𝑝(𝑥1, … , 𝑥𝑁) ∏ 𝐼(𝑥𝑠

𝑠∈{𝑗,𝑘1,…,𝑘𝑙}

> 𝑋𝑠
𝑑) ∏ 𝐼(𝑥𝑠 < 𝑋𝑠

𝑑)𝑑𝑥1

𝑠∈{⟦1,𝑁⟧\{𝑖,𝑘1,…,𝑘𝑙}}

… 𝑑𝑥𝑁

+
𝑃 (𝐴𝑖 ∩ 𝐷𝑗

𝑖(𝑘1, … , 𝑘𝑙))

𝑃 (𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙))

(𝑅𝑅)𝐷𝑇𝑒−𝑟(𝑇−𝑡)

+
𝑃 (𝐴𝑖̅ ∩ 𝐷𝑗

𝑖(𝑘1, … , 𝑘𝑙))

𝑃 (𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙))

𝐷𝑇𝑒−𝑟(𝑇−𝑡) 
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APPENDIX II. GENERALIZATION OF THE SE 

 

Definition of the vulnerability index assuming any conditioning event. 

 

Assuming the realization of a given event S, we define the vulnerability index that represent 

the impact of the assumed default on the bank 𝐴𝑖 as follows: 

𝑉(𝐴𝑖|𝑆) =
𝐿𝑜𝑠𝑠𝑇𝑆(𝐴𝑖|𝑆)

𝑇𝐴(𝐴𝑖)
 

 

The vulnerability index of bank 𝐴𝑖 assuming the default of bank 𝐴𝑗 is then defined as the 

total loss under a systemic event 𝐿𝑜𝑠𝑠𝑇S(𝐴𝑖|𝑆) of the bank 𝐴𝑖 divided by its total assets 

𝑇𝐴(𝐴𝑖). The higher this index, the more affected the bank 𝐴𝑗 is when the bank 𝐴𝑗 defaults. 

By computing this index for any financial institution, we can provide a vulnerability ranking 

of all the FIs that form our network, assuming the realization of a given default. 

Decomposition of the SE loss.  

 

Let us formalize the decomposition of the SE loss of bank 𝐴𝑖 assuming the realization of the 

event S. We consider a financial network that is made of a set of N banks denoted 

{𝐴1, … , 𝐴𝑁}. In each subset of the partition, each bank (except bank 𝐴𝑖) is either defaulting or 

surviving:  

𝐷𝑆
𝑖(𝑘1, … , 𝑘𝑙) = 𝑆 ⋂ 𝐴𝑘𝑖

𝑘𝑖∈{𝑘1,…,𝑘𝑙}

⋂ 𝐴𝑘𝑖

𝑘𝑖∈{⟦1,𝑁⟧\{𝑖,𝑆,𝑘1,…,𝑘𝑙}}

 

 

If one of this subset is empty, we exclude it of the partition. It is clear that all these events are 

disjointed, and that their union for any possible {𝑘1, … , 𝑘𝑙} ∈ 𝒫(⟦1, 𝑁⟧\{𝑖, 𝑆}) is equal to S.  

Using the law of total expectation, we have:   

 

𝐸(𝑉𝐴𝑖 |𝑆) = ∑ 𝑃(𝐷𝑆
𝑖(𝑘1, … , 𝑘𝑙)

{𝑘1,…,𝑘𝑙}∈𝒫(⟦1,𝑁⟧\{𝑖,𝑆})

|𝑆)𝐸(𝑉𝐴𝑖 |𝐷𝑆
𝑖(𝑘1, … , 𝑘𝑙)) 

 

where 𝑃(𝐷𝑆
𝑖(𝑘1, … , 𝑘𝑙)|𝑆) is the probability of the event 𝐷𝑆

𝑖(𝑘1, … , 𝑘𝑙), given that the event S 

occurs. The value of bank 𝐴𝑖, assuming the realization of the event S, is then the weighted 

average of the value of bank 𝐴𝑖 over the subsets that form the partition of S. These sets are 

weighted by their probability, assuming the realization of S. Let us now show that this 

decomposition also holds considering SE losses. Using the fact that 

{𝐷𝑆
𝑖(𝑘1, … , 𝑘𝑙)|{𝑘1, … , 𝑘𝑙} ∈ 𝒫(⟦1, 𝑁⟧\{𝑖, 𝑆})} is a partition of S, by the law of total 

probability, we have: 
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∑ 𝑃(𝐷𝑆
𝑖(𝑘1, … , 𝑘𝑙)

{𝑘1,…,𝑘𝑙}∈𝒫(⟦1,𝑁⟧\{𝑖})

|𝑆) = 1 

Thus, we have: 

 

     𝐿𝑜𝑠𝑠𝑆𝐸(𝐴𝑖|𝑆) = 𝐸(𝑉𝐴𝑖 ) − 𝐸(𝑉𝐴𝑖 |𝑆)

= 𝐸(𝑉𝐴𝑖 ) − ∑ 𝑃(𝐷𝑆
𝑖(𝑘1, … , 𝑘𝑙)

{𝑘1,…,𝑘𝑙}∈𝒫(⟦1,𝑁⟧\{𝑖,𝑆})

|𝑆)𝐸 (𝑉𝐴𝑖 |𝐷𝑆
𝑖(𝑘1, … , 𝑘𝑙))

= ∑ 𝑃(𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙)

{𝑘1,…,𝑘𝑙}∈𝒫(⟦1,𝑁⟧\{𝑖,𝑆})

|𝑆) [𝐸(𝑉𝐴𝑖 ) − 𝐸 (𝑉𝐴𝑖 |𝐷𝑆
𝑖(𝑘1, … , 𝑘𝑙))]

= ∑ 𝑃(𝐷𝑗
𝑖(𝑘1, … , 𝑘𝑙)

{𝑘1,…,𝑘𝑙}∈𝒫(⟦1,𝑁⟧\{𝑖,𝑆})

|𝑆)  𝐿𝑜𝑠𝑠𝑆𝐸(𝐴𝑖|𝐷𝑆
𝑖(𝑘1, … , 𝑘𝑙)) 

 

Indexes of the decomposition of the SE loss 

 

An aggregate measure of the contribution of a defaulting set (that includes the bank that 

initially defaults) on the SE loss of the considered bank assuming the realization of the 

default S is:   

𝐶𝑜(𝐷𝑆
𝑖(𝑘1, … , 𝑘𝑙)|𝑆) =

 𝑃(𝐷𝑆
𝑖(𝑘1, … , 𝑘𝑙)|𝑆) 𝐿𝑜𝑠𝑠𝑆𝐸(𝐴𝑖|𝐷𝑆

𝑖(𝑘1, … , 𝑘𝑙))

𝐿𝑜𝑠𝑠𝑆𝐸(𝐴𝑖|𝑆)
 

 

The index 𝐶𝑜(𝐷𝑆
𝑖(𝑘1, … , 𝑘𝑙)|𝑆) represents the relative contribution of the defaulting set 

𝐷𝑆
𝑖(𝑘1, … , 𝑘𝑙) to the conditional loss of bank 𝐴𝑖 assuming the realization of the event S. For a 

policymaker, this measure is particularly informative since it allows to spot the connecting 

entities that induces a large share of the SE losses of the tested bank assuming the realization 

of a given event. As highlighted in our four banks example, this contribution can be large 

either because:  

 

• the considered defaulting set is likely to materialize assuming the realization of a 

given event. This property can be assessed using the probability of occurrence of this 

set assuming the realization of a given event: 

𝑃(𝐷𝑆
𝑖(𝑘1, … , 𝑘𝑙)|𝑆) 

   

• the considered defaulting set inflicts large losses to the tested bank assuming the 

realization of a given event. This property can be assessed using the ratio of the SE 

loss of the tested bank assuming the realization of this defaulting set, to the SE loss of 

the tested bank assuming the realization of the considered event:   
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𝐼𝑛(𝐷𝑆
𝑖(𝑘1, … , 𝑘𝑙)|𝑆) =

  𝐿𝑜𝑠𝑠𝑆𝐸(𝐴𝑖|𝐷𝑆
𝑖(𝑘1, … , 𝑘𝑙))

𝐿𝑜𝑠𝑠𝑆𝐸(𝐴𝑖|𝑆)
 

 

This ratio lies between zero and infinity. The larger this ratio, the more intense the realization 

of this defaulting set is with respect to the tested bank (assuming the realization of the 

event S). 
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APPENDIX III. CONSISTENT INFORMATION MULTIVARIATE DENSITY OPTIMIZATION 

 

The detailed formulation of CIMDO was first presented in Segoviano (2006). The objective 

of CIMDO, which is based on the Kullback (1959) minimum cross-entropy approach, is to 

construct a multivariate density q that characterizes the asset values for a system of firms, 

taking into account a prior distribution p and information on PoDs and thus inferring a 

dependence structure at the tail that is consistent with the marginal information at the tail.  

 

For illustration purposes, we focus on a portfolio containing two firms, which asset returns 

are distributed by the random variables x and y. The objective function of CIMDO is to 

search for a distribution q closest to the prior p, according to the criteria  

 

C[p,q]=∫ ∫p(x,y)ln [ p(x,y)/q(x,y) ] dxdy 

 

and consistent with the observed information on marginal PoDs, which are represented by the 

moment-consistency constraints  

 

   , ,
( , ) , ( , )x y

d d

x y

t tx x
p x y dxdy PoD p x y dydx PoD 

 
    

 
x

tPoD
 and 

y

tPoD
are the empirically observed probabilities of default (PoDs) for each firm in 

the portfolio and    , ,
,x y

d d
x x

 
 

 are the indicating functions defined with the default thresholds 

for each borrower in the portfolio. In order to ensure that ( , )p x y represents a valid density, 

the conditions that ( , )p x y ≥0 and the probability additivity constraint, ∫∫ ( , )p x y dxdy=1, also 

need to be satisfied. The CIMDO density is recovered by minimizing the functional 

 

 , ( , ) ln ( , ) ( , ) ln ( , )L p q p x y p x y dxdy p x y q x y dxdy      

    
1 [ , )

( , ) x
d

x

tx
p x y dxdy PoD 



  
   

 
2 [ , )

( , ) y
d

y

tx
p x y dydx PoD 



  
   

 

( , ) 1p x y dxdy   
    

Where 1 2 
 represent the Lagrange multipliers of the moment-consistency constraints and 

represents the Lagrange multiplier of the probability additivity constraint. By using the 

calculus of variations, the optimization procedure is performed. The optimal solution is 

represented by the following posterior multivariate density as 

 

𝑝̂(𝑥, 𝑦) = 𝑞(𝑥, 𝑦)exp (−[1 + 𝜇 + 𝜆1𝜒[𝑋𝑑
𝑥,∞ [ + 𝜆2𝜒[𝑋𝑑

𝑦
,∞[])  
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Appendix Figure 1. CIMDO Distribution, by Default Zone 

 
Figure 1.1 shows how the posterior distribution differs from the prior distribution in the four 

different zones defined by whether x and y are in the zone of default. For instance, in zone 

where x defaults but not y (bottom right quadrant), the posterior density is the prior density 

adjusted for a coefficient which is a function of λx, the Lagrange multiplier for the restriction 

that the posterior is consistent with the observed PoDx ,  and a function of µ, the Lagrange 

multiplier for the restriction that the posterior distribution sums to 1. 

 

A Taylor approximation of the Lagrange multipliers gives some intuition of how the 

observed data on PoDs and the calibration of the prior affect the Lagrange multipliers and 

thus the posterior (see proof in Segoviano and Espinoza 2017). For a prior calibrated as a 

centered t-distribution with ν degrees of freedom and a correlation coefficient σ, the Taylor 

approximation yields: 

 

𝜆𝑥 =  − ln(𝑃𝑂𝐷𝑥) − 1 − 𝜇 + ln(𝑄̃𝑥𝑦𝑒−𝜆𝑦 + 𝑄̃𝑥 𝑦̅ + (𝑒−𝜆𝑦 − 1)𝐽 𝜎 +  𝜗(𝜎2)) 

𝜆𝑦 =  − ln(𝑃𝑂𝐷𝑦) − 1 − 𝜇 + ln(𝑄̃𝑥𝑦𝑒−𝜆𝑥 + 𝑄̃𝑥 ̅𝑦 + (𝑒−𝜆𝑥 − 1)𝐽 𝜎 +  𝜗(𝜎2) 

𝜇 =  −1 + ln(𝑄̃𝑥𝑦𝑒−𝜆𝑥𝑒−𝜆𝑦 + 𝑄̃𝑥̅ 𝑦 𝑒
−𝜆𝑦 + 𝑄̃𝑥 𝑦̅ 𝑒

−𝜆𝑥

+ 𝑄̃𝑥̅ 𝑦̅ (𝑒−𝜆𝑥𝑒−𝜆𝑦 − 𝑒−𝜆𝑦 − 𝑒−𝜆𝑥 + 1)𝐽 𝜎 +  𝜗(𝜎2)) 

where 𝐽 =
𝜈

𝜈
2 

2𝜋
(𝜈 + 𝑋𝑑

𝑥 2 + 𝑋𝑑
𝑦  2

)−𝜈/2    

 

The approximation shows that Lagrange multipliers depend on the prior correlation 

coefficient but when λx and λy are close to zero or when the default zones are small (i.e. 𝑋𝑑
𝑥 

→ ∞, 𝑋𝑑
𝑦 

→ ∞, and thus 𝐽 → 0, the adjustment between prior and posterior is insensitive to σ. 
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APPENDIX IV. COMPARISON OF OUR PROPOSED SE-LOSS APPROACH WITH NETWORK 

MODELS 

 

We compare here the macroprudential stress-testing framework we proposed with the 

network model of Eisenberg and Noe (2001) and Cifuentes, Ferrucci, and Shin (2005), as 

these have been at the core of many macroprudential stress tests models used in central 

banks. The algorithm developed by Eisenberg and Noe (2001) considers the default by banks 

that are part of a single clearing mechanism. The liabilities of all banks are determined 

simultaneously under some accounting and behavioral rules defined ex ante. Using a fixed-

point argument, Eisenberg and Noe (2001) shows that applying these payment rules, there 

always exists at least one vector that clears the obligations of all the firms. The algorithm 

requires information on bilateral banks liabilities and the contagion channel result from 

interbank repayments that are lower than expected (that is, a direct linkage).  

 

There are several (nontrivial) assumptions about the repayment rules that are needed to 

ensure the existence of an equilibrium. (i) limited liability—the total repayment of a bank to 

the other banks must be smaller than the cash flow owned by this bank; (ii) absolute 

priority—if a bank cannot repay fully its liabilities, its total repayment must be equal to its 

total cash flow; and (ii) proportionality—if a bank defaults, all claimant banks are repaid 

proportionally to the size of their nominal claims on the defaulted bank. Under these 

conditions, existence and uniqueness of a fixed point are guaranteed, and Eisenberg and Noe 

(2001) proposed an algorithm to find the fixed point, which, importantly, is the only state in 

which the banks payments are mutually consistent. 

 

The algorithm was extended by Cifuentes, Ferrucci, and Shin (2005) to introduce fire sales 

from distressed banks as an additional contagion channel. Additional structural assumptions 

are made, in particular on the shape of the relationship between the price and the supply of 

illiquid assets.  

 

Three essential difference can be highlighted between the contribution of these network 

models and our proposal (see also summary in Table 4.1): 

• Our proposal makes no structural assumptions about the amplification mechanisms in 

the financial network. On the other hand, our proposal also cannot explain the 

channels of contagion. 

• Our algorithm is stochastic and thus allows us to consider a large set of events 

following a given event. Eisenberg and Noe’s (2001) algorithm is deterministic; that 

is, the structural assumptions ensure the existence of a unique fixed point for any 

value of the inputs. It solves for a fixed point that is the only state for which the 

banks’ behaviors are mutually consistent. Cifuentes, Ferruci, and Shin’s (2005) 

algorithm, adding a fire-sale channel, also formulates a fixed-point problem without 

any stochastic dimension. In our macroprudential framework, the stochastic nature of 
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the framework enables us to describe in terms of likelihood and intensity of any 

contagion event following the realization of a given default. 

• Finally, our proposed method embeds the possible direct and indirect amplification 

mechanisms captured by market data, at least to the extent market participations price 

these risks appropriately. The network models have mostly considered direct 

contagion channels that have included interbank exposures, fire sales, and in some 

other models—for example, Tressel 2010—liquidity contagion.  

Appendix Table 1. A Comparison: SE-Loss and Network Contagion Models 

 

 

SRA framework Eisenberg and Noe (2001) Cifuentes et al. (2005) 

Inputs

Value of the tested bank 

conditioning on each subset 

that is included in the SRA loss 

decomposition

Interbank liabilities and equity 

buffers

Interbank liabilities, liquid and 

illiquid assets 

No structural assumption Structural Structural

Stochastic Deterministic Indeterminate

Contagion channel All direct and indirect
Direct through interbank 

liabilities

Direct through interbank 

liabilities and indirect through 

fire-sales

Outputs

Likelihood and intensity of any 

possible state of nature 

following the realization of a 

given default

Final default set and equity 

buffers

Final default set and equity 

buffers

Nature


