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1 Introduction

In the aftermath of the global financial crisis (GFC), policymakers and academics have

widely shared the view that policy should lean against rapid credit growth. As a result, new

macroprudential instruments to tackle credit imbalances have been introduced in many coun-

tries, including counter-cyclical capital buffers for banks and loan-to-value ratios for housing

loans, and a vast literature studies their efficacy.

Many papers have shown that surges in credit are often accompanied by hikes in asset prices,

and that the interplay between the two may have large economic effects. For example, Mishkin

(2011) and Jordà, Schularick and Taylor (2015) argue that credit-fueled asset price bubbles are

more dangerous to financial stability and economic growth than bubbles not followed by debt

build-ups. Fostel and Geanakoplos (2008) and Adrian and Shin (2009) show that the feedback

loop between asset prices and credit can lead to procyclical leverage and to financial instability,

while Greenwood, Hanson, Shleifer and Sorensen (2020) show that the combination of rapid

credit and asset price growth, whether in the nonfinancial business or in the household sector,

increases substantially the probability of a financial crisis. On the contrary, in an influential

paper, Bernanke and Gertler (1999) argue that central banks should not lean against asset price

bubbles, though their focus was on monetary rather than macroprudential policy. Overall, there

is no broadly accepted view on whether macroprudential policy should respond to asset prices

beyond its response to tackle credit imbalances (Barlevy, 2018). One reason for this may have

been the modeling difficulties with incorporating asset price bubbles into theoretical models

suitable for performing optimal policy analysis.1

We contribute to this discussion by proposing a theoretical framework that integrates a

meaningful policy analysis into a model of asset price overvaluations.2 We use this frame-

work to study the following questions: Should macroprudential policy respond to asset price

overvaluations over and beyond its role in tackling excessive levels of credit? If yes, should

macroprudential policy be more aggressive or more accommodative? Finally, to what extent

does the optimal policy response to asset price overvaluations depend on the level of debt in

the economy?

We focus on overvaluations in the stock market and study the interplay between equity

prices and business credit, which has received less attention than the feedback loop between

credit and overvaluations in real estate.3 This lack of attention may be due to the fact that the

GFC centered around a surge in housing prices and mortgage credit, while it has been commonly

argued that the dot-com bubble of the early 2000s did not have severe real consequences as it was

not credit-fueled (Dell’Ariccia et al. 2011). However, today’s environment is markedly different:

Historically-high corporate indebtedness and elevated valuations in the stock market are seen

1Additionally, concerns about timely and precise identification of overvaluations have made many policymakers
reluctant to react to rapid asset price growth. This issue is, arguably, relatively less concerning in the aftermath
of the GFC, as policymakers and academics have placed more effort on detecting “valuation pressures” in asset
prices. Some examples include the Office of Financial Research’s Financial System Vulnerabilities Monitor and
the Shiller CAPE index (Cyclically Adjusted Price Earnings).

2We define asset price overvaluation as a positive deviation of the market price from its fundamental value.
In the rest of the paper, we will use the terms asset price bubbles and price overvaluations interchangeably.

3The mechanism is also relevant for the interaction of real estate overvaluations and credit imbalances, but
the model would need to be augmented to show this channel formally.
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as two key financial vulnerabilities. Figure 1 illustrates this for the United States. The chart on

the left plots the mortgage credit-to-GDP gap (a measure of imbalances for mortgage credit)

along with the S&P/Case-Shiller U.S. National Home Price Index. Both credit imbalances

and housing overvaluations were increasing sharply in the build-up of the GFC, but while

house prices have continued to increase in recent years, housing credit remains subdued. The

situation is different for corporate borrowing and stock market overvaluations, as shown in the

chart on the right that plots the credit-to-GDP gap for nonfinancial corporate debt along with

the Shiller Cyclically-Adjusted Price Earnings (CAPE) index. While corporate credit growth

was only somewhat above the trend in the run-up to the GFC (and the dot-com bubble before),

it is clearly elevated now, and it is accompanied by elevated stock market valuations.

Figure (1) U.S. Credit Imbalances and Asset Price Overvaluations.

Note: Data on mortgage credit and nonfinancial corporate business credit are taken from the Financial Accounts
of the U.S. GDP and the S&P/Case-Shiller U.S. National Home Price Index are taken from the FRED database,
while data for the Shiller CAPE index are taken from Robert Shiller’s website. The credit-to-GDP gap is
computed based on a smooth trend obtained through the Hodrick-Prescott filter with a smoothing parameter
λ = 400, 000 (after Basel Committee’s guidelines for setting the counter-cyclical capital buffer). Large positive
(negative) values indicate excessive (subdued) credit.

Our paper illustrates how the feedback between the two generates a market failure requir-

ing a policy intervention. Moreover, we highlight how the policy response should differ when

both borrowing and valuations are elevated, as in the current environment, compared to when

overvaluations are not accompanied by large credit imbalances, as during the dot-com bubble.

To study the interplay between firms’ overborrowing and stock market overvaluations, we

develop a dynamic stochastic general equilibrium model with an occasionally binding borrowing

constraint and a rational stock price bubble, building on the work of Bianchi and Mendoza (2018)

(henceforth Bianchi-Mendoza) and Miao and Wang (2018) (henceforth, Miao-Wang). We opt to

build on these two papers because the former establishes a clear role for macroprudential policy,

while the later formally derives a rational stock price bubble.4 We then solve for the optimal

time-consistent macroprudential policy of a planner who cannot commit to future policies,

and derive analytically the policy instrument in the form of a tax on (new) borrowing that

decentralizes the planner’s allocations. Finally, we solve the model numerically by employing

global solution methods to show how macroprudential policy should account for asset price

overvaluations over the credit cycle.

4While these two strands of the literature have developed in parallel, there is a great added value in putting
them together to understand when and how macroprudential policy should tackle asset price bubbles, particularly
in the current context of elevated corporate debt and stretched stock market valuations.
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The economy consists of firms owned by households. Firms borrow from external financiers,

but due to lack of commitment, their borrowing capacity is constrained. Unlike Kiyotaki and

Moore (1997) and Jermann and Quadrini (2012), who assume that borrowing is limited by the

liquidation value of physical capital, we consider a setup, similar to Miao-Wang, where the total

value of the firm can be pledged as collateral. We show that the latter borrowing constraint can

arise endogenously from an incentive compatibility constraint in an optimal contracting problem

between borrowers and lenders. The underlying idea is that lenders cannot only confiscate the

physical collateral but also seize the ownership rights over the firm’s operations if the firm does

not honor its debt obligations (the lenders can then hire a new manager and sell the restructured

firm in the equity market). Hence, to the lenders the collateral value is equal to (a portion of)

the market, going-concern, value of the firm, which may not only include all the discounted

future cashflows but also a bubble component. This type of borrowing constraint is supported

by recent empirical evidence on corporate borrowing. Lian and Ma (2020) show that 80 percent

of corporate debt in the U.S. is not tied to specific assets, but rather to continuing operations of

a restructured firm, while Kermani and Ma (2020) show that liquidation values of listed firms’

tangible assets account for a small portion of firms’ debt outstanding, and debt enforcement

goes beyond focusing on the liquidation value of discrete assets.

Before turning to our results, we discuss our two methodological contributions. The first

relates to the conditions required for a bubble’s existence. As shown in Miao-Wang, borrowing

constraints based on the going-concern value of the firm generate a liquidity premium when

they bind, which is key for the existence of the bubble (without violating the transversality

condition). While in Miao-Wang the liquidity premium is strictly positive in every period, in

our model this is not the case as it is strictly positive only occasionally. To show that the bubble

can still exist even under an occasionally positive liquidity premium, we study the asymptotic

behavior of the economy and show that the borrowing constraint binds infinitely often despite

the presence of a bubble; in turn, this is sufficient for the bubble to exist without violating the

transversality condition. In other words, a rational bubble can exist if it continues to be useful

to relax borrowing constraints in the future even if the constraint does not always bind.

Our second methodological contribution is to construct a solution algorithm for the global

dynamics of indebtedness and bubbly valuations, which is essential to properly model the non-

linearities and non-monotonicities introduced by the occasionally binding borrowing constraints.

We consider a non-stationary stochastic bubble that emerges exogenously at some point in time,

but thereafter grows endogenously and may burst in every period with positive probability

(Blanchard and Watson, 1982; Weil, 1987). These features make the bubble an atypical state

variable because its value is not predetermined, but rather jointly determined with (current

period) consumption as the bubble is priced with agents’ stochastic discount factor. This com-

plicates the recursive representation of the equilibrium and the characterization of the global

dynamics. We address this issue by introducing an auxiliary step that disciplines the expecta-

tions about the future bubble state into the otherwise mainstream global, non-linear, solution

algorithm of Bianchi-Mendoza.5

5Martin and Ventura (2012) also solve for recursive equilibria with rational bubbles, but in their case the
value of the bubble in every period is drawn by an exogenous process. As a result, bubbles in their model are
equivalent to exogenous states, which simplifies the characterization of a recursive equilibrium.
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We now turn to our results. Occasionally binding constraints that depend on endogenous

asset values generate pecuniary externalities and justify macroprudential policy interventions.6

We show that the going concern value of the firm is equal to the (endogenous) value of existing

physical capital, which incorporates the discounted value of all future cash-flows, as well as the

(endogenous) collateralizeable value of the bubble. Private agents do not internalize how their

borrowing decisions affect the price of capital, giving rise to an adverse feedback loop between its

collateral value and deleveraging when borrowing constraints bind. The bubble directly affects

the incidence of a binding borrowing constraint and of this fundamental pecuniary externality in

two ways. On the one hand, the bubble provides additional collateral and can make, otherwise

binding, borrowing constraints slack. On the other hand, the bubble may burst and increase the

chances that the constraint binds if it has allowed agents to borrow more in the past. We call

these combined channels the extensive margin through which bubbly boom and bust dynamics

affect real outcomes. The extensive margin operates via the occasionally binding nature of the

constraint and should extend beyond the specific modeling of bubbles in our paper (see Martin

and Ventura, 2018, for a survey of the macroeconomic of bubbles and alternative modeling

approaches that the extensive margin may extend to).

Nevertheless, the endogenous bubble valuation in the model introduces novel additional

channels through which the bubble affects optimal policy. First, the endogenously determined

rate of growth of the bubble depends on production and consumption choices. This introduces

an additional externality as private agents do not internalize how their choices affect the future

value of the bubble, which is a state variable and, thus, matters for current outcomes through its

effect on expectations about future outcomes. Second, only a portion of the bubble value can be

pledged as collateral. The collateral value of the bubble is endogenous and is inversely related to

the tightness of the borrowing constraint. While private agents internalize how the utilization of

factors of production matters for the tightness of the constraint, they fail to understand how the

latter matters for the portion of the bubble that can be pledged as collateral. We group these

two additional channels, which accrue from the endogenous bubble growth and pledgeability,

into what we call the intensive margin.

A social planner internalizes the effects of borrowing decisions on the incidence and tightness

of binding borrowing constraints, and can choose a different level of borrowing to address

the aforementioned externalities. The planner faces the following trade-off: Higher borrowing

pushes current physical-capital and bubble valuations up, alleviating the negative effects of a

binding borrowing constraint today, but also dampens future valuations, thereby exacerbating

the negative effects of binding borrowing constraints in the future. The relative strength between

the two opposing effects determines the level of borrowing implemented by the planner.

The allocations chosen by the planner can be decentralized by a tax or a subsidy on bor-

rowing. Importantly, if the borrowing constraint does not bind today, then the only objective

is to alleviate externalities from potentially binding constraints in the future, which calls for a

positive tax on borrowing today. In this case, the tax is interpreted as a purely macroprudential

tax since it is imposed to address overborrowing during good times (i.e. when the borrowing

6This has been emphasized by Bianchi-Mendoza among others. Also, Guerrieri and Iacoviello (2017) study the
role of occasionally binding borrowing constraints in generating asymmetric effects of house prices on economic
activity, but do not study optimal policy.
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constraint does not bind) in order to alleviate the costs from deleveraging during bad times (i.e.

when the borrowing constraint becomes binding in the future).

Our key result suggests that the overall effect of the bubble on the optimal macroprudential

policy is non-monotonic and depends on the underlying economic conditions. This is due to

the fact that the extensive and intensive margins can operate in opposite directions, hence it is

not clear whether, on net, the macroprudential tax should be higher or lower in the presence

of the bubble. In particular, the extensive margin pushes the tax in the opposite direction

and dominates the intensive margin when today’s level of debt is moderate. This means that,

while the bubble relaxes the borrowing constraint, the externalities associated with the intensive

margin are not so severe as agents will not need to deleverage much, if the constraint binds in the

future. Hence, macroprudential policy should be more accommodative, and the macroprudential

tax should be lower when the bubble is present for a given level of credit imbalances (proxied

by the current level of debt). However, as credit imbalances grow, the negative externalities

(intensive margin) start to dominate and the macroprudential tax increases to a much higher

levels than in the bubbleless economy. Overall, asset overvaluations amplify externalities from

high levels of credit imbalances, but at the same time they mitigate the adverse effects when

imbalances are at a moderate level.

The above results have important implications for the determination of countercyclical poli-

cies targeting credit imbalances employed by regulators globally. In particular, asset overval-

uations should not only be used as an argument to lean more aggressively against the wind,

but could also imply that regulators need not to worry as much about the build-up of price

overvaluations, particularly if the extensive margin dominates.

In terms of our quantitative results, we calibrate our model using OECD data and set the

parameters governing the dynamics of the bubble to match the stylized facts in Jordà, Schularick

and Taylor (2015). We find that the macroprudential tax in the presence of a bubble increases

steadily as credit imbalances grow, and can be as high as three times the tax in the bubbleless

economy—which is about 3 percent for the constellation of exogenous states we report result

for. Moreover, the bubble allows current credit imbalances, as measured by the debt-to-GDP

ratio, to increase more compared to the bubbleless case, before the current borrowing constraint

starts binding.

When we simulate the economy, we find that, for a low initial level of debt and an adverse

productivity shock, for which the borrowing constraint binds, the reduction in consumption is

smaller in the presence of a bubble. However, if the initial level of debt is high, the reduction in

consumption is higher with the bubble, which is in line with the result that the intensive margin

is stronger when the outstanding debt level is high.7 Starting from a level of debt equal to the

long-run average of the bubbleless economy, we find that the net welfare effect of introducing a

bubble is negative. That is, the negative effect from the bubble-induced externalities outweighs

the positive effect from relaxing the borrowing constraint. The optimal tax on borrowing,

averaging close to 2 percent, increases welfare by 0.4 percent, as measured by compensating

consumption variations. Given that optimal taxes may seem hard to implement in practice,

7As we discuss later, the presence of a stochastic bubble that cannot re-emerge does not allow us to compute
an ergodic distribution that is independent of the initial debt level. However, we find the simulation exercises
useful, as they highlight the non-monotonic effects of the bubble.
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we also examine the welfare gains accruing from simple tax rules. We find that simple rules

can yield larger welfare gains when they account for both credit imbalances and asset price

overvaluations.

The rest of this paper is organized as follows. Section 2 reviews the related literature.

Section 3 presents the baseline model. We analyze optimal policy in section 4. We show the

numerical results in section 5. Finally, section 6 concludes.

2 Literature

Our paper is related to two main strands in the literature. First, it contributes to the

literature on rational asset price bubbles. Second, it contributes to the literature on optimal

macroprudential policy. While these two areas of research have evolved in parallel, important

connections remain to be addressed and a rigorous normative analysis has been lacking. Hence,

the main focus of our paper is the design of optimal macroprudential policies in the presence of

asset price bubbles and occasionally binding borrowing constraints.

The papers in the literature on rational asset price bubbles differ in the friction that allows a

bubble to exist in equilibrium, which matters also for how the bubble affects economic outcomes

(Barlevy, 2018). In the early literature, including the seminal works by Samuelson (1958) and

Tirole (1985), the bubble exists in equilibrium because of dynamic inefficiency. However, as

argued in Abel, Mankiw, Summers and Zeckhauser (1989), real economies are dynamically

efficient.8 Hence, most of the recent papers on rational bubbles have turned away from dynamic

inefficiency and consider other frictions to motivate bubbles’ existence.

Some models attribute the bubbles’ presence to financial frictions. In this class of models,

an intrinsically worthless asset or a bubbly component of a productive asset can relax financial

frictions by allowing agents to borrow more. Early examples include Kocherlakota (1992) and

Santos and Woodford (1997). More recent work has emphasized the role of entrepreneurs and

firms facing borrowing constraints, including Kocherlakota (2009), Farhi and Tirole (2012b),

Martin and Ventura (2012, 2016), Hirano and Yanagawa (2017) and Miao and Wang (2018).

Other papers have shown that informational frictions and agency problems can give rise to

bubbles in equilibrium (for example, Allen and Gorton, 1993, Allen and Gale, 2000, Allen,

Barlevy and Gale, 2018; see Barlevy, 2018 for a survey of the literature).

Within the literature on rational asset price bubbles, the paper closest in spirit to ours is

Miao-Wang. They show that a stock price bubble can arise in equilibrium in a production

economy with infinitely-lived agents. In their model, borrowing is restricted by a firm’s (mar-

ket) value, and a bubble on the firm’s stock relaxes the borrowing constraint, increasing the

borrowing capacity of the economy.9 The bubble exists in equilibrium as it provides a liquidity

premium, which in turn yields a return on the bubble that is lower than the return on the

8Despite the predominant view that real economies are dynamically efficient, Geerolf (2013), more recently,
has questioned the findings by Abel, Mankiw, Summers and Zeckhauser (1989).

9While the focus in our paper and in Miao-Wang is on a stock price bubble, many papers have focused on
studying the existence of pure bubbles, like money, in production economies. Pure bubbles can also provide
liquidity by raising borrowers’ net worth (Caballero and Krishnamurthy, 2006; Kiyotaki and Moore, 2012; Aoki,
Nakajima and Nikolov, 2014; Ikeda and Phan, forthcoming). However, the borrowing constraints in models of
pure bubbles are different than ours and that in Miao-Wang because they do not depend on the stock market
value of the firm.
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stock, thereby satisfying the transversality condition. In our paper, we augment the model of

Miao-Wang to allow for occasionally binding borrowing constraints.

There are a few other papers in this literature, more narrowly looking at the interaction of

asset price bubbles and financial frictions, that are related to ours. Hirano and Yanagawa (2017)

show that the effects of a bubble burst depend on the degree of pledgeability of the bubbly asset.

They also show that bubbles can increase welfare, regardless of the effects of their bursts, as

they relax financial frictions and allow for consumption smoothing by credit-constrained agents.

On the other hand, Chauvin, Laibson and Mollerstrom (2011) find that in the absence of fi-

nancial frictions bubbles are always welfare-reducing as they magnify cyclical fluctuations of

consumption. Martin and Ventura (2016) propose a new rationale for macroprudential regula-

tion: Borrowing should be taxed (or subsidized) such that it replicates the “optimal” bubble in

the economy, maximizing output and consumption. Similarly to them, bubbles in our economy

relax financial constraints and can be beneficial. Unlike them, the inefficiencies introduced by

the bubble in our paper do not stem from crowding out resources away but from pecuniary

externalities. Aoki and Nikolov (2015), Ikeda and Phan (2016), and Bengui and Phan (2018)

study the effect of bubbles on risk-taking incentives and financial stability. Miao, Wang and

Zhou (2015) find that loan-to-value limits and a property transaction tax can reduce the benefits

of holding the bubbly asset, while Miao and Wang (2015) suggest that increasing bank capital

requirements can mitigate the adverse consequences of bubbly bank valuations. Compared to

our work, the last two papers consider ex-post policy interventions when borrowing constraints

always bind; whereas we focus on ex-ante macroprudential regulation when constraints bind

only occasionally. Moreover, policy analysis in those frameworks is based on a comparative

statics exercise, whereas we study a fully-fledged Ramsey problem. Finally, we model a real

economy and focus on financial regulation rather than monetary policy to tackle the evolution

of the bubble; see Asriyan, Fornaro, Martin and Ventura (2020) and Gali (2014, 2021) for such

models.

Our paper also contributes more broadly to the literature on optimal macroprudential policy.

Macroprudential policy intervention is usually motivated by the presence of financial frictions,

generating pecuniary externalities (Bianchi-Mendoza; Stein, 2012; Bianchi, 2011; Jeanne and

Korinek, 2010; Davila and Korinek, 2018), or by the presence of aggregate demand externalities

(Eggertsson and Krugman, 2012; Korinek and Simsek, 2016; Farhi and Werning, 2016). Within

this area of research, the paper that is most closely related to ours is Bianchi-Mendoza. They also

study the design of optimal macroprudential policy with commitment in a small open economy

with occasionally binding borrowing constraints and pecuniary externalities, but they do not

consider the effects of elevated asset prices on the optimal policy design. Another related paper

is Biswas, Hanson and Phan (2020), who study the welfare effects of bubbles and subsequent

policy intervention in an environment with downward wage rigidities and aggregate demand

externalities. They find that policy should lean against bubbles because after a bubble’s collapse

the aggregate economic activity dips below the pre-bubble trend. Although their policy result is

reminiscent of ours, a key difference—aside from the nature of the externalities—is that we find

“leaning against bubbles” is only optimal when debt levels are high; otherwise, policy should be

accommodative. Note that the richer policy prescription of our model stems from modeling the
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full non-linear dynamics of stochastic bubbles under occasionally binding borrowing constraints,

while their analysis centers around “stationary” stochastic bubbles. As we explain in detail,

this approach of modeling bubbles has been the norm in the literature because of the difficulties

associated with a broader dynamic analysis that we attempt to tackle in our paper.

3 Model economy

We consider a small open economy with a rational bubble on a productive asset and an

occasionally binding borrowing constraint. The modeling framework is very similar to Bianchi-

Mendoza, but also features a rational asset price bubble. We model the bubble as in Miao-Wang,

who show that a rational stock price bubble can be supported in equilibrium in production

economies with infinitely-lived agents. We proceed by first outlining the competitive economy

(CE) equilibrium allocations. Subsequently in section 4, we analyze the time-consistent optimal

policy and derive the optimal macroprudential tax on borrowing that decentralizes the social

planner’s (SP) allocations.

3.1 Competitive economy with an asset price bubble

The economy is populated by a continuum of mass one of two types of infinitely-lived

representative agents: households and firms. Households consume, provide labor services, and

are the owners of firms. They can also frictionlessly trade firm shares in the stock market. Firms

own a production technology, which combines capital, labor and intermediate goods as inputs

to production. They purchase and sell capital, borrow internationally in the inter-temporal

debt market, and do not own or trade the shares of other firms in the stock market.

Households. The representative household lives for infinite periods and maximizes the ex-

pected utility, which is a function of consumption, ct, and labor, lt,

max
ct,lt,ηt+1

Et

∞∑
t=0

βtU (ct −G(lt)) , (1)

subject to the budget constraint,

ct +

∫
j

(
V j
t −D

j
t

)
ηjt+1dj =

∫
j
V j
t η

j
t dj + wtlt, (2)

where V j
t denotes firm j’s cum-dividend equity value, and Dj

t is firm j’s dividend paid out in

period t. The household starts the period with ηjt shares of firm j, which it can trade in the

stock market for shares of other firms. As a result, its end-period holdings of firm j’s equity

are ηjt+1. In addition to dividends, the household earns income from wages, denoted by wt, for

labor supplied to firms. The utility function U (·) is a standard concave, twice-continuously

differentiable in both its arguments and satisfies the Inada conditions. As in Bianchi-Mendoza,

preferences are defined over a composite commodity ct−G(lt), where G(lt) is a convex function,
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strictly increasing and continuously differentiable with G(0) = 0.10

The first-order optimality conditions of the household are as follows:

λt = Uc,t, (3)

wt = Gl,t, (4)

V j
t = βEt

[
Uc,t+1

Uc,t
V j
t+1

]
+Dj

t , (5)

where λt is the Lagrange multiplier corresponding to the budget constraint (2), and Uc,t and

Gl,t are the first-order derivatives of U and G with respect to ct and lt, respectively. Equation

(3) denotes the marginal utility of the household with respect to consumption, and equation (4)

denotes the household’s optimal labor choice. The Euler equation (5) implies that a firm’s equity

is priced using the household’s stochastic discount factor β
Uc,t+1

Uc,t
. The standard transversality

condition is

lim
T→∞

βT
Uc,T
Uc,t

V j
T = 0, (6)

where we have used the fact that ηjT = 1 for all T and all j.

Firms. As all firms are the same in equilibrium, we explain the problem of a representative

firm and drop the superscript j for notation simplicity. Denote by Vt(kt, Lt, bt) the (stock)

market value of a firm that enters period t with capital kt and outstanding debt Lt issued at

t − 1, which is non-state contingent and matures at t. Vt(kt, Lt, bt) also incorporates a bubble

component bt, so firms with the same level of capital and debt can have different market values

because of bubbly valuations not tied to the fundamentals.

The firm’s managers act in the best interest of shareholders (households) and choose new

capital kt+1 and debt Lt+1, hire labor ldt , and purchase intermediate good vt to maximize the

market value of the firm. Hence, using (5), Vt(kt, Lt, bt) should satisfy the following Bellman

equation,

Vt(kt, Lt, bt) = max
kt+1,Lt+1,

vt,ldt

Dt + βEt

[
Uc,t+1

Uc,t
Vt+1(kt+1, Lt+1, bt+1)

]
, (7)

where the firm’s managers take the stochastic discount factor of household, βUc,t+1/Uc,t, as

given.

The dividends Dt are given by

Dt = yt − pvvt − wtldt +
Lt+1

R
− Lt + qtkt − qtkt+1, (8)

where yt = ztF (kt, l
d
t , vt) is the total output at t given a Cobb-Douglas production function,

F (·), which combines labor, ldt , with capital purchased in the previous period, kt, and an

intermediate good, vt, which is traded in competitive world markets at a fixed exogenous price

pv; zt is an aggregate productivity shock. R is the world-determined gross real interest rate taken

10The formulation of this composite commodity is defined by Greenwood, Hercowitz and Huffman (1988) and
removes the wealth effect on labor supply inducing a countercyclical increase in the labor supply during crises.
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as given in the small open economy with βR < 1.11 The price of capital, qt, is endogenously

determined by equating supply and demand in the market for physical capital; while we assume

a fixed supply of capital Kt = 1. Overall, dividends are equal to the output remaining after

paying the factors of productions, vt and ldt , the net capital expenditure, qt(kt+1 − kt), and the

net debt issuance, Lt+1/R− Lt.
We assume that a firm cannot raise equity and that its borrowing decision is limited by a

borrowing constraint, which is endogenously derived from a limited commitment problem similar

to Jermann and Quadrini (2012) and Bianchi-Mendoza (see section A.1 of the Appendix). The

total liabilities of the firm at the beginning of the period comprise of Lt+1/R + θpvvt, which

implies that, in addition to its inter-temporal borrowing, the firm also needs to finance ahead

of production a portion θ ≤ 1 of the intermediate good purchases, pvvt. While Lt+1 is an inter-

temporal loan, θpvvt is repaid within the same period and hence it does not bear any interest.

Both types of borrowing can be diverted within period t, resulting in the following borrowing

constraint:
Lt+1

R
+ θpvvt ≤ mtEt

[
β
Uc,t+1

Uc,t
Vt+1(kt, 0, bt+1)

]
. (9)

Constraint (9) limits the size of total borrowing to a fractionmt < 1 of the firm’s continuation

market value (going-concern value), should the firm attempt to divert borrowed funds. In

particular, creditors can detect if diversion takes place and lawfully enact loan covenants to

seize the entire firm with probability mt. If successful, they restructure the seized firm by

cancelling its debt, but not liquidating its capital, and sell it as a whole within period t back to

the households. Note that the restructured firm does not pay any dividends at t, thus households

will value it only according to its future resale value at t+ 1. In turn, the market value of the

restructured firm with capital kt and zero debt is given by Vt+1(kt, 0, bt+1) in each state at t+1,

where bt+1 is the bubbly valuation at t+ 1. The price that households would be willing to pay

for the restructured firm at t is equal to its expected market price at t + 1 evaluated at the

stochastic discount factor of households, i.e. Et[βUc,t+1/Uc.tVt+1(kt, 0, bt+1)]. As a result, the

firm can borrow today against its expected going-concern value to creditors, which includes the

discounted future cashflows from production as well as any additional valuation from future

bubbles bt+1. This form of the borrowing constraint ensures that a stock price bubble can be

supported in equilibrium. Like in Miao-Wang, the bubble has a positive value in equilibrium

because it can relax the borrowing constraint and allow the firm to borrow more, which in turn

increases the firm’s value supporting the initial (bubbly) valuation.12

Asset price bubble. To derive the value of the bubble, we solve the firm’s dynamic program-

ming problem (7) subject to (8) and (9), following the method of undetermined coefficients.

11Note that this formulation is equivalent to a closed economy with deep-pocketed, risk-neutral savers with
time-discount factor β′ = 1/R > β.

12For the bubble to be supported in equilibrium, it is crucial that the bubble is attached to the stock price of
the firm and not to the liquidation value of the firm’s physical capital. See Miao-Wang for details. As mentioned
in the introduction, recent empirical evidence on corporate debt contracts (Lian and Ma, 2020, Kermani and Ma,
2020) supports defining firms’ borrowing constraint as a function of the going-concern value.
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Thus, we guess that the value function that the firm maximizes, takes the following form

V (kt, Lt, bt) = atkt + stLt + bt, (10)

where at and st are coefficients associated with the fundamentals of the model. The third

coefficient, bt, is not related to the firm’s fundamentals and is interpreted as a bubbly component.

In section A.2 in the Appendix, we solve the dynamic programming problem of the firm and

show that

at = [ztFk,t + qt(1 +mtµt)], (11)

st = −1, (12)

bt = (1 +mtµt)βEt

[
Uc,t+1

Uc,t
bt+1

]
, (13)

where Fk,t ≡ F (kt, l
d
t , vt)−Fl,tldt −Fv,tvt, Fl,t and Fv,t are the marginal products of capital, labor

and the intermediate good, respectively; and µtUc,t is the Lagrange multiplier on the borrowing

constraint (9). Condition (13) governs how the bubble accumulates over time.

After substituting (11) and (12) into (10), the value function takes the following form,

Vt(kt, Lt, bt) = [ztFk,t + qt(1 +mtµt)] kt − Lt + bt. (14)

Hence, the stock market value of the firm at t has the following components. First, it

includes the cashflow value from production, ztFk,tkt, using the existing capital, kt. Second,

it includes the value of the capital, qtkt, as well the shadow value of relaxing the borrowing

constraint, mtµtqtkt. Third, the value of the firm declines with the outstanding debt level, Lt,

and fourth, it increases with the bubbly valuation, bt, that equity investors assign to the firm.

Then the going-concern value of the firm at t, which enters in the borrowing constraint (9),

is equal to the market value of the restructured firm, Et[βUc,t+1/Uc,tVt+1(kt, 0, bt+1)]. Using

the conjectured value function (14) and substituting the derived coefficients at+1 and bt+1 using

(11) and (13), the borrowing constraint (9) simplifies to

Lt+1

R
+ θpvvt ≤ mt

[
βEt

(
Uc,t+1

Uc,t
at+1

)
kt + βEt

(
Uc,t+1

Uc,t
bt+1

)]
⇒Lt+1

R
+ θpvvt ≤ mt [qtkt +Bt] , (15)

where we used the fact that qt = βEt [Uc,t+1/Uc,tat+1] and where

Bt = βEt

[
Uc,t+1

Uc,t
bt+1

]
. (16)

We will refer to equation (16) as the collateral value of the bubble.

From formulation (15), we can see that the collateral value of the firm as going-concern has

a fundamental component and a bubbly component. The former is the value of the existing

physical capital, qtkt, which incorporates the expected discounted value of all future cashflows

from using the capital for production. The bubbly component is equal to the discounted ex-
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pected value of future bubbles, bt+1, rather than the current bubble value, bt, because lenders

care about the resale value of the restructured firm at the end of period t.

By combining (13) with (16), we can derive an equation that links the stock market value

of the bubble, bt, to the collateral value of the bubble, Bt

bt = (1 +mtµt)Bt. (17)

Equation (17) implies that the collateral value of the bubble, Bt, is less than the stock market

value of the bubble, bt, when the borrowing constraint binds in the present period. We will

refer to equation (17) as the bubble pledgeability condition because it shows how the pledgeable

portion of a stock market bubble is related to the tightness of the constraint, µt (see section 4

for a detailed discussion).

Competitive equilibrium. The following proposition outlines the representative firm’s op-

timality conditions, while the proof is relegated to Appendix A.3.

Proposition 1. The representative firm chooses kt+1, Lt+1, l
d
t , vt to maximize its objective func-

tion (7), given the functional form (14), subject to the budget constraint (8) and the borrowing

constraint (15). In equilibrium, the optimality conditions (i)-(vi) below are satisfied:

(i) the Euler equation with respect to borrowing, Lt+1,

1 = βEt
Uc,t+1

Uc,t
R+ µt, (18)

ii) the Euler equation with respect to capital, kt+1,

qt = βEt

{
Uc,t+1

Uc,t
[zt+1Fk,t+1 + qt+1(1 +mt+1µt+1)]

}
, (19)

iii) the labor, ldt , optimality condition,

wt = ztFl,t, (20)

iv) the intermediate good, vt, optimality condition,

pv(1 + θµt) = ztFv,t, (21)

v) the condition for how the bubble accumulates,

bt = (1 +mtµt)βEt

[
Uc,t+1

Uc,t
bt+1

]
, (22)

vi) the bubble pledgeability condition,

bt = (1 +mtµt)Bt, (23)
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vii) the complementarity slackness condition,

µt

[
mt(qtkt +Bt)−

Lt+1

R
− θpvvt

]
= 0. (24)

Two observations follow from the firm’s optimality conditions. First, the borrowing con-

straint (15) distorts both the optimal inter- and intra-temporal margins when binding. Con-

dition (21), defining the choice of the intermediate good, embeds an additional cost, i.e. the

cost of collateral financing equal to θµtp
v. In addition, both Euler equations are distorted. The

Euler equation for borrowing (18) implies that the marginal benefit from increasing borrowing

today outweighs the expected future marginal cost by an amount equal to the shadow price of

relaxing the borrowing constraint. Similarly, the Euler equation with respect to capital (19),

equating the marginal cost of an extra unit of capital with its marginal benefit, embeds an

additional benefit that derives from relaxing the borrowing constraint, valued at mt+1µt+1qt+1.

Second, not only the fundamental price of capital, but also the bubble depend on endogenous

choice variables. This dependence generates pecuniary externalities operating separately via

the two, which will be at the core of our policy analysis in section 4. Finally, note that we spell

out conditions (v) and (vi), separately since the former governs the link between bt and bt+1,

and the latter governs the link between bt and Bt. As we will see in section 4.1, both of these

linkages are at the heart of the optimal policy analysis.

Nature of the bubble. First, observe that a rational stock market bubble cannot exist in the

deterministic steady state of the model, where bt = bt+1 = b (or equivalently, Bt = Bt+1 = B),

qt = qt+1 = q, and Uc,t+1 = Uc,t = U c. For b,B > 0 and finite, conditions (19), (22), and (23)

cannot hold together because that would require zt+1Fk,t+1 → 0. Thus, the only deterministic

steady state is a bubbleless steady state with b = B = 0. At the same time, from (18), it follows

that µ = 1 − βR > 0, i.e. the borrowing constraint binds in the deterministic steady state.

Yet, this is not enough to support a stock market bubble. Therefore, we focus on stochastic

bubbles, i.e. bubbles that exist initially and may burst at each date with a positive probability

after which they do not reappear (Blanchard and Watson, 1982; Weil, 1987).13

Denote by b0 > 0 the initial level of the stock market bubble and by π the probability that

it persists in each period thereafter (that is, it may burst with probability 1 − π). We are

agnostic about how the initial bubble is generated and focus on cases where the bubble appears

at some point in time and persists thereafter. As such, we will treat the initial bubble emergence

as a sunspot which coordinates agents beliefs on an equilibrium with a stochastic bubble. In

other words, after it emerges the stochastic bubble needs to be endogenously priced and have a

positive value in every period. This requires the growth rate of the bubble to satisfy equation

(13). As we are interested in the interaction of the debt dynamics with stock market bubbles,

we will consider non-stationary, stochastic bubbles and study the global dynamics of the bubble

growth process. This is contrary to most of the literature, which typically focuses on stationary

stochastic bubbles, i.e. bubbles that have a constant value in a stationary equilibrium before

13More recently, Guerron-Quintana, Hirano and Jinnai (2019) develop a model of recurrent bubbles in an
environment with endogenous growth and infinitely-lived households.

13



they burst (see, for example, Kocherlakota, 2009, Miao and Wang, 2015,, Miao and Wang, 2018,

Biswas, Hanson, and Phan, 2020).14

Finally, the bubble we consider is attached to the stock price of the firm. In our model “pure

bubbles”, i.e. bubbles on otherwise useless assets, do not exist, but the model can be easily

extended by introducing an additional intrinsically useless asset, akin to real estate in Miao,

Wang and Zhou (2015), which can have a positive valuation as long as it serves as collateral.

As a result, we would be able to study the differential liquidity properties of stock price bubbles

and bubbles attached to other assets used as collateral.

The competitive equilibrium of the economy is defined as follows.

Definition of equilibrium. For given initial values of L0 and b0, probability π, and exogenous

processes {zt,mt}∞t=1, a competitive equilibrium for the economy with a stochastic stock market

bubble and a borrowing constraint is a sequence of allocations
{
ct, lt, l

d
t , vt, yt

}∞
t=0

, an asset pro-

file {kt+1, Lt+1}∞t=0, bubble processes {bt}∞t=1 and {Bt}∞t=0, and a price system {qt, wt, pv, R}∞t=0

such that:

1. Given the price system {qt, wt, pv, R}∞t=0 and bubble processes {bt}∞t=1 and {Bt}∞t=0, the allo-

cations and the asset profile solve households’ and firms’ problems, i.e. conditions (3)-(5) and

(18)-(23) are satisfied,

2. The markets for labor, capital, and equity clear, ldt = lt, kt = Kt = 1, ηjt = 1 ∀j, t, and

3. The resource constraint holds, ct + Lt = Lt+1/R+ ztF (1, lt, vt)− pvvt.

Bubble existence. We now show that a non-stationary, stochastic rational bubble can be

indeed supported in equilibrium if two conditions are satisfied.15 First, the bubble has to be

priced in equilibrium to ensure rationality, i.e. (22) needs to hold for every t. Second, the

transversality condition (6) needs to be satisfied. In Miao-Wang, firms are homogeneous in the

beginning of every period but are hit by idiosyncratic shocks such that the constraint binds

only for some of them. Yet there is always a positive probability that the constraint will bind

for the ex ante homogeneous firm, which is sufficient to generate a positive liquidity premium in

each period. As a result, it is straightforward to show that the transversality condition cannot

exclude the bubble. In our model, there is no ex post firm heterogeneity and the borrowing

constraint binds only occasionally, that is µt > 0 for some t and µt = 0 for other t. Thus, it

is not obvious that the transversality condition will not exclude a rational bubble that satisfies

(22).

To prove that rational bubbles can exist in our setup, we consider the asymptotic behavior

of the economy. Intuitively, a rational bubble can be supported even if the liquidity premium is

only occasionally positive as long as the borrowing constraint binds with a positive probability

as t goes to infinity. In other words, a rational bubble can exist if it continues to be useful

to mitigate financial frictions. The following proposition establishes that this is true for suffi-

ciently low values of the parameter mt. The proof relies on the fact that in incomplete markets

14Given that the borrowing constraint may only occasionally bind in our model, equations (22) and (23) imply
that we cannot obtain a stationary stochastic bubble.

15Miao-Wang show that both deterministic (steady state) and stochastic (stationary) stock market bubbles can
exist in their framework, but do not study non-stationary stochastic bubbles. Interestingly, the condition under
which a deterministic bubble exists excludes the existence of a stationary stochastic bubble, and vice versa.
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economies, the natural debt limit will be binding infinitely often (see Aiyagari, 1994), and that

the borrowing constraint will be more restrictive than the natural debt limit if the pledgeable

portion of the representative firm’s value is low enough.

Proposition 2. If min(mt) ≤ m, the borrowing constraint (15) binds infinitely often. That is,

limt→∞ supµt > 0, and a rational bubble can be supported in equilibrium.

Equilibrium solution. The initial value of the stock market bubble, b0, is determined exoge-

nously by a sunspot realization. Thus, for an initial level of debt L0, the competitive equilibrium

is characterized by choices of new borrowing and capital, the amount of the intermediate good

and labor inputs, prices for capital and labor, current consumption and production, as well as

the collateral value of the bubble. Regarding the latter, B0 is endogenous and does not only

depend on b0, but also on how binding the borrowing constraint is, through condition (23). As

a result, B0 ≤ b0, depending on whether the borrowing constraint binds or not. Thereafter,

the stock market bubble grows endogenously. This structure suggests that not only the level

of debt, but also the level of the stock market bubble, matter for all other choices. Consider

for example some L0 and two alternative sunspot realizations b′0 and b′′0: The two equilibrium

paths will not be the same. Thus, we need to solve for equilibrium allocations corresponding

not only to all possible values for L0, but also for all possible realizations of b0.16

To find the equilibrium, we need to compute stationary policy functions xt ≡ x(Lt, zt,mt, bt),

where xt ∈ {ct, vt, lt, Lt+1, µt, wt, qt, Bt}. We need a law of motion for the endogenous bubble

state in addition to the (usual) law of motion for the endogenous debt state and distributions

for the other exogenous state variables. The only equilibrium requirement is that the bubble

growth satisfies (22), which only needs to hold in expectation and, thus, can encompass various

bubble processes. We restrict our attention to beliefs about a bubble process that imply bt+1 =

btUc,t/[β(1 +mtµt)πUc,t+1].17 This condition cannot yet serve as the law of motion for how the

bubble grows from bt to bt+1 because the right-hand side depends not only on pre-determined

variables, but also on con-current choice variables through Uc,t+1 and, hence, on bt+1 itself. We

follow an equilibrium selection procedure that replaces bt+1 with a future state b∗t+1 that only

depends on the other current and future state variables, but not on t+ 1 choice variables, while

imposing consistency of expectations.18 In particular, b∗t+1 is the solution (fixed-point) to

b∗t+1 =
btUc,t

β(1 +mtµt)πU∗c,t+1

, (25)

where U∗c,t+1 = U ′(x(Lt+1, zt+1,mt+1, b
∗
t+1)). In short, among all possible future bubble states

at t+ 1, bt+1, we select the one, b∗t+1, that satisfies how rational agents price it in equilibrium.

Then, the law of motion for the bubble is given by the function b∗(Lt+1, zt+1,mt+1, Lt, zt,mt)

16The level of existing capital kt is also a state variable, but it does not matter for the equilibrium outcomes
because kt = Kt = 1 for every t.

17These beliefs are consistent with (22) and allow for state-contingent growth of the bubble. We abstract from
additional exogenous shocks to the realized bubble value at t+ 1 as in Martin and Venture (2012, 2016) .

18Solving the model is easier in case of stationary bubbles, or non-stationary bubbles and linear preferences
(e.g. Farhi and Tirole (2012a)) because in both cases Uc,t+1/Uc,t = 1. However, as mentioned, studying the
global dynamics of indebtedness and bubbly valuations requires the modeling of non-stationary bubbles, while
concave utilities are needed to generate pecuniary externalities and a role for policy.
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that yields b∗t+1 given other state variables, but not future choice variables. Section A.5 in the

Appendix presents the detailed steps of the equilibrium selection procedure. Thus, we replace

the equilibrium condition (22) with the stricter condition (25) that implicitly defines the law

of motion b∗(Lt+1, zt+1,mt+1, Lt, zt,mt). We will call condition (25) the bubble accumulation

condition because it shows how the current bubble state, bt, is expected to grow to the future

bubble state b∗t+1.

The expectation terms in (18) and (19) also depend on the t+ 1 bubble state. Using (25),

we can re-write these equilibrium conditions in recursive form in terms of b∗t+1 as

Uc,t(1− µt) = βREtHu(Lt+1, zt+1,mt+1, b
∗
t+1, Lt, zt,mt, bt), (26)

qtUc,t = βEtHq(Lt+1, zt+1,mt+1, b
∗
t+1, Lt, zt,mt, bt), (27)

where the policy functions Hu and Hq give the t + 1 values in the right-hand side of (18) and

(19) when the future bubble state is (selected to be) b∗t+1 (equations (A.26) and (A.27) in the

Appendix). We are now equipped to express the competitive equilibrium recursively.

Recursive representation of competitive equilibrium. Define the state space at t as

(Lt,mt, zt, bt) and the state space at t+1 as (Lt+1,mt+1, zt+1, b
∗
t+1). The competitive equilibrium

is characterized by: (i) policy functions x(Lt,mt, zt, bt) for period-t endogenous variables xt ∈
{ct, vt, lt, Lt+1, µt, wt, qt, Bt}; (ii) policy function Hu and Hq for the forward looking terms in

(A.26) and (A.27); and (iii) values b∗t+1 that the bubble bt grows in each future state, such that

all markets clear, the resource constraint holds, and the optimality conditions (3)-(5), as well

as (20), (21), (23), (25) (26), and (27) are satisfied.

Expressing the equilibrium recursively is not only important to study the non-monotonic

dynamics of indebtedness and bubbly valuations, but is also needed to derive the optimal time-

consistent policy in the next section.

4 Optimal macroprudential policy

To derive the optimal policy, we proceed by first formulating the social planner’s problem and

then discussing the properties of the optimal taxation that implements the planner’s solution.

4.1 Time-consistent planner’s problem

The policy design follows the Ramsey approach, which consists of the social planner choosing

policies, prices, and allocations in order to maximize the economy’s social welfare function. In

doing so, the planner has to respect all equilibrium conditions of the recursive representation of

the competitive equilibrium described in the previous section, apart from those that the planner

explicitly distorts with policy tools. This ensures that the allocations chosen by the planner

can be implemented as allocations in the competitive economy.

Unlike the standard Ramsey literature, where the planner optimally chooses distortionary

policies intended to finance government expenditure, the planner in our model chooses policy

to alleviate the externalities arising from agents’ atomistic behavior. We assume that the only
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policy available to the planner is a state-contingent tax on borrowing, τt.
19 This instrument is

Pigouvian in nature with the tax revenues being rebated lump-sum back to the private agents,

with Tt denoting the transfer.

The resource constraint of the decentralized economy then takes the following form

ct + Lt(1 + τt−1) + pvvt ≤ ztF (1, lt, vt) +
Lt+1

R
+ Tt, (28)

where Tt = τt−1Lt. Equation (28) is obtained by adding the budget constraints of the two agents,

(2) and (8), with the borrowing tax introduced, and using the market clearing conditions ldt = lt,

kt = 1 and ηjt = 1 for all t and j.

The Euler equation with respect to borrowing, (18), from the perspective of atomistic agents,

who take Tt = τt−1Lt as given, then becomes

Uc,t(1− µt) = βR(1 + τt)EtUc,t+1

⇒Uc,t(1− µt) = βR(1 + τt)EtHu(Lt+1, zt+1,mt+1, b
∗
t+1, Lt, zt,mt, bt), (29)

using the recursive representation in (26). Note that this condition does not enter as a constraint

in the planner’s problem as the planner can implement the desired allocations in a competitive

equilibrium by appropriately choosing the level of τt.

Moreover, we assume that the planner does not have the technology to commit to future

policies.20 Therefore, we solve for the optimal time-consistent macroprudential policy, taking

into account the effects of the planner’s current period choices on future planners’ optimization

problems. As a result, the planner does not have an incentive to deviate from policy rules of

previous social planners.

The planner’s maximization problem, at state (Lt, zt,mt, bt), is given by

max
ct,qt,Lt+1,vt,lt

Et

∞∑
t=0

βtU(ct −G(lt))

s.t ct + Lt + pvvt ≤ ztF (1, lt, vt) +
Lt+1

R
(λpt ) (30)

Lt+1

R
+ θpvvt ≤ mt

(
qt +

bt
1 +mtµ(lt, vt)

)
(µpt ) (31)

qtUc,t = βEtHq(Lt+1, zt+1,mt+1, b
∗
t+1(ct, µ(lt, vt)), Lt, zt,mt, bt) (ξt) (32)

ztFl,t = Gl,t, (ζt) (33)

where the Lagrange multipliers associated with each constraint are given in parentheses. Note

that we distinguish between the Lagrange multipliers on the budget (resource) and borrowing

19Alternative instruments that affect the inter-temporal margin, such as debt limits, loan-to-value ratios, can
be used instead of the tax. The tax can also be imposed on the interest rate expenses.

20Bianchi-Mendoza show that the optimal policy under commitment is time-inconsistent since asset prices are
determined by a dynamic condition linking the present and future (expected) marginal utilities of consumption.
Instead, they follow the time-consistent approach under which a planner cannot commit at t to the whole path
of future policy choices.
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constraints in the competitive and in the planner’s problem (λt and λpt ; µt and µpt , respectively).

The constraints in the planner’s problem can be explained as follows. First, the planner

respects the resource constraint (28) in the decentralized economy, while taking into account

that Tt = τt−1Lt, reducing it to (30). Second, the planner is constrained by the same financial

frictions as the private agents and, hence, needs to respect the borrowing constraint (31). The

planner needs to internalize how the current production decisions affect the collateral value

of the bubble, Bt, via the bubble pledgeability condition (23), i.e. Bt = bt/(1 + mtµ(lt, vt)),

which we have substituted in the right-hand side of the borrowing constraint (31)—recall that

the stock market value of the bubble, bt, is a state variable, but the collateral value of the

bubble, Bt, is endogenously determined in each state. Third, the planner internalizes how the

fundamental price of capital depends on consumption and production decisions, so we include

the Euler condition with respect to capital, (27), as an additional constraint. In this constraint,

we have also incorporated the bubble accumulation condition (25), yielding (32), in order to

capture the dependence of the future bubble state, b∗t+1(ct, µ(lt, vt)), on the current consump-

tion and production decisions. This is important because, as mentioned, time-consistent policy

should take into account the effects of the planner’s current period choices on future planners’

optimization problems. Fourth, constraint (33)—derived by combining (4) and (20)—governs

the equilibrium in the labor market in the competitive economy, and guarantees that the plan-

ner’s labor choice is implementable.21 Finally, the planner internalizes how the tightness of the

borrowing constraint in the competitive equilibrium, µt, is determined in order to guarantee

that the planning allocations are implementable as competitive equilibrium outcomes. Hence,

using (21), which governs the demand for the intermediate good in the competitive economy, the

Lagrange multiplier on the collateral constraint in the competitive economy can be expressed

as µ(lt, vt) = (ztFv,t − pv)/(θpv); we use this expression to substitute for µt where it appears in

the planner’s problem in order to highlight its dependence on the factors of production, lt and

vt. Apart from these constraints, the planner’s problem needs to satisfy the complementary

slackness condition [Lt+1/R+ θpvvt −mt(qt + bt/(1 +mtµ(lt, vt)))]µ
p
t = 0.

Clearly the bubble pledgeability and bubble accumulation conditions substituted in the

planner’s problem above are not relevant in a bubbleless economy as bt = 0 and b∗t+1 = 0. In

this case, (31) and (32) coincide with the ones in the (bubbleless) BM economy. Constraint (33)

is also redundant in the planner’s problem absent a bubble.22 The intuition why this constraint

is relevant only in the presence of a bubble is as follows: The tightness of the borrowing

constraint in the decentralized competitive economy, measured by µ(lt, vt), matters for the size

of the collateral value of the bubble. The smaller the Lagrange multiplier is, the bigger is the

pledgeable portion of the stock market bubble and the bigger is the effect of the bubble on

attenuating the financial frictions. At the same time, the planner’s choices of the intermediate

good and labor matter for the tightness of the borrowing constraint, which is the reason why

(33) enters as an additional constraint. On the contrary, in the bubbleless economy, only the

21Given the equilibrium level for labor determined by (33), the equilibrium wage is given by either (4) or
(20). The condition determining the wage is not an additional constraint for the planner, because wages do not
generate any income effect as firms are owned by households and dividends are distributed in the period they
accrue, as well as because payroll costs do not enter the borrowing constraint, following Bianchi-Mendoza.

22This can easily be shown by setting bt = b∗t+1 = 0 in equations (A.37) and (A.39) in section A.6 in the
Appendix.
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fundamental price of capital matters for the borrowing constraint and, as can be seen from

(32), it does not depend on the current value of µ(lt, vt). Hence, the planner can choose the

level of the intermediate good and labor that satisfy the competitive equilibrium conditions

without worrying how they matter for the tightness of the borrowing constraint, µ(lt, vt), in the

bubbleless economy.

In section A.6 in the Appendix, we derive the optimality conditions that characterize the

planner’s problem. Herein, we focus on the main conditions to derive intuition about the

mechanism through which the externalities operate. First, consider the optimality condition

with respect to consumption, which can be expressed concisely as

λpt = Uc,t︸︷︷︸
Competitive
equilibrium

+

Fundamental-price
externality︷︸︸︷
Ftqt + VtβEt

dHq,t+1

db∗t+1

db∗t+1

dct︸ ︷︷ ︸
Bubble-accumulation

externality

+

Bubble-pledgeability
externality︷ ︸︸ ︷
Wt

dBt
dlt

, (34)

where Ft, Wt, and Vt are given by (A.41), (A.42), and (A.43) in the Appendix.

We begin our analysis by comparing the planner’s first-order condition with respect to

consumption, (34), to the corresponding condition of the competitive economy, λt = Uc,t, which

equates the shadow value of income to the marginal utility. Compared to the competitive

economy, the planner’s optimality condition contains three additional terms.

The first additional term (second term in the right-hand of (34)) is unrelated to the bubble’s

presence and is positive (see section A.6 in the Appendix). This term captures how the planner—

unlike the private agents—internalizes that an additional unit of consumption reduces today’s

marginal utility, putting upward pressure on the fundamental price via condition (32). A higher

qt relaxes the borrowing constraint enabling an additional increase in ct and qt, and a further

relaxation of the constraint. This is the familiar externality highlighted by Bianchi-Mendoza,

capturing the additional positive effects of higher consumption and making the shadow value

of income for the planner higher than the marginal utility of consumption. We will refer to this

externality as the fundamental-price externality.

The second and third additional terms in (34) are novel. The former, VtβEtdHq,t+1/db
∗
t+1 ·

db∗t+1/dct, captures how current consumption affects the bubble growth rate from t to t + 1,

i.e. db∗t+1/dct. Note that, for a given bubble state, bt, the bubble grows endogenously to b∗t+1,

while satisfying condition (25). Through this equation, the current level of consumption affects

the growth rate of the bubble. In turn, the level of the future bubble state, b∗t+1, matters for

qt because it is incorporated in Hq,t+1 in the right-hand side of (32). The planner takes the

dependence of qt on b∗t+1 and, thus, ct into account, which is a link that private agents fail to

internalize when making optimal decisions. We refer to the externality captured by this term as

the bubble-accumulation externality. Both the fundamental-price and the bubble-accumulation

externalities operate through how ct affects qt. But while the former works directly through the

stochastic discount factor used to price qt, the latter works indirectly through the growth rate

for the bubble state.

The third additional term,WtdBt/dlt captures how production decisions affect the collateral
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value of the bubble, Bt, as indicated by dBt/dlt, and the fact thatWt depends on the utilization

of labor and the intermediate good (see condition (A.42) in the Appendix). Private agents fail

to internalize how their production decisions affect the tightness of the borrowing constraint,

µ(lt, vt), which in turn affects the size of the bubble that can be pledged as collateral, i.e. Bt,

via equation (23). Unlike the private agents, the planner takes this dependence into account.

We refer to the externality captured by this term as the bubble-pledgeability externality, which

is positive as we show in the Appendix. Note that, although this externality operates via the

factors of production, it still enters the consumption decision. This is because it affects the

tightness of the constraint, and thus the strength of the fundamental price externality, which

depends on ct. As we show in the Appendix, WtdBt/dlt can be alternatively written as

Ftqt︸︷︷︸
Fundamental-price

externality

· W ′t ·
dBt
dlt︸ ︷︷ ︸

Bubble-pledgeability
amplification

, (35)

i.e. as a multiple of the fundamental-price externality. Since W ′ < 0, given in equation (A.44),

and dBt/dlt < 0, the bubble-pledgeability externality scales up the fundamental-price external-

ity.

Clearly, the bubble-accumulation and bubble-pledgeability externalities are absent for bt = 0.

But, also, all three externality-terms in (34) are zero if the borrowing constraint does not bind.

Next, we discuss the Euler condition with respect to borrowing, which is a key component

to derive the optimal policy, and takes the following form (by substituting (A.29) in (A.30))

λpt = βREt

(
λpt+1 +

mtµ
p
t

Uc,t

dHq,t+1

dLt+1

)
+ µpt , (36)

where dHq,t+1/dLt+1 captures the fact that Lt+1 is a state at t + 1 and, thus, its choice at t

matters for the determination of qt through the forward-looking terms in (32).

Compared to the corresponding optimality condition (18) for Lt+1 of the private agents,

the planner’s optimality condition (36) incorporates the three aforementioned externalities. We

discuss separately the cases that the borrowing constraint binds only occasionally at t.

1. The borrowing constraint does not bind at t, but may bind at t+ 1: In this case,

µpt = µt = Ft = Wt = Vt = 0 and (36) becomes Uc,t = βREtλ
p
t+1. Hence, the marginal cost

of borrowing at t differs for the social planner and the private agents as the former accounts

for the three externalities described above. The exact amount of the difference is equal to

βREt(λ
p
t+1−Uc,t+1), where λpt+1 is obtained from (34), evaluated at period t+1. By taking into

account the externality terms in the the Euler equation with respect to borrowing, the planner

internalizes that higher debt at t curtails the future borrowing capacity and, thus, consumption

when the constraint binds at t+ 1. Lower ct+1 puts pressure on qt+1, which further tightens the

constraint. Moreover, a tighter borrowing constraint decreases the collateral value of the bubble

via the bubble-pledgeability externality. Finally, lower ct+1 decreases the rate of growth for the

bubble from t + 1 to t + 2 and results in a lower b∗t+2, which matters for qt+1 via the bubble-

accumulation externality. Contrary to the previous two externalities, we cannot unambiguously
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say whether the latter externality adds on the planner’s marginal cost of borrowing or not.

2. The borrowing constraint binds at t and may bind at t + 1: In the event the

borrowing constraint binds at t and may also bind at t + 1, the three externalities described

above are present in both periods, pushing the marginal cost of borrowing from the perspective

of the planner in opposite directions. In addition, the planner also takes into account how the

choice of Lt+1 affects the level of qt via the forward-looking expectations captured in EtHq,t+1.

Intuitively, the planner faces a trade-off between choosing allocations such that it increases

current valuations, qt and Bt, at the cost of potentially decreasing future valuations, qt+1 and

Bt+1. The overall effect on the marginal cost of borrowing compared to the competitive economy

depends on which of the two opposing forces dominates.

4.2 Optimal tax rate in the presence of a bubble

The optimal tax on borrowing can be derived by combining the Euler equation for Lt+1

of the planner (36) with the corresponding equation of the agents incorporating the tax on

borrowing (29), which yields

τt =− λpt − Uc,t
βREtUc,t+1

+
µpt − Uc,tµ(lt, vt)

βREtUc,t+1
+
mtµ

p
t

Uc,t

EtdHq,t+1/dLt+1

EtUc,t+1︸ ︷︷ ︸
Targeting current

valuation externalities

+
Et(λ

p
t+1 − Uc,t+1)

EtUc,t+1︸ ︷︷ ︸
Targeting future

valuation externalities

. (37)

The tax in (37) balances the effects of borrowing on the current versus the future valuation

externalities described earlier. In order to focus on the macroprudential component of the

borrowing tax, we consider that µt = µPt = 0 (but Etµ
p
t+1 > 0). The tax rate is given a

macroprudential interpretation because it intends to hamper excessive borrowing in good times

(when the borrowing constraint does not bind) to lower the risk of future instability due to

deflating—fundamental and bubbly—valuations in bad times (when the borrowing constraint

starts to bind). Using (34) and (37), the macroprudential tax is given by

τmpt =
EtFt+1qt+1

EtUc,t+1
+
EtWt+1

dBt+1

dlt+1

EtUc,t+1
+
βEtVt+1

dHq,t+2

db∗t+2

db∗t+2

dct+1

EtUc,t+1
, (38)

where Ft+1,Wt+1, Vt+1, and db∗t+2/dct+1 are given by (A.41), (A.42), (A.43), and (A.33) applied

to period t+ 1, respectively.

The first component in the macroprudential tax (38) addresses the fundamental-price ex-

ternality operating via the qt+1, which calls for a positive tax to lean against imbalances. The

second component addresses the bubble-pledgeability externality operating via Bt+1, which as

mentioned earlier amplifies the fundamental-price externality described in Bianchi-Mendoza

and requires a more aggressive macroprudential response. The third component addresses the

bubble-accumulation externality operating via b∗t+2, but the direction at which it pushes the

macroprudential tax is ambiguous.

We now compare the macroprudential tax τmpt in the presence of the bubble to the total

tax that would prevail absent a bubble, denoted by τ̃t. The reason why we compare τmpt to the
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general tax in the bubbleless economy is that the constraint may bind at t only absent a bubble

for certain state realizations. Thus, doing so, allows us to characterize how the bubble changes

the optimal policy for the whole range of states that we obtain a macroprudential tax in the

presence of a bubble. Note that τ̃t is the optimal tax in the bubbleless BM economy, which can

be obtained using (34) and (37) after setting bt = bt+1 = 0 and µPt = λPt µ(lt, vt) (see Appendix

A.6):

τ̃t = −F̃tq̃t(1 + µ(l̃t, ṽt))

βREtŨc,t+1

− mt(Ũc,t + F̃tq̃t)µ(l̃t, ṽt)

Ũc,t

EtdH̃q,t+1/dL̃t+1

EtŨc,t+1︸ ︷︷ ︸
Tackling externalities

at t

+
EtF̃t+1q̃t+1

EtŨc,t+1︸ ︷︷ ︸
Tackling externalities

at t+ 1

, (39)

where the variables denoted by a tilde sign correspond to a bubbleless economy.

Then, we can express the difference between the macroprudential tax in the bubbly economy

and the total tax in the bubbleless economy as

τmpt − τ̃t =

Current extensive margin︷ ︸︸ ︷
F̃tq̃t(1 + µ(l̃t, ṽt))

βREtŨc,t+1

+
mt(Ũc,t + F̃tq̃t)µ(l̃t, ṽt)

Ũc,t

EtdH̃q,t+1/dL̃t+1

EtŨc,t+1

+
EtFt+1qt+1

EtUc,t+1
− EtF̃t+1q̃t+1

EtŨc,t+1︸ ︷︷ ︸
Future extensive margin

+
EtWt+1

dBt+1

dlt+1

EtUc,t+1
+
βEtVt+1

dHq,t+2

db∗t+2

db∗t+2

dct+1

EtUc,t+1︸ ︷︷ ︸
Intensive margin

. (40)

The first component in (40) captures the fact that the borrowing constraint may bind in

the bubbleless economy for some states zt,mt, Lt, but does not necessarily bind in the bubbly

economy. Then, the planner in the bubbleless economy needs to account for the pecuniary

externality that the binding constraint at t generates, which should call for reducing the tax

on borrowing so as to support the current price q̃t. In contrast, the presence of the bubble at t

can directly relax the binding constraint and, thus, the planner does not need to be concerned

about pecuniary externalities at t in the bubbly economy. We refer to this channel via which the

bubble relaxes the current borrowing constraint and removes the fundamental-price externality

at t as the current extensive margin of optimal policy.

The second component in (40) captures the part of the tax rate that tackles the expected

(rather than the current) fundamental-price externalities when the constraints bind at t+1 in the

bubbleless and the bubbly economy. The expectation operator (in the first ratio) encompasses

both the states where the bubble persists with probability π and the states where it bursts with

probability 1 − π. On the one hand, the mere presence of the bubble can make the borrowing

constraint slack in some future states as long as the bubble does not burst, which pushes down

the (conditional) probability of the constraint binding and calls for a lower tax. On the other

hand, the equilibrium values of capital, consumption, and other variables also change in the

presence of bubble. Thus, the pecuniary externalities operating via the value of capital may

become exacerbated when the bubble bursts. This is so because the presence of the bubble in

the previous periods may have allowed for more debt accumulation compared to the bubbleless
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case. We refer to the overall effect through which the macroprudential tax tackles the future

fundamental-price externalities as the future extensive margin of optimal policy.

Both the current and future extensive margins accrue from the fact that the mere presence

of the bubble can make, otherwise binding, borrowing constraints slack. Our results on the

extensive margin should carry over to other models that feature bubbles as exogenous shocks.

However, the collateral value of the bubble as well as the growth rate of the bubble are endoge-

nous in our model and depend on current production and consumption decisions as explained

earlier. This dependence introduces an additional margin captured by the third component

in (40), which we refer to as the intensive margin of optimal policy. This part of the tax

rate tackles jointly the bubble-pledgeability and the bubble-accumulation externality when the

constraint binds at t + 1. We should note that the intensive margin is present as long as the

bubble does not burst at t + 1 and, thus, it is not meant to tackle the adverse impact of the

bubble bursting in the future (captured in the future extensive margin). Instead, it tackles the

adverse externalities from deflating, but positive, bubbly valuations. The planner cannot affect

the probability that the bubble persists, as it is exogenously driven by a change in sentiments,

but can affect the size of the bubble to make sure that it maintains value exactly when it is

most needed, i.e. when borrowing constraints start binding in the future. This distinguishes

the intensive margin from the adverse effects of a bursting bubble studied in other papers.23

Since the sign of the combined effect of the two extensive and the intensive margins is

ambiguous, in the next section we solve a calibrated version of the model numerically to examine

which force, and under what conditions, prevails.

Finally, before turning to the quantitative analysis, it is worth mentioning that the macro-

prudential tax, τmpt , in a bubbly economy is different than the macroprudential tax in a

bubbleless economy with simply higher fundamental prices, i.e. a bubbleless economy with

q′t+1 = qt+1 + Bt+1; but where debt levels, consumption, and other endogenous variables are

the same.24 In other words, the bubbly and bubbleless (with higher asset prices) economies do

not feature an equivalent macroprudential policy. Clearly, the functional form of the bubble-

accumulation externality is unique to the bubbly economy since it captures how t + 1 choices

affect the bubble growth and hence qt+1 (which follows from the fact that the bubble is a state

variable). But also, the sum of the fundamental-price and bubble-pledgeability externalities

in the bubbly economy is different than the fundamental-price externality in the alternative

bubbleless economy with q′t+1. Using (35) we can see that

Ft+1qt+1 +Wt+1
dBt+1

dlt+1
= Ft+1 (qt+1 +Bt+1 · Yt+1) 6= Ft+1 (qt+1 +Bt+1) = Ft+1q

′
t+1

because Yt+1 = qt+1W ′t+1/Bt+1dBt+1/dlt+1 6= 1.

23For example, Caballero and Krishnamurthy (2006) show that the burst of a bubble used as a store of value
can induce a reversal in capital flows and drop in production in emerging economies, while Kocherlakota (2009)
studies the distributional and aggregate inefficiencies of bursting bubbles. More recently, Miao and Wang (2015)
study how a collapse of a (stochastic) bubble in bank valuations can generate a financial crisis, while Biswas,
Hanson and Phan (2020) show how the collapse of a bubble coupled with wage rigidities can lead to a persistent
recession.

24Clearly, such a situation would also require that the two economies have different fundamentals otherwise
asset valuations and, hence, the macroprudential taxes would be different for the same level of debt across the
two economies.
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5 Quantitative analysis

This section presents the quantitative implications of the model. We proceed by discussing

the baseline calibration, and then turn to the numerical results.

5.1 Calibration

We calibrate most of the the parameters following Bianchi-Mendoza to allow for close com-

parisons of our results with their bubbleless economy. Thus, for calibration details of all non-

bubble parameters we refer the reader to their section III.A. One exception is the global interest

rate R, which, in order to limit the number of states for the numerical solution, we keep fixed

at its long-term average level, R̄ = 1.01.

The parameters associated with the bubble are calibrated following the results in Jordà,

Schularick and Taylor (2015), who study bubbles in equities and housing markets in 17 advanced

countries over the past 140 years. They report summary statistics separately for house and

for equity bubbles, in pre- and post-World War II periods. Given the sample period used

for calibrating other model parameters, we focus on the post-World War II equity bubbles.

The average duration of an equity bubble in this period is 2 years, which implies a survival

probability of π = 0.5 in our model. For a period of price growth to be identified as a bubble,

Jordà, Schularick and Taylor (2015) require that the log of real asset prices diverge by more

than one standard deviation from a country-specific Hodrick-Prescott filtered trend (λ = 100,

annual data). This implies an average deviation of equity prices from their long-term trend of

around 9.2 percent in the first year of the bubble. Thus, while we solve the model for a grid of

different bubble states, when presenting the results we focus on the state in which the equity

bubble is equal to 9.2 percent of the average fundamental price. The latter is computed from

the ergodic distribution in the bubbleless economy.

Table 1 summarizes all parameter values. The functional forms for preferences and technol-

ogy are

U =

(
c− χ l1+ω

1+ω

)1−σ
− 1

1− σ
, ω, χ > 0, σ > 1,

F = ezkαkvαv lαl , αk, αv, αl > 0, αk + αv + αl ≤ 1.

Total factor productivity (TFP) follows an independent AR(1) process, given by

zt = z̄ + ρzzt−1 + εt, εt ∼ N(0, σε)

The productivity shock is discretized using the Tauchen’s quadrature method with three re-

alizations zl, z̄, zh, such that zl < z̄ < zh. The parameter in the borrowing constraint, mt,

follows a two-state regime switching Markov process with two states {ml,mh}, where ml de-

notes tight and mh denotes normal credit conditions, respectively. This process is also assumed

to be independent from the Markov process for z. Finally, Px,y in Table 1 denotes the transition

probability from a state x to a state y.
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Table (1) Calibration.

Parameters Value

Risk aversion σ = 1
Share of intermediate good in output αv = 0.45
Share of labor in output αl = 0.352
Share of assets in output αk = 0.008
Labor disutility coefficient χ = 0.352
Fischer elasticity 1/ω = 2
Working capital coefficient θ = 0.16
Tight credit regime ml = 0.75
Normal credit regime mh = 0.90
Global interest rate R = 1.01
TFP process ρz = 0.78

σε = 0.01
Discount factor β = 0.95
Transition probability, mh to ml Ph,l = 0.1
Transition probability, ml to ml Pl,l = 0
Bubble bursting probability π = 0.5

5.2 Numerical results

To solve the model, we use a global, non-linear solution algorithm. The CE solution is

obtained by iterating over the first-order conditions, and the SP problem solution is obtained by

applying a value function iteration algorithm.25 As mentioned at the end of section, we augment

the otherwise standard global solution algorithm to incorporate a non-stationary stochastic

bubble. We refer the reader to Appendix A.7 for details on the numerical method.

In both CE and SP algorithms, we use a grid of 150 points for Lt over a range [0, 0.11], with

60 states (3 productivity states, 2 credit condition states, and 10 bubble states: one bubbleless

state and 9 states with different bubble size of up to over 20 percent of the fundamental price).

Policy functions and optimal macroprudential tax. We now move to the numerical

analysis and discuss the optimal policy rules. Figure 2 shows new borrowing Lt+1 and the total

collateral value of the firm, which combines the fundamental price of capital qt and the bubble

component Bt, as functions of the outstanding debt level, Lt, when financial conditions are

favorable and productivity is low (mt = mh and zt = zl). The top panels show the bubbleless

state, and the bottom panels show the state with a bubble present. CE (SP) decision rules are

depicted in red (blue). The vertical red (blue) lines mark outstanding debt levels above which

the borrowing constraint starts to bind at t in the CE (SP).

There are notable differences between the CE and SP decision rules. The SP chooses new

borrowing Lt+1 that is always lower than in the CE, independently of the bubble’s presence.

It does so because it internalizes pecuniary externalities, and mitigates their negative impact

on consumption, asset prices and welfare. Moreover, the borrowing constraint starts binding

in the SP equilibrium for lower levels of debt than in the CE. This happens as lower SP bor-

25In order to obtain the solution for the competitive economy, we iterate the (competitive) Euler equation for
borrowing, which does not incorporate the externality terms. On the contrary, the effect of these externalities
on welfare is included under value function iteration that yields the planner’s solution. Given that we solve for
time-consistent policies, we use a nested fixed point algorithm for the value function iteration.
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rowing results in lower consumption, putting a downward pressure on collateral values, thereby

tightening the borrowing constraint further.

With a bubble, the collateral value of the firm is higher than in the no-bubble case for both

SP and CE. As a higher collateral value relaxes the borrowing constraint, a higher level of

outstanding debt can be supported. In particular, the borrowing constraint starts binding at t

for a threshold of debt that is higher for both CE and SP in the economy with a bubble compared

to the one without (the vertical lines in Figure 2 move further to the right). The outstanding

debt, Lt, can increase by about 40 percent more compared to the bubbleless case before the

borrowing constraint starts binding at t. This result is crucial for how the planner chooses

to mitigate debt growth. As discussed earlier, reducing new borrowing alleviates pressures on

future valuations, but intensifies pressures on valuations in the current period. The bubble

amplifies the importance of this trade-off.

Figure (2) Policy rules for borrowing and collateral values in the presence and absence of a
bubble.

Note: The figure plots the new borrowing Lt+1 (panels on the left) and collateral values (panels on the right) as

a function of outstanding debt Lt, for zt = zl and mt = mh. The top panels show the case without a bubble,

and the bottom panels show the case with a bubble of 9.2% of the average fundamental price in the bubbleless

economy. The blue lines correspond to the SP policy rules, while the red dashed lines represent the CE policy

rules. The borrowing constraint binds for outstanding debt levels to the right from the red (CE) and blue (SP)

vertical lines.

The left panel in Figure 3 plots the optimal tax on borrowing when there is a bubble (solid

line) and when there is no bubble (dotted line), as a function of outstanding debt, Lt. The

tax corresponds to low productivity and normal credit conditions, and a bubble state such that

the bubble is equal to 9.2% of the average fundamental price in the bubbleless economy. The

right panel in Figure 3 shows the contribution of the current and future extensive and intensive

margins to the difference of the macroprudential tax in the bubbly economy and the borrowing

tax in the bubbleless economy given by equation (40). A couple of observations are worth

noting.
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Figure (3) Optimal tax on borrowing in the presence of a bubble.

Note: The left panel figure plots the optimal tax at t in the absence of a bubble and in the presence of a bubble,
bt, equal to 9.2% of the fundamental price as a function of debt outstanding, Lt, when zt is low and mt is high.
The right panel figure plots the contribution of the extensive and intensive margins in the difference between the
macroprudential tax in the presence of a bubble and the borrowing tax absent a bubble as a function of debt
outstanding, Lt, when zt is low and mt is high. We report the margins for the region of Lt where the tax in the
presence of a bubble takes the macroprudential interpretation, i.e. the borrowing constraint does not bind at t
in the bubbly economy.

First, for very low levels of debt the tax on borrowing is zero, independently of whether there

is a bubble or not. The reason is that for such low levels of outstanding debt the borrowing

constraint does not bind at t or t+ 1, irrespective of which state of the world realizes. In other

words, there is no need for a policy intervention when credit imbalances are subdued.

Second, for low to medium levels of outstanding debt, the optimal tax is lower when the

bubble is present. In this region, the borrowing constraint is slack at t for both the bubbly

and bubbleless economies. As can be seen from the figure on the right, the future extensive

margin, which is negative, dominates the intensive margin, which is positive, and pushes the tax

down in the bubbly economy. In other words, for low to moderate levels of outstanding debt,

the benefits of the bubble from reducing the probability of binding borrowing constraints in

the future outweigh the costs accruing from the bubble-pledgeability and bubble-accumulation

externalities when future constraints bind. This justifies accommodating the bubble by levying

a relatively lower tax compared to the one in the bubbleless economy.

Third, as Figure 3 shows, for Lt of around 0.052, the borrowing constraint becomes binding

at t in the absence of the bubble. As a result, the SP reduces the tax in the bubbleless economy

in order to weigh the benefit of relaxing the constraint today against the cost of it binding in the

future. In other words, besides the forward-looking macroprudential component, the tax now

also incorporates a contemporary component, that targets the binding borrowing constraint

today. The tax becomes smaller for higher levels of outstanding debt and can turn slightly

negative in our calibration. On the contrary, the optimal tax continues to increase in the

presence of the bubble until the level of outstanding debt reaches levels of around 0.07. The

tax continues to be macroprudential in nature, due to the bubble’s positive effect on relaxing

the borrowing constraint at t and it rises to much higher levels than in the bubbleless economy

(a maximum of about 8.8 percent compared to about 3 percent when there is no bubble).

The contribution of the current extensive margin to the difference between the taxes in

27



the bubbly and bubbleless economies is positive. Similarly, the intensive margin contributes

positively to this difference as the future bubble-pledgeability and bubble-accumulation exter-

nalities become more severe for higher Lt. On the contrary, the future extensive margin con-

tributes negatively to the difference between the two tax rates, owing mainly to higher future

(fundamental-price) externalities in the bubbleless economy for higher Lt; yet, it is not strong

enough to dominate the combined current extensive and intensive margins, which push the tax

differential in the opposite direction. Hence, asset overvaluations amplify credit imbalances

when debt is high, calling for a (much) higher tax in the bubbly economy.

An alternative way to analyze the difference in the tax rates between the two economies is to

consider the net effect of the current and future extensive margins as reported in the left chart

in Figure 4. The net extensive margin starts to increase—while it continues being negative—

at the point when the constraint binds in the bubbleless economy, indicated by the vertical

dashed line. Yet, the tax differential between the bubbly and bubbleless economies is positive

as already shown in Figure 3. This suggests that the macroprudential tax in the presence of

the bubble is largely driven by the intensive margin beyond the level of indebtedness for which

the constraint binds in the bubbleless economy (right chart in Figure 4). For higher levels of

indebtedness, the net extensive margin eventually becomes positive, contributing further to the

higher macroprudential tax in the presence of the bubble.

Figure (4) Net Extensive and Intensive Margins.

Note: The left chart plots the sum of the current and future extensive margins as a function of debt outstanding,

Lt, when zt is low and mt is high. The right chart plots the intensive margin. We report the margins for the

region of Lt where the tax in the presence of a bubble takes the macroprudential interpretation, i.e. the borrowing

constraint does not bind at t. The vertical dashed line indicates the level of Lt for which the constraint starts

binding in the bubbleless economy.

Figure 5 shows the credit-asset valuations feedback loop from another angle. It plots the

normalized optimal tax as a function of the bubble size for three levels of outstanding debt Lt.
26

A first observation is that for the same exogenous states zt and mt, and endogenous state Lt, the

level of the borrowing tax differs across the various bubble states bt in all three cases reported.

Hence, macroprudential regulation should not only take into considerations the fundamentals

of the economy, zt and mt, and the level of debt, Lt, but also the bubbly valuations. Second,

26We have normalized the tax corresponding to the bubbleless case for each Lt to 100 in order to easily show
how the bubble size pushes the tax up or down (naturally the no-bubble tax is different for different levels of Lt).
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whether the bubble pushes the tax up or down depends on the level of the outstanding debt.

As already discussed in detail, there are both positive and negative aspects associated with a

bubble. Consistent with our earlier analysis, the positive aspects outweigh the negative ones for

lower levels of debt and the tax is decreasing in the size of the bubble. For higher levels of debt

the negative effects of the bubble become stronger and at some point they dominate, resulting

in an optimal tax that is increasing in size of the bubble.

Figure (5) Optimal tax on borrowing in the presence of an asset price bubble.

Note: The figure plots the normalized optimal tax at t as a function of the bubble size for three levels of debt

outstanding: Lt = 0.035 (dashed line), Lt = 0.052 (dotted line), and Lt = 0.055 (solid line) when zt is low and

mt is high. We have chosen to normalize the tax in the absence of a bubble to 100 for each of the three levels of

debt considered.

In sum, our results suggest that asset price overvaluations matter for optimal regulation,

but might not be enough by themselves to justify a tightening of macroprudential policy. This

happens because for low or moderate levels of credit, the bubble’s persistence into the next

period makes tight financial conditions less likely in the future, while the costs of the bubble

deflating in the future are still low. As a result, under our calibration parameters, it is optimal

not to lean against the bubble when the level of debt is low or moderate. However, once debt

increases sufficiently, the macroprudential policy should be stronger.

Optimal tax and probability of bubble bursting. In this subsection, we investigate how

the probability that the bubble bursts, 1− π, affects the level of optimal policy. The left panel

in Figure 6 shows the macroprudential tax for different levels of π (probability of a bubble

continuing) as a function of the outstanding level of debt, Lt, when the value of the bubble

today, bt, is equal 9.2 percent of the fundamental price (our benchmark case above).

The results suggest that the optimal macroprudential tax is higher when the probability of

a bubble bursting is higher (or, equivalently, π is smaller) for all levels of Lt. The reasons why

a higher probability of bursting calls for a higher macroprudential tax are intuitive. First, the

borrowing constraint is more likely to bind in future states when π is lower, which pushes the

future extensive margin component of the tax up (i.e. makes the contribution of the extensive

margin less negative), as shown in the middle panel in Figure 6. The intensive margin component

of the tax also increases as shown in the right panel in Figure 6. The reason is that, for a lower π,

a bigger bubble is required in the future to support the same bubble valuation today. In turn, a
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larger value of the bubble in the future translates into more severe bubble externalities when the

constraint binds and, hence, a higher macroprudential tax today to tackle them. Overall, the

optimal macroprudential policy is more aggressive for “riskier” stochastic bubbles, as measured

by the probability of bursting.27

Figure (6) Macroprudential tax on borrowing and probability of bubble bursting.

Note: The figure plots the macroprudential tax for π = 0.4, π = 0.5, and π = 0.6, as well as the contribution of

the future extensive and intensive margins as a function of debt outstanding, Lt when zt is low and mt is high.

Crisis scenario simulations. Next, we perform a simulation exercise to investigate the

magnitude of the externalities from bubble.

The competitive economy is simulated for 11 periods, but to reduce dependence on the

initial conditions, we drop the initial period when computing average responses. In the first

period, a bubble with a size of around 4% deviation relative to the fundamental price of capital

is present and the bubble’s continuation probability is set at π = 0.5.28 The 11-period path is

then simulated 100,000 times. We do not simulate the economy once for a very high number

of periods because the bubble in our setting does not re-emerge after bursting, generating an

absorbing state. Thus, the distribution of outcomes would be biased towards the no-bubble

outcomes.

We are interested in the economy’s responses to a binding borrowing constraint in three

cases: (i) there is no bubble before, during or after the borrowing constraint binds, (ii) there is

a bubble that persists throughout the period when the borrowing constraint binds, and (iii) the

bubble pops when the borrowing constraint starts to bind. Figure 7 shows average responses

of consumption, new borrowing, and the collateral value of the firm—all in terms of deviations

from averages across all simulations—for these three events.

27The current extensive margin is the same across all bubbly economies as it does not depend on π, but only
on the bubbleless equilibrium allocations.

28We set the initial bubble size at 4% as it corresponds to an expectation of a bubble of around 9% of
fundamental price in the next period
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Figure (7) Model simulations: Responses of key variables to a binding credit constraint.

Note: The figure plots responses of consumption ct, new borrowing Lt+1, and collateral value of the firm qt +Bt

in the competitive economy (CE), in the event of the borrowing constraint binding (T = 0 in the figure), in

presence of a bubble that persists throughout the event (dashed line), in the case when the bubble pops in the

same period when the borrowing constraint binds (dotted lines), and in the absence of a bubble (solid line). The

left panels show responses when the starting level of debt outstanding in the 11-period simulated path is low

(L1 = 0.045), the right panels—when the initial debt level is high (L1 = 0.095). All responses are in terms of

deviation from averages across all simulations.

As we can simulate the economy repeatedly only for a limited number of periods, the level

of outstanding debt in the first period is likely to matter for the net effect of the bubble and

for our event comparisons. Thus, the left-hand side of Figure 7 shows consumption, borrowing,

and the collateral value when the period-one outstanding debt is low, and the right-hand side

when it is high.

As expected, with a relatively subdued starting level of debt, the bubble has a positive

effect on consumption and collateral values when the borrowing constraint becomes binding.

In contrast, when the initial level of debt is high, the bubble on average amplifies the negative

effects of a binding constraint as consumption and borrowing fall somewhat more when the

bubble persists compared to the no-bubble case. Finally, all variables experience the biggest

declines when the bubble pops and the borrowing constraint becomes binding at the same time.

Intuitively, the existence of the bubble in the preceding periods allows firms to build more debt

making the effect of a binding constraint more severe.

Welfare comparisons. Next, we analyze the social planner’s allocations and the welfare

effects of the planner’s tax on borrowing. The non-recurrent character of the bubble and the

small number of simulated periods are limitations for welfare comparisons. In order to mitigate
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the dependence of the welfare analysis on the initial conditions, we set the initial value of

the outstanding debt level equal to its long-term average, which is generated from the ergodic

distribution of debt in a bubbleless economy and is equal to around L̄ = 0.07.29

Figure (8) Model simulations: Social Planner’s allocations.

Note: The figure plots responses of output yt, new borrowing Lt+1, consumption ct, and capital price qt in

competitive economy (CE, red solid line) and under a social planner (SP, blue dashed line), across states in

which the borrowing constraint binds (T = 0 in the figure), and when there is a bubble in competitive economy.

The debt level in the initial period is set to 0.07. All responses are in terms of deviation from averages across all

simulations, but excluding the initial period.

Figure 8 shows the average responses of output, borrowing, consumption, and the collateral

value of the firm in the competitive economy and for the social planner. We focus on the

states when the borrowing constraint binds and the bubble persists.30 It is easy to see that, as

the social planner prevents excessive borrowing ex-ante, it is able to considerably mitigate the

impact of the binding constraint on debt deleveraging, consumption and output as well as on

collateral values.

Moreover, we compute the welfare gain in the planner’s economy as the average compensat-

ing consumption variation that equalizes the expected utility between the CE and SP. Table 2

summarizes the results.

The top panel of Table 2 shows the summary statistics for the three events depicted in

Figure 7 when the starting level of debt is equal to the long-term average. As before, the drop

in collateral values is the largest when the bubble bursts and the borrowing constraint binds at

the same time.

The average level of the tax on borrowing is around 1.7 percent, and it reaches a maximum

of 5.3 percent (bottom panel of Table 2). The welfare gain from the optimal tax policy is around

29The ergodic distribution is obtained from a simulation of the bubbleless competitive economy for 100,000
periods.

30To do that we repeat the short-period simulations, for the same paths of realized states of the exogenous
variables, using CE and SP policy functions.
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Table (2) Summary statistics.

Competitive Economy: Event Statistics

CC binds and there is no bubble
Probability 7.4%
Collateral value drop -28.0%
CC binds and bubble persists
Probability 0.4%
Collateral value drop -22.9%
CC binds and bubble pops
Probability 0.7%
Collateral value drop -34.9%

Social Planner: Welfare Effects

Minimum tax on debt 0.0%
Average tax on debt 1.7%
Maximum tax on debt 5.3%
Welfare gains 0.4%

Note: The table shows summary statistics of 100,000 simulations of 11-period paths when the initial period level
of debt is set at 0.07. CC stands for borrowing constraint.

0.4 percent. While this number might seem small, it is important to note that the welfare effects

of optimal policies in representative-agent models with the CRRA preferences are, generally,

small.

Finally, we use our simulations to examine whether the bubble improves average welfare. To

do so, we re-run our simulations for a bubbleless economy for the same paths of realized states

of exogenous variables and an initial debt level of 0.07. Comparing the new CE allocations with

our previous simulations, we find that the net welfare effect of the bubble is negative, at around

−0.1 percent. That is, the negative effects from the bubble outweigh the positive effect from

relaxing the borrowing constraints, at least in this experiment.

Simple rules. The optimal policy is implemented by a state-contingent tax, which may raise

some concerns about practical implementation. Thus, we examine whether policies based on

simple rules can generate welfare gains too. In principle, simple rules could be beneficial if they

share some characteristics of the optimal policy, such as leaning against credit imbalances and

asset overvaluations. We consider three types of simple rules. First, a time-invariant tax, which

takes the form τ̄ , and it equal to the average (state-contingent) tax in the planner’s simulated

economy (equal to 1.7 percent as reported in Table 2). Second, a tax that depends only on

deviations of debt from the average of the ergodic distribution of debt in the bubbleless economy

(L̄), and takes the from τt = (1+τ0)
[
(Lt/L̄)η1

]
−1; third, a tax that depends both on deviations

of debt and valuations from their ergodic average in the bubbleless economy (q̄), and takes the

form τt = (1 + τ0)
{

(Lt/L̄)η1 · [(qt +Bt)/q̄]
η2
}
− 1.

Table 3 reports the welfare gains under these three simple rules for combinations of η1 ∈
{0, 0.5, 1} and η2 ∈ {0, 0.5, 1}. There are three key takeaways. First, a small invariant tax,

corresponding to η1 = η2 = 0, can increase welfare in our simulated economy.31 Second, incor-

porating credit or valuation imbalances can improve upon the invariant tax, which correspond

31This is not a general result and may depend on the specifics of our simulation. In Bianchi and Mendoza
(2018) the invariant tax is inefficient albeit their economy does not feature a bubble.
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to simple rules with η1 > 0 and η2 = 0, or η1 = 0 and η2 > 0, respectively. Third, incorporating

both credit and valuation imbalances further increases the welfare gains, which get closet to

(but still lower than) the gains under the optimal policy equal to 0.4 percent (as reported in

Table 2); this is also true for simple rules with η1, η2 > 1 (not shown).

Table (3) Simple rules’ welfare gains.

η2

0.0 0.5 1.0

η1

0.0 0.09% 0.19% 0.22%

0.5 0.13% 0.22% 0.24%

1.0 0.14% 0.18% 0.23%

Note: The table shows welfare gains in terms of compensating consumption variations.

6 Conclusions

We study optimal macroprudential policy when credit imbalances associated with firms’

borrowing are accompanied by stock market bubbles. We show that the presence of a bubble

generates additional externalities, which, ceteris paribus, requires a more aggressive macropru-

dential intervention in order to avoid a bubble deflation in bad times, that is when the bubble

is most useful to relax borrowing constraints. But, at the same time, the presence of the bubble

alters equilibrium allocations, and by helping to keep collateral constrains slack for some shock

realizations, it may result in a macroprudential tax on borrowing that is lower relative to the

bubbleless case. Our quantitative results suggest that the optimal policy response depends, in

a non-monotone way, on the outstanding level of debt in the economy. When credit imbalances

are moderate, the optimal tax is lower in the presence of the bubble: While the bubble relaxes

the borrowing constraint, externalities associated with the bubble are not so severe as agents

do not need to deleverage much, if the constraint binds in the future. However, when the credit

imbalances are high, the optimal tax level is much higher than in the absence of the bubble, in

order to tackle the amplifying effect on future deleveraging from elevated credit imbalances and

asset overvaluations.

The above results have important implications for the determination of countercyclical poli-

cies targeting credit imbalances employed by regulators globally. In particular, asset overvalu-

ations should not always be an argument to lean more aggressively against the wind, but could

also imply that regulators need not to worry as much about the build-up of price overvaluations

if the existing credit imbalances are not high.
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A Appendix

A.1 Derivation of borrowing constraint

The collateral constraint (9) can be derived from a debt renegotiation problem between a
firm and its lenders. After the outstanding debt from last period, Lt, has been repaid, but
before production and investment in new capital take place, the firm can try to renegotiate
the outstanding debt, equal to Lt+1/R+ θpvvt at that point. Following Jermann and Quadrini
(2012), we assume that the firm has full bargaining power. If lenders do not agree to renegotiate
the debt, the firm diverts the borrowed funds in full. Lenders can then try to seize the firm,
restructure it by canceling the debt, and sell it back to households in the equity market within
period t. The restructured firm does not pay any dividends at t, thus households will value
it only according to its future value at t + 1. In turn, the market value of the restructured
firm with (existing) capital kt and zero debt is given by Vt+1(kt, 0, bt+1) in each state at t +
1. Thus, the price that households would be willing to pay for the restructured firm at t is
equal to its expected market price at t + 1 evaluated at their stochastic discount factor, i.e.
Et[βUc,t+1/Uc.tVt+1(kt, 0, bt+1)]. Lenders can only successfully seize the firm with probability
mt, which can be interpreted as the probability that the lenders can indeed monitor and enforce
the relevant covenants. It follows that the expected value of the seized firm from the lenders’
perspective is given by mtEt [βUc,t+1/Uc,tVt+1(kt, 0, bt+1)], which is their outside option during
bargaining.

We first examine the expected surplus from renegotiation, V R
t . Firms have all bargaining

power and can, thus, extract all surplus while renegotiating the debt at t apart from the value
of the lenders’ outside option. If lenders receive a payment during the renegotiation process
equal to their outside option, then the seizure and restructuring of the firm can be avoided.
Hence, for the firm managers, who maximize the firm’s value, V R

t is equal to the total amount
borrowed minus the transfer they need to make to lenders so that the latter do not exercise
their outside option plus the expected firm’s value given that restructuring has been avoided

V R
t =

Borrowed funds firm
tries to renegotiate︷ ︸︸ ︷
Lt+1/R+ θpvvt

Value of lenders’
outside option︷ ︸︸ ︷

−mtEt

[
β
Uc,t+1

Uct
Vt+1(kt, 0, bt+1)

]
+

Expected firm’s value if
seizure and restructuring are avoided︷ ︸︸ ︷

Et

[
β
Uc,t+1

Uct
Vt+1(kt+1, Lt+1, bt+1)

]
.

(A.1)
On the contrary, the expected surplus if firm managers decide not to renegotiate the debt,

V NR
t , is just equal to the firm’s expected value:

V NR
t =

Expected firm’s value
absent renegotiation︷ ︸︸ ︷

Et

[
β
Uc,t+1

Uc,t
Vt+1(kt+1, Lt+1, bt+1)

]
. (A.2)

The incentive compatibility constraint requires that the expected surplus after renegotiation
is smaller or equal to the expected firm’s value if renegotiation does not occur, i.e. V NR

t ≥ V R
t .

Because the expected value of the firm absent restructuring given renegotiation and absent
renegotiation is the same, this incentive compatibility constraint gives rise to the following
borrowing constraint

Lt+1/R+ θpvvt ≤ mtEt

[
β
Uc,t+1

Uct
Vt+1(kt, 0, bt+1)

]
, (A.3)

which we have reported in (9).
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The assumption that lenders sell the restructured firm back to households within period t is
important. If, instead, we had assumed that the restructured firm is sold back to the market at
t+1, then the stochastic discount factor of lenders, 1/R, should have been used to obtain the pe-
riod t value to lenders of the restructured firm equal to Et[Vt+1(kt, 0, bt+1)/R]. Thus, the borrow-
ing constraint in that case should have be written as Lt+1/R+θpvvt ≤ mtEt[Vt+1(kt, 0, bt+1)/R]
(see Martin and Ventura, 2018, for a macroeconomic model of bubbles with such a constraint).
Although considering this alternative borrowing constraint should not matter qualitatively for
our results, it would not replicate the Bianchi-Mendoza economy absent a bubble and would
complicate the solution for the firm’s value function. Given that we want our bubbleless econ-
omy to be equivalent to the BM economy to facilitate a clean comparison, we assume that
lenders do not hold the restructured firm intertemporally, but sell it back in the equity market
in the same period. In particular, we assume that it is costly for lenders to hold the restructured
firm across periods, i.e. their outside option from selling the firm within period is more valuable,
giving rise to (A.3).

A.2 Conjecture and Verify: Firm’s Value Function

Conjecture that the representative firm’s value function is given by Vt(kt, Lt, bt) = atkt +
stLt+bt, where at, st and bt are time-varying coefficients to be determined. Substituting into the
firm’s optimization problem (7) and into constraints (8)-(9) yields the following optimization
problem

atkt + stLt + bt = max
kt+1,Lt+1,lt,vt

Dt + βEt

[
Uc,t+1

Uc,t
(at+1kt+1 + st+1Lt+1 + bt+1)

]
, (A.4)

subject to

Dt = ztF (kt, l
d
t , vt)− pvvt − wtldt +

Lt+1

R
− Lt + qtkt − qtkt+1, (A.5)

and
Lt+1

R
+ θpvvt ≤ mtβEt

[
Uc,t+1

Uc,t
(at+1kt + bt+1)

]
. (A.6)

Taking first-order conditions with respect to kt+1, Lt+1, l
d
t , vt respectively, yields

qt = βEt

[
Uc,t+1

Uc,t
at+1

]
, (A.7)

1

R
=
µt
R
− βEt

[
Uc,t+1

Uc,t
st+1

]
, (A.8)

wt = ztFl,t, (A.9)

pv = ztFv,t
1

1 + θµt
. (A.10)

Substituting these conditions back into (A.4) and simplifying, yields

atkt + stLt + bt = ztF (kt, l
d
t , vt)− ztFl,tldt − ztFv,tvt − Lt + qtkt

+ µtmtβEt

[
Uc,t+1

Uc,t
(at+1kt + bt+1)

]
+ βEt

[
Uc,t+1

Uc,t
bt+1

]
, (A.11)

where we have used the complementary slackness condition

µt

(
Lt+1

R
+ θpvvt −mtβEt

[
Uc,t+1

Uc,t
(at+1kt + bt+1)

])
= 0 (A.12)
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to substitute out the µt(Lt+1/R+ θpvvt). Comparing both sides of equation (A.11) yields

at = ztFk,t + qt(1 +mtµt), (A.13)

st = −1, (A.14)

bt = (1 +mtµt)βEt

[
Uc,t+1

Uc,t
bt+1

]
, (A.15)

where Fk,t = F (kt, l
d
t , vt)− Fl,tldt − Fv,tvt. Thus, the value function takes the form

Vt(kt, Lt, bt) = (ztFk,t + qt(1 +mtµt)) kt − Lt + bt. (A.16)

Moreover, using the above value function to substitute out at+1, yields the credit constraint

Lt+1

R
+ θpvvt ≤ mt(qtkt +Bt). (A.17)

A.3 Proof of Proposition 1

Using that at+1 = zt+1Fk,t+1 + qt+1(1 +mt+1µt+1) and st+1 = −1, the first-order conditions
(A.7)-(A.8) can be rewritten as

Uc,tqt = βEt [Uc,t+1 (zt+1Fk,t+1 + qt+1(1 +mt+1µt+1))] , (A.18)

µt = 1− βREt
[
Uc,t+1

Uc,t

]
, (A.19)

yielding, together with equations (A.9)-(A.15), the first-order conditions (18)-(22) in Proposition
1. To derive (23), we combine (A.15) with the definition of Bt in (16).

A.4 Proof of Proposition 2

We, first, show that if limt→∞ supµt = 0, then a rational bubble cannot be supported in
equilibrium. Iterating forward the bubble accumulation equation 13, we get

bt = (1 +mtµt)βEt

[
Uc,t+1

Uc,t
bt+1

]
=

= lim
T→∞

Et

[
βT

Uc,t+T
Uc,t

bt+TΠT−1
i=0 (1 +mt+iµt+i)

]
. (A.20)

The transversality conditions implies that

lim
T→∞

Et

[
βT

Uc,t+T
uc,t

bt+T

]
= 0. (A.21)

First, if µt′ = 0 for all t′ > t, then bt = 0 using (A.20) and (A.21). Second, assume that
there is a T ′ > t such that µt′ = 0 for t′ ≥ T ′, but may be positive or zero for t′ ∈ (t, T ′). Then,

bt = Et

[
βT
′ Uc,t+T ′

Uc,t
bt+T ′Π

T ′−1
i=0 (1 +mt+iµt+i)

]
= 0, because from (A.21) applied to time t + T ′

we have that

bt+T ′ = lim
T→∞

Et+T ′

[
βT

Uc,t+T ′+T
Uc,t+T ′

bt+T ′+T

]
= 0.

The first case reflects the situation where the borrowing constraint never binds after time t,
while the second case reflects the situation where it occasionally binds for a finite period of
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time. In both cases, limt′→∞ supµt′ = 0. If, instead, the borrowing constraint binds infinitely
often, or limt′→∞ supµt′ > 0 for all t′, then limT→∞ΠT−1

i=0 (1 +mt′+iµt′+i) > 1 in (A.20) for all
t′ and the transversality condition (A.21) cannot exclude rational bubbles in equilibrium.

Next, we show that there is no T ′ ≥ t such that µt′ = 0 for t′ ≥ T ′. Our argument is based
on comparing the natural debt limit (see Aiyagari, 1993,1994) to the maximum borrowing under
the borrowing constraint. The natural debt limit, L̄, reflects the level of borrowing that the firm
can sustain even if it receives only low productivity realizations and is obtained by iterating
forward the firm’s budget constraint and setting all dividends Dt to zero (see, also, an early
working paper version of Bianchi-Mendoza):

L̄ ≡ R [zFk]min
R− 1

, (A.22)

where [zFk]min is the minimum return on capital. Consider an arbitrarily tighter borrowing limit
given by L̃ ≡ L̄−δ, for arbitrarily small δ. Then, the firm can borrow at most L̃/R at any point in
time, which is less than the natural debt limit. Then, using an argument similar to Proposition 3
in Aiyagari (1993), we can show that there are always states such that this debt limit is binding
as t goes to infinity. The argument goes as follows: For all levels of debt equal or less than L̃,
dividends Dt are strictly positive, as is consumption ct = Dt + wtlt = Dt + Gl,tlt > 0 using

(2), the market clearing condition ηjt = ηjt+1 = 1, and the optimality condition (4). As a result,
the marginal utility of consumption is equal to Uc,t = U ′(ct − G(lt)) = U ′(Dt + Gl,tlt − G(lt))
and, thus, it is finite because Dt + Gl,tlt − G(lt) > 0.32 Define the lowest possible level of the
composite commodity, ct −G(lt), as c = inf Dt +Gl,tlt −G(lt) and assume that the debt limit
never binds. Thus, using the optimality condition with respect to borrowing (18) for µt = 0,
we get U ′(ct −G(lt)) = βREt(U

′(ct+1 −G(lt+1))) ≤ βRU ′(c) < U ′(c), because U ′ is decreasing
and βR < 1. If we let ct −G(lt)→ c, this results in a contradiction. In other words, there are
always states such that the debt limit introduced by L̃ will bind. Hence, it suffices to show that
the our borrowing constraint (15), imposes stricter limits to borrowing than the natural debt
limit in order to guarantee that the former will occasionally bind as t goes to infinity.

To establish this, we consider the maximum going concern value of the firm and also take
vt → 0 to make the borrowing constraint as loose as possible. Define by qmax and Bmax the
maximum fundamental and bubble collateral values. To obtain the former, assume that only
the highest possible productivity realizes deterministically and discount by 1/R, which is the
upper bound for the (non-)stochastic discount factor, since βUc,t+i+1/Uc,t+i = (1−µt+i)/R, i.e.

qmax =
[zFk]max
R− 1

. (A.23)

To derive Bmax suppose that µt′ > 0 infinitely often for some t′ > t. We will show that the
borrowing constraint indeed binds, i.e. this assumption does not lead to a contradiction and an
equilibrium with a rational bubble does exist.

Define Bt ≡ βtUc,tBt. Then, combining (22) and (23), we get that Uc,tBt = Et[βUc,t+1(1 +
mt+1µt+1)Bt+1] and Bt ≥ EtBt+1. Hence, Bt is a super-martingale. Because Bt is nonnegative,
the super-martingale convergence theorem applies and, thus, Bt converges almost surely to a
nonnegative random variable, i.e. Bt →a.s. B. Moreover, Mt ≡ (βR)tUc,t is a super-martingale,
because (1 − µt)Uc,t = βREtUc,t+1, and, thus it converges to a nonnegative random variable.
Since βR < 1, Uc,t does not need to converge asymptotically but can remain finite and continue
to vary randomly (see Ljungqvist and Sargent, 2004, p.574). By the same logic, Bt can remain

32It suffices that Gl,t−G(lt)/lt > 0. Because G(0) = 0, G(lt)/lt is the slope of the straight line starting at zero
and passing through point (G(lt), lt). Given that G is strictly convex, its image is always below the image of the
straight line for any point x ∈ (0, lt). Because G′ is strictly increasing, G will necessarily cross the straight line
connecting zero and (G(lt), lt) from below and, hence, the derivative of G at lt is strictly higher than the slope
of the straight line.
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finite and continue to vary randomly, because β < 1 and Uc,t is finite.33

Hence, Bmax is finite and non-zero, and the maximum borrowing that satisfies the borrowing
constraint is

L̂

R
≡ mt (qmax +Bmax) . (A.24)

Using (A.22), (A.23), (A.24), and the definition of L̃, the condition L̂ ≤ L̃ is satisfied if:

mt ≤ m ≡
[zFk]min − δ(R− 1)

[zFk]max + (R− 1)Bmax
, (A.25)

for arbitrarily small δ. Given that Bmax is finite, m ∈ (0, 1). Condition (A.25) tells us that there
is a threshold m for the collateralizable portion of the firm value, m, such that an equilibrium
with a rational bubble exists. Alternatively, for certain m, there is a maximum bubble that can
be injected in the economy and supported in equilibrium.

Now, suppose that Bt, Mt, and, thus, Bt do not converge, which can be the case when µt′ = 0
for all t′ > t. If Bmax does not exist (i.e. it is infinite), then the borrowing constraint does not
bind and Bt = 0 from the transversality condition (A.21). However, it follows by Aiyagari (1994)
that in this (bubbleless) economy the borrowing constraint will bind infinitely often. Hence, we
can perturb the economy by adding a small bubble (and sufficiently smaller than Bmax) and
support a rational bubble equilibrium where µt′ > 0 infinitely often; a contradiction. In other
words, the borrowing constraint will always bind infinitely often, and a stochastic bubble can
be supported in equilibrium.

A.5 Steps for equilibrium selection

The equilibrium selection procedure consists of the following three steps:

1. Given current states (Lt, zt,mt, bt) compute all conceivable bubble values at t+ 1 denoted
by b̃t+1, conditional on the bubble not bursting, for all combinations of future states
(Lt+1, zt+1,mt+1, bt+1) using b̃t+1 = btUc,t/(βπ(1 + mtµt)Uc,t+1) for the growth of the
bubble; ct and µt can be computed from c(Lt, zt,mt, bt) and µ(Lt, zt,mt, bt), while ct+1 can
take many different values, c(Lt+1, zt+1,mt+1, bt+1), given all the possible combinations
of future states (Lt+1, zt+1,mt+1, bt+1). Thus, we obtain all conceivable values for the
future bubbles, b̃t+1, as a function of the current states (Lt, zt,mt, bt) and all possible
future states (Lt+1, zt+1,mt+1, bt+1). We denote the function yielding these values as
b̃t+1 ≡ b̃(Lt+1, zt+1,mt+1, bt+1, Lt, zt,mt, bt).

2. b̃t+1 gives every conceivable bubble value at t+1 that agents may expect conditional on the
bubble not bursting. Consistency of expectations then requires that b̃(Lt+1, zt+1,mt+1,
b∗t+1, Lt, zt,mt, bt) = b∗t+1, where b∗t+1 is the state for the bubble that yields the same
value at which the bubble will endogenously grow. That is, we have to solve a fixed
point problem to obtain b∗t+1 ≡ b∗(Lt+1, zt+1,mt+1, Lt, zt,mt, bt) that determines the value
of the bubble state at t + 1 given Lt+1, Lt, zt,mt, bt, which are known at t, along with
realizations for the exogenous variables zt+1 and mt+1. It is easy to see that such a b∗t+1

exists. Consider a range of possible value [0, bmax + ε] for bt+1; bmax is the maximum
value that the bubble can grow, which is finite (see Proposition 2) and ε > 0 is small. b̃ is
continuous and is larger than zero as bt+1 → 0, because consumption is finite (i.e. Uc,t is
not zero) and bounded away from zero (i.e. Uc,t+1 is not infinite). Moreover, b̃ is smaller
that bt+1 as bt+1 → bmax + ε, because it is bounded from above by bmax. So a solution
b∗t+1 ∈ (0, bmax + ε) exists. As long as b̃ is not S-shaped, the solution is unambiguously

33Expanding the expectation Et to only consider the states that the bubble does not burst does not alter the
analysis as, in that case, we can define Bt = πtβtUc,tBt, which is a super-martingale. Hence, given that π < 1,
Bt can remain finite and continue to vary randomly as explained above.
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unique. This is the case in our quantitative analysis.34 Naturally, if the bubble bursts at
t+ 1, we set b∗t+1 = 0.

3. By replacing bt+1 with b∗t+1 in the policy functions for period-t+1 variables, the expectation
terms in (18) and (19) can be expressed by introducing a new set of policy functions Hu,
Hq that depend only on current state variables {Lt, zt,mt, bt} and future state variables
{Lt+1, zt+1,mt+1, b

∗
t+1}. In particular, we set

Et (Uc,t+1) ≡ EtHu(Lt+1, zt+1,mt+1, b
∗
t+1, Lt, zt,mt, bt) (A.26)

and

Et{Uc,t+1[zt+1Fk,t+1 + qt+1(1 +mt+1µt+1)]} ≡ EtHq(Lt+1, zt+1,mt+1, b
∗
t+1, Lt, zt,mt, bt).

(A.27)

A.6 Optimality conditions for planner’s problem

The social planner’s optimality conditions are the following:

wrt ct : λpt = Uc,t − ξtqtUcc,t + ξtβEt
dHq,t+1

db∗t+1

db∗t+1

dct
, (A.28)

wrt qt : ξtUc,t = mtµ
p
t , (A.29)

wrt Lt+1 : λpt = βREt

(
λpt+1 + ξt

dHq,t+1

dLt+1

)
+ µpt , (A.30)

wrt vt : λpt (ztFv,t − pv)− θpvµ
p
t − µ

p
tmt

bt
(1 +mtµ(lt, vt))2

ztFvv.t
θpv

+ ξtβEt
dHq,t+1

db∗t+1

db∗t+1

dvt
− ζtztFvl,t = 0, (A.31)

wrt lt : −Uc,tGl,t + λpt ztFl,t + ξtUcc,tGl,tqt − µptmt
bt

(1 +mtµ(lt, vt))2

ztFvl.t
θpv

+ ξtβEt
dHq,t+1

db∗t+1

db∗t+1

dlt
− ζt(ztFll,t −Gll,t) = 0, (A.32)

where dHq,t+1/db
∗
t+1·(db∗t+1/d(·)) and dHq,t+1/dLt+1 capture how period-t choices of the planner

affect the period-t+1 endogenous state variables and through them the forward looking terms
that matter for the determination of qt. Hence, the planner internalizes how her choices affect
the actions of future planners, reflecting the time-consistent nature of the policy rule.

By totally differentiating the bubble accumulation condition (25), we obtain

db∗t+1

dct
=

b∗t+1

1 + b∗t+1

U∗cc,t+1

U∗c,t+1

dc∗t+1

db∗t+1

Ucc,t
Uc,t

, (A.33)

34The first and second derivatives of b̃ with respect to bt+1 are db̃/dbt+1 = −b̃ ·Ucc,t+1/Uc,t+1 ·dct+1/dbt+1 and
d2b̃/db2t+1 = −b̃/Uc,t+1

[
Uccc,t+1 · (dct+1/dbt+1)2 + Ucc,t+1 · d2ct+1/db

2
t+1

]
, respectively. If dct+1/dbt+1 < 0, then

db̃/dbt+1 < 0 and the solution b∗t+1 is unique irrespective of the second derivative of b̃. Otherwise, b̃ is increasing
but it is not S-shaped if d2b̃/db2t+1 does not change sign, for which it suffices that d2ct+1/db

2
t+1 < 0 given that

Uccc,t+1 > 0. In other words, consumption can increase in the size of the bubbles but at a decreasing rate. If
none of these sufficient conditions to exclude multiple b∗t+1 hold, then one could use a refinement according to
which agents coordinate on the highest b∗t+1 solution and still be able to follow our steps to compute equilibrium.
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db∗t+1

dvt
= −

b∗t+1

1 + b∗t+1

U∗cc,t+1

U∗c,t+1

dc∗t+1

db∗t+1

ztFvv,t
θpv

mt

1 +mtµ(lt, vt)
, (A.34)

and
db∗t+1

dlt
= −

db∗t+1

dct
Gl,t −

b∗t+1

1 + b∗t+1

U∗cc,t+1

U∗c,t+1

dc∗t+1

db∗t+1

ztFvl,t
θpv

mt

1 +mtµ(lt, vt)
, (A.35)

where c∗t+1 is given by policy function c(Lt+1, zt+1,mt+1, b
∗
t+1). We proceed with solving for the

Lagrange multipliers in the planner’s first-order conditions.
Using (A.28), (A.29), (A.31), (A.32), (A.33), (A.34), (A.35), ztFl,t = Gl,t, µ(lt, vt) = (ztFv,t−

pv)/(θpv), dµ(lt, vt)/dlt = ztFvl,t/(θp
v), and dµ(lt, vt)/dvt = ztFvv,t/(θp

v), we get that

µpt = λptµ(lt, vt) + ζtZt (A.36)

and

ζt = − µpt
ztFll,t −Gll,t

ztFvl,t
θpv

mt

1 +mtµ(lt, vt)

(
mt

Uc,t
Xt +

bt
1 +mtµ(lt, vt)

)
, (A.37)

where

Zt =
ztFll,t −Gll,t

θpv
Fvv,t
Fvl,t

−
ztFvl,t
θpv

(A.38)

and

Xt = βEt
dHq,t+1

db∗t+1

b∗t+1

1 + b∗t+1

U∗cc,t+1

U∗c,t+1

dc∗t+1

db∗t+1

. (A.39)

We can now derive an expression for λpt as follows. First, substitute (A.29) in (A.28) to
eliminate ξt. Then substitute (A.36) in the second term in (A.28), and use (A.37) to eliminate
ζt. Note also that

dBt/dlt = −(ztFvl,tmtbt)/(θp
v(1 +mtµ(lt, vt))

2).

Finally, using (A.33) and (A.39) in (A.29), yields

λpt = Uc,t + Ftqt +Wt
dBt
dlt

+ VtβEt
dHq,t+1

db∗t+1

db∗t+1

dct
(A.40)

where

Ft = − mtµ(lt, vt)Ucc,t

1 +mtµ(lt, vt)
Ucc,t

Uc,t
qt
, (A.41)

Wt = − mtµ
p
tZtqt

ztFll,t −Gll,t
Ucc,t
Uc,t

1

1 +mtµ(lt, vt)
Ucc,t

Uc,t
qt
, (A.42)

and

Vt =

(
mt

1 +mtµ(lt, vt)

ztFvl,t
θpv

mtqtZt
ztFll,t −Gll,t

+ 1

)
mtµ

p
t

Uc,t

1

1 +mtµ(lt, vt)
Ucc,t

Uc,t
qt
. (A.43)

(A.40) is equation (34) reported in the main body of the paper. In some occasions it is also
useful to note that Wt can be written as Wt = FtqtW ′t with

W ′t =
µpt

µ(lt, vt)Uc,t

Zt
ztFll,t −Gll,t

< 0. (A.44)

First, note that Ft > 0, since Ucc,t < 0, as long as 1 + mtµ(lt, vt)Ucc,t/Uc,tqt > 0, which is
necessary to obtain a positive shadow value of income, λpt , for both the bubbleless and bubbly
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economies; this is also the case in Bianchi-Mendoza and we verify it in our quantitative solution.
Next, from the properties of the Cobb-Douglas production function, F (kt, vt, lt) = kakt v

av
t l

al
t ,

we have that Fvv,t = (αv − 1)αvk
αk
t vαv−2

t lαl
t , Fvl,t = αvαlk

αk
t vαv−1

t lαl−1
t = αvFl,t/vt, Fll,t =

(αl − 1)αlk
αk
t vαv

t lαl−2
t , where av and al are the shares of the intermediate good and labor in

production with 1− av − al > 0. Using these, we can re-write Zt as

Zt =
(1− al − av)ztFl,t + (1− av)Gll,tlt

alθpvvt
,

i.e. Zt is positive. This means that Wt in (A.42) is negative because ztFll,t − Gll,t < 0 and
Ucc,t < 0, Thus, also the third term in (A.40),WtdBt/dlt, is positive overall because dBt/dlt < 0.
However, we cannot unambiguously sign Vt in (A.43) and, hence, the fourth term in (A.40).
Ft, Wt, and Vt depend on λpt and µpt . In order to express them just in terms of the other

equilibrium variables we use (A.28), (A.29), (A.36), and (A.37) to obtain λpt and µpt as the
solution to the following system of equations:

λpt = Uc,t −
mtµ

p
t

Uc,t
qtUcc,t +

mtµ
p
t

Uc,t

Ucc,t
Uc,t
Xt (A.45)

µpt =
λptµ(lt, vt)

1 + mt
1+mtµ(lt,vt)

ztFvl,t

θpv

(
mtXt
Uc,t

+Bt

)
Zt

ztFll,t−Gll,t

(A.46)

Finally, note that the third and fourth terms in (A.40) associated with the bubble are zero
if bt = 0, while all the last three terms associated with externalities are zero if the collateral
constraint does not bind, as µt = µpt =Wt = Vt = 0 irrespective of the presence of the bubble.

A.7 Numerical Algorithm

Competitive equilibrium. We solve for the CE using an Euler-equation iteration algo-
rithm. In each iteration, we solve the system of equations presented below in a recursive
form for: 150 states for the level of debt denoted by L; 6 exogenous states denoted by ω
(3 states for productivity, z, and 2 states for the pledgeable fraction of collateral, m); and
and 10 states for stock market bubble states denoted by b. We use the convention that L′,
ω′, and b′ denote the states one period ahead. Formally, we solve for the policy functions
{L̃(L, ω, b), c(L, ω, b), q(L, ω, b), l(L, ω, b), v(L, ω, b), µ(L, ω, b), B(L, ω, b), HU (L, ω, b), Hq(L, ω, b),
such that the equilibrium conditions below are satisfied

c(L, ω, b) + L+ pvv(L, ω, b) = zF (1, v(L, ω, b), l(L, ω, b)) +
L̃(L, ω, b)

R
, (A.47)

L̃(L, ω, b)

R
+ θpvv(L, ω, b) ≤ m(q(L, ω, b) +B(L, ω, b)), (A.48)

b = (1 +mµ(L, ω, b))B(L, ω, b), (A.49)

(1− µ(L, ω, b))Uc(c(L, ω, b)−G(l(L, ω, b))) = βREω′|ωHU (L′, ω′, b∗, L, ω, b), (A.50)

q(L, ω, b)Uc(c(L, ω, b)−G(l(L, ω, b))) = βEω′|ωHq(L
′, ω′, b∗, L, ω, b), (A.51)
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zFl(1, v(L, ω, b), l(L, ω, b)) = Gl(L, ω, b), (A.52)

zFv(1, v(L, ω, b), l(L, ω, b)) = pv(1 + θµ(L, ω, b)), (A.53)

HU (L′, ω′, b∗, L, ω, b) = Uc(c(L
′, ω′, b∗)−G(l(L′, ω′, b∗))), (A.54)

Hq(L
′, ω′, b∗, L, ω, b) = Uc(c(L

′, ω′, b∗)−G(l(L′, ω′, b∗)))·
(z′Fk(1, v(L′, ω′, b∗), l(L′, ω′, b∗)) + (1 +m′µ(L′, ω′, b∗))q(L′, ω′, b∗)),

(A.55)

L̃(L, ω, b) is the new borrowing and b∗ ≡ b∗(L′, ω′, L, ω, b) is the solution to b̄(L′, ω′, b∗, L, ω, b) =
b∗, where b̄(L′, ω′, b′, L, ω, b) is a function that generates all possible values for the bubble in
the future given current states L, ω, b and all possible future states L′, ω, b′. This function
is derived by the bubble accumulation process b̄(L′, ω′, b′, L, ω, b) = B(L, ω, b)Uc(c(L, ω, b) −
G(l(L, ω, b)))/(βπUc(c(L

′, ω′, b′)−G(l(L′, ω′, b′))).

The algorithm proceeds in the following steps:

1. For each state (L, ω, b), conjecture policy functions L′ = L̃(L, ω, b), c(L, ω, b), q(L, ω, b),
l(L, ω, b), v(L, ω, b), µ(L, ω, b), B(L, ω, b).

2. Given conjectures step 1, compute b̄(L′, ω′, b′, L, ω, b) for all combinations (L′, ω′, b′) at
each (L, ω, b).

3. For each (L′, ω′, L, ω, b), set b∗(L′, ω′, L, ω, b) = argminb′ |b̄(L′, ω′, b′, L, ω, b)− b′|, i.e. the
bubble state that is closest to the value that the bubble should go to.

4. For (L′, ω′, L, ω, b), generate conjectures for HU , and Hq using the value of b∗(L′, ω′, L, ω, b)
in step 3.

5. For (L, ω, b), use the conjectures in step 1 and the conjectures for HU , and Fq in step 4
to obtain new conjectures for (current) policy functions L̃(L, ω, b), c(L, ω, b), q(L, ω, b),
l(L, ω, b), v(L, ω, b), µ(L, ω, b), B(L, ω, b). We distinguish between cases that the borrow-
ing constraint binds and does not bind in the present:

i. First, assume that the borrowing constraint (A.48) binds and solve for the current
policy functions. Then, check that µ(L, ω, b) > 0 using equation (A.50). If this is
true, proceed to step 6; otherwise move to substep ii.

ii. If the borrowing constraint in the present does not bind, solve the system of equations
above for the current policy functions by setting µ(L, ω, b) = 0.

6. Use the optimal policy functions from substeps 5i or 5ii to update the (conjectured) policy
functions in step 1.

7. Stop when convergence is achieved, i.e. when for two consecutive iterations i− 1 and i it
holds that supL,ω ||xi(L, ω)− xi−1(L, ω)|| < ε, where x = L̃, c, q, l, v. We set ε = 10−4.

Social planner. We solve for the SP policy functions using a value function iteration, nested
fixed point algorithm. In each iteration we solve for the value function using a fixed-grid
optimization procedure as an inner loop. In the outer loop, we update future policies given the
solution to the Bellman equation from the inner loop. As in Klein, Krusell and Ŕıos-Rull (2008)
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and Bianchi and Mendoza (2018), this procedure delivers time-consistent policies. The detailed
steps are described below.

The value function representation of the SP’s optimization problem is:

V (L, ω, b) = max
L̃,c,l,v,q,B,µ

(
U(c(L, ω, b)−G(l(L, ω, b))) + βEω′|ω[HV (L′, ω′, b∗, L, ω, b)]

)
(A.56)

subject to (A.47)-(A.49) and (A.51)-(A.55); that is, all the optimality conditions in the com-
petitive equilibrium constitute constraints in the planner’s problem apart for condition (A.50)
with respect to L̃(L, ω, b), which is missing the externality terms.

HV (L′, ω′, b∗, L, ω, b) is a policy function that yields the future value function and is com-
puted similarly to functions HU , and Hq, i.e.

HV (L′, ω′, b∗, L, ω, b) = V (L′, ω′, b∗). (A.57)

The algorithm proceeds in the following steps:

1. In the outer loop:

i. Define policies V (L, ω, b), L̃(L, ω, b), c(L, ω, b), q(L, ω, b), l(L, ω, b), v(L, ω, b), µ(L, , ω, b),
B(L, ω, b) as the updated solution from the previous iteration (see step 3 below) or
the policy functions from the CE solution for the first iteration.

ii. Compute b̄(L′, ω′, b′, L, ω, b) for all combinations (L′, ω′, b′) at each (L, ω, b).

iii. For each (L′, ω′, L, ω, b), set b∗(L′, ω′, L, ω, b) = argminb′ |b̄(L′, ω′, b′, L, ω, b)− b′|, i.e.
the bubble state that is closest to the value that the bubble should go to.

iv. For (L′, ω′, L, ω, b), generate conjectures for HU , Hq, and HV using the value of
b∗(L′, ω′, L, ω, b) in step 1iii.

2. In the inner loop, for each (L, ω, b), use the conjectures in step 1 to obtain new conjec-
tures for (current) policy functions V (L, ω, b), L̃(L, ω, b), c(L, ω, b), q(L, ω, b), l(L, ω, b),
v(L, ω, b), µ(L, ω, b), B(L, ω, b) that satisfy (A.47)-(A.49) and (A.51)-(A.55). We distin-
guish between the case that the borrowing constraint binds and the case that the borrowing
constraint does not bind today:

i. First, assume that the borrowing constraint (A.48) does not bind, i.e. µ(L, ω) = 0.
Then, the objective is to find the level of L̃(L, ω, b) that maximizes (A.56). To do
that, we first solve for v and l using (A.52) and (A.53) and substitute out con-
sumption using the budget constraint (A.47). Then, we compute L̃(L, ω, b) by cal-
culating (A.56) for a subgrid of 5000 values of L̃ and choosing the value with the
highest V (L, ω, b): L̃ matters for V (L, ω, b) not only because it determines current
utility U(c(L, ω, b) − G(l(L, ω, b))), but also because it is the future state variable,
i.e. L′ = L̃(L, ω, b). Thus, its choice determines the level of the continuation value
HV (L′, ω′, b∗, L, ω, b). The policy function HV (L′, ω′, b∗, L, ω, b) assigning a value for
different values L′ is taken as given from the outer loop in step 1, but, in the inner
loop, we choose the value of L′ (L̃) that maximizes the sum of current utility and the
continuation value. Finally, check if the optimal choice of L̃(L, ω, b) is lower than the
borrowing limit computed from (A.48). If this is true, proceed to step 3; otherwise
move to substep ii.

ii. Solve for the current policy functions given future polices from step 1, but set (A.48)
to hold with equality. For each point on the subgrid of L̃ values, calculate correspond-
ing values of c, q, l, v, µ, B satisfying equations (A.47)-(A.49) and (A.51)-(A.55).
Finally, choose the level of L̃ for which V (L, ω, b) is the highest similar to substep i
above.
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3. Use the optimal policy functions from substeps 2i or 2ii to update the conjectured policy
functions in step 1.

4. Stop when convergence is achieved, i.e. when for two consecutive iterations i− 1 and i it
holds that supL,ω ||xi(L, ω)− xi−1(L, ω)|| < ε, where x = L̃, c, q, l, v, and ε = 10−4.
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