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I.   INTRODUCTION AND RELATED LITERATURE 

Long before COVID-19, the acceleration in automation was already causing unprecedented 
changes in work. One of the most notable and much discussed examples of automation 
technologies is the use of industrial robots. Robotics were undergoing a “Cambrian 
explosion,” leading to a massive increase in the diversification and applicability of robots, 
supported by exponential growth in technology (Pratt, 2015; McAfee and Brynjolfsson, 
2017). Like other technological changes, by reducing costs and improving productivity, 
robots may boost economic growth. But the fear is that they may also disrupt labor markets 
in transition, as they take over certain tasks and make traditional jobs obsolete. Moreover, 
robots do not affect all workers in the same way. Low-skilled workers are more at risk of 
displacement by robots than high-skilled workers, reinforcing inequality dynamics 
(Acemoglu and Restrepo, 2020).  
 
COVID-19 has exacerbated concerns about the future of jobs. The pandemic is taking a 
heavy toll on labor markets, with record high unemployment rates. In tandem, the crisis is 
reshaping the nature of work, including by increasing telework and forcing automation, with 
significant negative consequences for low-wage workers and inequality (Autor and 
Reynolds, 2020). The fear is that the COVID-19 pandemic may accelerate the pace of 
automation, raising the possibility of a jobless recovery. A recent survey of business leaders 
and human resource strategists of large companies from around the world shows that over 80 
percent are accelerating the digitalization of their work processes and expanding their use of 
remote work, and 50 percent indicate that they will accelerate the automation of jobs in their 
companies (World Economic Forum, 2020).  
 
Against this background, this paper focuses on the following two questions. Will COVID-19 
accelerate robotization? What will be the distributional impact of robotization following 
pandemics?  
  
To answer these questions, we empirically analyze the impact of past major pandemics on 
robot adoption and how it affects inequality. We use local projection method (Jordà, 2005) 
and robot data at the sectoral levels from the International Federation of Robotics covering 
18 industries in 40 countries, from Americas, Asia, and Europe, over 2000-2018. Our results 
suggest that that robot adoption (measured by new robot installations per 1000 employees) 
increases after pandemic events, especially when the health impact is severe and is associated 
with a significant economic downturn. While automation raises productivity (Brynjolfsson 
and McAfee, 2014; Acemoglu and Restrepo, 2018; Graetz and Michaels, 2018), it also 
increases inequality by displacing low-skilled workers (Acemoglu and Restrepo, 2020). 
Indeed, we find that following a pandemic, the increase in inequality, measured by net (post 
tax and transfer) Gini coefficient, over the medium term is larger for economies with higher 
robot density (the number of the existing stock of industrial robots per 1000 workers) and 
where new robot adoption (the cumulative sum of the new robot installations in the years 
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following a pandemic) has increased more. These results suggest that the distributional 
effects of COVID-19 could be sizeable through an acceleration of robotization. Looking 
forward, a corollary of our results is that as automation and robotization are accelerating 
from still low levels, they are expected to become even more important drivers of inequality 
in the future.  
 
Our paper is related to several strands of the literature. First, our work contributes to the 
burgeoning literature on the impact of pandemics on automation. Using a new Keynesian 
DSGE model, Leduc and Liu (2020) find that, while pandemics reduce aggregate demand 
and new investment, pandemic-induced uncertainty about worker productivity incentivizes 
firms to automate on net, as they try to anticipate future labor disruptions from pandemics. In 
the context of COVID-19, indeed, Caselli, Fracasso and Traverso (2020) find that industries 
that make greater use of robots face lower risk of contagion, and therefore less exposed to the 
risks related to lockdowns. In terms of job consequences of COVID-19 and automation, 
Chernoff and Warman (2020) find that women with mid to low levels of wages and 
education are at the highest risks, as their jobs have high automation potential and exhibit a 
high risk of infection.   
 
Our work also broadly relates to the literature on jobless recoveries. Many have documented 
jobless recoveries where employment recovers very slowly for years after large negative 
shocks such as recessions (Groshen and Potter, 2003; Bernanke, 2003). Jaimovich and Siu 
(2020) find that jobless recoveries in recent decades are largely led by disappearing routine 
occupations, and essentially all of it occurs in economic downturns. During normal times, 
high opportunity costs of investing in production technologies and related adjustment costs 
may discourage firms from reallocating resources to technology adoption. Large shocks like 
recessions, or pandemics in the current context, can provide firms a catalyst to restructure 
production toward labor-saving technologies, as they lower the opportunity cost of 
adjustment (Hall, 2005) or change the costs and benefits of layoffs (Mortensen and 
Pissarides, 1994; Berger, 2012). Hershbein and Kahn (2018) find that the global financial 
crisis (GFC) accelerated the routine-biased technological change. Displaced workers are then 
forced into time-consuming transitions to different occupations and sectors, resulting in a 
slow job recovery. A major shock like COVID-19 that combines health and economic crises 
could lead to a jobless recovery, especially in the face of the accelerated robot adoption. Ding 
and Molina (2020) find that since COVID-19, layoffs have been higher in industries that can 
be automated, raising the risk of permanent losses of automatable jobs during the recovery. 
 
Finally, our paper contributes to the literature on the distributional impact of pandemics, by 
linking the increase of inequality to automation. Furceri, Loungani, Ostry and Pizzuto (2020) 
provide evidence that major epidemics over the past two decades, even though much smaller 
in scale than COVID-19, have led to persistent increases in inequality. Saadi Sedik and Xu 
(2020) show that pandemics, by reducing growth and raising inequality, led to a significant 
increase in social unrest, which in turn is associated with lower growth and higher inequality, 
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forming a vicious cycle. We contribute to this literature by establishing that pandemics lead 
to an increase in inequality through an acceleration in robotization. Indeed, robots tend to 
disproportionately displace jobs that involve routine and manual tasks which have 
traditionally been performed by low-skilled workers with lower earnings (Graetz and 
Michaels, 2018; Autor and Reynolds, 2020).2 Furthermore, Acemoglu and Restrepo (2020) 
find that automation in recent decades significantly contributed to the growing skill premium, 
contributing to rising inequality.  
 
The rest of the paper is organized as follows. Section II describes the key data used in the 
analysis. Section III details recent trends in robot adoption. Section IV assesses the impact of 
past pandemics on robot adoption. Section V analyzes the impact of pandemics on inequality 
through an increase in robotization. The last section concludes and discusses policy 
implications.  
 

II.   DATA 

The main source of data of robots is the International Federation of Robotics (2018a). The 
IFR compiles information on worldwide shipments and stocks of industrial robots from 
national federations of robot manufacturers. An industrial robot is “an automatically 
controlled, reprogrammable, multipurpose, manipulator programmable in three or more axes, 
which may be either fixed in place or mobile for use in industrial automation applications,” 
as defined by International Organization for Standardization (ISO). This excludes dedicated 
industrial robots that serve one purpose such as equipment dedicated for loading/unloading of 
machine tools and dedicated assembly equipment (IFR, 2018a). Consolidating data provided 
by nearly all industrial robot suppliers worldwide, the IFR provides robot shipment and stock 
data for 75 countries, with the industry breakdown according to the International Standard 
Industrial Classification (ISIC) of all economic activities revisions 4 from 2010 onward, and 
2 or 3 in earlier years. The earliest data start in 1993, available at the country level with the 
industry breakdown available only for a few cases. However, the data coverage, especially 
the industry breakdown, improves over the years. We focus on industrial robots and do not 

 
2 Related to this is the literature on job polarization. This literature argues that the share of employment in 
middle-wage occupations has declined, mainly in advanced economies, while employment in both high- and 
low-wage jobs has increased (Acemoglu, 1999; Autor, Katz, and Kearney, 2006; Goos and Manning, 2007; 
Goos, Manning, and Salomons, 2009; Acemoglu and Autor, 2011; Goos, Manning, and Salomons, 2014; 
Michaels, Natraj, and Van Reenen, 2014). This hollowing out of the middle is linked to the disappearance of 
occupations focused on routine tasks (Jaimovich and Siu, 2020). The polarization process was accelerated by 
the Global Financial Crisis (Autor, 2010; Brynjolfsson and McAfee, 2011). Job polarization is primarily due to 
progress in technologies that substitute for labor in performing routine tasks (Autor, Levy, and Murnane, 2003). 
However, the COVID-19 pandemic is reshaping the nature of work, with negative consequences for both low-
wage jobs and middle-paid jobs (Autor and Reynolds, 2020).  
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consider service robots, because the coverage of service robot data is sparse and likely 
underestimates the usage.3  
 
We use the data from the World Input-Output Database (WIOD), Socio-Economic Accounts, 
for the industry-level employment data. The 2016 WIOD (Timmer and others, 2015) 
provides information on labor between 2000 and 2014 for 43 countries and 56 industries at 2-
digit ISIC revision 4 level. We merge these data with the robotics data to measure the robot 
usage relative to the size of employment for each industry and country. The WIOD also 
provides the industry-level data on the wage and capital, which we later use as control 
variables in regression analyses. The combined IFR and WIOD data cover 18 industries in 40 
countries for the period 2000-2014 (Table A.1).4 
 
We measure income inequality by Gini coefficient estimates from the Standardized World 
Income Inequality Database (SWIID 8.2). This data combines information from Luxembourg 
Income Study and various sources and provides comparable Gini indices of disposable and 
market income inequality for a large number of countries starting from 1961 onward. Solt 
(2020) provides details on the construction of this dataset.  
 
We identify pandemic events, following Ma, Roger and Zhou (2020) and Furceri, Loungani, 
Ostry and Pizzuto (2020). We focus on four major past pandemics within our data coverage: 
SARS in 2003, H1N1 in 2009, MERS in 2012, and Ebola in 2014.5 The most widespread one 
was H1N1 (Swine Flu Influenza), with more than 6,000,000 confirmed cases across 148 
countries and about 19,000 fatalities. Excluding H1N1—which spread across all regions—
the other three events were mostly confined to specific regions: SARS and MERS in Asia, 
and Ebola in Africa. In terms of average mortality rates (deaths/confirmed cases), Ebola and 
MERS were the most fatal, followed by SARS and H1N1. The list of countries in our sample 
that are affected by each event is given in Table A.2. We construct a dummy variable to 
capture pandemic events, which takes the value of 1 when WHO declares a pandemic for the 
country and 0 otherwise. Alternatively, we also use other measures of pandemics such as the 
number of confirmed cases and deaths related to pandemics to take into account the 
heterogeneity of the intensity of pandemic events across economies.  
 

 
3 The IFR underscores that the data reported “underestimate the true sales figures and installed base of robots. 
They should therefore be seen as a minimum level of the installed base of service robots,” (IFR, 2018b). This is 
in part because the service robot industry is more diverse and less tangible than the industrial robot industry.  

4 However, the robot data are available until 2018, allowing us to estimate the impact of pandemics on robot 
adoption up to four years after 2014.  

5 Zika in 2016 is not considered in this analysis because other important variables for the analysis (i.e., the 
industry-level labor and capital-related data from the WIOD) are available only until 2014. Also, to capture the 
full impact of Zika over the medium term (four years after the shock), we would need robot data until 2020.  
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III.   RECENT TRENDS IN ROBOT USAGE 

The use of industrial robots has increased dramatically since the GFC. After a brief 
interruption during the peak of the GFC, the increase in robot usage picked up its pace over 
the last decade. The acceleration has been mostly driven by countries in Asia, especially 
China (Figure 1, left chart). In recent years, about two-thirds of new robots in the world were 
installed in Asia, including about a half in China. In terms of the robot density (the number of 
the existing stock of industrial robots per 1000 workers), Korea, Singapore and Taiwan POC 
are the global leaders, followed by Germany and Japan (Figure 1, right chart; and IMF, 
2018).  

Figure 1. Use of Industrial Robots 

 
Source: International Federation of Robotics, International Labor Organization 

 
Despite the sharp overall increase, the use of industrial robots is still concentrated in certain 
manufacturing industries. In addition to the cross-country differences in the intensity of robot 
usage, the density varies widely across different industries. In any given economy, most 
industrial robots are used in the manufacturing industry, even though some robots are being 
reported in other sectors. Furthermore, within the manufacturing industry, automotive 
manufacturing in particular is the most automated sub-industry by far. In some Asian 
economies, robot density is also high in electronics manufacturing sector (Figure 2).  
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Figure 2. Robot Density by Industry, Selected Economies, 2014 
(Number of industrial robot stock, per 1000 employees, within each industry category) 

 
Source: International Federation of Robotics, the World Input-Output Database (WIOD), Socio-Economic Accounts. 
Note: The table shows the robot density as of 2014 for three economies that had the highest robot density in each region.  
 

 

IV.   DO PANDEMICS ACCELERATE ROBOTIZATION?  

We examine empirically whether pandemic events contribute to the increase in robot usage, 
using the local projection method proposed by Jordà (2005). This method does not impose 
dynamic restrictions and is flexible to accommodate nonlinearities in the dynamic responses. 
We estimate impulse response functions directly from local projections: 
 

𝑅𝑅𝑖𝑖,𝑐𝑐,𝑡𝑡+𝑘𝑘 =  𝛽𝛽𝑘𝑘𝐷𝐷𝑐𝑐,𝑡𝑡 + 𝜃𝜃𝑘𝑘𝑋𝑋𝑖𝑖,𝑐𝑐,𝑡𝑡 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 +  𝜀𝜀𝑖𝑖,𝑐𝑐,𝑡𝑡+𝑘𝑘        (1) 
 
where 𝑅𝑅𝑖𝑖,𝑐𝑐,𝑡𝑡+𝑘𝑘 represents robot adoption between 𝑡𝑡 and 𝑡𝑡 + 𝑘𝑘 (measured by the cumulative 
sum of the new robot installations in years between 𝑡𝑡 and 𝑡𝑡 + 𝑘𝑘, normalized by employment 
size at time 𝑡𝑡) in industry 𝑖𝑖 in country 𝑐𝑐; 𝐷𝐷𝑐𝑐,𝑡𝑡 is a dummy variable indicating a pandemic 
event that affects all industries in country 𝑐𝑐 in year 𝑡𝑡; 𝑋𝑋𝑖𝑖,𝑐𝑐,𝑡𝑡 is a vector that includes three lags 
of the dependent variable and the pandemic dummy. We include industry and country fixed 
effects and time fixed effects (five-year dummies) to control for unobserved cross country, 
industry and time heterogeneity.6 Country fixed effects control for country characteristics 
that do not vary over the period of the study and that may affect robot adoption. For example, 

 
6 Given that the pandemic variable is a dummy, we consider 5-year dummies rather than year dummies. Year 
dummies would absorb the effect of pandemic events that are widely spread. For instance, if we had COVID-19 
data, a year dummy for 2020 would be perfectly correlated with the COVID pandemic event. This is the case 
for H1N1 pandemic where almost all countries in our sample were impacted (see Table A.2). The 5-year 
dummies approach is similar to the approach used by Ma, Rogers and Zhou (2020), where the use decade 
dummies.  
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they control for unchanged country specific employment protection legislation and tax 
regimes. Industry fixed effects control for unobserved industry-level technology and demand 
shocks and industry-specific susceptibility to robot adoption. Time fixed effect control for 
aggregate shocks and trends. These reduce the possibility of omitted variable bias. We also 
control for the world real GDP growth, as a proxy for global business cycle.  

Furthermore, for robustness checks, we consider additional control variables such as log of 
wages and the ratio of capital to wages at the industry level (to capture the relative cost of 
human compared to robots, following Graetz and Michaels, 2018). We also include country-
level controls, such as the level of economic development measured by GDP per capita (as 
advanced economies use more robots), population aging (as it can accelerate automation) and 
measures of trade and financial globalization (trade and offshoring of the production process 
can be an alternative to robotization, Fernández-Macías et al., 20207—these global value 
chains depend heavily on cross-border capital flows, Bruno and Shin, 2019). These variables 
may also affect the probability of pandemic events.8 Standard errors are clustered at the level 
of country and industry pair.  

We estimate equation (1) for an unbalanced panel of 18 industries in 40 countries over the 
period 2000-2014, for each horizon (year) 𝑘𝑘 = 0, … , 4.9 That is, we estimate the impulse 
response functions, {𝛽𝛽𝑘𝑘}𝑘𝑘=04 , up to four years after the shock. Figure 3 shows the estimated 
dynamic response of robot adoption up to four years after a pandemic event. It shows the 90 
percent confidence interval and one standard deviation band around the point estimates, 
using standard errors clustered at the level of country and industry pair. The vertical axis 
shows the estimated number of new robots installed in cumulative terms over the years, 
normalized by 1000 employees.  

The results show that pandemics lead to an increase in robot adoption over time, with some 
lag. In the second year, we estimate that about 0.35 more new robots are installed per 1000 
employees and 0.7 more new robots in four years after a pandemic event.  

 

 

 
7 Production is offshored to economies with cheap labor, but it could also be offshored to third countries with 
even more automated productive technologies.  

8 The occurrence of the pandemic events is, however, largely unpredictable and exogenous to the economy 
(Jordà et al., 2020). In other words, even without the controls, the coefficient 𝛽𝛽𝑘𝑘 would still be unbiased. We 
also run a Granger causality test and found that the null hypothesis that pandemic dummy does not Granger-
cause robot adoption is rejected at the 90 percent confidence level (p-value=0.07); however, the hypothesis that 
robot adoption does not Granger-cause pandemic dummy is not rejected (p-value=0.53).  

9 The robot variable is available until 2018, allowing us to estimate the robot adoption up to 4 years (𝑘𝑘 =
0, … , 4). That is, we capture the impact of shocks until 2018.  
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Figure 3. Robot Adoption and Pandemics 
(Robot installation per 1000 employees in cumulative terms; T = pandemic year) 

  
 

Source: Authors.  
Note: Impulse responses are estimated using a sample of 18 industries in 40 economies over the period 2000-2014, using 
local projection method (Jorda, 2005). The estimates are based on: 𝑅𝑅𝑖𝑖,𝑐𝑐,𝑡𝑡+𝑘𝑘 =  𝛽𝛽𝑘𝑘𝐷𝐷𝑐𝑐,𝑡𝑡 + 𝜃𝜃𝑘𝑘𝑋𝑋𝑖𝑖,𝑐𝑐,𝑡𝑡 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 +  𝜀𝜀𝑖𝑖,𝑐𝑐,𝑡𝑡+𝑘𝑘 .  
The dependent variable 𝑅𝑅 is new robot installation per 1000 employees in cumulative term between 𝑡𝑡 and 𝑡𝑡 + 𝑘𝑘; 𝐷𝐷 is a 
dummy indicating pandemic years; 𝑋𝑋 denotes three lags of the dependent variable and the pandemic dummy. We control 
for industry and country fixed effects, and five-year dummies, as well as global business cycle (world real GDP growth). 
Standard errors are clustered at the country-industry pair level. 

 

Our results are in line with the literature showing that firms undertake restructuring after 
large shocks like recessions and adjust production toward labor-saving technologies 
(Hershbein and Kahn, 2018).10 They are also consistent with recent studies showing that 
pandemic-induced uncertainty could add to the incentives for automation on net, despite 
its negative effects on aggregate demand, as firms try to anticipate future labor disruptions 
from pandemics (Leduc and Liu, 2020).11  

The results are robust to a battery of robustness checks: 

•  First, we include several additional controls in the regression: industry-level controls such 
as the log of wage and the capital-to-wage ratio, and the economy-level macroeconomic 
variables such as income, and measures of trade and financial globalization, as well as an 

 
10 As highlighted by Hershbein and Kahn (2018), in boom times, high opportunity costs, or frictions such as 
adjustment costs, may inhibit resources from being reallocated optimally in the face of technological change. 
Recessions lower the opportunity cost and can produce large enough shocks to overcome these frictions. 

11 The rationale is that workers can be exposed to health risks, and social distancing measures can reduce labor 
productivity. But robots do not get sick. Automation provides a hedge against job uncertainty stemming from 
the pandemic. Note that robots may be infected with cyber viruses.  
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indicator of population aging (share of population age 65 and over). The results are 
reported in Table A.3 and Figure A.1, and they remain very similar to the baseline results. 

• Second, we conduct the same analysis, excluding the episode of H1N1. The H1N1 
pandemic was the most widespread across regions and coincided with the GFC in 2009, 
which also affected many economies globally. The size of the coefficient estimates 
excluding the H1N1 pandemic is similar to the ones including all pandemics (Figure A.1). 
However, when excluding H1N1, the number of pandemic episodes within the sample 
period and economies drops by more than half, and estimates become less precise.  

• Third, we use measures that capture the intensity of pandemic events (i.e., the number of 
infection cases and deaths related to pandemics), instead of using a binary variable for 
pandemic events. This also alleviates the issues related to the fact that H1N1 coincided 
with the GFC in 2019. The cross-country heterogeneity in the H1N1 exposures, which is 
exogenous to the GFC, would help reaffirm that the results are not driven by the GFC 
(Ma, Rogers and Zhou, 2020). The results in Figure A.2 show that more intense 
pandemics tend to have greater impact on robot adoption.  

• Fourth, to further control for business cycles, we also include a recession dummy 
(measured as a negative growth or 20 percentile lower growth at country level). This also 
addresses the concern that some pandemic events during the sample period may have 
occurred during a period of recession (e.g., H1N1 in 2009).  Figure A.3 shows that the 
results are broadly similar to the baseline.  

• Fifth, we use log of the robot adoption variable to mitigate the issues related the long tail 
in the distribution of the robotics data (Graetz and Michaels, 2018), while allowing a 
direct interpretation of the results in a relative term (percent increase in new robot 
installation). The results confirm that pandemics accelerate robot adoption over the 
medium term, as shown in the Figure A.4. Four years after a pandemic event, robot 
adoption is about 20 percent higher compared to a no pandemic event.  

Furthermore, we assess the impact of pandemics on robotization conditional on the severity 
of pandemic events. Specifically, we augment the baseline specification to allow for the 
impact of pandemics to vary with the severity of pandemics in terms of health risks and 
growth, based on the smooth transition autoregressive model (Granger and Teräsvirta, 1993; 
Teräsvirta, 1998): 

𝑅𝑅𝑖𝑖,𝑐𝑐,𝑡𝑡+𝑘𝑘 =  𝐹𝐹(𝑧𝑧𝑐𝑐𝑐𝑐)�𝛽𝛽𝐿𝐿𝑘𝑘𝐷𝐷𝑐𝑐,𝑡𝑡 + 𝜃𝜃𝐿𝐿𝑘𝑘𝑋𝑋𝑖𝑖,𝑐𝑐,𝑡𝑡�+ [1 − 𝐹𝐹(𝑧𝑧𝑖𝑖𝑖𝑖)]�𝛽𝛽𝐻𝐻𝑘𝑘𝐷𝐷𝑐𝑐,𝑡𝑡 + 𝜃𝜃𝐻𝐻𝑘𝑘𝑋𝑋𝑖𝑖,𝑐𝑐,𝑡𝑡�+ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝜀𝜀𝑖𝑖,𝑐𝑐,𝑡𝑡+𝑘𝑘, 

with 𝐹𝐹(𝑧𝑧𝑐𝑐𝑐𝑐) = 𝑒𝑒𝑒𝑒𝑒𝑒−𝛾𝛾𝑧𝑧𝑐𝑐𝑐𝑐
(1−𝑒𝑒𝑒𝑒𝑒𝑒−𝛾𝛾𝑧𝑧𝑐𝑐𝑐𝑐) ,      𝛾𝛾 = 3.5 ,         (2) 

where 𝑧𝑧 is an indicator of the severity of the pandemic—the number confirmed cases or 
deaths in log as a proxy for health impact, or real GDP growth in terms of economic 
impact—normalized to have zero mean and a unit variance. The weights assigned to each 
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regime vary between 0 and 1 according to the weighting function F(.), so that 𝐹𝐹(𝑧𝑧) can be 
interpreted as the probability of being in a given state. The coefficients 𝛽𝛽𝐿𝐿𝑘𝑘 and 𝛽𝛽𝐻𝐻𝑘𝑘  capture 
the impact of pandemic on robotization at each horizon k in case of very low levels of 𝑧𝑧 
(𝐹𝐹(𝑧𝑧𝑐𝑐𝑐𝑐) approaches one when z goes to minus infinity) and high levels of 𝑧𝑧 ( 1 −
𝐹𝐹(𝑧𝑧𝑐𝑐𝑐𝑐) approaches one when 𝑧𝑧 goes to plus infinity), respectively. We choose 𝛾𝛾=3.5, 
following Tenreyro and Thwaites (2016), and Furceri, Loungani, Ostry and Pizzuto (2020). 
This approach can directly test whether the effect of pandemics varies depending on its 
severity in terms of health and growth impact, while allowing the effect to vary smoothly 
across states thus making the impulse response function more stable and precise. 

The results in Figure 4 (and Table A.3) show that the impact of pandemics on robot usage 
varies with their severity. For those pandemics associated with severe health consequences 
(i.e., a larger number of cases or deaths) and those with a significant economic downturn, the 
effect is statistically significant. The impact is not significant for events associated with 
lower case number, lower death mortality, and milder growth impact. 
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Figure 4. Robot Adoption: Impact by the Severity of the Pandemic 
(Robot installation per 1000 employees in cumulative terms; T = pandemic year) 

 

 Health impact (case numbers in log) 

 

Health impact (number of deaths in log) 

 
Economic impact (real GDP growth) 

 
 

Source: Authors.  
Note: Impulse responses are estimated using a sample of 18 industries in 40 economies over the period 2000-2014, using 
local projection method (Jorda, 2005). The estimates are based on: 𝑅𝑅𝑖𝑖,𝑐𝑐,𝑡𝑡+𝑘𝑘 =  𝐹𝐹(𝑧𝑧𝑖𝑖𝑖𝑖)�𝛽𝛽𝐿𝐿𝑘𝑘𝐷𝐷𝑐𝑐,𝑡𝑡 + 𝜃𝜃𝐿𝐿𝑘𝑘𝑋𝑋𝑖𝑖,𝑐𝑐,𝑡𝑡� +
[1 − 𝐹𝐹(𝑧𝑧𝑖𝑖𝑖𝑖)]�𝛽𝛽𝐻𝐻𝑘𝑘𝐷𝐷𝑐𝑐,𝑡𝑡 + 𝜃𝜃𝐻𝐻𝑘𝑘𝑋𝑋𝑖𝑖,𝑐𝑐,𝑡𝑡� + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝜀𝜀𝑖𝑖,𝑐𝑐,𝑡𝑡+𝑘𝑘 .  The dependent variable 𝑅𝑅 is new robot installations per 1000 employees 
in cumulative terms between 𝑡𝑡 and 𝑡𝑡 + 𝑘𝑘; 𝐷𝐷 is a dummy indicating pandemic years; 𝑋𝑋 denotes three lags of the 
dependent variable and the pandemic dummy; 𝐹𝐹(𝑧𝑧𝑐𝑐𝑐𝑐) is an indicator function of the severity of pandemic, and the 
coefficient 𝛽𝛽𝐻𝐻𝑘𝑘 captures the impact of a pandemic with severe health (two upper panels) and economic impact (lower 
panel) and 𝛽𝛽𝐿𝐿𝑘𝑘 captures the impact of mild pandemics. The estimation controls for industry and country fixed effects, five-
year dummies, and global business cycle. Standard errors are clustered at the country-industry pair level. 

-0.5

0

0.5

1

1.5

2

2.5

3

T-1 T T+1 T+2 T+3 T+4

High comfirmed cases
One s.e. band
90% CI

-8

-6

-4

-2

0

2

4

T-1 T T+1 T+2 T+3 T+4

Low confirmed cases
One s.e. band
90% CI

-0.5

0

0.5

1

1.5

2

T-1 T T+1 T+2 T+3 T+4

High mortality
One s.e. band
90% CI

-3

-2

-1

0

1

2

T-1 T T+1 T+2 T+3 T+4

Low mortality
One s.e. band
90% CI

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

T-1 T T+1 T+2 T+3 T+4

High growth
One s.e. band
90% CI

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4

T-1 T T+1 T+2 T+3 T+4

Low growth
One s.e. band
90% CI



15 

V.   PANDEMICS, ROBOTIZATION, AND INEQUALITY  

To examine the role of robot adoption in the distributional impact of pandemics, we estimate 
the impact of pandemics on changes in Gini coefficients while allowing the coefficients on 
the pandemic variable to vary depending on the level of robot density and adoption:  

𝐺𝐺𝑐𝑐,𝑡𝑡+𝑘𝑘 − 𝐺𝐺𝑐𝑐,𝑡𝑡−1 = ∑ 𝛽𝛽𝑘𝑘,𝑞𝑞𝑅𝑅𝑐𝑐,𝑡𝑡
𝑞𝑞 𝐷𝐷𝑐𝑐,𝑡𝑡𝑞𝑞∈{𝐻𝐻,𝑀𝑀,𝐿𝐿}  + ∑ 𝜃𝜃𝑘𝑘,𝑞𝑞𝑅𝑅𝑐𝑐,𝑡𝑡

𝑞𝑞 𝑋𝑋𝑐𝑐,𝑡𝑡𝑞𝑞∈{𝐻𝐻,𝑀𝑀,𝐿𝐿} +  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 +  𝜀𝜀𝑖𝑖,𝑐𝑐,𝑡𝑡    (3)  

where 𝐺𝐺𝑐𝑐,𝑡𝑡+𝑘𝑘 − 𝐺𝐺𝑐𝑐,𝑡𝑡−1 denotes the changes in the log of net Gini coefficients in country 𝑐𝑐 
between the year 𝑡𝑡 − 1 and 𝑡𝑡 + 𝑘𝑘;12 𝑅𝑅𝑐𝑐,𝑡𝑡

𝑞𝑞  is a set of dummy variables indicating the level of 
robot adoption (i.e., the stock of robot per 1000 employees): high (top 1/3, H, i.e., more than 
2.3 robots per 1000 employees in the sample), intermediate (middle 1/3, M), and low (bottom 
1/3, L). As an alternative, we also divide the sample by the pace of robot adoption measured 
by the cumulative sum of new robot installations over the next 5 years, rather than the stock, 
normalized by the size of employment at time 𝑡𝑡. 𝐷𝐷𝑐𝑐,𝑡𝑡 is a dummy indicating pandemic years. 
𝑋𝑋𝑐𝑐,𝑡𝑡 denotes three lags of the dependent variable and the pandemic dummy. The estimation 
controls for country fixed effects, time dummies, and global business cycle.  

The results show that the increase in inequality tends to be higher, and statistically 
significant, for cases with high robot density than with low density (Figure 5, left). We 
obtain similar results when we use the pace of robot adoption. Inequality rise faster 
following pandemics where robot adoption is at a faster pace (Figure 5, right).13 These 
results suggest that the robot adoption following pandemics could have a sizable impact on 
inequality.14  

We obtain similar results when we allow smooth transitions, similar to the specification in 
equation (2), except that transition is a function of robot density or the pace of robot 
adoption (Figure A.5). 

Our results are consistent with the literature on pandemics and inequality and the literature 
on skill-biased technological changes. Furceri, Loungani, Ostry and Pizzuto (2020) find that 
past pandemics have raised inequality and led to increases in the Gini coefficient. We show 
that one channel through which pandemics lead to an increase in inequality is the rise of 

 
12 Since the Gini coefficients are available only at the country level, not at the industry level, we run regressions 
in this section using country-level panel data. While losing the industry-level details, this expands the sample to 
66 countries over 1993-2014.    

13 We obtain similar results if we use the cumulative sum of new robot installation over the next 4 years, instead 
of 5 years.  

14 We run a Granger causality test and found that the null hypothesis that pandemic dummy does not Granger-
cause Gini is rejected at the 90 percent confidence level (p-value=0.03); however, the hypothesis that Gini does 
not Granger-cause pandemic dummy is not rejected (p-value=0.22).  
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robots following pandemics. The acceleration in automation can worsen inequality 
dynamics because robots do not affect all workers in the same way. Jobs that are most 
susceptible to automation tend to involve routine and manual tasks, and those jobs have 
traditionally been performed by workers with mid-level skills or low-skilled workers 
(Graetz and Michaels, 2018; Autor and Reynolds, 2020). Therefore, low-skilled workers, 
who also tend to have lower earnings, are more at risk from displacement by robots than 
high-skilled workers. Moreover, robots create new tasks, but they benefit mainly high-
skilled workers, reinforcing inequality dynamics (Acemoglu and Restrepo, 2020). Through 
the uneven impact on workers with different skill levels, robots can contribute to the rise in 
inequality. 

Figure 5. Changes in Net Gini Following Pandemics by Robotization Levels 
(Percentage points; T = pandemic year) 

By robot density (existing stock of robots) By robot adoption (pace of the increase in robots) 
 

 
 
Source: Authors.  
Note: Impulse responses are estimated using a sample of 66 economies over the period 1993-2014, using local projection 
method (Jorda, 2005), allowing the coefficients on pandemic variables to vary depending on robot density and the pace 
of robot adoption (top, medium, and bottom 1/3), where the adoption pace is proxied by the cumulative sum of new robot 
installation over the next 5 years. The estimates are based on: ∆𝐺𝐺𝑐𝑐,𝑡𝑡+𝑘𝑘 = ∑ 𝛽𝛽𝑘𝑘,𝑞𝑞𝑅𝑅𝑐𝑐,𝑡𝑡

𝑞𝑞 𝐷𝐷𝑐𝑐,𝑡𝑡𝑞𝑞∈{𝐻𝐻,𝑀𝑀,𝐿𝐿}  +
∑ 𝜃𝜃𝑘𝑘,𝑞𝑞𝑅𝑅𝑐𝑐,𝑡𝑡

𝑞𝑞 𝑋𝑋𝑐𝑐,𝑡𝑡𝑞𝑞∈{𝐻𝐻,𝑀𝑀,𝐿𝐿} +  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +  𝜀𝜀𝑖𝑖,𝑐𝑐,𝑡𝑡 .  The dependent variable is the changes in net Gini in logs; 𝐷𝐷 is a dummy 
indicating pandemic years; 𝑅𝑅𝑞𝑞 denotes a dummy indicating high/medium/low robot density or adoption; 𝑋𝑋 denotes three 
lags of the dependent variable and the pandemic dummy. The estimation controls for country fixed effects, time 
dummies, and global business cycle. Standard errors are clustered at the country level. 

 

VI.   CONCLUSION AND POLICY DISCUSSIONS  

The COVID-19 pandemic has exacerbated inequality of income and opportunity by its 
disproportionate impact on low-skilled workers, women, youths, and those who may be 
already on the margins of the labor market. Moreover, we show, based on the experience 
from past major pandemics, that the adverse distributional effects could be even larger in the 
medium term through an acceleration of robot adoption, which mainly displace low-skilled 
workers. Left unchecked, growing disparities will lead to long-lasting grievances and 
ultimately to social unrest, forming a vicious cycle (Saadi Sedik and Xu, 2020).  
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Policymakers need to pay special attention to preventing scarring effects on the livelihoods 
of the most vulnerable in their societies. In the short term, policymakers need to prevent 
scarring in the labor market. Better and smarter targeting of limited fiscal support is essential, 
both for people and for firms. Targeted support provides greater bang for the buck, both in 
protecting lives and livelihoods (Jurzyk et al., 2020). 

As automation intensifies following the COVID-19 crisis, more workers will need to find 
new jobs, especially those who are less skilled. Policies to mitigate the sizable adverse 
impacts on inequality also include revamping education to meet the demand for more flexible 
skill sets and lifelong learning, as well as new training, especially for the most adversely 
affected workers, and reducing skill mismatches between workers and jobs.  

These measures may still fall short if the training involves acquiring a substantively different 
and challenging set of skills, raising the possibility of a persistent increase in dropouts. It is 
therefore important to address medium-term social challenges, including through income 
redistribution and safety nets.  

The recent literature has considered wide-range policies to address automation and 
inequality. These include raising unemployment insurance benefits, introducing a universal 
basic income, increasing transfers to labor force non-participants, making the tax system 
more progressive, and taxing robots. Policymakers will face tradeoffs in implementing these 
policies.15 For example, Guerreiro, Rebelo and Teles (2020) show that it may be optimal to 
tax robots in the short run in order to protect current routine workers who cannot acquire 
non-routine skills. However, it is not optimal in the long run as it disincentivizes those in the 
future to obtain non-routine skills.  

As Korinek and Stiglitz (2018) show, policies to soften the labor market impact of new 
technologies can make a difference to improve welfare. The more willing society is to 
support the necessary transition and provide support to those who are left behind, the faster 
the pace of innovation that society can accommodate while still ensuring that the outcomes 
are welfare improvements, with all members of the society better off. 

 
  

 
15 For example, Jaimovich, Saporta-Eksten, Siu and Yedid-Levi (2020) show that while raising unemployment 
insurance benefits modestly succeeds at improving the average welfare, introducing a universal basic income 
and increasing transfers to labor force non-participants impose large welfare losses on high-wage workers and 
are very costly in terms of aggregate income. In contrast, they find that making the tax system more 
progressive, with a reduction in the taxes levied on low-earners and balancing the budget by increasing the taxes 
on high-earners, can achieve much of the redistribution gains and much smaller welfare losses for high-income 
earners without lowering aggregate output. 
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APPENDICES 

Table A.1. Data Sources and Descriptive Statistics 
 

Variable Source Obs. Med. Mean Std. dev. 
              
Sample = 18 industries in 40 economies, during the period 2000-2014 
              
Annual robot installation IFR 4320 9.0 226.6 1172.2 
Annual robot installation, per 1000 workers IFR, WIOD 4320 0.1 0.8 2.3 
Robot operating stock IFR 4320 74.5 1994.3 10431.4 
Robot operating stock, per 1000 workers IFR, WIOD 4320 8.1 70.1 226.5 
Number of confirmed cases Furceri et al. (2020) 4320 0.0 22909.1 228611.2 
Number of deaths related to pandemics Furceri et al. (2020) 4320 0.0 35.9 255.3 
Real GDP growth WEO (2020) 4320 1.8 1.5 3.0 
Net Gini SIID 8.2 2119 29.4 29.4 4.9 
              
Pandemic events Furceri et al. (2020) 4320 0.0 0.2 0.4 
              
    N.Obs with Pand. Dumm. = 1 
  SARS (2003)         78 
  H1N1 (2009)         392 
  MERS (2012)         164 
  Ebola (2014)         72 
IFR = International Federation of Robotics 
WIOD = World Input-Output Data, Socio Economic Accounts 

 
 
 
 
 

Table A.2. List of Pandemics and Epidemic Episodes 
 

Starting year Event Affected countries N. countries 
2003 SARS DEU, ESP, FRA, GBR, ITA, SWE 6 
2009 H1N1 AUS, AUT, BEL, BGR, BRA, CHE, CZE, DEU, DNK, 

ESP, EST, FIN, FRA, GBR, GRC, HRV, HUN, IDN, 
IND, IRL, ITA, JPN, KOR, LTU, LVA, MLT, NLD, 
NOR, POL, PRT, ROU, RUS, SVK, SVN, SWE, TUR, 
USA 

37 

2012 MERS AUT, DEU, FRA, GBR, GRC, ITA, KOR, NLD, TUR, 
USA, 

10 

2014 Ebola ESP, GBR, ITA, USA 4 
 

Source: Ma, Rogers and Zhou (2020) 
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Table A.3. Impact of Pandemics on Robot Adoption 

 
 
Source: Authors.  
Note: Impulse responses are estimated using a sample of 18 industries in 40 economies over the period 2000-2014, using 
local projection method (Jorda, 2005). Panel A presents the estimates on the impact of pandemics, based on 
𝑹𝑹𝒊𝒊,𝒄𝒄,𝒕𝒕+𝒌𝒌 =  𝜷𝜷𝒌𝒌𝑫𝑫𝒄𝒄,𝒕𝒕 + 𝜽𝜽𝒌𝒌𝑿𝑿𝒊𝒊,𝒄𝒄,𝒕𝒕 + 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 +  𝜺𝜺𝒊𝒊,𝒄𝒄,𝒕𝒕+𝒌𝒌, considering different sets of control variables. The dependent variable 
𝑹𝑹 is new robot installations per 1000 employees in cumulative terms between 𝒕𝒕 and 𝒕𝒕 + 𝒌𝒌; 𝑫𝑫 is a dummy indicating 
pandemic years; 𝑿𝑿 denotes three lags of the dependent variable and the pandemic dummy. It also controls for industry and 
country fixed effects, five-year dummies, and global business cycle. Panel B presents the estimates by allowing the impact 
of pandemics to vary by their severity: 𝑹𝑹𝒊𝒊,𝒄𝒄,𝒕𝒕+𝒌𝒌 = 𝑭𝑭(𝒛𝒛𝒊𝒊𝒊𝒊) �𝜷𝜷𝑳𝑳𝒌𝒌𝑫𝑫𝒄𝒄,𝒕𝒕 + 𝜽𝜽𝑳𝑳𝒌𝒌𝑿𝑿𝒊𝒊,𝒄𝒄,𝒕𝒕� + [𝟏𝟏 − 𝑭𝑭(𝒛𝒛𝒊𝒊𝒊𝒊)]�𝜷𝜷𝑯𝑯𝒌𝒌𝑫𝑫𝒄𝒄,𝒕𝒕 + 𝜽𝜽𝑯𝑯𝒌𝒌𝑿𝑿𝒊𝒊,𝒄𝒄,𝒕𝒕� + 𝑪𝑪𝑪𝑪𝒏𝒏𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕+ 𝜺𝜺𝒊𝒊,𝒄𝒄,𝒕𝒕+𝒌𝒌.  
𝑭𝑭(𝒛𝒛𝒄𝒄𝒄𝒄) is an indicator function of the severity of pandemics, i.e., the probability of being in a severe pandemic, and the 
coefficient 𝜷𝜷𝑯𝑯𝒌𝒌  captures the impact of a pandemic with severe health and economic impact (upper panel)  and 𝜷𝜷𝑳𝑳𝒌𝒌 captures the 
impact of mild pandemics (lower panel). Standard errors are clustered at the country-industry pair level. 

 
 
 
 
 

Dep. Var. = Robot adoption

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Overall High confirmed cases High mortality Low growth

T 0.002 -0.000 0.009 0.004 -0.022 0.048 0.072 0.011 0.024 0.018 -0.009 -0.029 0.007
(0.072) (0.078) (0.085) (0.081) (0.143) (0.137) (0.169) (0.113) (0.107) (0.120) (0.074) (0.080) (0.075)

T+1 0.122 0.116 0.094 0.083 0.312 0.439 0.449 0.324 0.311 0.330 0.116 0.097 0.129
(0.121) (0.137) (0.143) (0.131) (0.243) (0.272) (0.342) (0.199) (0.203) (0.214) (0.140) (0.155) (0.144)

T+2 0.357* 0.324* 0.255 0.298 0.652* 0.783** 0.745* 0.627** 0.576** 0.590* 0.398* 0.362* 0.369*
(0.204) (0.196) (0.194) (0.189) (0.387) (0.365) (0.441) (0.306) (0.280) (0.320) (0.214) (0.216) (0.209)

T+3 0.649** 0.638** 0.499* 0.587** 1.364** 1.494*** 1.390** 1.180*** 1.109*** 1.077** 0.618** 0.637** 0.509*
(0.288) (0.279) (0.289) (0.290) (0.531) (0.505) (0.595) (0.414) (0.366) (0.424) (0.285) (0.284) (0.279)

T+4 0.677* 0.736** 0.638* 0.709** 1.491** 1.564** 1.510** 1.074** 1.129** 0.935** 0.672* 0.697* 0.459
(0.351) (0.362) (0.369) (0.355) (0.596) (0.608) (0.712) (0.433) (0.442) (0.434) (0.371) (0.374) (0.367)

Low confirmed cases Low mortality High growth
T 0.009 -0.111 -0.205 -0.136 -0.151 -0.138 -0.104 0.047 -0.124

(0.470) (0.450) (0.524) (0.189) (0.211) (0.193) (0.174) (0.160) (0.187)
T+1 -0.782 -1.030 -1.126 -0.419 -0.488 -0.461 -0.404 -0.234 -0.385

(1.122) (1.078) (1.264) (0.498) (0.532) (0.507) (0.347) (0.314) (0.346)
T+2 -1.093 -1.420 -1.515 -0.315 -0.414 -0.382 -0.539 -0.357 -0.444

(1.879) (1.781) (2.007) (0.803) (0.846) (0.808) (0.622) (0.574) (0.599)
T+3 -2.387 -2.737 -2.818 -0.537 -0.664 -0.605 -0.275 -0.111 -0.088

(2.439) (2.327) (2.573) (1.016) (1.081) (1.018) (0.798) (0.756) (0.756)
T+4 -2.317 -2.356 -2.486 -0.472 -0.428 -0.601 -0.456 -0.399 -0.095

(2.694) (2.689) (2.983) (1.296) (1.293) (1.310) (0.912) (0.923) (0.855)

Country FE Yes Yes Yes Yes Co  Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Ind  Yes Yes Yes Yes Yes Yes Yes Yes Yes
5-Year dumm Yes Yes Yes Yes 5-  Yes Yes Yes Yes Yes Yes Yes Yes Yes
Global biz. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry ctrl. Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country ctrl. Yes Yes Yes Yes Yes
Aging ctrl. Yes

Obs (T) 4,188 3,621 3,476 3,476 bs ( 4,188 3,621 3,476 4,188 3,621 4,084 4,188 3,621 4,084
F-stat. 152.31 101.99 121.29 e(F) -sta191.06 135.12 134.32 166.17 128.86 165.13 309.06 210.83 350.27
Obs (T+1) 4,183 3,616 3,473 3,473 s (T 4,183 3,616 3,473 4,183 3,616 4,081 4,183 3,616 4,081
F-stat. 95.11 75.37 81.93 e(F) -sta 105.33 86.20 93.02 82.24 84.07 87.17 216.48 114.08 250.74
Obs (T+2) 4,178 3,611 3,470 3,470 s (T 4,178 3,611 3,470 4,178 3,611 4,078 4,178 3,611 4,078
F-stat. 71.50 65.20 70.90 e(F) -sta 71.45 84.43 106.26 67.86 72.49 70.98 214.90 133.54 270.05
Obs (T+3) 4,173 3,608 3,468 3,468 s (T 4,173 3,608 3,468 4,173 3,608 4,074 4,173 3,608 4,074
F-stat. 62.35 51.71 61.95 e(F) -sta 71.79 56.96 78.64 61.48 61.73 66.08 219.93 125.94 271.70
Obs (T+4) 3,603 3,603 3,464 3,464 s (T 3,603 3,603 3,464 3,603 3,603 3,520 3,603 3,603 3,520
F-stat. 47.25 43.43 52.21 e(F) -sta 41.36 42.32 55.53 41.23 46.93 45.80 85.85 87.02 93.96

Panel A. Robot adoption and pandemics Panel B. Robot adoption and pandemic: impact by the severity of the pandemic

By health impact (case) By health impact 
(mortality) By economic impact
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Figure A.1. Robot Adoption and Pandemics, with Additional Control Variables 
(Robot installation per 1000 employees in cumulative terms; T = pandemic year) 

  
Source: Authors.  
Note: Impulse responses are estimated using a sample of 18 industries in 40 economies over the period 2000-2014, using 
local projection method (Jorda, 2005). The estimates are based on: 𝑅𝑅𝑖𝑖,𝑐𝑐,𝑡𝑡+𝑘𝑘 =  𝛽𝛽𝑘𝑘𝐷𝐷𝑐𝑐,𝑡𝑡 + 𝜃𝜃𝑘𝑘𝑋𝑋𝑖𝑖,𝑐𝑐,𝑡𝑡 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 +  𝜀𝜀𝑖𝑖,𝑐𝑐,𝑡𝑡+𝑘𝑘 .  The 
dependent variable 𝑅𝑅 is new robot installations per 1000 employees in cumulative terms between 𝑡𝑡 and 𝑡𝑡 + 𝑘𝑘; 𝐷𝐷 is a dummy 
indicating pandemic years; 𝑋𝑋 denotes three lags of the dependent variable and the pandemic dummy. We control for industry 
and country fixed effects, and five-year dummies, as well as global business cycle (world real GDP growth). We consider 
the following additional controls: log wage, the capital-to-wage ratio, and the changes in the capital-to-wage ratio at the 
industry level; the log GDP level, the log GDP per capita, and the measures of financial and trade globalization. Standard 
errors are clustered at the country-industry pair level. Additionally, the blue solid line shows the impulse response excluding 
H1N1 from pandemic episodes. While the coefficients estimates are similar to when considering all pandemics, the 
estimates are less precise given the number of pandemic episodes drops to less than a half (from 700 episodes to 314 
episodes within the sample year and economies). 

 

Figure A.2. Impact of Pandemic Case Number and Mortality on Robot Adoption 
(Robot installation per 1000 employees in cumulative terms; T = pandemic year) 

Case Number Mortality 

 

Source: Authors.  
Note: Impulse responses are estimated using a sample of 18 industries in 40 economies over the period 2000-2014, using 
local projection method (Jorda, 2005). The estimates are based on: 𝑅𝑅𝑖𝑖,𝑐𝑐,𝑡𝑡+𝑘𝑘 =  𝛽𝛽𝑘𝑘𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐,𝑡𝑡 + 𝜃𝜃𝑘𝑘𝑋𝑋𝑖𝑖,𝑐𝑐,𝑡𝑡 +
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 +  𝜀𝜀𝑖𝑖,𝑐𝑐,𝑡𝑡+𝑘𝑘 .  The dependent variable 𝑅𝑅 is new robot installations per 1000 employees in cumulative terms between 
𝑡𝑡 and 𝑡𝑡 + 𝑘𝑘; 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is the number of confirmed cases or deaths related to the pandemic in log; 𝑋𝑋  denotes three lags of the 
dependent variable and the pandemic dummy. We control for industry and country fixed effects, and five-year dummies, as 
well as global business cycle (world real GDP growth). Standard errors are clustered at the country-industry pair level. 
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Figure A.3. Robot Adoption: Impact of Pandemics and Recessions 
(Robot installation per 1000 employees in cumulative terms; T = pandemic/recession year) 

    
Source: Authors.  

Note: Impulse responses are estimated using a sample of 18 industries in 40 economies over the period 2000-2014, using 
local projection method (Jorda, 2005). The estimates are based on: 𝑅𝑅𝑖𝑖,𝑐𝑐,𝑡𝑡+𝑘𝑘 =  𝛽𝛽𝑘𝑘𝐷𝐷𝑐𝑐,𝑡𝑡 + 𝜃𝜃𝑘𝑘𝑋𝑋𝑖𝑖,𝑐𝑐,𝑡𝑡+𝜑𝜑𝑘𝑘𝐶𝐶𝑐𝑐,𝑡𝑡 +
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 +  𝜀𝜀𝑖𝑖,𝑐𝑐,𝑡𝑡+𝑘𝑘 .  The dependent variable 𝑅𝑅 is new robot installations per 1000 employees in cumulative terms; 𝐷𝐷 is a 
dummy indicating pandemic years; 𝐶𝐶 denotes a dummy indicating years with low growth; 𝑋𝑋 denotes three lags of the 
dependent variable and the pandemic dummy. The estimation controls for industry and country fixed effects, five-year 
dummies, and global business cycle. Standard errors are clustered at the country-industry pair level. 
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Figure A.5. Changes in Net Gini Following Pandemics by Robotization Levels—
Smooth Transitions 

(Percentage points; T = pandemic year) 

By robot density (existing stock of robots) By robot adoption (pace of the increase in robots) 

 
Source: Authors 
Note: Impulse responses are estimated using a sample of 66 economies over the period 1993-2014, using local projection 
method (Jorda, 2005). The estimates are based on: ∆𝐺𝐺𝑐𝑐,𝑡𝑡+𝑘𝑘 =  𝐹𝐹(𝑅𝑅𝑖𝑖𝑖𝑖)�𝛽𝛽𝐿𝐿

𝑘𝑘𝐷𝐷𝑐𝑐,𝑡𝑡 + 𝜃𝜃𝐿𝐿𝑘𝑘𝑋𝑋𝑖𝑖,𝑐𝑐,𝑡𝑡� + [1 − 𝐹𝐹(𝑅𝑅𝑖𝑖𝑖𝑖)]�𝛽𝛽𝐻𝐻
𝑘𝑘𝐷𝐷𝑐𝑐,𝑡𝑡 + 𝜃𝜃𝐻𝐻𝑘𝑘𝑋𝑋𝑖𝑖,𝑐𝑐,𝑡𝑡� +

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝜀𝜀𝑖𝑖,𝑐𝑐,𝑡𝑡+𝑘𝑘.  The dependent variable is the changes in net Gini in logs between 𝑡𝑡 and 𝑡𝑡 + 𝑘𝑘; 𝐷𝐷 is a dummy 
indicating pandemic years; 𝑋𝑋 denotes three lags of the dependent variable and the pandemic dummy; 𝐹𝐹(𝑅𝑅𝑐𝑐𝑐𝑐) is an 
indicator function of robot density or the pace of robot adoption, and the coefficient 𝛽𝛽𝐻𝐻𝑘𝑘 captures the impact of a pandemic 
in the case of higher robot usage and 𝛽𝛽𝐿𝐿𝑘𝑘 captures the impact in the case of the lower robot usage. The estimation controls 
for industry and country fixed effects, time dummies, and global business cycle. Standard errors are clustered at the 
country-industry pair level. 

 

Figure A.4. Robot Adoption in Log and Pandemics 
(Robot installation per 1000 employees in cumulative terms; T = pandemic year) 

  
Source: Authors.  
Note: Impulse responses are estimated using a sample of 18 industries in 40 economies over the period 2000-2014, using 
local projection method (Jorda, 2005). The estimates are based on: 𝑅𝑅𝑖𝑖,𝑐𝑐,𝑡𝑡+𝑘𝑘 =  𝛽𝛽𝑘𝑘𝐷𝐷𝑐𝑐,𝑡𝑡 + 𝜃𝜃𝑘𝑘𝑋𝑋𝑖𝑖,𝑐𝑐,𝑡𝑡 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 +  𝜀𝜀𝑖𝑖,𝑐𝑐,𝑡𝑡+𝑘𝑘 .  
The dependent variable 𝑅𝑅 is the log of the new robot installations per 1000 employees in cumulative terms between 𝑡𝑡 and 
𝑡𝑡 + 𝑘𝑘; 𝐷𝐷 is a dummy indicating pandemic years; 𝑋𝑋 denotes three lags of the dependent variable and the pandemic 
dummy. We control for industry and country fixed effects, and five-year dummies, as well as global business cycle 
(world real GDP growth). Standard errors are clustered at the country-industry pair level. 
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