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I. INTRODUCTION

Electricity powers modern economies. Climate change will likely have a fundamental impact
on electricity demand. A warming globe could reduce the need for heating in cold seasons
and increase the demand for cooling in hot seasons, impacting countries in different geo-
graphic locations heterogeneously. Rising temperatures could affect economic growth po-
tential and change electricity demand across multiple economic sectors. The interaction of
socioeconomic, demographic, and technological changes, as well as the timing and intensity
of temperature changes, will drive electricity demand and, more generally, energy use in the
future (van Ruijven, De Cian, and Wing, 2019).

The vast literature on the relationship between electricity consumption and temperature has
primarily focused on individual countries and regions where high-frequency micro-level data
are available. Many countries are understudied as a result of data constraint, and few stud-
ies compare the impact of temperature across countries. However, those understudied coun-
tries, mostly in sub-Saharan Africa and facing the electricity access challenge already,1 are
more vulnerable to climate change. The average temperature in those countries has often ex-
ceeded the optimal temperature for economic production. A rising temperature would mean
increasing electricity demand, making it more challenging for those countries to achieve the
sustainable development goals.2 Understanding how temperature shapes electricity demand in
regions like sub-Saharan Africa is thus of great importance.

This paper takes a different approach and investigates the relationship between electricity
consumption and temperature on a global scale using grid-level panel data. We focus on an-
nual frequency where identification comes from year-to-year fluctuations in annual average
temperature. To overcome the data constraint on electricity consumption, we use night light
as its proxy. Mostly generated by electricity and recorded by satellites, night light is available
for the entire world at a granular level and it can be a good proxy for electricity consumption.

Night light can be viewed as a normal good with respect to income spent on electricity at an-
nual frequency. In other words, an increase in spending on electricity results in more lights
at night, particularly when observed over a long period. Intuitively, lighting is an almost in-
dispensable component for activities at night. Its use would increase as electricity becomes

1For example, World Bank (2020) estimates that by 2030, 85% of people without access to electricity would be
in sub-Saharan Africa.
2Sustainable Development Goal 7, established by the United Nations General Assembly in 2015, aims to ensure

access to affordable, reliable, sustainable and modern energy.
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more accessible and affordable.3 For places where electricity access and affordability are not
of first-order concern, lighting is often necessary or complementary to activities at night that
require electricity consumption. For example, while air-conditioners might be the primary
use of electricity for indoor activities in a hot summer, lighting would occur more often with
more frequent staying-at-home. When observed at a relatively low frequency such as the an-
nual frequency, night light would be positively linked to total electricity consumption.

We provide some empirical evidence that night light is highly correlated with electricity con-
sumption and reflects both its extensive and intensive margins. We show that at the country
level, their functional relationship is linear. Night light is strongly correlated with electric-
ity access, income, and purchase of cooling and heating appliances, indicating that it reflects
the number of electric equipments in use, or the extensive margin of electricity consump-
tion. Night light is also positively related to the cooling and heating needs in a year at the
grid level, suggesting that it reflects as well the usage pattern of electric equipments, or the
intensive margin of electricity consumption.

The monotonic relationship between night light and electricity consumption, at least at annual
frequency, means that we could use night light as a proxy to analyze the impact of tempera-
ture on electricity consumption. Importantly, the monotonicity implies that the critical point
of temperature for night light is also the critical point for electricity consumption. This allows
us to find the temperature beyond which electricity consumption would increase.

Because of its granularity—the night light data we use has a resolution of 30 arc second, ap-
proximately 1 kilometer—we are able to aggregate it to match grid-level temperature data
that cover the entire globe. With nearly 700,000 observations, variation across different lo-
cations and over time allows us to precisely characterize the relationship globally between
night light and temperature. The cross-region variation is crucial because variation in annual
average temperature for a single location is small and only identifies the local relationship.

Using grid-level night light and temperature data, we first examine the relationship nonpara-
metrically degree by degree. We find that the relationship is uncertain below 0° but exhibits a
clear U-shape above 0°. The critical point of temperature for minimum electricity consump-
tion is roughly between 10 and 20°C. We then estimate a quadratic function to characterize
the relationship and find that 14.6°C is the critical point of annual average temperature. Other
things equal, when temperature is below 14.6°C, an increase in temperature would result in
less electricity consumption; on the contrary, when temperature is above it, an increase in

3The World Bank uses a multi-tier framework to measure access to electricity, task lighting and general lighting
belong to the most basic levels of electricity consumption (Bhatia and Angelou, 2015).
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temperature would result in more electricity consumption. The 95% confidence interval for
the critical point is between 14.1 and 15.3°C. Intuitively, the U-shaped relationship around
the critical point of temperature most likely reflects the relative strength of cooling or heating
demand.

Next we explore the heterogeneous impact of temperature on electricity consumption. The
heterogeneity exists at multiple levels. For example, the impact can differ in rich and poor
countries (Dell, Jones, and Olken, 2012) and in residential and industrial sectors (Auffham-
mer and Mansur, 2014). The grid-level data allow us to analyze the spatial heterogeneity at
subnational levels. We distinguish between urban and rural areas and between more industrial
and less industrial areas. Based on the resolution of gridded data, we focus on the first-level
administrative regions (states and provinces).

Using gridded population data to sort the first administrative regions of all countries by popu-
lation density, we examine the critical point of temperature for minimum electricity consump-
tion in each quartile. We find that in more densely populated areas, the critical point of tem-
perature is higher. For the top quartile of first-level administrative regions, such temperature is
close to 16°C. In a similar vein, we examine the difference between more and less industrial
regions based on average tropospheric nitrogen dioxide density, a major pollutant of industrial
production. We find that more industrial regions tend to have a higher critical point of temper-
ature. This implies that electricity consumption in urban and more industrial areas may react
more slowly to climate change. Rural and less industrial areas, on the contrary, may be more
sensitive and vulnerable to climate change.

Climate change is a long-term challenge. Beyond the level effect, it is natural to ask whether
temperature has any long-lasting impact on electricity consumption. Augmenting the empiri-
cal relationship between them by allowing for both level and growth effects to be present, we
find evidence that temperature increase appears to raise electricity consumption growth, but
the growth effect is small relative to the level effect.

With average annual temperature at 24°C, sub-Saharan Africa is the hottest region in the
world and is well beyond the critical point of temperature for minimum electricity consump-
tion. A warming climate could only mean increasing electricity demand. Using the composite
functional relationship between electricity consumption, night light and temperature, we es-
timate that a 1°C increase in temperature will drive up electricity demand in the region by
6.7%. This is roughly equivalent to adding the electricity consumption of the third largest
country in sub-Saharan Africa. Already facing a large electricity deficit, sub-Saharan African
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countries are particularly vulnerable to climate change. The need for building power infra-
structure is more urgent than ever to reach their sustainable development goals.

The rest of the paper is organized as follows. Section II briefly reviews the literature. Section
III describes the data and the framework for using night light as a proxy for electricity con-
sumption. In section IV, we present findings on the relationship between electricity consump-
tion and temperature, including the heterogeneous impact of temperature on urban and rural
areas, evidence on level and growth effects on electricity consumption, and the challenge for
sub-Saharan African countries. Section V concludes.

II. LITERATURE REVIEW

This paper is related to a large literature on the impact of climate change on electricity con-
sumption, which primarily focus on individual countries and regions that have high-frequency
micro-level data. For example, recent studies have analyzed places such as Brazil (Trotter
and others, 2016), China (Li, Yang, and Long, 2018; Fan, Hu, and Zhang, 2019), Cyprus
(Zachariadis and Hadjinicolaou, 2014), India (Gupta, 2012), Europe (Bessec and Fouquau,
2008, Cassarino, Sharp, and Barrett, 2018), Hong Kong and Singapore (Ang, Wang, and Ma,
2017). Auffhammer and Mansur (2014) provides a review of the earlier literature. However,
many countries and regions lack detailed electricity consumption data. To overcome such
constraint and study the relationship on a global scale, we focus on a relatively low frequency
and use satellite-recorded night light as a proxy for annual electricity consumption, which is
widely used in the remote sensing literature (e.g., Elvidge and others, 1997a, Chand and oth-
ers, 2009, Min and others, 2013) and the energy literature (e.g., Townsend and Bruce, 2010,
Shi and others, 2016, Hu and Huang, 2019). Night light has also been used to identify elec-
trified populations and estimate electrification strategies for sub-Saharan African countries
(Mentis and others, 2017).

In characterizing the relationship between temperature and electricity consumption, the lit-
erature typically assumes a U-shaped curve, with the minimum point as the balance temper-
ature between heating and cooling needs (e.g., Gupta, 2012, Li, Yang, and Long, 2018). As
the relationship is potentially non-linear, heating and cooling degree days4 are often used as
the temperature variable, dating back to Al-Zayer and Al-Ibrahim (1996). Sometimes a com-
fort zone is allowed where electricity consumption is not sensitive to temperature variations

4Heating (cooling) degree days is defined as the sum of degrees below (above) a threshold over a period of
time, such as a month or a year.
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within a temperature range (e.g., Moral-Carcedo and Vicéns-Otero, 2005; Fikru and Gautier,
2015). As those studies typically use data of daily or monthly frequency and focus on regions
in a particular climate zone, it is not immediately obvious that the relationship can be gener-
alized to annual data on a much larger geographic scale. In this paper, we show that at annual
frequency, the relationship is uncertain below 0° but exhibits a clear U-shape above 0°.

The response of electricity consumption to temperature variations is shaped by many factors,
including socio-economic changes (Hekkenberg, Moll, and Uiterkamp, 2009) and climate
zones (Auffhammer and Aroonruengsawat, 2011). Temperature can also have an impact on
economic growth (Dell, Jones, and Olken, 2012; Burke, Hsiang, and Miguel, 2015), which in
turn affects electricity consumption . The literature has distinguished between the intensive
and extensive margins of response to temperature shocks and finds that people adjust along
the intensive margin in the short run and along the extensive margin over time (Davis and
Gertler, 2015; Auffhammer, 2018). We show that night light is related to both the intensive
and extensive margins of electricity consumption. Given the annual frequency of this analy-
sis, however, the extensive margin is likely to dominate in our results. We also show that the
U-shaped relationship and the critical point of temperature differ across regions and across
different degrees of urban development, highlighting the heterogeneous impact of climate
change.

Persistent electricity scarcity has hampered sub-Saharan Africa’s growth (Avila and others,
2017), led to more poverty, and contributed to carbon emissions (Koçak and others, 2019).
Our findings suggest that climate change will add to the energy challenge the region faces.
More broadly, we contribute to the literature that aims to understand the detrimental impact
of climate change, particularly on sub-Saharan African countries (e.g., Calzadilla and oth-
ers, 2013; Abidoye and Odusola, 2015; Moore and Diaz, 2015; Serdeczny and others, 2017;
Baarsch and others, 2020).

III. NIGHT LIGHT AS A PROXY FOR ELECTRICITY CONSUMPTION

A. Night Light, Temperature, and Other Geospatial Data

Night light

Many human activities at night are powered by electricity and emit light. Street lamps, resi-
dential buildings, grocery stores, factories, advertising, sports lighting, and numerous other
businesses use electricity to operate at night. These nighttime lights, often referred to as night
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lights, can be seen from outer space and are recorded by satellites. Since night lights are di-
rectly linked to electricity consumption,5 they are a natural candidate as its proxy where elec-
tricity consumption data are not available.

The Operational Linescan System (OLS) instruments onboard the Defense Meteorological
Satellite Program (DMSP) satellites recorded night lights between 7-9pm local time each day
between 1992-2013. Based on DMSP-OLS data, the National Oceanic and Atmospheric Ad-
ministration (NOAA) provides annual cloud-free composites of night lights (Elvidge and oth-
ers, 1997b). The night light data are geospatial data of 30 arc second grids, spanning -180
to 180 degrees longitude and -65 to 75 degrees latitude, which we use in this paper. In cases
where two satellites were collecting data in the same year, two composites were produced and
we use the average of these two composites.

Each grid cell of night light data in a given year has a numeric value between 0 and 63 with
larger number indicating higher night light intensity. To calculate the total night lights for a
region, we sum the values of all grids within the region’s administrative boundary.

Temperature

The University of Delaware Physical Sciences Laboratory hosts global gridded high reso-
lution station (land) data for monthly-mean air temperature and monthly-total precipitation
from 1900-2014 (Willmott and Matsuura, 2001). The data are widely used in studies related
to climate change. We use the annual average of the monthly data between 1992 and 2013,
the period for which night lights data are available, for our analysis. At 0.5 by 0.5 degree grid
resolution (about 55.5km), the temperature data are much coarser than night lights, whose
resolution is 30 arc seconds (about 1km). To match the two datasets, we take the average of
night lights of all grid cells within each grid cell of temperature data.

Population

Because night lights were recorded with noise and not all lights were necessarily artificial
lights, we use gridded population data as a mask to exclude cells that are sparsely populated.
Specifically, we use Gridded Population of the World (GPW), v4, from the Socioeconomic
Data and Application Center of NASA, hosted by Columbia University. The population data
are available for every 5 years from 2000 onward. We use 2015, the next available year after
DMSP-OLS night light data end, as the mask. We discard cells that have no more than 100
people per grid.6

5For an estimation of the contribution of public and private sources to night light, see Kyba and others (2020).
6The choice of 100 is rather innocuous to our results. To get a sense of the implied population density, a 0.5 by

0.5 degree grid cell is slightly more than two-thirds the size of Rhode Island at its location.
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Administrative maps

Throughout, we use first level administrative regions (states and provinces) from the Database
of Global Administrative Areas (GADM 2.8) to account for spatial correlation. The choice
is based on two factors. First, administrative regions naturally control for institutional and
cultural differences. Second, the resolution of the temperature data is about 55km. At this res-
olution, about 1% of all 2478 first administrative regions contain only one cell of temperature
data. At the second administrative level, however, many regions are geographically too small
to be in distinct temperature cells.

Other data and considerations

To investigate the heterogeneity across different regions, we also use first-level administrative
regions to distinguish areas with different characteristics. To differentiate between urban and
rural areas, we sort states and provinces by their population density. We use the year 2000
for calculating population density (people per square kilometer) at the first administrative
level as it is close to the middle year night lights data (1992-2013). Higher population density
indicates more urbanized areas.

Similarly, to differentiate more industrial areas from less industrial areas, we sort states and
provinces by their average nitrogen dioxide density, which we derive from NASA’s satellite
data.7 NO2 is a major pollutant from industrial production. Higher NO2 density represents
more industrial areas. Appendix A provides a graphic illustration of NO2 distribution across
Europe and Africa using more recent data.

To compare night light with variables at the country level, we use electricity access, electric-
ity consumption, and GDP from the World Development Indicators. We use imports of heat-
ing and cooling equipments from UN Comtrade database. For comparison with heating and
cooling degree days, we use historical global gridded degree-days data from Mistry (2019).

B. Summary Statistics

In total, we have 848340 year-cell observations for which both temperature and night lights
data are available, covering 166 countries.8 Excluding sparsely populated cells, we drop about

7Nitrogen dioxide density are calculated as the average of cloud-screened tropospheric NO2 between 2005 and
2013 at the first administrative level. The NO2 data are obtained from Level-3 daily global gridded (0.25x0.25
degree) Nitrogen Dioxide Product (OMNO2d) of NASA Goddard Space Flight Center, Goddard Earth Sciences
Data and Information Services Center.
8Note that temperature data has 360×720 = 259200 grid cells at a point in time. Since only 29% of the surface

of Earth is land and an even smaller fraction is inhabited by humans where night lights are visible, the actual
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8% of observations and use the rest of the sample for non-parametric analysis. As will be ex-
plained later, our parametric analysis focuses on regions with annual average temperature no
less than 0°, which is about 90% of the remaining observations.

Table 1 summarizes temperature and night lights at the grid level by various selection criteria.
Our main sample, which is the second block in the table and excludes too sparsely populated
cells, have a mean temperature of 13.6°C, a number that we will reference frequently. The
average of night lights across cells is 2.2, indicating that a large fraction of lighted areas are
very dim at night.

Table 1. Summary Statistics of Grid-Level Temperature and Night Light

N mean min p25 p50 p75 max

Entire sample

Temperature 848340 12.86 -23.38 3.57 13.48 23.23 35.77
Night light 848340 2.00 0.00 0.03 0.33 1.95 56.38

population > 100 per 0.5°× 0.5° grid

Temperature 777073 13.62 -23.24 4.75 14.43 23.54 35.77
Night light 777073 2.17 0.00 0.05 0.43 2.25 56.38

population > 100 per 0.5°× 0.5° grid and temperature ≥ 0°C

Temperature 692794 15.77 0.00 7.63 16.63 24.26 35.77
Night light 692794 2.34 0.00 0.06 0.54 2.55 56.38

Figure 1 describes the distribution of temperature and night light at the grid level by conti-
nental regions9 between 1992 and 2013. Panel (a) shows that Europe, the Americas, and Asia
have a wide range of annual average temperature, ranging from below -15°C to above 30°C.
In contrast, Africa has a much smaller temperature range because of its geographic location
and its median temperature, at 23.5°C, is much higher than that of other regions. Panel (b)
shows that Europe is the brightest continent at night based on the median grid cell luminos-

number of observations is much smaller, averaging 848340/22 ≈ 38560 cells per year between 1992 and 2013.
In additional, we use the center point of a temperature grid cell to determine whether it belongs to a country
or an administrative region. For some countries, their area is too small to overlap with the center point of any
temperature grid and thus is not included.
9We use UN Statistics Division’s classification of continental regions.



12

ity, while Africa is the darkest continent. The north-south divide is also evident in Figure
1: colder regions tend to be more developed and brighter at night. Appendix A provides a
graphic comparison of night lights between Europe and Africa in 2010.

Figure 1. Temperature and Night Lights by Region
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(a) Temperature by Region
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(b) Night Lights by Region

Note: This figure shows the box plots of temperature and night lights by region. The box in the center represents data
from the 25th to the 75th percentile of the distribution. The vertical line in the middle of the box is the median. The
vertical line on the left (right) is the lower (upper) adjacent line, where the lower adjacent value is defined as the data
point right above x25−1.5(x75− x25) (right below x75 +1.5(x75− x25)).

C. Relationship with Electricity Consumption

We assume lighting at night is a normal good with respect to income spent on electricity at
annual frequency. Let E be electricity consumption in a region and L be the total night lights
in that region. There is a causal relationship between night light and electricity consumption:

logL = hX(logE), (1)

where X represents a number of location-specific and time-invariant factors that affect night
light, such as local economic growth and habits of using lights at night. hX(·) is assumed to
be a monotonic function, which can be derived from a composite electricity consumption
bundle of lighting and other electricity usage.10

10For example, in the special case of a constant elasticity-of-substitution consumption bundle that consists of
lighting L and other electricity usage O,

E =

[
φ

1
ζ L

ζ−1
ζ +(1−φ)

1
ζ O

ζ−1
ζ

] ζ

ζ−1
,
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Suppose the impact of temperature change on electricity consumption follows logE = g(T ),
then temperature would also affect night lights through:

logL = hX(log(g(T ))) := fX(T ). (2)

Using granular night light and temperature data, one can estimate the function form fX(·).
The monotonicity of hX(·) implies that we can invert it and obtain:

logE = h−1
X ( fX(T )). (3)

Equation (3) allows us to focus on the function fX(·). Since hX(·) is monotonic, it preserves
the order of fX(T ) as T changes. In particular, if there is a temperature T ∗ at which fX(·) is
lowest, it is also the temperature at which electricity consumption is lowest. In other words,
the critical points of minima and maxima fX(·) will be preserved.

1. Functional relationship

To examine hX(·) and h−1
X (·), we compare total night lights and electricity consumption at the

country level, since most countries do not have subnational level data on electricity consump-
tion. Using electricity consumption per capita and population data from the World Bank, we
compute total electricity consumption for a country. Panel (a) of Figure 2 shows that the rela-
tionship between night light and electricity consumption is monotonic. Conversely, if we use
night lights as a linear predictor of electricity consumption, panel (b) shows that the predic-
tion is well aligned with actual electricity consumption: the adjusted R2 is 0.99.

Table 2 formally examines the relationship between night lights and electricity consumption
at the country level, providing evidence that hX(·) is monotonically increasing. . Columns
(1)-(4) present the results from ordinary least squares regressions of night lights on electricity
consumption, adding year and country fixed effects one step at a time. Throughout, the co-
efficient on log electricity consumption is positive and statistically significant. Without year
and country fixed effects, adjusted R2 is 0.90, indicating a strong correlation between night
light and electricity consumption. With both year and country fixed effects, adjusted R2 is
0.99, suggesting that a linear function that accounts for country characteristics and a common

the optimal lighting follows: L = φE. Lighting is a constant share of total electricity consumption. As such
logL = logφ + logE and hX (x) = logφ + x.
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Figure 2. Relationship between Night Light and Electricity Consumption
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(b) Night Light Prediction and Electricity Consumption

Note: The left panel contrasts night lights against electricity consumption at the country level between 1992-2013.
The red line is the linear fit of night lights on electricity consumption and a constant. The right panel contrasts lin-
ear prediction of electricity consumption by night lights with country and year fixed effects against actual electricity
consumption at the country level between 1992-2013.

time trend can broadly characterize the relationship. Column (5) adds the second order term
of electricity consumption. While the coefficient on the second order term is statistically sig-
nificant at the 0.05 level, the domain of electricity consumption data implies that night light
falls on the increasing segment of the quadratic relationship with electricity consumption.

Table 2. Night Light and Electricity Consumption

(log) night light
(1) (2) (3) (4) (5)

(log) electricity consumption 0.888∗∗∗ 0.888∗∗∗ 0.686∗∗∗ 0.488∗∗∗ 1.289∗∗∗

(0.00594) (0.0235) (0.0445) (0.0565) (0.356)
(log) electricity consumption squared -0.0178∗

(0.00769)
year fixed effects - Yes - Yes Yes
country fixed effects - - Yes Yes Yes
Obs 2575 2575 2575 2575 2575
Adjusted R2 0.897 0.901 0.984 0.991 0.991
Note: This table presents results of ordinary least squares regressions of night lights on electricity
consumption at the country level. The coefficients on the constant term are omitted in the table. Stan-
dard errors are in parentheses and clustered at the country level. Stars indicate significance levels:
∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001.

To analyze the relationship between electricity consumption and temperature, we also need
to examine how well night lights can predict electricity consumption. Column (3) of Table 3
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shows that the linear prediction by night lights with year and country fixed effects approxi-
mates electricity consumption reasonably well, with adjusted R2 at 0.99. Column (4) adds the
second order term. The coefficient before it is not statistically significant and it also weakens
the predictive power of the linear term. Note that equations in Table 3 are predictive regres-
sions intended to approximate h−1

X (·), contrary to the causal relationships in Table 2.

Table 3. Predicting Electricity Consumption by Night Light

(log) electricity consumption
(1) (2) (3) (4)

(log) night light 1.010∗∗∗ 0.468∗∗∗ 0.583∗∗∗ 0.645
(0.00676) (0.0766) (0.0798) (0.396)

(log) night light squared 0.0206∗∗∗ -0.00264
(0.00290) (0.0160)

year fixed effects - - Yes Yes
country fixed effects - - Yes Yes
Obs 2575 2575 2575 2575
Adjusted R2 0.897 0.898 0.990 0.990
Note: This table presents results of ordinary least squares regressions of
electricity consumption on night lights at the country level. The coefficients on
the constant term are omitted in the table. Standard errors are in parentheses
and clustered at the country level. Stars indicate significance levels: ∗p <
0.05,∗∗ p < 0.01,∗∗∗ p < 0.001.

Taking the derivative with respect to temperature in Equation (3), we have

d logE
dT

=
d logE
d logL

d logL
dT

=
d logE
d logL

f ′X(T ). (4)

Column (3) of Table 3 shows that the term d logE/d logL is 0.583 at the country level.

2. Extensive and Intensive Margins

To gain some insights into what aspects of electricity consumption are captured by night
light, we examine the extensive and intensive margins of electricity usage.

The extensive margin reflects the number of electric equipments in use. We consider three
factors that shape the extensive margin: income, adaptation to climate change, and electric-
ity access. A rise in income would raise the affordability of electricity, boosting purchases
of electric equipments. We use a country’s GDP to as a measure of income. Climate change
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would increase the need for regulating room temperatures, which can be reflected in the adop-
tion of air conditioners and heaters. As it is difficult to obtain data on the number of air con-
ditioners and heaters in use globally, we use imports of heating and cooling equipments as its
proxy. For countries with poor electricity coverage, expansion of electric grids would increase
the number of electric appliances in use. We use the share of population with electricity ac-
cess to capture electricity coverage.

Columns (2)-(4) of Table 4 show that night light is positively related to income, imports of
heating and cooling equipments, and electricity access at the country level at annual fre-
quency. In other words, night light reflects the extensive margin of electricity consumption.
Columns (5)-(6) indicate that income and adaptation to climate change have influence on
night light beyond total electricity consumption. Such region-specific factors will be captured
in hX(·).

Table 4. Night Light and the Extensive Margin of Electricity Consumption

(log) night light
(1) (2) (3) (4) (5) (6) (7)

(log) electricity consumption 0.488∗∗∗ 0.433∗∗∗ 0.486∗∗∗ 0.430∗∗∗

(0.0565) (0.0626) (0.0553) (0.0551)
(log) GDP 0.373∗ 0.212∗∗

(0.174) (0.0737)
(log) imports of heating and cooling equipments 0.0485∗ 0.0525∗∗

(0.0187) (0.0169)
electricity access 0.00990∗∗∗ 0.00102

(0.00244) (0.00269)
Obs 2575 3134 3231 2825 2493 2481 2206
Adjusted R2 0.991 0.992 0.991 0.994 0.992 0.991 0.993

Note: This table presents results of ordinary least squares regressions of night lights on electricity con-
sumption, real GDP, real imports of heating and cooling equipments at the country level, and share
of population with electricity access. All regressions contain year and country fixed effects. Imports of
heating and cooling equipments corresponds to SITC code 7415 (air conditioners) and 7416 (miscella-
neous heating and cooling equipment). The coefficients on the constant term are omitted in the table.
Standard errors are in parentheses and clustered at the country level. Stars indicate significance levels:
∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001.

The intensive margin reflects the usage pattern of existing electric equipments, or the inten-
sity with which such equipments are used. To investigate the intensive margin, we consider
variation of temperature within a year, which drives the intensity for using electric equip-
ments. We use heating and cooling degree days at the grid level, which measure the cumu-
lative degrees below and above a temperature threshold in a year, to quantify the intensity of
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heating and cooling needs in a certain location. Specifically, we use a threshold of 10°C for
heating degree days and a threshold of 25°C for cooling degree days.11

Columns (2) and (3) of Table 4 provide evidence that night light is positively related to the
intensive margin of electricity consumption at the grid level. When we include annual tem-
perature in Column (4), the coefficient before heating degree days turns negative. One inter-
pretation is that gas might be more important than electricity in heating. As the heating need
increases, a switch from electricity to gas might occur. In addition, as we show in subsequent
analysis, the correlation between night light and electricity is also weak at low annual average
temperatures. Column (5) shows that in capturing the cooling demand at annual frequency,
average temperature can be adequate.

Table 5. Night Light and the Intensive Margin of Electricity Consumption

(log) night lights
(1) (2) (3) (4) (5)

temperature -0.186∗∗∗ -0.207∗∗∗ -0.186∗∗∗

(0.0141) (0.00328) (0.00241)
temperature squared 0.00634∗∗∗ 0.00678∗∗∗ 0.00634∗∗∗

(0.000462) (0.0000899) (0.0000804)
heating degree days 0.215∗∗∗ -0.0752∗∗∗

(0.0328) (0.00798)
cooling degree days 0.150∗∗ 0.00934

(0.0478) (0.00996)
Obs 691626 686973 686973 686973 686973
Adjusted R2 0.943 0.942 0.942 0.943 0.943
Note: This table presents results of ordinary least squares regressions of night lights on tem-
perature, cooling degree days and heating degree days at the grid level. All regressions contain
year and grid-cell fixed effects. Cooling degree days and heating degree days are normalized
by 1000 for ease of presentation of the coefficients. The coefficients on the constant term are
omitted in the table. Standard errors are in parentheses and clustered by the first administrative
region (state/province). Stars indicate significance levels: ∗p< 0.05,∗∗ p< 0.01,∗∗∗ p< 0.001.

IV. ELECTRICITY CONSUMPTION AND TEMPERATURE

In this section, we focus on the relationship between night lights and temperature. We first
investigate the functional relationship between the level of night lights and temperature. Next
11A number of thresholds have been used in the literature. A popular one is 65°F, or 18.3 °C. As we want to
construct variables that are correlated with the intensive margin strongly, we focus on stricter thresholds where
the need for heating or cooling is stronger.
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we explore the heterogeneous impact of temperature on night lights with a focus on the urban-
rural distinction and the difference between more and less industrial areas. We further analyze
the growth effects of temperature on night lights. Finally, we discuss the implications of cli-
mate change on electricity demand for sub-Saharan African countries.

A. A U-shaped Relationship

Nonparametric specification

To empirically characterize the global relationship between night light and temperature in
equation (2), we start with nonparametric estimation. For each degree, we assume the rela-
tionship is locally linear and estimate the coefficient before temperature β1 in the following
equation:

logLi,t = β0 +β1Ti,t +µi +αt + εi,t , T ∈ (ω°C,ω +1°C]. (5)

Li,t and Ti,t are the level of night lights and temperature in cell i in year t, respectively. µi is
the grid cell fixed effect that is intended to capture time-invariant location-specific level ef-
fect, such as regional level of economic development, average population density, habits of
using lights at night, terrain and atmospheric conditions, etc. αt captures the time fixed effect,
including satellite sensors decay over time and the trend in world economic growth. εi,t is the
residual.

Figure 3 plots the estimated coefficients β1 along with their 95% confidence intervals. No-
tably, below 0°C, the estimated β1 is highly uncertain with wide confidence intervals that
almost always contain zero. For temperature between 0°C and 9°C, the 95% confidence in-
tervals of β1 are below zero; for temperature greater than 14°C, the confidence 95% intervals
are mostly above zero. Since β1 is the local slope of the functional relationship between night
light and temperature, this indicates that night light first decreases as temperature increases
and then increases, displaying a U-shaped pattern. The critical point of temperature for the
minimum of night lights is roughly between 9°C and 15°C.

Parametric specification

The U-shaped pattern motivates us to use a quadratic function to capture the relationship be-
tween night light and temperature, which has the additional benefit of having a closed-form
expression of the critical values. We focus on cells that have annual average temperature no
less 0°C, because the relationship becomes uncertain below 0°C, as shown in Figure 3.



19

Figure 3. Nonparametric Estimates of the Impact of Temperature on Night Light β1
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Note: This figure presents non-parametrically estimated coefficients of linear regressions of night lights on
temperature, degree by degree and controlling for year and cell fixed effects.

Specifically, we consider the following panel regression equation:

logLi,t = β0 +β1Ti,t +β2T 2
i,t +µi +αt + εi,t . (6)

The second order term in equation (6) captures the nonlinear effect of temperature and allows
us to compute the critical points of local extreme values. If β2 is positive, the point for mini-
mum night light is

T ∗ =− β1

2β2
. (7)

If temperature is above T ∗, an increase in temperature would imply an increase in night light
or electricity consumption. Conversely, if temperature is below T ∗, an increase in temperature
would imply a decrease in electricity consumption.

Table 6 presents the results of regression (6). All regressions contain year and grid-cell fixed
effects. We cluster standard errors by the first administrative region (state/province) to ac-
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count for spatial correlations of night lights within a small geographic area.12 Column (1)
shows that β2 is indeed positive and statistically significant. The implied critical point of tem-
perature T ∗ is 14.6°C. Column (2) adds precipitation and its square. The estimated coeffi-
cients before temperature and its second order term are little changed and the critical point of
temperature is 14.5°C, similar to that in column (1). Because temperature and precipitation
are correlated, we focus on specifications without the precipitation terms in order to capture
the full impact of temperature in subsequent analysis.13

Columns (3)-(7) show the results from the same regression with the sample restricted to dif-
ferent continents. For Asia, the Americas, and Africa, the quadratic relationship between
night light and temperature is statistically significant. The implied critical point of temper-
ature are slightly higher than that implied by the entire sample. For Europe, the coefficient
before the second order term of temperature is statistically significant but the significance
level is weaker. The critical point is much more uncertain. For Oceania, the coefficients are
not statistically significant and the relationship is essentially flat.

Figure 4 plots the implied functional relationship by region in Table 6, where the functions
are normalized to zero at T = 14.6°C, the critical point of temperature for the entire sample,
for ease of comparison. All continents exhibit a U-shaped quadratic relationship, although
Europe and Oceania have much flatter curves—a key reason is that Europe does not have ob-
servations for high temperatures and Oceania has a narrower range of temperature than other
continents. The regional results highlight that focusing on a single region runs the risk of ex-
trapolating the relationship far beyond the domain of temperature data and underscore the
need for analysis on a global scale. For example, examining Europe alone would focus only
on the temperature range where heating demand dominates, while excluding Europe would
yield higher estimates of the critical point of temperature.

12In Appendix B, we discuss clustering by country and two-way clustering by state and year.
13Note that in Table 6, we only control for time and grid-cell fixed effects, not region-specific time trend. This is
because we want to estimate the unconditional relationship between night light and temperature while abstract-
ing from exact channels through which temperature affects electricity consumption. Local economic growth,
for example, affects electricity consumption and hence night lights, but temperature has an impact on economic
growth (e.g., Dell, Jones, and Olken (2012), Burke, Hsiang, and Miguel (2015)). Adding region-specific time
trend would be estimating the relationship conditional on economic growth and we would not capture such im-
pact. Since temperature is exogenous, at least in the short run, there is no concern of simultaneity that drives
both temperature and night lights. In Appendix B, we conduct various exercises to examine the role of region-
specific time trend.
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Table 6. Night Light and Temperature

(log) night lights
World Asia Americas Africa Europe Oceania

(1) (2) (3) (4) (5) (6) (7)

temperature -0.186∗∗∗ -0.185∗∗∗ -0.185∗∗∗ -0.156∗∗∗ -0.247∗ -0.0963∗∗∗ -0.0211
(0.0141) (0.0141) (0.0394) (0.0212) (0.0963) (0.0121) (0.0698)

temperature squared 0.00634∗∗∗ 0.00639∗∗∗ 0.00553∗∗∗ 0.00514∗∗∗ 0.00697∗∗ 0.00208∗ 0.000508
(0.000462) (0.000470) (0.00122) (0.000667) (0.00222) (0.000854) (0.00188)

precipitation 0.00470
(0.00298)

precipitation squared -0.0000636
(0.0000622)

Obs 691660 691660 207379 215931 121433 124266 22651
Adjusted R2 0.943 0.943 0.923 0.956 0.904 0.957 0.928

Average T (°C) 15.8 15.8 16.4 16.1 23.5 6.1 18.3

Critical point T ∗(°C) 14.6 14.5 16.7 15.2 17.7 23.1 20.8
95% confidence interval (°C) [14.1,15.3] [14.0,15.2] [15.1,18.5] [14.2,16.4] [14.4,20.3] [16.5,42.2] [−40.0,58.3]

Note: This table presents results of ordinary least squares regressions of night lights on temperature at the grid
level. All regressions contain year and grid-cell fixed effects. The coefficients on the constant term are omitted in
the table. Standard errors are in parentheses and clustered by the first administrative region (state/province). Stars
indicate significance levels: ∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001. 95% confidence intervals for the critical point
of temperature are based on 400 bootstraps. Each bootstrap draws a random sample with replacement that has
one-fifth the size of the original sample and estimates equation (6).

To account for the uncertainty of the sample, we conduct 400 bootstraps of the entire sample
and plot the estimated U-shaped relationship between night lights and temperature. Figure 5
presents the 95% confidence interval of the U-shaped relationship. The corresponding critical
point of temperature ranges between 14.1°C and 15.3°C. Note that the average temperature
across all cells between 1992 and 2013 is 15.8°C (Table 6), already exceeding the critical
point. Notably, the average temperature in Africa, 23.5°C, is well above this critical point. It
is also above the critical point implied when we use Africa data alone (17.7°C). In fact, most
cells in Africa are firmly above this critical point (Figure 1).

B. Heterogeneous Impact of Temperature

Does temperature affect electricity consumption in urban and rural areas alike? What about
different types of economy? To differentiate between urban and rural areas, we compare pop-
ulation density across regions. Many cities extend beyondd their jurisdictions with their satel-
lite cities or suburbs more akin to urban areas than to rural areas. For this reason, we focus
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Figure 4. Night Light and Temperature by Region
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Note: This figure presents the relationship between night lights and temperature for the en-
tire sample and by continent. For comparison purposes, the implied quadratic functions are
normalized to zero at T = 14.6°C, the critical point of temperature for the entire sample.

on the first-level administrative regions (states/provinces)—rather than the grid cell level—
and rank them by population per square kilometers for each country. We use population in the
year 2000, which is close to the middle year of our sample.

To distinguish between more and less industrial areas, we compare tropospheric nitrogen
dioxide (NO2) density across the first-level administrative regions. NO2 is a major pollutant
of industrial production and traffic from motor vehicles. While atmospheric conditions, such
as wind, affect its distribution, NO2 is a pollutant with a relatively short atmospheric lifetime
and does not get transported far from its source.14 It is therefore concentrated around cities
and more industrial areas.15 The focus on comparing the first-level administrative regions and
the use of average daily data should alleviate such concerns. We sort the first administrative
regions within each country by their daily average NO2 density between 2005 and 2013.

14By one estimate (Shah and others, 2020), NO2 lifetime is only several hours.
15For example, Filonchyk and others (2020) show that NO2 levels reflect changes in industrial activity during
the COVID-19 lockdown in China.
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Figure 5. Night Light and Temperature: U-shaped Relationship

Note: This figure presents the 95% confidence interval of the relationship between night lights
and temperature based on 400 bootstraps of the entire sample. For each bootstrap, the co-
efficients before the temperature and temperature squared terms are computed. The implied
quadratic function’s minimum value is normalized to be zero.

Table 7 conducts the same regression as equation (6) by quartiles of population density and
by NO2 density separately. In each case, all quartiles exhibit a U-shaped relationship between
night light and temperature with a statistically significant coefficient before the quadratic term
of temperature. A pattern emerges by comparing the results across quartiles: as we move to
regions with higher population density or higher industrial production, the critical point of
temperature T ∗ tends to increase. In other words, the impact of global warming on electricity
demand might be felt more strongly in rural and less industrial areas, because the average
temperature has already risen above their critical point or will rise above it first.

Figure 6 plots the estimated quadratic relationships by quartiles of population density and
NO2 density, with the minimum value of night light normalized to zero for comparison pur-
poses. At low temperatures, a 1°C increase in temperature tends to reduce electricity con-
sumption in rural and less industrial areas by less, while at high temperatures, it tends to in-
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crease their electricity consumption by more. This suggests that global warming would have a
greater impact on the electricity demand of rural and less industrial areas.

Table 7. Night Light and Temperature by Population and NO2 Quartile

by population density quartile

(log) night light
1st 2nd 3rd 4th

temperature -0.142∗∗∗ -0.176∗∗∗ -0.194∗∗∗ -0.259∗∗∗

(0.0246) (0.0340) (0.0271) (0.0239)
temperature squared 0.00550∗∗∗ 0.00617∗∗∗ 0.00596∗∗∗ 0.00833∗∗∗

(0.000890) (0.00108) (0.000905) (0.000755)
Obs 186838 162287 171222 166312
Adjusted R2 0.920 0.942 0.946 0.952

Critical point T ∗(°C) 12.9 14.3 16.3 15.6

by NO2 density quartile

(log) night light
1st 2nd 3rd 4th

temperature -0.158∗∗∗ -0.197∗∗∗ -0.197∗∗∗ -0.212∗∗∗

(0.0281) (0.0209) (0.0293) (0.0387)
temperature squared 0.00637∗∗∗ 0.00661∗∗∗ 0.00641∗∗∗ 0.00652∗∗∗

(0.00102) (0.000733) (0.000968) (0.00105)
Obs 189752 169437 169227 162497
Adjusted R2 0.931 0.939 0.943 0.950

Critical point T ∗(°C) 12.4 14.9 15.3 16.3
Note: This table presents results of ordinary least squares regressions of night lights on temperature
at the grid level by population and NO2 density quartiles. All regressions contain year and grid-cell
fixed effects. The coefficients on the constant term are omitted in the table. Standard errors are in
parentheses and clustered at the first administrative (state/province) level. Stars indicate significance
levels: ∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001. Throughout, the first quartile represents the lowest
value and the fourth quartile represents the highest value.
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Figure 6. Night Light and Temperature by Population and NO2 Quartile
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Note: Panel (a) presents the estimated quadratic relationship between night lights and temperature by quartiles of
population density at the first administrative level. Panel (b) presents the estimated quadratic relationship between
night lights and temperature by quartiles of nitrogen dioxide density at the first administrative level. Each quadratic
function’s minimum value is normalized to zero. Throughout, the first quartile represents the lowest value and the
fourth quartile represents the highest value.

C. Level and Growth Effects

Up to now we have only focused on the level effect of temperature on electricity consump-
tion. A natural question is whether this effect will last and for how long. In other words, it
remains unclear whether temperature fluctuations would have a growth impact on electricity
consumption.

To investigate the growth impact of temperature, we augment the relationship between elec-
tricity consumption and temperature in a similar way to Dell, Jones, and Olken (2012). Previ-
ously, we have logE = g(T ), or E = eg(T ). Now we add a potential electricity consumption
term Ē such that E = eg(T )Ē and we allow temperature to have an impact on its growth rate:

dĒ
Ē

= d log Ē = gE + γET, (8)

where the parameter γE captures the growth impact of temperature on electricity consump-
tion. Assuming night light and electricity consumption follow a linear relationship as before,
we can replace E with L:

logL ∝ fX(T )+ log L̄, (9)

d log L̄ = g+ γT, (10)
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where the parameter γ captures the growth impact of temperature on night light. We have
shown before that a quadratic function can broadly capture the relationship between night
light and temperature in levels:

fX(L) = β2

(
T +

β1

2β2

)2

+C, (11)

where C is a constant. Taking first difference of equation (9) with respect to time, we have

logLt− logLt−1 = (β1 + γ)Tt−β1Tt−1 +β2(T 2
t −T 2

t−1). (12)

In regression equation (12), if the coefficients before Tt and Tt−1 are statistically different,
then it is evidence that γ is not zero and the growth effect exists.

Table 8 presents the regression results of equation (12), allowing the lags of temperature to
have an impact on electricity consumption growth. All specifications control for year and
grid-cell fixed effects. The sum of the coefficients before Tt and Tt−1, γ , is positive and sta-
tistically significant for all four columns, indicating that the growth effect exists throughout
the medium term. Put differently, even if temperature rises temporarily in a given year and
reserves in subsequent years, the increase in electricity consumption persists. Specifically, a
1°increase in temperature is estimated to increase electricity consumption growth by at least 1
percentage point.

The presence of the growth effect highlights that the impact of temperature on electricity con-
sumption is persistent throughout the medium term. Therefore, measures that provide a tem-
porary respite, such as bringing power ships to provide electricity, will not be enough; long-
term solutions to tackle the electricity challenges posed by climate change will be needed.

D. Challenging Future for Sub-Saharan Africa

Sub-Saharan Africa (SSA) is one of the hottest regions in the world and it is most vulnerable
to climate change. In section IV.A, we showed that electricity consumption and temperature
follows a U-shaped relationship. To get an idea of how much 1°C increase in temperature
increases electricity consumption, we focus on equation (4), the derivative of electricity con-
sumption with respect to temperature through the chain rule, which is repeated here for con-
venience:

d logE
dT

=
d logE
d logL

d logL
dT

=
d logE
d logL

f ′X(T ).
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Table 8. Growth Effect of Temperature on Night Light

d(log) night light
(1) (2) (3) (4)

temperature -0.0691∗∗∗ -0.0800∗∗∗ -0.0814∗∗∗ -0.0686∗∗∗

(0.00734) (0.00702) (0.00695) (0.00705)
temperature (1st lag) 0.0811∗∗∗ 0.0894∗∗∗ 0.0929∗∗∗ 0.0840∗∗∗

(0.00714) (0.00717) (0.00728) (0.00725)
temperature (2nd lag) 0.00180 -0.00332 -0.0133∗∗∗

(0.00256) (0.00277) (0.00287)
temperature (3rd lag) 0.0191∗∗∗ 0.0222∗∗∗

(0.00380) (0.00415)
temperature (4th lag) -0.00824∗

(0.00356)
temperature squared diff 0.00205∗∗∗ 0.00228∗∗∗ 0.00229∗∗∗ 0.00196∗∗∗

(0.000194) (0.000188) (0.000188) (0.000187)
Obs 638239 606460 574956 544299
Adjusted R2 0.0818 0.0804 0.0833 0.0814

sum of all temp. coeff. (γ) .012 0.011 .027 0.016
F test p-value 0.0001 0.0045 0.0000 0.0001

Note: All regressions control for year and grid-cell fixed effects. Standard errors are in parentheses and clustered
at the first administrative level. Stars indicate significance levels: ∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001.

Section III.C shows that d logE/d logL = 0.583. The point estimates of regression (6) for
the entire sample implies that f ′X(T ) = −0.186+ 2× 0.00634T . For SSA countries in our
sample, the average temperature of all year-cell observations is 23.7°C. This implies that
d logE/dT = 6.7%: a 1°C increase in temperature increases electricity consumption of all
SSA countries by 6.7%, which is about adding the electricity consumption of Nigeria, the
second largest electricity consumption country in sub-Saharan Africa in 2014. Accounting for
the uncertainty in the slope estimates of the U-shaped relationship Figure 5, the 95% confi-
dence interval for d logE/dT ranges from 6.0% to 7.5%.

Figure 7 presents the percent increase in electricity consumption in response to a 1°C increase
in annual average temperature for SSA countries. Notably, West Africa, particularly the Sa-
hel region, with average temperature already high, is more sensitive to climate change and
could experience more than 10% increase in electricity demand for a 1°C increase in tem-
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perature. Recent study by Nordhaus (2018) shows that the global mean temperature could
increase by about 1°C from the 2010s to the 2050s and by about 3°C to 2100 without sub-
stantial mitigation of greenhouse gas emissions. Such speed of global warming will add to the
challenge for SSA countries to meet their electricity demand. Considering that many still lack
adequate electricity access, they will struggle to reach the Sustainable Development Goals.
Investment in basic infrastructure, such as the electricity power grid, would therefore be es-
sential not only to expand electricity access but to increase energy efficiency and reduce car-
bon footprint. Geospatial electrification, which uses data such as night light to determine the
most cost-effective conventional and renewable energy technologies for bringing electricity
to specific localities, is among the quantitative tools to assess sustainable development policy
options (Mentis and others, 2017).16

Figure 7. Impact of a 1°C Increase in Temperature on Electricity Consumption
in Sub-Saharan African Countries

Note: This figure presents the percent increase in electricity consumption in response to 1°C
increase in annual average temperature.

Great uncertainties still exist around our estimates of the response of electricity consumption
to temperature increase. First, while the relationship between night light and temperature is
16See, for example, UN modeling tools for sustainable development: https://un-modelling.github.io/
modelling-tools/.

https://un-modelling.github.io/modelling-tools/
https://un-modelling.github.io/modelling-tools/
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estimated on grid-level data, our estimate of the elasticity of electricity consumption to night
light is based on country-level data. Whether the relationship between electricity consumption
and night light is similar at different levels of spatial disaggregation remains to be verified
by more granular electricity data. Second, the interactions between electricity consumption,
economic growth, and climate change can be complex. On the one hand, solving electricity
capacity constraints could spur more economic growth, which increases electricity demand
further; on the other, a warming climate might negatively impact economic growth, which
reduces electricity demand. Furthermore, economic growth, depending on how green it will
be, has implications on the speed of climate change. A general equilibrium model that takes
care of the endogeneity of those variables would be needed for forecasting electricity demand
more precisely. We leave that for future research.

V. CONCLUSION

This paper investigates the relationship between electricity consumption and temperature us-
ing panel data on a global scale. To overcome the data constraint on electricity consumption,
we use satellite-recorded night light as its proxy. We first establish a linear relationship be-
tween electricity consumption and night light at the country level. We show that night light
reflects both the extensive and intensive margins of electricity at annual frequency. We then
uncover a U-shaped relationship between night light and temperature using grid-level data.
We find that the critical point of temperature for minimum electricity consumption is about
14.6°C for the world, which the average temperature of the world has already surpassed; the
critical point is higher for urban and more industrial areas. We also find that the impact of
temperature on electricity consumption is persistent, lasting through out the medium term. We
highlight that sub-Saharan Africa is the most vulnerable to climate change: a 1°C increase in
temperature could increase the region’s electricity consumption by about 6.7%, adding to the
challenge of lack of electricity access already facing the region.
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APPENDIX A. ILLUSTRATIONS OF SATELLITE DATA

This paper uses satellite recorded night light data as a proxy for electricity consumption.
Panel (a) of Figure 8 presents an example of the satellite image of night lights in 2010 cov-
ering Europe and Africa. Bright areas indicate lights at night. One can see the contours of
most Western European countries such as the United Kingdom, Spain, France, Germany, and
Italy. For North Africa, the Nile river is visible. For sub-Saharan Africa, only major cities can
be seen at the picture’s resolution.

Figure 8. Night Lights and Nitrogen Dioxide: Europe vs. Africa

(a) DMSP/OLS Night Lights (b) NO2 density

Note: Panel (a) presents DMSP/OLS night lights in 2010 for Europe and Africa. Panel (b) presents daily average of
total vertical column of NO2 between 2018 and 2019 from Sentinel-5 Precursor satellite Near Real-Time datasets by
the European Space Agency. The unit of NO2 is mol/m2.

Nitrogen dioxide (NO2) is a major pollutant of industrial production and burning fossil fuels.
Tropospheric nitrogen dioxide (NO2) is used in this paper to group regions into more or less
industrial ones. Panel (b) of Figure 8 shows an example of the average NO2 density based on
Sentinel-5 Precursor satellite Near Real-Time datasets by the European Space Agency (ESA).
It covers the same region as that of Panel (a). Red colors indicate high levels of NO2 density.
One can see that Southern United Kingdom, Northern France, and Northern Italy are among
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regions with high NO2 density in Europe. Cairo (Egypt) and Johannesburg (South Africa) are
regions with highest NO2 density in Africa.

While the ESA NO2 has a relatively high resolution, it only dates back to 2018. To corre-
spond well to the time period of night light data (1992-2013), this paper uses NO2 data of
Level-3 daily global gridded (0.25x0.25 degree) Nitrogen Dioxide Product (OMNO2d) from
the National Aeronautics and Space Administration (NASA), which have a lower resolution
but start from October 2004. For the purpose of sorting first administrative regions by NO2

density, we use the 2005-2013 daily average within each administrative region as the measure
of NO2 density .

APPENDIX B. ADDITIONAL ROBUSTNESS CHECKS

Standard errors

In the main text of the paper, we cluster standard errors by first administrative regions. This is
because we have 2478 states and provinces but only 22 years (1992-2013). The limited num-
ber of clusters by year may cause the standard error to be biased. Table 9 presents results with
standard errors clustered by both year and state. Compared to Table 6, the coefficient before
the second order term of temperature remains statistically significant for the whole sample
and for most subsamples that use continent-level data.

Region-specific time trend

In Table 6, we only control for year and grid-cell fixed effects. No region-specific time trend
is added. Now we consider a few region-specific time trends, including continent-specific,
country-specific, and state/province-specific time trends. Note that adding region-specific
time trends increases the number of parameters substantially. For example, to control for
state/province-specific time trends, we are effectively estimating 54516 parameters (2478
states/provinces × 22 years).

Table 10 presents the results when controlling for region-specific time trends. The coefficients
before the second order term of temperature remain statistically significant. As we add more
local time trend, the t-statistic declines. The estimated critical point in each specification is
below the average temperature, supporting the finding that the world has exceeded the crit-
ical point of electricity consumption. The relationship between night light and temperature
conditional on region-specific trends, however, is likely to omit important channels through
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Table 9. Night Light and Temperature: Two-way Clustering

(log) night lights
World Asia Americas Africa Europe Oceania

(1) (2) (3) (4) (5) (6) (7)

temperature -0.186∗∗∗ -0.185∗∗∗ -0.185∗ -0.156∗ -0.247 -0.0963∗∗ -0.0211
(0.0416) (0.0414) (0.0721) (0.0565) (0.145) (0.0325) (0.0609)

temperature squared 0.00634∗∗∗ 0.00639∗∗∗ 0.00553∗∗ 0.00514∗∗ 0.00697∗ 0.00208 0.000508
(0.00118) (0.00119) (0.00179) (0.00139) (0.00332) (0.00220) (0.00155)

precipitation 0.00470
(0.00492)

precipitation squared -0.0000636
(0.000118)

Obs 691660 691660 207379 215931 121433 124266 22651
Adjusted R2 0.943 0.943 0.923 0.956 0.904 0.957 0.928

Critical point T ∗(°C) 14.6 14.5 16.7 15.2 17.7 23.1 20.8
Average T (°C) 16.8 16.8 15.8 16.8 24.4 6.0 18.9

Note: This table presents results of ordinary least squares regressions of night lights on temperature at the grid level.
All regressions contain year and grid-cell fixed effects. The coefficients on the constant term are omitted in the table.
Standard errors are in parentheses and clustered by both year and the first administrative region (state/province).
Stars indicate significance levels: ∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001.

which temperature affects night lights, such as local economic growth. As such we use year
and grid-cell fixed effects in the main text.

The nonparametric estimates in Figure 3 show that when temperature is below 0°C or above
26°C, the impact of temperature on night lights cannot be estimated precisely and is not sta-
tistically different from zero. Focusing on the temperature range between 0 and 26°C, which
is roughly 80% of the whole sample, columns (2), (4), and (6) show that the coefficients be-
fore the quadratic term is statistically significant and the U-shaped relationship reappears.
The implied critical points of temperature are higher than that of column (1) in Table 6. How-
ever, columns (2), (4), and (6) estimate the relationship between night lights and temperature
conditional on region-specific trends and likely omit important channels through which tem-
perature affects night lights, such as local economic growth.
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Table 10. Night Light and Temperature

(log) night light
(1) (2) (3)

temperature -0.151∗∗∗ -0.0676∗∗∗ -0.0569∗∗

(0.0383) (0.0126) (0.0195)
temperature squared 0.00483∗∗∗ 0.00242∗∗∗ 0.00169∗∗

(0.000991) (0.000359) (0.000507)
UN region×year fixed effects Yes - -
country×year fixed effects - Yes -
state×year fixed effects - - Yes
Obs 691660 691544 680209
Adjusted R2 0.945 0.952 0.956

Critical point T ∗(°C) 15.6 13.9 16.8
Average T (°C) 16.8 16.8 16.8
Note: This table presents results of ordinary least squares regressions of
night lights on temperature at the grid level. All regressions contain year
and grid-cell fixed effects. The coefficients on the constant term are omitted
in the table. Standard errors are in parentheses and clustered by the first
administrative region (state/province). Stars indicate significance levels:
∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001.
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