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In memory of Greg Kaser

l. INTRODUCTION

While the ongoing coronavirus pandemic continues to threaten millions of lives around the
world, the first half of 2020 saw an unprecedented decline in CO2 emissions—Iarger than
during the financial crisis of 2008, the oil crisis of the 1979, or even World War Il. Research
shows that in the first six months of 2020, 6.4 percent less carbon dioxide was emitted than
in the same period in 2019 (Liu et al., 2021).

The 2020 climate jackpot, however, offers little to celebrate, for four distinct reasons.
First, it is linked to a world health emergency of biblical proportions that, by the end of 2020,
had infected over 90 million people globally and killed almost 2 million, causing factories to
close down, massive job losses and the paralysis of large swathes of economic activity. These
makes the recent climate gains clearly unsustainable. Second, recent UN reports indicate that
global emissions would need to drop by the same exaggerated rate seen during the pandemic
(7.6 percent per year) in every year for the next few decades, to ensure that global
temperatures do not increase more than 1.5°C relative to the pre-industrial era, a necessary
target to stave off the worst effects of climate change (IPCC, 2019). Third, the severe
economic shock triggered by the pandemic has generated an outpouring of public policy
action around the world and the rapid crafting of trillion-dollar stimulus packages, but
some of this action actually risks to hamper progress on mitigating climate change because
it is predicated on supporting non-eco-friendly industries—the same industries that need to
be drastically reformed to meet the climate goals (Hepburn et al. 2020; Carney, 2021).
Finally, virtually none of the measures taken so far to sustain activity have been directly
targeted at mitigating emissions via fostering conservation—a necessary condition for
meeting the 1.5°C target, which would also help shelter humanity from the spread of new,
deadly zoonotic diseases (OECD, 2020).

Global Earth champions argue that fixing the twin climate and biodiversity crises
that affect our planet is still possible, but it requires to ‘build back better’, stewarding the
global economy within limits set by nature (Rockstrém et al., 2017; Attenborough, 2020;
Georgieva, 2020; Stiglitz, 2020; Gates, 2021; Carney, 2021).2 Often, however, cutting
emissions and protecting wildlife and natural resources has been portrayed at odds with
creating jobs and fostering economic growth (see, for example, Walley and Whitehead,
1994; NERA, 2017; and Christian, 2021). In contrast, a recent paper based on a global
survey of experts including senior officials from finance ministries and central banks,
found that green projects are widely perceived capable to create more jobs, deliver higher
short-term returns per dollar spent, and lead to increased long-term cost savings, by
comparison with traditional fiscal stimulus (Hepburn et al., 2020).

2 See also Helm (2020) and Agrawal et al., (2020).



This paper contributes to this debate. To our knowledge, it is the first study
estimating directly the effect on GDP of money spent to foster the transition to a zero-
carbon, nature-friendly world for a variety of green expenditure typologies. Although
‘green’ expenditure has historically tended to be defined as spending that helps reduce
greenhouse gas emissions, we expand the definition to include examples of nature-based
negative emissions technologies (“nature-based solutions” or NBSSs) in the form of
expenditure on biodiversity conservation and rewilding.® These are increasingly regarded
by science as solutions that support the Earth’s natural capabilities to sequester carbon and
mitigate climate change. Moreover, these measures have been shown to be a vital
complement of planetary climate and global temperature stabilization strategies (IPCC
2019; IPBES, 2019; Foley et al., 2020; Dasgupta et al., 2021).

Using a new international dataset, part of which was especially assembled for this
analysis, we find that every dollar (private and public) spent on key carbon-neutral or
carbon-sink activities—from zero-emission power plants to the protection of wildlife and
ecosystems—can generate more than a dollar’s worth of economic activity: the total
increase in GDP is greater than the original increase in green spending. These economic
effects appear significantly bigger and more long-lasting than ‘non-eco-friendly’ spending
in alternative energy technologies or land/sea uses. Although green and non-ecofriendly
expenditures are not always strictly comparable due to data limitations, the estimated
multipliers associated with green spending are found to be generally larger than those
associated with non-eco-friendly expenditure. In the case of renewable versus fossil fuel
energy investments, where country and time samples are homogeneous and allow a formal
statistical comparison, the difference between the associated multipliers emerge as non-
zero with very high probability. The point estimates of the multipliers are 1.1-1.5 for
renewable energy investment and 0.5-0.6 for fossil fuel energy investment, depending on
horizon and specification.

These findings survive several robustness checks and lend support to existing
bottom-up analyses (documented in the paper) that have found that, in general, stabilizing
climate and reversing biodiversity loss are compatible with continuing economic
advances. They also suggest that in crafting a post-COVID-19 recovery, investments in
energy and land/sea use transitions are likely economically superior to those offered by
supporting economic activities involving unsustainable ways to produce energy and food:
the economy can recover more rapidly by building back better, while keeping many of the
ecological improvements attained in 2020.

The empirical analysis borrows the concept of investment multiplier from the
traditional macroeconomic literature to quantify the impact on GDP of green investment
expenditures. The calculations are based on the estimates of factor-augmented panel
vector-autoregressive models that deal with well-known technical issues in the recent

3 See Seddon et al. (2020) for a definition of NBSs.



literature on fiscal multipliers (along similar lines of Fragetta and Gasteiger, 2014;
Caggiano et al., 2015; 2017; Amendola et al., 2020, among many others). First, the panel
dimension allows exploiting data of many countries of which green and non-ecofriendly
spending estimates are available. Second, augmenting the specification with factors
extracted from many macroeconomic variables mitigates limited information concerns.
This helps correct for the fact that there is likely important information that we do not
explicitly include in our model, but that might have been used by economic agents in
making their choices (see, e.g., Bernanke et al., 2005; Fragetta and Gasteiger, 2014; and
Stock, Watson, 2005). Third, most specifications include forecasts of investments formed
over the past year as an exogenous variable, to purge green and non-eco-friendly spending
shocks from their anticipated component and mitigate the issue of shock foresight
highlighted in the macro-fiscal literature (see, e.g., Forni and Gambetti, 2010, among
others). The need of dealing with the issues of limited information and shock foresight
stems from the problem of ‘non-fundamentalness,’ a potential source of bias deriving
essentially from a misalignment between the information sets of economic agents and the
econometrician.

The paper is organized as follows. Section Il reviews current spending on clean
energy and sustainable land uses and why a transition to net-zero emissions calls for more
spending in these areas. Section Il describes the data used in the estimation. Section IV
presents the methodology employed to estimate spending multipliers. Section V reports
the empirical results. Section VI illustrates the outcomes of robustness checks. Finally,
Section VI draws policy implications and concludes.

1. WHY MORE |Is NEEDED ON CLEAN ENERGY AND CONSERVATION

To date, world governments’ collective US$14 trillion fiscal response to the
economic damage of the COVID-19 pandemic has concentrated on measures to address the
health emergency and support household and firms stranded by the lockdowns (IMF, 2021).
As the immediate health crisis recedes, however, attention and funding will turn toward
economic recovery, creating more opportunities to build back better. Accordingly,
governments have been urged to make the post-coronavirus stimulus “green” to ensure that
climate change agendas do not get sidetracked (Bozuwa et al. 2020; UN, 2020a; IMF, 2020).
However, few governments have yet heeded this advice (VividEconomics, 2020), a decision
likely driven, at least in part, by ongoing uncertainty about the jobs and growth implications
of investing in more sustainable economies. In this context, a deeper understanding of the
growth implications of green spending can help policymakers and advocates of a green
recovery capitalize on opportunities where they exist.



This paper contributes to this debate by using, for the first time in the empirical
economics literature, standard methods traditionally employed to estimate investment
multipliers in order to quantify the impact on GDP of green stimulus measures. The analysis
focuses on areas of economic activity which science identifies as having a high impact on
sustainability and where spending on phasing-out of polluting processes and unsustainable
practices is falling dramatically short relative to targets: (i) reducing emissions by increasing
the use of clean energy; and (ii) supporting nature’s carbon sinks by enhancing the quality
and quantity of biodiversity conservation. Below we briefly discuss the importance of
buttressing expenditure in these areas to enable green transitions.

Clean energy

Energy consumption contributes to around % of all anthropogenic greenhouse gas emissions,
as today energy enters virtually every sector of production from electricity, to agriculture, to
transportation, to industry (WRI, 2020a). Cleaning energy consumption is thus considered
key to reaching net-zero emissions by 2050 under most science-driven plans for climate
stabilization (see, for example, Foley et al., 2020).

There are two categories of clean energy: renewable and non-renewable. Renewable
energy is energy that is collected from renewable fuel resources, which are naturally
replenished on a human timescale, including carbon-neutral sources like sunlight, wind, rain,
tides, waves, and geothermal heat. The term often also encompasses biomass, but its carbon-
neutral status is under debate. Nuclear energy—considered a “non-renewable” energy source
because the material (uranium) used in nuclear power plants is not renewable on a human
timescale—is another form of clean energy (see, e.g., IMF, 2019).* Indeed, nuclear energy
ranks among the lowest carbon forms of energy generation, considering both direct emissions
and its lifecycle impacts (IPCC, 2018) and has emerged as a credible cost competitor of both
renewable and non-eco-friendly nonrenewable energy (IEA-OECD NEA, 2020). Reflecting
these characteristics, research by both the Intergovernmental Panel on Climate Change and
the International Energy Agency lists nuclear power among the key technologies capable and
necessary to mitigate carbon emissions (IPCC, 2018; IEA, 2019b and 2020a).

Today, countries with the lowest carbon intensities like France and Sweden rely
heavily on nuclear and/or hydroelectric energy as low-carbon sources for either baseload or
flexible power. In fact, producing electricity exclusively with renewable sources under
current technologies presents several significant technological challenges, since these sources

4 Some have argued that because it produces radioactive waste, nuclear power should be excluded from any
green spending concept. However, past IMF studies on green energy, including the recent 2019 Fiscal Monitor
have included investment in nuclear power among sources of green energy because, like here, the definition of
what constitutes ‘green’ energy has been based on the impact of the investment on gas emissions. See also
Eyraud et al. (2011).



are intermittent, variable and unpredictable, depending on the weather and consequently
having limited capacity factors (IEA, 2021). At the scale needed, storage of renewable
energy is also currently not a viable option as the necessary technology is expensive and still
developing although prices are falling fast (see Goldstein and Qvist, 2019; and, for recent
storage cost estimates, Lazard Asset Management, 2020). Similarly, producing and adapting
energy from hydrogen using renewables is not an immediate option. Although the idea of a
future full of clean hydrogen is enjoying unprecedented political and business momentum,
hydrogen continues to be used in the production of energy by burning fossil fuels with
emissions equivalent to the CO, emissions of the United Kingdom and Indonesia combined
(IEA, 2019).

In 2019, renewables (excluding large hydro) accounted for about one seventh of the
share of global generation while nuclear energy accounted for about one-tenth (IRENA,
2019; IEA, 2019a). The overall share of clean energy is increasing slowly because of the
large, established fossil fuel fleet and the decline in net terms of nuclear installed capacity.

Reflecting this, there is currently a big gulf between current green spending in these
areas and what the science suggests as the target for global emissions by 2030: according to
the base-case scenario in BloombergNEF’s New Energy Outlook 2019, even limiting the
increase in global temperatures this century to 2 degrees Celsius (as opposed to the IPCC,
2019-recommended 1.5°C)° would require the gross addition of some 2,836GW of new non-
hydro renewable energy capacity by 2030—double of what is envisaged under current public
and private sector targets—at an estimated cost of US$3.1 trillion over the decade. At the
same time, nuclear capacity globally is estimated to have shrunk by a net 5GW in 2019,
receiving an investment of a mere US$15 billion versus an investment of around US$282
billion for renewables over the same year (IEA, 2020a).

Ecosystem conservation

Concerted efforts to mitigate greenhouse gas emissions from production in agriculture,
fishery, and forestry are as important as clean energy in the quest for limiting increases in
global temperatures. The IPCC’s 2019 Special Report on Climate Change and Land
estimates that the agri-food sector emits between 21-37 percent of greenhouse gases—a share
expected to raise to 50 percent of all global emissions by 2050 absent policy action (IPCC,
2019; Willett et al., 2019). The sector is also widely indicated as the first cause of natural
resources and biodiversity degradation, including its leading role as a driver of deforestation,

5 As part of the Paris Agreement in 2015 countries agreed to a common goal of limiting the rise in global
temperatures this century to “well below” 2 degrees Celsius, with an aim of keeping the increase at 1.5 degrees.
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with large associated carbon releases (IPCC, 2019; IPBES, 2019; Willett et al., 2019; Batini,
2019; McElwee et al., 2020; Clark et al., 2020).¢

The drivers behind such high emission record lie in developments in the agri-food
sector of the past five or six decades, a sector that has become heavily industrialized and
reliant on synthetic chemical applications, genetic modification, and deforestation to produce
growing amounts of meat, dairy, and eggs, as well as fiber, timber, and biofuels (UNEP,
2020). At sea, high-tech techniques like sonar and equipment like supertrawlers with
mechanized nets make it possible to exploit deeper waters at farther-flung locations and
capture fish faster than they can reproduce, harming the oceans’ ability to absorb carbon and
destroying biodiversity (Batini, 2019 and 2021; FAO, 2020).

As in the case of energy, making food systems sustainable for a growing global
population is technologically possible but involves a fundamental reconsideration of
production and consumption. A more sustainable use of farmed land and fished sea allows to
produce food without large-scale habitat disruption and loss of biological diversity, thereby
protecting natural cycles on which food production itself relies. It also enables a more
efficient use of land and seas, in a world where these serve both to produce food and
sequester carbon, as less land and sea are needed if farming and fishing are repurposed away
from the production of animal-based food which tends to be land-and sea-intensive and
greenhouse gas emissions-intensive toward more plant-based food that allows to feed many
more people with less resources and a fraction of greenhouse gas emissions. (FAO, 2017
Batini, 2019 and 2021; UNEP, 2020).

Nature conservation, through actions to protect, sustainably manage, and restore
natural or modified ecosystems have emerged as “nature-based solutions” (NBS) to carbon
sequestration. In addition, NBS are increasingly seen to hold the key to address the twin
problems of climate change and biodiversity loss, if they are based on biodiverse ecosystems,
and can also deliver broader societal and economic goals, such as improving health,
providing jobs and reducing poverty (UN, 2020b; Waldron et al., 2020; McKinsey and Co.,
2020a; Dasgupta et al., 2021). Crucially, NBS are widely indicated as the most effective and
cheapest insurance against the emergence of new zoonotic diseases, like COVID-19, which
have been associated primarily to human encroachment of wild habitats and the
industrialization of animal farming for food (FAO, 2017; Andersen et al., 2020; OECD,
2020).

Like in the case of clean energy, the urgent need for action in this area has failed to
generate a momentum and both government and private spending on agriculture remains
heavily concentrated on promoting industrial agricultural methods; while spending on
protecting land and sea remains minuscular and well below announced targets. A recent
report by the World Bank, for example, indicates that countries producing two-thirds of the

& Estimates by the IPCC indicate that when all is accounted for, the agri-food sector is potentially responsible
for well over a third of greenhouse gas emissions (IPCC, 2019).
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world's agricultural output spent US$600 billion per year in agricultural financial support on
average from 2014 to 2016 (Searchinger et al., 2020; UNEP-UNDP-FAOQ, 2021). Only a
modest portion of programs support environmental objectives, and even fewer support the
mitigation of climate change. Out of US$300 billion in direct spending, only 9 percent
explicitly supports conservation, while another 12 percent supports research and technical
assistance.

World financial efforts to conserve and restore nature fall correspondingly short of
what is needed to protect nature supply at the global level (Dasgupta et al., 2021). Given that
over half of 2019 global GDP was estimated to depend highly or moderately on ecosystems
health (WEF, 2020), estimated financial flows into global biodiversity conservation are
surprisingly small and inadequate.

A recent study (Paulson Institute-The Nature Conservancy-Cornell University, 2020)
suggest that spending on a wide range of biodiversity-associated goods is currently (2019)
between US$124 and US$143 billion, compared to a need of US$722-967 billion. Although
the Paulson estimates represent only 0.1-0.2 percent of 2019 global GDP, it may still be a
high-side estimate because much of the ‘biodiversity-focused” spending analyzed in the study
comes from countries who report the entirety of their environmental and agricultural budgets,
and even their health budgets, as “biodiversity expenditure” (OECD, 2020a).” However, links
between agricultural spending and biodiversity conservation are often tenuous and may even
indicate investment in land use practices that are negative for biodiversity. An alternative is
to take a more focused approach and address spending and spending needs only on items that
have a strong and direct link with biodiversity conservation (Waldron et al., 2017). An
example is the study of Waldron et al. (2020) into the policy proposal to expand protected
areas to 30 percent of the Earth’s surface. This study finds that the cost may be between
US$103 billion and US$178 billion per year, depending on how the proposal is implemented,
which represents 4-7 times more than the current level of investment of US$24.3 billion in
protected areas.

1. DATA ON GREEN AND NON-ECO-FRIENDLY SPENDING

Data on greenhouse gas emissions and climate change, on installed renewable energy plants
capacity, on levelized cost of energy (LCOE), and on levelized cost of electricity have

"Most biodiversity is found in lower-income tropical countries where international aid, given almost entirely by
OECD countries, forms the majority of funding for biodiversity conservation. Average aid to biodiversity for
2013-17 was US$6.3 billion per year, representing just 0.01% of the OECD’s GDP of US$47 billion (Turnhout
etal., 2021).
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become widely available through open sources. Conversely, data on investments in green or
non-eco-friendly energy are not easy to come by as much of it relates to private finance.
Similarly, data on spending on biodiversity conservation (a key indicator of green land use
spending) and subsidies to non-eco-friendly agricultural practices are not readily available
and need considerable manipulation of existing datasets. As a result, the datasets used in this
paper have been assembled specifically for this project thanks to the help of various
international energy agencies, universities, NGOs and multilateral development
organizations. We discuss each set of data used below. For convenience we report data
description distinguishing between ‘green’ and ‘non-eco-friendly’ spending and between
‘energy’ and ‘land use’ spending, in the following order: green energy spending data,
including spending on supply and power investments on both renewables and non-
renewables (subsection I11.A); non-eco-friendly energy spending data including capital
expenditure on the supply of fossil fuel and non-eco-friendly energy power investment
(subsection 111.B); green land use spending, mainly including spending on biodiversity
conservation (subsection 111.C); non-eco-friendly land use spending, mainly including
subsidies to conventional industrial agriculture excluding green spending (subsection 111.D).8

A. Green Energy Spending Data

Data on capital expenditure on clean renewable energy

Contrary to fossil fuels, most renewable energy (solar, wind, hydropower and other
renewables, notably geothermal and marine power, biofuels and biogases) is directly
obtained from readily available natural sources—solar, wind, geothermal® and marine®
energy. In this sense, there is no such thing as investment in the ‘supply’ of these sources,
contrary to fossil fuels which need to be detected (via exploration) dug up from underground
deposits (via drilling either on land or on the seabed) and often refined involving substantial

8 Note that spending on energy and land use differ because the former involves considerably more infrastructure
spending, whereas the latter relies almost entirely on operational capital and smaller infrastructure/machinery
investment, generally. Subsidies to land use/agriculture involve some support to the purchase of investment
goods but also other categories of spending like price support, support for the purchase of seeds, insurance, etc.
In addition, subsidies to land use (green or brown) tend to be spent by the public sector, which is not the case
for spending on green or brown energy which is largely private.

9 Geothermal energy is heat derived within the sub-surface of the earth. Water and/or steam carry

the geothermal energy to the Earth's surface. Depending on its characteristics, geothermal energy can be used
for heating and cooling purposes or be harnessed to generate clean electricity.

10 Marine energy or marine power (also sometimes referred to as ocean energy, ocean power, or marine and
hydrokinetic energy) refers to the energy carried by ocean waves, tides, salinity, and ocean temperature
differences.
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‘supply’ investments prior to being burnt for power generation. As a result, the investment
made to generate clean renewable energy is all virtually directed at building (and operating)
the infrastructure to transform the Earth’s natural energy into electricity. Some investment in
renewables relates to repowering, that is spending for the refurbishment or upgrading of
existing turbine system components with the latest and more advanced equipment.*

Our data on clean renewable energy comes from the IEA and consists of IEA
estimates of capital spending on power generation using renewable sources by 11 countries
or groups (Oceania Group merging Australia and New Zealand; Brazil; Canada; China; EA
Group merging France, Germany and Italy; Indonesia; Japan; Korea; Mexico; Russia; and
the USA) over the period 2000-2020. The investment data represent the total amount of
investment costs in power generation incurred in any given year through the setup of solar
wind, and other energy ‘farms’, as well as in networks for the transmission of electricity
generated this way.*? Investment in electricity networks includes investment in new
infrastructure to accommodate new demand (increased connections and consumption),
investment to replace ageing infrastructure and the investment required to integrate
renewables in the power system and includes both transmission and distribution, and
expenditure on digital equipment for the smart monitoring and operation of the grid (e.g.
smart meters, automation and EV fast charging stations).:® All these data exclude both
financing and operational costs like for non-renewable clean energy below.

Data on capital expenditure in clean non-renewable energy (nuclear energy)

Data on capital expenditure on nuclear energy are rather homogenous and potentially
go back several decades, as the world’s first nuclear power plant to produce usable electricity

through atomic fission was built in the early 1950s. Despite this, up until a few years ago,
the literature on the construction costs of nuclear power reactors looked solely to the
development between 1970 and the end of the 1980s in the costs of construction in two
countries (France and the United States), leaving out about three quarters of reactors built
globally between 1960 and 2010 (see for example Grubler, 2010, and Berthélemy and

1 The IEA indicates for example, in the case of wind farms, that by leveraging upon latest technological
advances, repowering allows not only to “increment the nameplate capacity of an existing wind farm, but also
to enhance load factors and to reduce operation and maintenance costs. This is mainly driven by larger turbines
and increased hub heights that allow production of a greater amount of power with a smaller number of
turbines” (IEA, 2020b).

12 Investment estimates draw on IEA analysis on annual capacity additions and unit investment costs, partly
derived from surveys with industry, IEA (2019a), S&P Global Platts (2020), BNEF (2020), IRENA (2020) and
other organizations. More details can be found in IEA’s methodological annex to the IEA’s 2020 World Energy
Report.

13 Where possible, past investments in transmission and distribution assets, are based in publicly available data
from utilities, regulators and other domestic entities.
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Escobar-Rangel, 2015). More recently, data has been produced to map historical reactor-
specific overnight construction cost (OCC) data covering the full cost history for existing
reactors in the Canada, France, Germany, Japan, India, South Korea and the United States,
encompassing about two-thirds of all reactors built globally (Lovering, Yip and Nordhaus,
2016).1

The data used here extends the Lovering et al. (2016) dataset to 2017 and to include
China. It was assembled specifically for this project by the OECD’s Nuclear Energy Agency
in collaboration with the World Nuclear Association and the International Atomic Energy
Agency. Like in Lovering et al (2016), the data is measured looking at the real OCC of
completed plants because it is both the dominant component of lifetime costs for nuclear
power, and the cost component that varies most over time and between countries. The metric
OCC includes the costs of the direct engineering, procurement, and construction (EPC)
services that the vendors and the architect-engineer team are contracted to provide, as well as
the indirect owner’s costs, which include land, site preparation, project management,
training, contingencies, and commissioning costs. The OCC excludes financing charges
known as ‘interest during construction.” The data, originally compiled in local currency
units, have been converted to constant 2010 US dollars, using the nominal average market
exchange rate of the year 2010 for comparability. Cost data are adjusted for inflation to
constant 2010 values using the GDP deflator for each country. Lastly, the plant level data are
aggregated at the country/year level based on the construction duration and assuming costs
are spread homogenously across this construction period.

B. Non-Eco-Friendly Energy Spending Data

Like for green spending on energy (Subsection I11.A), for non-eco-friendly spending on
energy we use data from the IEA. The data record annual total capital spending on fossil
fuels by 11 countries or groups (Oceania Group merging Australia and New Zealand; Brazil;
Canada; China; EA Group merging France, Germany and Italy; Indonesia; Japan; Korea;
Mexico; Russia; and the USA) over the period 2000-2020. Like for green energy spending

14 OCC should not be confused with another popular measure of “cost” namely the Levelized Cost of Electricity
(LCOE). It is the total cost to build and operate a power plant over its lifetime divided by the total electricity
output dispatched from the plant over that period, hence typically cost per megawatt hour. It takes into account
the financing costs of the capital component (not just the 'overnight' cost). This other metric reflects the ‘total
average cost per KWh’ but does not reflect the total cost of electricity/services provided. Importantly, note that
when comparing nuclear and renewables such as solar and wind, system costs should also be considered, as
discussed in recent studies from the OECD-NEA (2019) and MITEI (2018) because when the share of
wind/solar grows above approximately 1/3 of the electricity mix, the system costs grows exponentially and
outweigh the advantage of cheap solar/wind.
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sectors, the investment data for oil, gas and coal represent the total amount of investment
costs incurred in any given year.'

In the case of upstream oil and gas investment, global spending estimates are based
on announced investment activities of companies representing over three-quarters of global
oil and gas production. Data on spending estimates for the oil refining sector are calculated
based on project-level information on new refineries and upgrading projects in over 100
countries. Data on investment estimates for the midstream sectors such as oil and gas
pipelines and shipping transport correspond to data by the IEA for demand, supply and trade
for oil and gas products in line with the new methodology of the World Energy Model, used
to produce the projections in the IEA’s annual World Energy Outlook (IEA, 2020).

For the power generation sectors, this investment is allocated evenly between the year
in which the project for a new plant reaches financial close, or begins construction, to the
year in which it starts producing. For upstream oil and gas, and liquefied natural gas (LNG)
projects, data on investment mirrors capital expenditure sustained over time as production
from a new source increases, or expenditure made to ensure that energy production from an
existing asset is sustained (IEA, 2020b).

Data on investment in electricity reflect annual capital expenditure to replace old
assets or on new power plants and network assets. Here as well, expenditure is apportioned
evenly to every year from the year that a final investment decision is made on an asset until
the year the asset turns operational. In this sense, 2019 capital expenditure embeds also
spending on assets that may not yet be operational but that will become operational in the
future.’* Like for spending on clean energy, investment in electricity networks includes
transmission and distribution. Similarly to data on clean energy, these data exclude both
financing and operational costs.

C. Green Land Use Spending Data

Ideally, an analysis on the economic impact of spending on green land use activities should
encompass spending on sustainable agriculture and spending on ecosystem conservation. If

15 Investment estimates reflect IEA analysis on annual capacity additions and unit investment costs, derived in
part from surveys with industry, IEA (2019), S&P Global Platts (2020), BNEF (2020), IRENA (2019) and other
organizations.

16 The way the IEA measures investment across various energy sectors varies reflecting differences in the
availability of data and the nature of expenditures. More details can be found in the World Energy Investment
2020 Methodology Annex.
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possible, both should cover activities at sea, beyond terrestrial ones. In practice, (public and
private) spending on sustainable farming remains negligible relative to spending on
conventional (i.e. industrially mechanized, fossil fuel-energized and chemically driven)
agriculture: in 2019, conventional agriculture still dominated 98 percent of food production
globally (Batini, 2021). In addition, although sustainable farming has traditionally
characterized all farming prior to the introduction of industrial farming methods following
WWII, public subsidies to farming have actually coincided with the post-WWII industrial
revolution of agriculture and are aimed primarily at sustaining industrial unsustainable
practices by prizing productivity and profitability with little or no consideration for quality or
human, animal or planetary health. On the contrary, efforts to redirect public agricultural
support toward sustainable, regenerative farming—Ilike organic farming—are very recent and
in best cases extremely timid (Batini 2019 and 2021). It follows that data on spending on
sustainable agriculture, when they exist and are not insignificant, do not go back much in
time. The brevity of time series also affects potentially useful sources like green financing by
the International Fund for Agricultural Development, which, potentially interest many
countries but has started to be classified based on its ‘greenness’ only since 2018 (see IFAD,
2019). Data on spending on sustainable fishing activities, like regenerative ocean farming
does not go far either, even if these activities go back for hundreds of years or even
millennia, implying that this area of spending is equally impossible to analyze empirically
(Batini and Smith, 2021).

Reflecting these constraints, we focus on what we consider to be the most reliable set
of available data on spending in green (aka sustainable) land use activity, namely data on
spending on biodiversity conservation. There is no standardized definition of what constitutes
“biodiversity spending,” a situation that has led countries to report, under the ‘biodiversity’
flag, a heterogeneous mix of items that can include the entire government budgets for
agriculture, health, and environmental control including urban waste disposal. However,
Miller et al. (2012) and Waldron et al (2013, 2017) define a subset of “strict” spending that
directly conserves biodiversity (e.g. funding for a nature reserve). They then compiled the
most complete and consistent long time series of biodiversity spending produced to date,
applying a forensic examination of data from the four main sources of funding from 1992 to
2008: domestic governments, international aid (including donations from private
foundations), long-term endowment-based systems such as conservation trust funds, and self-
funding arrangements such as when tourism revenue to a national park is recycled to
subsidize the park’s running costs. Simultaneously, they used their definitions to extract this
strict spending from biodiversity expenditure totals. The advantages of the “strict” dataset are
that it has a consistent definition, greatly reducing the heterogeneity in what might be
reported as “biodiversity spending”, and that it avoids an inherent contradiction in the more
loosely defined spending data—that spending on agriculture, for example, will often fund
processes hostile to the conservation of biodiversity, as well as a subset of initiatives that aim
to mitigate those processes. For these reasons, we focused on the strict dataset.
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The specific data requirement for the multiplier calculation is that there should be a
reasonably accurate year-by-year record of spending in each country. Data on aid-based
expenditure is usually available for each individual year, but precise annual time series are
far more difficult to assemble for the other sources of spending. We therefore focused on
assembling a dataset of countries where reasonable annual expenditure estimates of total
strict-sense expenditure could be sourced. In practice, this usually meant focusing on a
number of countries where the relatively accurate data on aid was the dominant source of
funding. The final sample of 16 countries for biodiversity-spending multiplier analysis is
Burkina Faso, Burundi, Cambodia, Cameroon, Central African Republic, Chad, Ghana,
Guatemala, Malawi, Mozambique, Niger, Senegal, Sierra Leone, Madagascar, Tanzania and
Uganda. The final time period over which a time series was compiled was 1994-2008
(omitting 1992 and 1993 because of zeroes in those years for some countries).

D. Non-Eco-Friendly Land Use Spending Data

For non-eco-friendly spending, we focus on agricultural subsidies to conventional agriculture
based on an elaboration of OECD producer support estimates (PSE) data assembled by
Searchinger et al. in 2020 for the World Bank Group. In particular, we focus on the
difference between all subsidies and the small percent of these that can be classified as
‘green’ in that is earmarked as explicitly supporting conservation and/or research and
technical assistance items that tend to be weakly associated with sustainability priorities. This
means that we consider ‘non-eco-friendly’ land use spending, spending via agricultural
support directed at increasing the quantity and productivity via use of chemical inputs,
greater mechanization or greater reliance on fossil fuels. These subsidies typically include (i)
input subsidies—payments made to reduce the costs mostly of physical inputs such as
chemicals, fertilizer, and machinery, although the OECD also applies the term to transfers
reducing the cost of various on-farm services and capital investments; (ii) market price
support, that is support which increases gross revenue to farmers as a result of higher prices
due to market barriers created by government policies (that in turn require price-fixing
strategies and import barriers); (iii) production payments, namely forms of agricultural
support that are paid directly to farmers and can take many different forms; (iv) coupled
payments, i.e. payments that are based in some way on the type, quantity, or amount of
production, which typically is not related nor conditioned to sustainability goals; and also (v)
decoupled payments, that is payments to farmers that do not depend on current or future
production. For example, they can be payments based on past production.
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The data are in current prices and have been converted to US$ using OECD average
yearly exchange rates. They cover 20 countriest’—responsible for 2/3 of global agricultural
production—for 22 years going back (1995-2016).8

1V. METHODOLOGY

A. Empirical Model

To compute multipliers for the various spending categories presented in Section I11, we use
panel vector-autoregressive (VAR) models.

The models take the following reduced form:
Vie =pi+ Ve + AW+ H APy e+ Bixge + €, 1)

where t denotes the time dimension, i denotes the country dimension and p the lag structure.
The vector of endogenous variables is denoted by y; ,; while x; , denotes an exogenous
variable included in some of the specifications (both are discussed in Subsection IV.B).
Furthermore, A%,...,AP are the dynamic coefficients attached to the endogenous variables, B;
are the coefficients attached to the exogenous variable, p; are country fixed effects, y, are
time fixed effects and ¢; . is a vector of normally distributed residuals with mean zero and
covariance matrix X.

Reformulating the model in vectorized form (ignoring country and time fixed effects
and exogenous variables for simplicity) yields:

y=XB+e (2

To estimate the coefficients £ and the residual variance covariance matrix X, we adopt a
Bayesian approach utilizing a traditional Normal-Wishart identification strategy that belongs
to the families of conjugate priors, characterized by the fact that they produce distributions of
the same families for the posterior.

We adopt Minnesota-type priors in line with a wide literature. The prior for £ is
assumed to be multivariate normal:

17 These countries include Australia, Canada, Chile, China, Colombia, Iceland, Indonesia, Israel, Japan,
Kazakhstan, Korea, Mexico, New Zealand, Norway, Russia, South Africa, Switzerland, Turkey, Ukraine, and
the United States.

18 More details on the methodology employed by the OECD to produce PSE data can be found here:
http://www.oecd.org/agriculture/topics/agricultural-policy-monitoring-and-evaluation/documents/producer-
support-estimates-manual.pdf
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B~ N(Bo, 2c @ D). ©)

For B, we set values around 1 for own first lag coefficients, and O for further lags, cross-
variable and exogenous coefficients. @, represents the variance for the parameters of one
single equation in the panel VAR. Each of this variance is then scaled by the variable-
specific variance contained in X.. The prior variance on the coefficients assumes that the
variance should be smaller on further lags. Such idea is extended to coefficients relating
variables to past values of other variables. Given that little is known about exogenous
variables, the variance on these terms is large.

The prior for X, is an inverse Wishart:
2~IW (8o, ao), 4)

where S, is a diagonal scale matrix for the prior with residual variance defined over the
pooled sample of variables, «, is prior degrees of freedom defined as the minimum possible
to obtain well-defined mean and variance. The posterior is represented by the kernel of a
multivariate normal distribution for 8 (conditional on X,) and an inverse Wishart distribution
for X.. Then, the joint posterior is used to derive the marginal distributions for g and Z..

To recover structural shocks from estimated residuals, we apply a Cholesky
identification 