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1 Introduction

The economic literature has typically assumed that fossil fuel prices will be negatively

affected by climate policies (see e.g., Nordhaus and Boyer, 2000, Hassler and Krusell,

2012, van der Ploeg and Rezai, 2020). For example, the International Energy Agency

(2022) estimates that prices will decline as fossil fuel consumption falls by 60 percent

until 2050 in a net-zero emissions scenario. The implicit assumption is that the energy

transition is driven by a series of negative fossil-fuel demand shocks. Subsidies to electric

cars, for instance, cause negative crude-oil specific demand shocks, as oil is substituted

with electricity, leading to lower prices.

This paper shows that a declining global fossil fuel production path can also arise from

curbing fossil fuel production (i.e., from negative supply shocks), leading to increasing

oil prices over the long term. This is in line with theoretical models by Hoel (1994) and

Harstad (2012), where oil prices can increase in the face of supply-side climate policies. For

example, climate regulation may directly restrict oil production while public preferences

may shift in favor of sustainable investment—thereby, increasing the cost of capital for

fossil fuels companies and, eventually, lowering oil supply (Delis et al., 2019, Ehlers et al.,

2022, Seltzer et al., 2022). Higher policy uncertainty could also lead to a decline in fossil

fuel investment (Bogmans et al., 2023). Importantly, as policies are mostly formulated at

the country level and the mix between demand side and supply side policies is hard to

predict at the global level, the energy transition raises uncertainty about the price outlook.
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We apply structural scenario analysis following Antoĺın-Dı́az et al. (2021) to model the

impact of the energy transition on oil prices as a sequence of either oil-specific demand

or oil supply shocks. The derived shock series match the global oil consumption scenarios

from 2023 to 2030 (and in an extension to 2050) from the International Energy Agency

(2022). In other words, our structural approach finds series of shocks that incentivize the

oil consumption and output paths in line with the scenarios. We then derive the implied

scenario price paths. Modelling the energy transition in this way has the advantage that

we can distinguish among structural supply and demand shocks, which have substantially

different implications for prices.

We find that if we only consider demand-side policies, oil prices could decline to $25

(inflation-adjusted) in 2030. This would have negative consequences for oil producers as

both prices and volumes would decline. Rents would diminish and oil production would

come under pressure in high-cost regions changing its current geographical distribution

and moving towards a more concentrated market.

Reductions in oil production that are driven only by supply-side measures would put

strong upward pressures taking prices to roughly $130 per barrel. This would benefit net

oil producer countries at the expense of net consumer countries. As oil production would

be profitable for all producers, the main determinants for the distribution of production

and rents would be country restrictions, environmental regulations, and access to capital.

Consequently, the two price scenarios show that it is wrong to assume that fossil fuel

prices will necessarily decline because of the energy transition. Instead, supply side policies
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could exert upward price pressures, while demand side policies would do the opposite. The

reality is likely a mix of the two. We therefore also show an energy transition scenario that

is equally driven by supply and demand side policies. The oil price would fluctuate around

2022 levels and end at $85 per barrel in 2030. As a benchmark we also show scenario price

paths in a business as usual stated policy scenario that is based on announced climate

policies in 2021 which are expected to lead to a slightly increasing oil production until

2030. In this case prices would hover around $70.

We also show how structural scenario analysis can be used for longer forecast horizons.

Based on our analysis, prices could decline to $15 per barrel in 2050 in the demand-led

scenario or increase to $300 per barrel in a supply-led scenario.

Our results are robust to the use of a four-variable VAR with inventories that accounts

explicitly for changes in expectations of future demand due to announced policies such

as carbon taxes on oil consumption. Expanding on Kilian and Murphy (2014), we fully

identify the model relying on two types of oil-specific demand shocks: a contemporaneous

and expectational oil-specific demand shock. The former leads to a contemporaneous fall

in oil-specific demand that increases inventories while the latter leads to a fall in demand

that lowers inventories. In the demand-driven structural scenarios, we assume that both

shocks jointly drive the fall in crude oil demand resulting from the energy transition.

We also examine the sensitivity of our results to changes in the frequency of the data,

elasticity bounds, and a variety different economic activity measures.

Our results suggest that if countries’ climate policies are unpredictable and uncoordi-
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nated, the price effects of the energy transition are ultimately hard to determine, and this

raises uncertainty about the price outlook. Countries will need to prepare for this higher

price uncertainty and adjust their macroeconomic and fiscal policies accordingly.

A coordinated climate policy effort among net-consumer and net producer countries of

fossil fuels and a pace of divestment from fossil fuels commensurate to the speed of adoption

of renewable energy would help reduce the risk of high and volatile energy prices. Reducing

policy uncertainty helps countries make necessary adjustments.

To our knowledge we are the first to show the different impact of the climate policy mix

on future oil price trajectories from an empirical perspective. Hoel (1994) and Harstad

(2012) provide theoretical models to explain that fossil fuel prices can increase in the face

of supply-side climate policies.

Our findings imply that integrated assessment models that introduce climate change

and the energy transition into dynamic stochastic general equilibrium models need to take

into account policies on both the supply and demand sides (see also McKibbin et al. 2021).

They are currently mostly focused on the demand side, assuming declining fossil fuel prices

as a result of the clean energy transition (e.g., Nordhaus and Boyer, 2000, Hassler and

Krusell, 2012, Golosov et al., 2014).

Our paper also contributes to the literature of conditional forecasting and counter-

factual analysis with vector autoregressive models (VARs) (see Waggoner and Zha, 1999,

Antoĺın-Dı́az et al., 2021 and Wolf and McKay, 2023) as well as oil price forecasts and (e.g.,

Alquist et al., 2013, Baumeister and Kilian, 2014b, 2015) and scenarios (e.g., Baumeister
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and Kilian, 2014a, Kilian and Lewis, 2011, Kilian, 2017 and Kilian and Zhou, 2020). Sim-

ilar to Boer et al. (2023), we show how to use structural time series models to produce

scenarios for the clean energy transition. We illustrate that structural scenario analysis

can become an important tool when thinking about scenarios for the medium to longer

time horizon. In contrast to the prior literature our focus is on long-term price forecasts

that are conditional both on economic observables and specific series of structural shocks.

We showcase some of the limitations of the methodology and provide robustness checks.

First, the forecasts span a relative long horizon of several years under contrasting scenarios

which imply different estimated elasticities. This is due to the structural scenario method-

ology, following Antoĺın-Dı́az et al. (2021), that estimates the structural parameters under

the influence of the scenario data. Waggoner and Zha (1999) discuss this in more detail.

The implied different elasticities are warranted to some extent as, for instance, a purely

demand-side driven scenario should imply a higher price elasticity of supply as the supply

curve is not so likely to shift, based on historical data, to meet such a declining oil produc-

tion path. It seems also reasonable to assume higher supply elasticities during the energy

transition as it should be easier to reduce production rather than increase it.1 Second, we

model the energy transition as an historically unprecedented upward shift in the distribu-

tion of shocks (see critique in Lucas, 1976; Leeper and Zha, 2003). Agents could change

their decision rule, partly anticipating the oil demand or supply declines and front-load

the price effect. Finally, innovation, the technology mix, and policy-making lead to large

1In the absence of additional investment, global oil production should decline by about 7 percent per
year. The resulting production path would be consistent with the net-zero scenario, without having to
shut-in producing oil fields.
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uncertainty surrounding the consumption scenarios.

The remainder of the paper is structured as follows. Section 2 provides a short descrip-

tion of the scenarios and the data. Section 3 lays out the econometric model including

the identification strategy and the setup of the structural scenario. Section 4 presents the

results. Section 5 draws implications for the oil production across countries, looking at

market shares. Section 6 looks at scenarios until 2050, and section 7 presents robustness

checks. Finally, section 8 concludes.

2 Scenarios and Data

2.1 Energy Transition Scenario

The International Energy Agency (2022) provides oil production paths for the Net-Zero

Emissions (NZE) Scenario. The scenario is based on the premise that global temperature

increases can be limited to 1.5°C in 2050. It assumes that there are net-zero CO2 emissions

in 2050, including the energy sector. It implies that renewable energies become the leading

source of electricity worldwide before 2030. In the transportation sector, the scenario

assumes that electricity will cover 60 percent of energy consumption in addition to the

broad use of hydrogen for trucks and shipping. Battery demand is expected to increase

from 0.16 TWh in 2020 to 14 TWh in 2050, with 86 percent of the stock of cars being

powered by electricity. We concentrate on this scenario which is the most ambitious with

the highest chance of limiting global warming to 1.5°C (IPPC 2021). The total production
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Figure 1: Global Oil Output Scenarios. Source: International Energy Agency (2022)

of oil would decline by about 23 percent until 2030 and by roughly 80 percent until 2050

when compared to 2022 production levels (see Figures 1 and 7).

We benchmark the net-zero emissions scenario against results for the stated policy

scenario by the International Energy Agency (2022). In this business as usual scenario,

based on current and announced national policies, global oil production would increase by

about six percent between 2022 and 2030 and then roughly stay flat until 2050.

2.2 Data

We use monthly data for global industrial production, global oil production and the real

oil price. For sensitivity analysis, we also use global inventories data, annualized data and

different types of measures for global economic activity.

For our baseline we use the monthly global industrial production series from Baumeister

and Hamilton (2019). Our sample runs from January 1973 to December 2022. We also
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use the updated global real economic activity index from Kilian (2009) and the global

economic conditions index from Baumeister et al. (2022) as a sensitivity check.

We employ global crude oil production data from the US Energy Information Ad-

ministration. The data also includes condensates. We use monthly US WTI price data

from FRED that is adjusted with the U.S. all urban consumers price index to adjust for

inflation, also taken from FRED.2

3 Econometric Model

We set up a standard oil-market VAR model (e.g., Kilian, 2009; Antoĺın-Dı́az and Rubio-

Ramı́rez, 2018; Baumeister and Hamilton, 2019) with three endogenous variables yt =

(REAt,Qt,Pt)
′, namely a measure of global economic activity REAt, the percentage

change of global oil production ∆Qt, and the log of the real price of crude oil (WTI) Pt.

We estimate

yt = A1yt−1 + ...+Apyt−p +ΠDt + ut , (1)

with a lag length of p = 24 months, where Ai are the reduced-form VAR coefficients and

ut the reduced-form forecast errors. These errors have no economic interpretation. The

matrix of deterministic terms Dt consists of a constant.

2Results for real price of Brent are in line with the WTI results and available upon request.
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The reduced-form VAR in (1) can be expressed in a structural form given by

B0yt = B1yt−1 + ...+Bpyt−p + ΓDt + εt. (2)

In equation (2), εt are independent structural shocks with an economic interpretation.

These are related to the reduced-form errors via the linear transformation ut = B−1
0 εt.

Thus, B−1
0 contains the impact effects of the structural shocks on the three endogenous

variables in yt. By assuming a unit variance for the uncorrelated structural shocks, i.e.,

E(εtε′t) = In (an identity matrix), the reduced-form covariance matrix Σu is related to the

structural impact multiplier matrix as Σu = E(utu
′
t) = B−1

0 E(εtε′t)B−1
0

′
= B−1

0 B−1
0

′
.

3.1 Identification

Without further information it is not possible to identify B−1
0 and thereby the structural

form in (2). The literature has come up with different restrictions placed directly on B−1
0

to solve this identification problem. We apply conventional sign restrictions (e.g., Faust,

1998, Canova and Nicolo, 2002, and Uhlig, 2005) on the elements in B−1
0 , i.e., we assume

that the structural shocks have either a positive or negative effect on the endogenous

variables on impact. We base these impact restrictions on economic intuition as specified

in Table 1.
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Global economic
activity

Global oil
production

Real oil
price

Aggregate
demand shock

+ + +

Oil supply
shock

+ + -

Oil-specific
demand shock

- + +

Table 1: Sign restrictions on impact effects

We interpret the first shock as an aggregate demand shock that is related to the global

business cycle and thereby affects the demand for oil. A positive shock increases global

economic activity, global oil production and its real price.3

We label the second shock as an oil supply shock, capturing, for example, production

outages and stronger than expected declines in production. These can be caused by

a broad variety of factors including supply-led climate policies and shifts in capital costs

due to sustainable investment criteria. A negative shock that reduces global oil production

is assumed to drive down global economic activity and to increase the real oil price on

impact.

We interpret the third shock as an oil-specific demand shock that characterizes demand-

led policies for the energy transition in our structural scenario analysis. This shock rep-

resents a shift in the demand curve due to factors that affect the demand for mainly oil

such as subsidies for electric vehicles. Note that this shock may also capture precautionary

demand shocks, namely shifts in the demand for above-ground inventory due to forward-

3In this paragraph and in the following, we describe the assumptions about the sign restrictions normal-
ized such that the underlying shock increases the price of oil. We assume that the shocks are symmetric,
and hence, the reverse effects hold.
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looking behavior. This is important, because the energy transition may also affect oil

markets through this anticipation channel. We assume that a negative oil-specific demand

shock decreases production and the oil price. It increases global economic output on im-

pact as a result of the oil price decrease (see also Kilian, 2009; Baumeister and Peersman,

2013).

We assume an upper bound on the IRF-based impact supply elasticity of 0.2.4

This bound includes the estimate from Caldara et al. (2019) and Baumeister and

Hamilton (2019)—which are around 0.1 and 0.15, respectively—but allows for potentially

higher elasticities during the course of the energy transition as it should be easier to

reduce production facing low oil prices (as also witnessed during the pandemic when US

and OPEC+’s oil production dropped by about 30 percent and 20 percent, respectively,

withing two months). It is higher than the elasticity bound of 0.026 from Kilian and

Murphy (2014). We also discuss results for an upper bound of 0.3 which is the highest

estimate of short run supply elasticities measured in the literature by Coyle et al. (2012)

(see Fally and Sayre, 2018) and Rao (2018).

Narrative sign restrictions following Antoĺın-Dı́az and Rubio-Ramı́rez (2018) help us

to sharpen the identification of the different structural shocks, and thus, the distinction

4More specifically, this concept is an impulse response-based ratio of equilibrium impacts. It is defined
as the oil output response relative to the price response given an oil-specific or aggregate demand shock as
defined by Kilian and Murphy (2014). Baumeister and Hamilton (2023) note that this concept does not
entail the usual ceteris paribus assumption of an elasticity because an oil-specific demand shock does not
only trigger a response in price but also a response in other variables. A supply elasticity that takes into
account the ceteris paribus requirement is obtained directly from the impact elasticity in the structural B0

matrix (see Baumeister and Hamilton, 2023). The relevant normalized element of this matrix indicates the
simultaneous response of oil output to a change in the oil price holding all other variables constant. Based
on our specified upper bound of 0.2, the implied upper bound on the impact supply elasticity obtained
from the B0 matrix turns out to be 0.198 across draws in our empirical exercise.
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between them. These restrictions are imposed on the importance of specific shocks during

specific historical episodes. Following Antoĺın-Dı́az and Rubio-Ramı́rez (2018) we impose

that the aggregate demand shock was the least important contributor to the observed

unexpected movements in the real price of oil in August 1990 when the Persian Gulf War

broke out. Their paper find that this single restriction, an accepted interpretation of the

historical events, yields equivalent results to using a set of different restrictions used in

their baseline specification.

3.2 Structural scenario analysis

We conduct structural scenario analysis for the real price of crude oil following the frame-

work of Antoĺın-Dı́az et al. (2021). Our object of interest is a conditional forecast yT+1,T+h

over the next 8 years, i.e., h = 96 months, for the endogenous variables, where T denotes

December 2022. The conditional forecast restricts some of the variables in yT+1,T+h and a

subset of the future shocks εT+1,T+h, thereby linking the path of future variables directly

to certain shocks. We briefly lay out the underlying intuition tailored to the oil consump-

tion scenarios from the International Energy Agency (2022) while appendix A provides

technical details.

We take the oil consumption scenario as given, thus pre-specifying the oil quantities in

the conditional forecasts yT+1,T+h. We set global consumption equal to global oil produc-

tion in the scenarios from the International Energy Agency (2022), assuming that there

are no short-term changes in inventories. The future paths of global economic activity and
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the oil price are left unspecified. Concerning the paths of future shocks, we first constrain

the aggregate demand shock and the oil supply shock to their unconditional distributions

and leave the oil-specific demand shock unrestricted. The algorithm then finds a series of

oil-specific demand shocks that incentivizes the oil production path needed for the energy

transition. We can then derive the implied price path.

Second, we constrain the aggregated demand shock and the oil-specific demand shock

to their unconditional distribution. The oil supply shock is left unspecified to sketch out

a supply-side driven scenario.

Compared to traditional conditional forecasts, this methodology has the advantage

that it can attribute the future path of endogenous variables to the path of a specific

structural shock. The energy transition as a scenario can result from a series of oil-specific

demand shocks or from oil supply shocks.

For example, in our case the classical reduced-form conditional forecasting question is

“What is the likely path of the oil price, given that oil production has to decline due to

the energy transition?” The answer is confounded by a lack of causal structure. Oil prices

could be low due to negative demand shocks, incentivising less supply. However, it could

also be the opposite: negative supply shocks could drive supply downward, thus driving

prices up. Due to the structural scenario framework, we can handle this reverse causality

in the scenario.
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3.3 Estimation and Inference

Estimation and inference are based on standard Bayesian techniques laid out in Waggoner

and Zha (1999), Rubio-Ramirez et al. (2010), and Antoĺın-Dı́az et al. (2021). The aim

is to draw from a joint posterior distribution of both the structural parameters and the

conditional forecast

p(ỹT+1,T+h,B0,B+|yT , IR(B0,B+),R(ỹT+1,T+h,B0,B+)) , (3)

where yT is the historical sample, B′
+ = [B′

1 ...B
′
p Γ] collects the structural VAR lag

coefficients including the exogenous parts, IR(B0,B+) are the identification restrictions

and R(ỹT+1,T+h,B0,B+) the structural scenario restrictions. Note that the structural

scenario restrictions depend on the structural VAR parameters via equation (11) shown

in the appendix.

To draw from this distribution, we use the algorithm from Antoĺın-Dı́az et al. (2021)

that builds on Waggoner and Zha (1999). The algorithm uses a Gibbs sampler procedure

that iterates between draws from the conditional distributions of the structural parameters

and the conditional forecast.5

Hence, we pick a random draw of structural parameters out of 10,000 potential draws

that relies both on the actual data and on a structural forecast. We use the structural

parameters from this randomly picked draw to then draw the scenario paths of the price

5Each draw of structural parameters must consider the restrictions implied by the structural scenario,
i.e., the forecasted path of the variables and the restrictions on the non-driving shocks.
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series and the economic activity index for the structural scenario that fits the specified

oil production path. The next 10,000 draws for structural parameters rely on the original

data and the data from the just drawn structural scenario.

We use a Minnesota-type prior with standard shrinkage parameters (see Giannone

et al., 2015) in combination with a sum-of-coefficients prior (Doan et al., 1984) and a

dummy-initial-observation prior (Sims, 1993) to estimate equation (1) and the conditional

forecasts.6

Identification via sign restrictions does not yield point estimates but instead sets of

possible parameter intervals for the different elements in B−1
0 . For each model we obtain

a set of 1,000 admissible draws, where each draw consists of a conditional forecast, future

shocks, and an associated B−1
0 matrix that satisfies the identifying restrictions. These

draws are also used for inference, i.e., they yield an indication of the uncertainty around

the pointwise median estimates. Following Antoĺın-Dı́az and Rubio-Ramı́rez (2018) and

Antoĺın-Dı́az et al. (2021), we report pointwise median and percentiles of impulse responses

for set-identified structural VAR models, as it is common in the literature.

The literature has made substantial recent progress on inference in Bayesian models,

which is important to take into account when interpreting our results. First, Baumeister

and Hamilton (2015, 2020) and Watson (2019) remark that readers are used to associating

6The variance for the priors on the reduced-form VAR coefficients is given by var
(
(Ai)j,j

)
=

λ2ψj

iα ,

where i denotes the lag and j the variable. The tightness parameter λ is set to 0.2, the decay parameter
is α = 2, and the scale parameters ψj are set to the OLS residual variance of an auto-regressive model
for each variable j. The variance for priors on the exogenous variables are set to 1,000. This should
shrink the reduced-form VAR towards a more parsimonious näıve benchmark and helps to maximize the
out-of-sample forecast, in which we are particularly interested.
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error bands with sampling uncertainty, but in large-sample sign-restricted SVARs these

error bands only result from the prior for the rotation matrix Q, not sampling uncertainty.

Inoue and Kilian (2020) point out that the share of uncertainty resulting from the prior

on Q tends to be rather small in most applications, in particular, when assuming several

sign restrictions.

For our baseline model with three variables the Haar prior placed on the rotation matrix

Q is uninformative about the structural impulse responses (a special case as Baumeister

and Hamilton, 2015 show). However, the concern of an informative prior materializes when

we extend the model to the four-variables case in the sensitivity section. We recognize that

in this case our inference summarizes both prior uncertainty and sampling uncertainty to

some extent. We therefore report the full set of impulse responses to provide the reader

with a better sense of the uncertainty around the estimates.

Second, we note that the posterior median response function does not represent one

of the structural models. Thus, we also report the Bayes estimator under a quadratic

loss function following Inoue and Kilian (2022). The loss function ranks the admissible

models according to each model’s joint quadratic distance between its impulse responses

and the impulse responses of all the other admissible models. The Bayes estimator is the

model with the smallest joint quadratic distance, meaning that it is closest to the set of

all admissible models. The results are rather insensitive to the choice of the loss function.

Estimating the structural VAR on data from both the historical sample and the sce-

nario horizon warrants some discussion because it implies that the scenario data has a
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non-negligible impact on the estimated structural parameters. However Antoĺın-Dı́az et al.

(2021) stress that it would not be correct to estimate the structural VAR merely on the

historical sample. Our historical sample runs from January 1973 to December 2022 and

the scenario from January 2023 to June 2030 which yields a sample share of 13% for the

scenario. Hence, the estimated structural parameters will depend on the chosen scenario.

Concretely, a scenario driven by demand-side policies implies higher price elasticities of

supply as the oil supply curve is less likely to shift—loosely speaking, in such a world,

producers must have been more likely to adjust to low prices (see Table C.2 in the ap-

pendix). Analogously, in a scenario that is supply side driven, demand elasticities become

larger in absolute terms as consumers would be more likely to adapt to such a high price

environment, eventually.7

4 Empirical Results

4.1 Price Scenarios

We use the case of crude oil prices to highlight quantitatively how the two different driving

forces work in the Net-Zero Emissions Scenario by the International Energy Agency (2022).

We first consider a structural scenario, where only shocks from demand-side policies

are considered. In this scenario, oil prices could decline to around $25 per barrel in 2030

7The dependency of parameter estimates to the scenario is an advantage for constructing scenarios
that have not precedent in historical data sample and may imply substantial movements in prices from
their historical average. Historical data, instead, should be analyzed over the historical sample only.
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(figure 2, blue line).8

In the opposite scenario, where reductions in oil production only result from supply-

side measures, prices would experience substantial upward pressures. They could climb to

roughly $135 per barrel until 2030.

Consequently, the two price scenarios show that it is wrong to assume that fossil fuel

prices will necessarily decline because of the energy transition. Instead, supply side policies

could exert upward price pressures, while demand side policies would do the opposite.

The reality is likely a mix of a demand and a supply-led energy transition. Figure

3 shows a price scenario, where supply and demand side policy shocks equally drive the

reductions in oil production until 2030. Prices increase slightly until 2030 but stay in the

historical range of about $80 per barrel in inflation adjusted terms.

As a benchmark we also show scenario price paths for the stated policy scenario by the

International Energy Agency (2022) that is based on announced climate policies in 2021

assuming a slightly increasing oil production until 2030. Prices would hover around $70 as

figure 4 shows. This is true for both the demand-led and the supply led scenarios. There

is not much of difference because the production path from the stated policy scenario is by

and large in line with the historical trend. That’s why no large demand shocks are needed

to incentivize downwards adjustments in supply. The same is the case on the supply side.

8Figures B.1 and B.2 in the appendix show the underlying impulse responses.
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Figure 2: Oil prices in the supply and demand-side driven net-zero emissions scenario.
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Figure 3: Oil prices in the net-zero emissions scenario with equally important supply and
demand side policies

Figure 4: Oil prices in the supply and demand-side driven stated policy scenarios.
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4.2 Plausibility

Antoĺın-Dı́az et al. (2021) provide a statistic to judge how plausible a structural scenario is.

The concept is closely related to the statistic for modest interventions by Leeper and Zha

(2003). It compares the characteristics of the different shocks over the scenario horizon to

their historical counterparts. Based on entropic forecast tilting (see Robertson et al., 2005

and Giacomini and Ragusa, 2014) the Kullback-Leibler (KL) statistic

DKL(NSS||NUF ) =
1

2

(
tr(Σε + µ′

εµε − nh− ln(detΣε)
)

(4)

represents a divergence of the distribution of shocks compatible with the structural scenario

NSS from the distribution of the unconditional forecast NUF . The statistic depends on

µε, the mean, and Σε, the covariance of the restricted future shocks with tr denoting the

trace operator and det the determinant. Hence, it does not only take into account the

median shock series but also its variance.

Antoĺın-Dı́az et al. (2021) calibrate the statistic to a scale between 0.5 and 1 such that

it displays the divergence between two binomial distributions, one with probability q and

one with probability 1/2.9 In other words, the calibrated KL statistic gives an indication

of how far away the scenario is from the unconditional path represented by the comparison

of the flip of a fair and a biased coin.

9The statistic is calibrated to the parameter q that solves the equation DKL(B(nh, 0.5)||B(nh, q)) =
DKL(NSS ||NUF ) where B(m, p) denotes the Binomial distribution for m independent experiments with

success probability p. The solution to the equation is q = 1
2

(
1+

√
1− e−

2z
nh

)
, where z = DKL(NSS ||NUF ).
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We use the KL statistic to judge how unusual the scenarios are and whether one should

expect a structural break in the model equations. Table 2 reports the plausibility statistics

for the different net-zero emissions scenarios. The scenario shock series lead to relatively

high KL statistics, however, not signalling completely implausible policy scenarios with

respect to historical precedent.10 The scenario of a completely demand-side driven energy

transition is less plausible compared to historical precedent. This indicates that oil-specific

demand shocks have played a smaller role in explaining oil price fluctuations compared to

oil supply shocks, in the historical sample.

Calibrated KL Statistic
Net-Zero Emissions

Scenario
Stated Policy

Scenario
Supply-side driven transition 0.67 0.65
Demand-side driven transition 0.83 0.82

Table 2: Scenario Plausibility Statistics

Figure C.8 in the appendix displays the mean shock series over the scenario horizon

for the two policy scenarios. The scenarios are characterized by a repeated series of either

negative supply or demand shocks that are not larger than -0.5 standard deviations while

the other two shock series fluctuate around 0.11

10Antoĺın-Dı́az et al. (2021) note that for a system with only one active policy shock, a one-time 2 s.d.
shock leads to q = 0.6, a sequence of 1 s.d. shocks over 12 periods or a single 3.5 s.d. shock to q = 0.67
and a single 10 s.d. shock to q = 0.9.

11We also report the scenario shock series for the stated policy scenario for comparison (see Figure C.9
in the appendix). The shocks are centered around 0 while the demand-side scenario shows a much larger
variance of the oil-specific demand shock leading to the relatively high KL statistic of 0.82. For reference, a
stated policy scenario allowing for both oil-specific demand and supply shocks in their historically observed
proportion yields a KL statistic of 0.59.
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5 Oil Market Shares

The different price scenarios have major implications for the distribution of production

reductions across countries (see sections 4).

Under the demand-side scenario, oil prices are predicted to decline substantially. In a

low-price and low-consumption scenario scarcity rents would decline and oil production in

high cost regions would come under pressure. This will have implications for the distri-

bution and concentration of oil assets globally. Currently, the top 3 oil producers account

for almost 40 percent of global oil production, with US and Russia accounting for about

16 and 12 percent in 2023, respectively.12 Oil production costs, however, vary significantly

depending of geology and location with onshore conventional oil being one of the cheap-

est. So, as oil prices decline, some oil fields would become unprofitable, including some

US shale oil patches, while low-cost regions would become more exploited.

To determine the share of global oil production by country, under the various scenarios,

we use breakeven oil prices at the field level from Rystad. The breakeven price is defined

as the constant real Brent oil price that, for a given a discount rate, makes the net present

value of an oil field’s revenue flows and costs even.13 Breakeven prices are estimated

12Compared to some metals, such as copper or cobalt, oil production is less concentrated.
13The breakeven oil price indicates at which flat real Brent oil prices the continued operation of the

assets is commercial, as seen from 2023, i.e. the oil price required for a positive net present value of
continued operation, based on the total remaining resources for each asset. Both commercial and non-
commercial assets are included in the calculation. Tax effects of previous investments and abandonment
costs are not included, but a government intake is subtracted, this includes: (1) royalty effects including
royalty and oil and export duties; (2) government profits which are the PSA equivalent to petroleum
taxes, but paid in kind (it reduces the company’s entitlement production and is thus treated as a royalty
effect in company reports); (3) income tax which is a corporate tax that is a sum of all profit based taxes,
where the tax rate is equal to the country’s corporate tax rate, and special petroleum taxes. The tax
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for existing and producing oil wells as well as for known oil resources that have yet to be

developed, but not for yet-to-be-discovered resources. The oil assets with higher breakeven

prices than the projected oil price (in the demand-side scenario) are unprofitable and, thus,

assumed to be not producing. Production volumes at the oil field level come from geological

information and are estimated at today’s technology (Rystad).

Our results in figure 5 indicate that when oil prices reach $25 per barrel in 2030, under

the net-zero demand-side scenario, the oil market will become much more concentrated

with about 66 percent of the global oil production coming from the Persian Gulf, a 30 p.p.

increase from 2023 (while OPEC+ would reach over 80 percent market share). By 2050,

market concentration would increase even more, with the Persian Gulf’s countries reaching

a 95 percent market share (see Appendix).14 Some of the countries experiencing the highest

declines in production would be the United States, Russia and Canada. Interestingly, oil

production would concentrate in regions that traditionally have shown high geopolitical

instability.

Finally, reductions in emissions that are driven hypothetically only by supply-side

measures would exert strong upward pressure on oil prices (see section 4.1), benefiting

producing countries at the expense of consuming countries.15 Since oil production would

base is the net sales revenue minus OPEX and depreciation. For petroleum taxes there may be applied
an additional deduction called uplift. In many cases, some profit based taxes can be deducted in the tax
base for other profit taxes. Interest expenses are not included.

14Using 2050 data is less recommended as breakeven prices would come mostly from oil wells that have
not been discovered yet. In a steep oil consumption scenario, like 2050 net-zero, discoveries of new fields
are not needed; hence, only discoveries of new deposits that are at the very low range of the extraction-cost
distribution would alter our estimated market shares.

15IMF (2012); Luca and Puyo (2016); Baunsgaard and Vernon (2022) provide a fiscal framework to tax
windfalls in the energy sector.
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Figure 5: Market shares 2023 vs 2030 in the demand driven net-zero scenario.

be profitable for all producers, however, the main determinants for the distribution of

production and rents would be country restrictions, environmental regulations, and access

to capital. In a supply-led scenario revenues would increase to previous historical highs but

would be concentrated among the few remaining producers, who would benefit strongly.

A scenario equally driven by supply and demand side policies would see revenues grad-

ually taper off while production volumes decrease such that fewer producers see larger

revenues individually (see figure 6).

Globally, the different scenarios have also major implications for the value of the oil

market. In a demand-led net-zero scenario oil revenues would fall to historical lows where

only the lowest cost producers stay profitable while in the opposite case, the price increase

will more than offset the decline in volumes leading to an increase in global oil revenues

(see figure 6), especially for some low-cost oil producing countries which would see only a

modest decline in oil production given the higher market share.

26



Figure 6: Oil revenues in the different net-zero emissions scenarios. Median estimates and
40% HPD credible sets. Oil revenues are calculated as quantity times price.

6 Can We Come Up With Price Scenarios Until 2050?

The Net-Zero Emissions Scenario and the Stated Policy Scenario from the International

Energy Agency (2022) both run until 2050. What are the challenges and possibilities in

applying the structural scenario analysis over such a long time horizon? What results does

this yield?

Structural scenario analysis over long time horizons presents significant challenges.

First, there is high uncertainty associated with the more distant future. Second, the

decline in global oil quantities gains speed after 2030 in the net-zero scenario consumption
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Figure 7: Global Oil Output Scenarios Until 2050 (Source: International Energy Agency
(2022))

(see figure 7). Third, the structural scenario methodology leads to diverging underlying

elasticities across scenarios when the scenario horizon increases. As noted in section 3.3,

the draws from the posterior of structural parameters and conditional forecast depend

both on the historical sample and on realizations of the conditional forecast. The more

data points we add to the scenario horizon and thus increase the relative weight of the

scenario compared to the historical sample, the more influence on the structural parameters

these data points obtain. Waggoner and Zha (1999) label this a ’shift in distribution’

phenomenon and it becomes more severe the longer the scenario horizon is. In our case

this would mean a stronger divergence of oil supply and demand elasticities between the

supply-led and demand-led scenarios.16

Figure 8 panel (a) shows the scenario oil price paths for the two policy cases in the

16Altering the algorithm such that it does not take the forecast horizon into account when estimating
the structural parameters, we obtain an upper price of USD 120 in 2030 in the supply-side driven net-zero
emissions scenario and USD 33 in the demand-side driven scenario. Somewhat less strong price changes
compared to USD 135 and USD 25 in our baseline.
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net-zero emissions scenario until 2050. To produce these figures we specified a bound of 0.3

on the impact supply elasticity, i.e., the production response relative to the price response

after an oil-specific demand shock.17 For this long horizon we again rely on the model

using global industrial production as the global economic activity index model produces

implausible impulse responses even implying a slightly increasing price trend under the

demand side driven policies scenario.

In the demand-led scenario, prices fall to around $ 30 per barrel by 2030, reaching

a level of around around USD 15 by 2040 and stay around that level until 2050. The

scenario price path during the initial period until 2030 is broadly in line with our baseline

scenario. A KL statistic of 0.72 indicates that this scenario is somewhat more plausible

than the demand-led scenario until 2030 only which results from the larger upper bound

on the supply elasticity.

In the supply-led scenario prices increase strongly to around USD 300 in the mid 2030s

and stay around those levels until 2050.18 Prices increase somewhat less drastically in our

baseline supply scenario estimated up to 2030 only. The KL statistic of 0.68 indicates that

the scenario until 2050 is only marginally less plausible than the one until 2030.

In the stated policy scenarios prices range between $ 50 per barrel at the end of 2050

for the demand-led scenario and $ 80 per barrel by 2050 in the supply-led scenarios (see

panel (b) of figure 8). While prices are close across the two scenarios until 2030, there is an

17A bound of 0.2 would not yield any draws for the demand-side driven scenario. The bound of 0.3
implies a realized upper bound of 0.29 for the ceteris paribus supply elasticity directly obtained from the
B0 matrix.

18Confidence bands are much broader for the supply side scenario as the model is estimated using log
levels of prices and they are reconverted here for illustrative purposes.

29



(a) Net-zero emissions scenario (b) Stated policy scenario

Figure 8: Supply and demand-side driven scenarios until 2050.

increasing gap from 2030 to 2050. This is driven by the underlying oil production scenario,

in which global output stops growing around 2030 and then stays roughly constant until

2050, implying a deviation from the historical trend.

7 Robustness

We check the sensitivity of our results using a model with four variables that includes

global oil inventories, using different economic activity indicators, higher elasticity bounds

as well as annual data (see also table C.1 in the appendix).

7.1 Inventories and Expectational Demand Shocks

One of the shortcomings of the three variable model is that the identified oil-specific

demand shock groups together contemporaneous and expectational demand components
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and cannot differentiate between them. Concerning the energy transition, it is plausible

to assume that agents anticipate the potential future decrease of oil demand, at least

in part. Kilian and Murphy (2014) and Känzig (2021) show that shifts in expectations

play a crucial role for explaining variations in oil prices. We extend the three variables

model by global inventories which allows us to differentiate between contemporaneous and

expectational demand components.19

We identify two types of oil-specific demand shocks, a contemporaneous one and an

expectational one, using sign restrictions as shown in table 3 following the approach in

Boer et al. (2023). Both shocks are assumed to increase oil production and prices, while

decreasing economic activity as a result of a positive price shock in the first month. We

presume that the two shocks differ in their impact on inventories, however. A negative con-

temporaneous oil-specific demand shock increases inventories on impact. Agents built-up

inventories in response to a shift in the demand curve as less oil is used. The expectational

negative demand shock is assumed to lead to a draw-down in inventories, because agents

anticipate lower future oil demand. This shifts the demand for above-ground inventory

due to forward-looking behavior.20

19Moreover, including inventories improves identification of the oil-demand elasticty as the three-variable
model ignores that produced oil is either stored or consumed (see Kilian, 2022).

20The estimation of the expectational oil-specific demand shock may also capture discoveries and news
about future supply developments. While relevant for a historical decomposition, it does not invalidate
the construction of the structural scenarios.
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Global economic
activity

Global oil
production

Real oil
price

Global oil
inventories

Aggregate
demand shock

+ + +

Oil supply
shock

+ + -

Contemporaneous
oil-specific
demand shock

- + + -

Expectational
oil-specific
demand shock

- + + +

Table 3: Sign restrictions on impact effects

We allow both types of oil-specific demand shocks to jointly drive the scenario out-

put path, assuming that some of the lower oil demand due to the energy transition is

anticipated. The aggregate demand and oil-specific supply shocks are restricted to their

unconditional means.

Results based on this model for the demand side policies driven scenario are robust

with respect to our baseline. Using both oil-specific demand shocks to drive the energy

transition oil consumption path yields a decrease in oil prices to around $25, similar as

in our baseline model (see figure C.1 in the appendix). Relying on the identification from

Kilian and Murphy (2014) with three identified shocks where the oil-specific demand shock

increases inventories, i.e., using only the expectational oil-specific demand shock, prices

decrease to around $30 (see figure C.2 in the appendix).
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7.2 Alternative Economic Activity Indicators

For short-term oil price forecasts of 1 to 24 months, Baumeister et al. (2022) find that

VARs including global industrial production outperform models relying on other economic

activity indicators. Hence, we use global industrial production in our baseline model.

Relying on alternative economic activity indicators yields slightly different scenario price

paths. Replacing global industrial production with the global real economic activity index

from Kilian (2009), i.e., a measure derived from global bulk dry cargo shipping rates (see

Kilian and Zhou (2018) for a discussion of the relative merits of this index over global

industrial production), gives a median price of around USD 50 in 2030 under the demand-

side driven scenario and a price of around USD 120 in the supply-side driven scenario (see

figure C.3 in the appendix). In the scenario with an equally driven policy mix of supply

and demand side shocks the median price in 2030 is around USD 90.

We also investigate a model including the global economic conditions index from

Baumeister et al. (2022) which the authors find to outperform other indicators when

jointly forecasting oil consumption and prices. This index is the first principal compo-

nent of a set of 16 indicators that are linked to energy demand, among others economic

activity, commodity prices, uncertainty, transportation demand and financial indicators.

Relying on this measure yields median 2030 real prices of USD 14 in the demand-side

driven scenario, USD 120 in the supply-side driven scenario (see figure C.5) and USD 73

in the equally driven net-zero scenario.
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7.3 Higher Elasticity Bound

In our baseline analysis we assume an upper bound of 0.2 for the IRF-based impact

elasticity of supply, i.e., the supply response to an oil-specific demand shock within the

first month. This bound is in line with the literature, which has largely settled on a first-

month elasticity of around 0.1 (see Caldara et al., 2019). To allow for possibly higher

than historical supply responses as a result of expectations of the energy transition we

also specify an upper bound of 0.3.21 This is the highest estimate of short run supply

elasticities measured in the literature by Coyle et al. (2012) (see Fally and Sayre, 2018)

and Rao (2018).

Given a higher supply elasticity, production is curbed more strongly when reacting to

negative demand shocks. Under this higher upper bound we obtain a minimum price of

USD 33 in 2030 in the demand side policies driven scenario (see figure C.6 in the appendix).

7.4 Annual data

We estimate scenarios for annual data, where we use monthly averages of oil production

growth and prices and industrial production to have comparable results to our monthly

baseline model. Sign restrictions are analogous to the monthly setup from Table 1. For

the yearly model we specify no upper bound for the supply elasticity which is usually

only applied within the first month (see Kilian, 2022). As narrative sign restrictions we

21This bound implies a realized upper bound of 0.28 of the ceteris paribus supply elasticity obtained
directly from the B0 matrix. Moreover, Table C.2 in the appendix gives an overview of the realized
elasticities across different model specifications.
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use the outbreak of the Iran-Iraq War in 1980, where we assume a negative supply shock

contributing most to the 5% shortfall in global oil production in that year (see Antoĺın-

Dı́az and Rubio-Ramı́rez, 2018) and we assume that a negative aggregate demand shock

was the most important contributor to the fall in oil prices during the Great Recession.

Oil prices reach around $ 45 per barrel in 2030 in the demand side policies driven

net-zero emission scenario and close to $ 150 per barrel in the supply side policies driven

scenario (see figure C.7 in the appendix) . In the stated policy scenario prices fall to

around $ 70-75 per barrel by 2030 depending on the policy mix.

Relying on annual data, we loose estimation precision and, hence, the set of admissible

models of the underlying impulse responses and the scenario price paths are broader. This

is due to the smaller sample that implies less variation but also due to the somewhat

different identification. We lose narrative restrictions that the literature places on specific

months as they are difficult to defend when specifying them for a whole year. Also a bound

on the supply elasticity over a whole year would be more difficult to defend.

8 Conclusion

This paper highlights that the impact of the energy transition on fossil fuel markets can

be quite different depending on the policy shocks driving it at the example of oil.

We typically think about the energy transition as a negative demand shock to crude oil,

coal and natural gas, and its producing countries. For example, subsidies to electric cars

are a negative crude-oil specific demand shock, as crude oil is substituted by electricity,
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lowering prices. However, some policies such as the curb of investment flows into oil and

gas (through stricter ESG criteria) can also negatively affect the supply side of fossil fuel

markets, leading to higher prices. Another recent example are the restrictions on coal

mining in China.

We show that if we only consider demand-side policies in a scenario, oil prices could

decline to the $20s in 2030. This would have negative consequences for oil exporters. Rents

would diminish and oil production would come under pressure in high-cost regions. In

contrast, reductions in oil production that are driven only by supply-side measures would,

instead, put strong upward pressures taking prices to roughly $130 per barrel, benefiting

producing countries at the expense of consuming countries. As oil production would be

profitable for all producers, the main determinants for the distribution of production and

rents would be country restrictions, environmental regulations, and access to capital.

If country policies are unpredictable and uncoordinated, the price effects of the energy

transition are ultimately hard to determine, which raises uncertainty. Countries will need

to prepare for this higher price uncertainty and adjust their macroeconomic and fiscal

policies accordingly.

A coordinated climate effort among consumer and producer countries of fossil fuels

and a pace of divestment from fossil fuels commensurate to the speed of adoption of

renewable energy would help reduce the risk of high and volatile energy prices. Reducing

policy uncertainty helps countries to make necessary policy adjustments during the energy

transition.
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Appendices

A Structural Scenario Analysis

In the following we provide some background on structural scenario analysis as formalized
in Antoĺın-Dı́az et al. (2021). The goal is to forecast our variables of interest yt for h
periods ahead given certain restrictions on future observables and future shocks. In the

40



case of no restrictions, the endogenous variables’ unconditional forecast for periods T + 1
to T + h is given by

yT+1,T+h = bT+1,T+h +M′εT+1,T+h , (5)

where yT+1,T+h = (yT+1...yT+h) and bT+1,T+h represent the deterministic part of the
forecast, which depends on past observables, the reduced-form VAR parameters Ai for
i = 1, .., p and the deterministic part Dt. The matrix M represents the effects of the struc-
tural shocks on future values of the endogenous variables as a function of the structural
parameters in Bi and the reduced-form parameters in Ai (see Antoĺın-Dı́az et al., 2021 or
Waggoner and Zha, 1999 for further details). The unconditional forecast is independent of
the structural parameters. It is distributed according to yT+1,T+h ∼ N (bT+1,T+h,M

′M),
where M′M depends only on the reduced-form parameters.

To answer the question of how oil prices fare in a net-zero emissions scenario, we
perform a restricted forecast of the endogenous variables ỹT+1,T+h, for which we place
restrictions both on parts of the future observable variables and future shocks. Hence, the
future observables are restricted as

CỹT+1,T+h = CbT+1,T+h +CM′ε̃T+1,T+h ∼ N (fT+1,T+h,Ωf ) (6)

where C is a (k0 x nh) pre-specified selection matrix, including k0 restrictions. ε̃T+1,T+h

denotes the restricted future shock series that is distributed as ε̃T+1,T+h ∼ N
(
µε,Σε

)
. The

(k0 x 1) vector fT+1,T+h denotes the mean of the constrained endogenous variables and the
(k0 x k0) matrix Ωf denotes the covariance restrictions, i.e., the uncertainty around the
restrictions on the observables.

In our baseline case, we restrict the path for oil output according to the scenarios and
we set Ωf = CM′MC

′
following Antoĺın-Dı́az et al. (2021). This allows for uncertainty

around the scenario consumption path. The literature before Antoĺın-Dı́az et al. (2021)
usually assumed no uncertainty around scenarios and set this variance to 0.

Secondly, we restrict ks elements of the future shocks via the (ks x nh) selection matrix
Ξ expressed as Ξε̃T+1,T+h ∼ N (gT+1,T+h,Ωg). The (ks x 1) vector gT+1,T+h denotes
the mean and Ωg the covariance restrictions on the shocks in the conditional forecast.22

Under invertibility of the VAR, the restricted shocks can be related to restrictions on the
observables starting from equation (5) for the restricted future observables ỹT+1,T+h via

M′−1ỹT+1,T+h = M′−1bT+1,T+h + ε̃T+1,T+h, (7)

ΞM′−1ỹT+1,T+h = ΞM′−1bT+1,T+h +Ξε̃T+1,T+h , (8)

22When implementing the algorithm in Matlab, we also impose an upper absolute bound of 5 standard
deviations on all future shocks. We show the point-wise mean of the scenario shocks in the online-appendix.
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yielding

CỹT+1,T+h = CbT+1,T+h +Ξε̃T+1,T+h ∼ N (fT+1,T+h,Ωf ) , (9)

where C = Ξ(M′)−1 and Ωf = Ωg. We would like to explain a pre-specified path in oil
output (one component of ỹT+1,T+h) via the oil-specific demand shock or the oil supply
shock. The other shocks should occur according to their unconditional distribution. In
other words, we would like to restrict these non-driving shocks, while leaving the respective
shock unspecified. Thus, we impose Ξε̃T+1,T+h ∼ N (0ks , Iks) such that equation (9)
becomes

CỹT+1,T+h ∼ N (CbT+1,T+h, Iks). (10)

The restrictions in equations (6) and (10) can then be stacked according to

ĈỹT+1,T+h ∼ N


[

fT+1,T+h

CbT+1,T+h

]
︸ ︷︷ ︸

f̂T+1,T+h

,

[
Ωf 0k0xks

0ksxk0 Iks

]
︸ ︷︷ ︸

Ω̂f

 , (11)

where Ĉ′ = [C
′
,C′] such that the upper part relates to the conditions on observables and

the lower part to the conditions on the shocks.
Antoĺın-Dı́az et al. (2021) show how to solve for the restricted forecast of the observables

ỹT+1,T+h such that the restrictions in equation (11) hold. In our baseline application we
place k0 = 90 restrictions on the observables, i.e., future oil output is constrained to the
scenario output in each of the forecasted h = 90 months from January 2023 to June 2030.
Moreover, we place ks = 2 · 90 = 180 restrictions on the non-driving shocks. Thus, the
total number of restrictions k = k0 + ks is equal to nh, the length of ỹT+1,T+h. For the
case k = nh, there exists a unique solution of the restricted forecast (see Antoĺın-Dı́az
et al., 2021). For the scenario that is equally driven by demand and supply side policies
we assume sequences of 3 demand and 3 supply shocks in a row and present a resulting
6-month moving average of the scenario price.
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B Impulse Responses

Figure B.1: Impulse Responses for the Demand-Side Driven Scenario

Notes: The responses are based on 1,000 draws showing the pointwise median (red solid line)
with 68% pointwise credible sets (red dotted lines) and the Bayes estimator under quadratic loss
(green dashed line) among the full set of impulse response where the 68% joint credible set under
quadratic loss is presented in dark blue and the rest in light blue.
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Figure B.2: Impulse Responses for the Supply-Side Driven Scenario

Notes: The responses are based on 1,000 draws showing the pointwise median (red solid line)
with 68% pointwise credible sets (red dotted lines) and the Bayes estimator under quadratic loss
(green dashed line) among the full set of impulse response where the 68% joint credible set under
quadratic loss is presented in dark blue and the rest in light blue.
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Figure B.3: Impulse Responses for the Equally Supply- and Demand-Side Driven Scenario

Notes: The responses are based on 1,000 draws showing the pointwise median (red solid line)
with 68% pointwise credible sets (red dotted lines) and the Bayes estimator under quadratic loss
(green dashed line) among the full set of impulse response where the 68% joint credible set under
quadratic loss is presented in dark blue and the rest in light blue.
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Figure B.4: Impulse Responses for the Demand-Side Driven Scenario in the 4-Variables
Model with Expectational and Contemporaneous Oil-Specific Demand Shocks.

Notes: The responses are based on 1,000 draws showing the pointwise median (red solid line)
with 68% pointwise credible sets (red dotted lines) and the Bayes estimator under quadratic loss
(green dashed line) among the full set of impulse response where the 68% joint credible set under
quadratic loss is presented in dark blue and the rest in light blue.
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Figure B.5: Impulse Responses for the Demand-Side Driven Scenario Including the Global
Economic Activity Index from Kilian (2009).

Notes: The responses are based on 1,000 draws showing the pointwise median (red solid line)
with 68% pointwise credible sets (red dotted lines) and the Bayes estimator under quadratic loss
(green dashed line) among the full set of impulse response where the 68% joint credible set under
quadratic loss is presented in dark blue and the rest in light blue.
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Figure B.6: Impulse Responses for the Supply-Side Driven Scenario Including the Global
Economic Activity Index from Kilian (2009).

Notes: The responses are based on 1,000 draws showing the pointwise median (red solid line)
with 68% pointwise credible sets (red dotted lines) and the Bayes estimator under quadratic loss
(green dashed line) among the full set of impulse response where the 68% joint credible set under
quadratic loss is presented in dark blue and the rest in light blue.
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Figure B.7: Impulse Responses for the Demand-Side Driven Scenario in the Model Using
Annual Data.

Notes: The responses are based on 1,000 draws showing the pointwise median (red solid line)
with 68% pointwise credible sets (red dotted lines) and the Bayes estimator under quadratic loss
(green dashed line) among the full set of impulse response where the 68% joint credible set under
quadratic loss is presented in dark blue and the rest in light blue.
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Figure B.8: Impulse Responses for the Supply-Side Driven Scenario in the Model Using
Annual Data.

Notes: The responses are based on 1,000 draws showing the pointwise median (red solid line)
with 68% pointwise credible sets (red dotted lines) and the Bayes estimator under quadratic loss
(green dashed line) among the full set of impulse response where the 68% joint credible set under
quadratic loss is presented in dark blue and the rest in light blue.
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C Robustness

Figure C.1: Oil price scenarios in the model including inventories and differentiating be-
tween contemporaneous and expectational oil-specific demand shocks.
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Figure C.2: Oil price scenarios in the model including inventories. Sign restrictions as in
Kilian and Murphy (2014).
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Figure C.3: Oil price scenarios in the net-zero emissions scenario model including the
global economic activity index from Kilian (2009).
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Figure C.4: Oil Price Scenarios in the stated policy scenario from the model including the
global economic activity index from Kilian (2009).
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Figure C.5: Oil Price Scenarios in the stated policy scenario from the model including the
global economic conditions index from Baumeister et al. (2022).
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Figure C.6: Oil price scenarios in the model specifying an upper bound on the impact
supply elasticity of 0.3.
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Figure C.7: Oil price scenarios in the model using annual data and global industrial
production.
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Figure C.8: Point-wise means of the shock series (in standard deviations) over the scenario
horizon in the net-zero emissions scenario.
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Figure C.9: Point-wise means of the shock series (in standard deviations) over the scenario
horizon in the stated policy scenario.
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Net-Zero Emissions
Scenario

Stated Policy
Scenario

Scenario End
Price, USD
per barrel

Cumulated
Revenue
Tril. USD

Scenario End
Price, USD
per barrel

Cumulated
Revenue
Tril. USD

Baseline 2030
Industrial
Production

Demand side policies 25 8.17 69 17.36
Supply side policies 135 21.47 73 16.27
50/50 mix 85 16.04 67 15.79

Global Economic
Activity Index

Demand side policies 50 10.90 67 16.19
Supply side policies 120 20.44 67 16.82
50/50 mix 90 16.46

Higher Elasticity
Bound
Industrial
Production

Demand side policies 33 9.56 70 16.84
Supply side policies 136 22.03 75 16.34
50/50 mix 98 17.61

Global Economic
Activity Index

Demand side policies 56 12.12
Supply side policies 138 22.32
50/50 mix 98 17.59

2050 Scenario
Higher Elasticity
Bound
Industrial
Production

Demand side policies 15 14.14 48 50.24
Supply side policies 304 97.95 90 68.33

Table C.1: Sensitivity

Notes: US Dollar (USD) refers to real 2022 prices, adjusted for inflation based on the December
2022 US-CPI. The inventories model shows the supply elasticites for the contemporaneous oil-
specific demand shock and the elasticities for the expectational shock as both shocks are used
simultaneously to drive oil production.
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Supply Elasticity Demand Elasticity
IRF Impact IRF Impact

Baseline 2030
Industrial Production Demand side policies 0.18 0.14 -0.16 -0.18

Supply side policies 0.09 0.07 -0.34 -0.33
50/50 mix 0.18 0.13 -0.17 -0.18

IP and Inventories Demand side policies 0.15 0.13 -0.19 -0.15

Global Economic Demand side policies 0.18 0.12 -0.17 -0.18
Activity Supply side policies 0.07 0.03 -0.37 -0.52

50/50 mix 0.12 0.14 -0.37 -0.16
Higher Elasticity
Bound
Industrial Production Demand side policies 0.26 0.20 -0.14 -0.15

Supply side policies 0.10 0.08 -0.30 -0.29
50/50 mix 0.23 0.18 -0.15 -0.13

IP and Inventories Demand side policies 0.20 0.16 -0.17 -0.13

Global Economic Demand side policies 0.26 0.18 -0.13 -0.14
Activity Supply side policies 0.10 0.09 -0.28 -0.27

50/50 mix 0.23 0.19 -0.14 -0.12
2050 Scenario
Higher El. Bound
Industrial Production Demand side policies 0.24 0.17 -0.10 -0.07

Supply side policies 0.14 0.09 -0.17 -0.14

Table C.2: Estimated elasticities in the different scenarios.

Notes: The impulse response function-based (IRF) supply and demand elasticities are estimated
as the impact production response relative to the impact price response after an oil-specific de-
mand and oil supply shock, respectively (see Kilian and Murphy, 2014). The impact demand and
supply elasticities are obtained directly from the B0 matrix (see Baumeister and Hamilton, 2023).
The models including inventories in rows four and nine display the IRF supply elasticities as the
average supply elasticities based on the contemporaneous (0.146 and 0.19) and expectational
oil-specific demand shocks (0.155 and 0.21).
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C.1 Oil Market Shares

The additional tables below give the oil production volume, its value, and the market
share by country, conditional on global oil volumes under the demand-side policy scenarios
described in section 2.1 and 6, and the associated oil prices. Rystad data are used to
calculate production shares and volumes.

Rank Country Production (mb/d) Market Share Value (bil. USD)

1 Saudi Arabia 10.3 23% 93.5
2 Iraq 5.5 13% 50.2
3 UAE 4.1 9% 37.6
4 Iran 3.9 9% 35.8
5 Kuwait 2.9 7% 26.5
6 Qatar 1.7 4% 15.8
7 Kazakhstan 1.6 4% 14.8
8 Russia 1.5 3% 13.6
9 Norway 1.3 3% 11.7
10 Brazil 1.2 3% 11.1
11 Libya 1.1 3% 10.1
12 United States 1.1 2% 9.7
13 China 1.0 2% 9.3
14 Algeria 0.8 2% 7.0
15 Guyana 0.6 1% 5.9
16 Canada 0.6 1% 5.7
17 Oman 0.6 1% 5.4
18 Azerbaijan 0.6 1% 5.0
19 Neutral Zone 0.5 1% 4.5
20 United Kingdom 0.4 1% 3.6

Notes: Scenario: NZE, 2030, Production at $25/bbl.

Table C.3: Oil market share under demand-side policies, Net-Zero scenario, 2030
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Rank Country Production (mb/d) Market Share Value (bil. USD)

1 Saudi Arabia 10.3 19% 112.6
2 Iraq 5.6 11% 61.5
3 UAE 4.2 8% 46.5
4 Iran 4.0 7% 43.9
5 United States 3.6 7% 39.5
6 Russia 3.0 6% 32.8
7 Kuwait 2.9 5% 31.8
8 Brazil 2.6 5% 28.2
9 Qatar 1.7 3% 18.9
10 Kazakhstan 1.7 3% 18.5
11 Norway 1.5 3% 16.6
12 China 1.4 3% 15.8
13 Canada 1.2 2% 13.6
14 Libya 1.1 2% 12.5
15 Algeria 0.9 2% 10.3
16 Mexico 0.9 2% 9.9
17 Guyana 0.8 2% 9.2
18 Oman 0.6 1% 6.8
19 Neutral Zone 0.6 1% 6.1
20 Azerbaijan 0.6 1% 6.1

Notes: Scenario: NZE (up to 2050), 2030, Production at $30/bbl.

Table C.4: Oil market share under demand-side policies, Net-Zero scenario, 2030

62



Rank Country Production (mb/d) Market Share Value (bil. USD)

1 Saudi Arabia 6.3 39% 34.4
2 Iraq 2.6 16% 14.4
3 Iran 2.1 13% 11.3
4 UAE 1.9 12% 10.5
5 Kuwait 1.7 11% 9.4
6 Qatar 0.4 3% 2.3
7 Kazakhstan 0.4 2% 2.2
8 Neutral Zone 0.3 2% 1.4
9 China 0.1 1% 0.7
10 Russia 0.1 0% 0.3
11 Libya 0.1 0% 0.3
12 Azerbaijan 0.1 0% 0.3
13 Brazil 0.0 0% 0.1
14 Algeria 0.0 0% 0.1
15 Venezuela 0.0 0% 0.1
16 Oman 0.0 0% 0.1
17 Brunei 0.0 0% 0.1
18 Nigeria 0.0 0% ∼
19 United States 0.0 0% ∼
20 Angola 0.0 0% ∼

Notes: Scenario: NZE, 2050, Production at $15/bbl.
∼ denotes smaller than 0.05 bil. USD value.

Table C.5: Oil market share under demand-side policies, Net-Zero scenario, 2050
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Rank Country Production (mb/d) Market Share Value (bil. USD)

1 United States 14.2 17% 352.5
2 Saudi Arabia 10.5 12% 260.5
3 Russia 8.8 10% 214.0
4 Iraq 5.7 7% 140.7
5 Canada 5.1 6% 127.4
6 Brazil 5.1 6% 125.8
7 UAE 4.6 5% 113.1
8 Iran 4.2 5% 103.2
9 China 3.4 4% 80.8
10 Kuwait 3.0 4% 74.2
11 Kazakhstan 2.0 2% 49.3
12 Qatar 1.8 2% 45.4
13 Norway 1.8 2% 43.9
14 Libya 1.5 2% 37.3
15 Mexico 1.4 2% 34.4
16 Guyana 1.2 1% 30.0
17 Algeria 1.0 1% 25.2
18 Nigeria 0.9 1% 21.2
19 Oman 0.8 1% 20.5
20 Argentina 0.7 1% 17.2

Notes: Scenario: STEPS, 2030, Production at $68/bbl.

Table C.6: Oil market share under demand-side policies, STEP scenario, 2030
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Rank Country Production (mb/d) Market Share Value (bil. USD)

1 Saudi Arabia 9.0 18% 154.9
2 United States 6.0 12% 90.8
3 Canada 4.7 10% 63.5
4 Russia 4.3 9% 59.5
5 Iran 3.5 7% 56.6
6 Iraq 3.5 7% 55.4
7 UAE 2.7 6% 47.1
8 Kuwait 2.1 4% 33.9
9 Brazil 1.9 4% 18.9
10 China 1.5 3% 17.5
11 Venezuela 1.2 2% 17.3
12 Qatar 1.1 2% 17.1
13 Kazakhstan 1.0 2% 12.3
14 Argentina 0.7 1% 11.8
15 Mexico 0.6 1% 7.7
16 Norway 0.5 1% 7.5
17 Neutral Zone 0.4 1% 6.2
18 Guyana 0.4 1% 5.0
19 Libya 0.4 1% 5.0
20 Nigeria 0.3 1% 3.1

Notes: Scenario: STEPS, 2050, Production at $85/bbl.

Table C.7: Oil market share under demand-side policies, STEP scenario, 2050
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Rank Country Production (mb/d) Market Share Value (bil. USD)

1 United States 12.8 16% 372.9
2 Saudi Arabia 10.4 13% 303.6
3 Russia 9.8 12% 285.6
4 Canada 4.8 6% 139.5
5 Iraq 4.6 6% 134.8
6 China 3.9 5% 114.6
7 UAE 3.3 4% 97.0
8 Brazil 3.3 4% 95.5
9 Iran 3.3 4% 95.0
10 Kuwait 2.5 3% 73.0
11 Norway 2.0 2% 57.4
12 Kazakhstan 1.8 2% 53.3
13 Mexico 1.8 2% 52.3
14 Nigeria 1.6 2% 45.9
15 Qatar 1.3 2% 39.4
16 Libya 1.3 2% 37.3
17 Algeria 1.3 2% 36.7
18 Angola 1.1 1% 32.3
19 Oman 1.1 1% 30.7
20 Venezuela 0.9 1% 25.0

Table C.8: Market shares in 2023
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