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Abstract

Implementing monetary policy largely consists in controlling short-term interest rates

which supposes having a good understanding of banks’ demand for liquidity on their

account at the central bank also called ”reserves”. This work aims to offer a mod-

eling methodology for estimating the demand for reserves that itself is influenced by

various macro and market structure variables. The model can help central banks to

identify ”stable points” on the demand for reserves, which correspond to the levels of

reserves for which the short-term interest rate volatility is minimal. Both parametric

and non-parametric approaches are provided, with a particular focus on capturing

the modeling uncertainty and, therefore, facilitating scenario analysis. A method is

proposed to test the forecasting performances of different approaches and exogenous

regressors combination, finding that simpler parametric expressions provide on bal-

ance better performances. Adding variables to both parametric and non-parametric

provides better explanations and predictions. The proposed methodology is evaluated

using data from the Euro system and the US Federal Reserve System.
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1. Introduction

The objective of this paper is to help central banks model the demand for banks’

reserves, which the central bank targets to implement monetary policy. Reserves are

the balance on banks’ demand deposits at the central bank. They are the most liquid

asset in a financial system and are, thus, sometimes referred to as “liquidity”. Mon-

etary policy implementation is inexorably connected with controlling the short-term

interest rates, which represent the marginal cost of funding financial intermediaries.

Although the importance of correctly calibrating the short-term interest rates is

well recognised (Moschitz, 2004; Beirne, 2012; Valimaki, 2008; Bindseil and Jablecki,

2011; Veyrune et al., 2018; El Gemayel et al., 2022), there is limited work to aid

with the modeling of the reserve demand, and by extension setting the short-term

interest rates. This constitutes a gap in the literature, and limiting factor in hav-

ing data-driven decision support for the operations of central banks. Previous work

has recognised the logistic curve as a stylised representation (Valimaki, 2001, 2008;

Bindseil, 2014) but does not offer guidance on the calibration and estimation of the

model. Veyrune et al. (2018) contributes by discussing the estimation of the reserve

demand curve as a logistic curve, albeit for the bivariate case, excluding potential

covariates from the model. Åberg et al. (2021) further demonstrate the effectiveness

of the method by Veyrune et al. (2018). Lopez-Salido and Vissing-Jorgensen (2022)

consider another modification to the logistic curve to include additional variables,

however they fix one of its asymptotes to facilitate the model estimation. They found

that the demand for reserve has likely move due to structural change in the financial

sector driven mainly by prudential regulation (such as liquidity coverage ratio and

leverage ratio) regulation and changes to the Federal Reserve operational framework.

El Gemayel et al. (2022) use a double exponential instead of a logistic curve. Afonso

et al. (2022) focus on estimating interest rate elasticity to changes in reserves, based
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on a locally bi-variate linear approximation of the demand for reserves rather than

estimating the curve itself. They later infer the demand curve by imposing an arct-

angent functional form, but do not assess its goodness of fit to the data. Nonetheless,

these represent relatively rare examples in the literature that focuses on the modeling

aspects of the problem, with the majority of the work focusing on the policy and

economic aspects.

This work provides multiple contributions:

• Proposes several alternative parametric sigmoid (and benchmark) models for the

reserve demand that are able to account for external factors. Non-parametric

alternatives are provided to demonstrate the advantages and weaknesses of the

proposed parametric curves.

• Prescribes a methodology to select between the alternative reserve demand

curve representations and regressors, automatically specifying the appropriate

model.

• Provides asymmetric quantile estimates for the curves, both communicating the

modeling confidence to the analyst and indicating the risk of deviating from the

estimated interest rate for a given reserve level. This is the first work that

models the uncertainty of the reserve demand.

• Facilitates scenario analysis for changes in the external factors, while providing

conditional predictive distributions to the analyst, demonstrating both shifts in

the estimated reserve demand curve and its uncertainty. This helps to forecast

the change in the demand and calibrate monetary operations accordingly.

The proposed methodology provides approaches to overcome estimation compli-

cations for the various models, obtain quantiles with minimal assumptions, and over-

come typical issues in scenario analysis. It is believed that, this contribution is the
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first that provides a complete set of tools to estimate the demand for reserves and,

therefore, facilitate central banks to exercise monetary policy. Our work subsumes

previous work by Veyrune et al. (2018), El Gemayel et al. (2022), and Afonso et al.

(2022) by embedding their logistic, double exponential, and arctangent approxima-

tions to a complete modeling framework.

The rest of the paper is structured as follows. Section 2 provides background

context, highlighting the importance of the modeling task. Section 3 describes the

proposed models and modeling methodology. Section 4 presents the two empirical

cases studies that are used for evaluation, followed by Section 5 that discusses the

use of the models for scenario analysis, followed by concluding remarks.

2. Background on Central Bank Policy Rates

Controlling short-term interest rates is paramount for monetary policy implemen-

tation. Short-term interest rates represent the cost of the most liquid and risk-free

asset in financial system; that is banks’ on-demand account at the central bank also

referred to as ”reserve” or ”liquidity”. They indicate what is the cost for intermedi-

aries, e.g., banks, to borrow an additional unit of reserves in the market (or the return

of placing one additional unit in the market). As such, they represent the marginal

cost of funding that would influence the funding cost at longer maturities1 and, via

funding cost, how much intermediaries would charge when they lend to corporation

and individuals. Central banks implement monetary policy by keeping short-term

rates at the appropriate level to pursue their inflation objective, increasing them if

inflation exceeds the target and lowering them if inflation is below target. The mon-

etary policy implementation challenge is, thus, to keep short-term rates stable, close

1That is, the marginal cost plus how much counterparties would request to forgo the benefit of
liquidity (the liquidity premium).
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to level deemed appropriate generally called the ”policy rate”.

Reserves are instruments of the central banks. They issue them and decide how

much reserves are on the accounts of the banks in their books. Some factors influence

the stock of reserves and are not under the direct control of the central bank. Those

are the ‘autonomous factors’ such as the demand for bank notes, which is another

instrument issued by the central bank that depends on the public need for trans-

action purpose, or the government account at the central bank. However, central

banks could add or withdraw reserves from the banks’ accounts via their monetary

policy operations. The autonomous factors should, thus, be forecasted and possibly

compensated by monetary operations.

The demand for reserves describes the rate at which banks are ready to borrow

and lend reserve as a function of aggregated reserves in the system. Banks demand

reserves for different reasons that could vary with time (Afonso et al., 2022; Hamilton,

1997; Poole, 1968). They seek to keep a certain buffer of reserves to absorb unex-

pected payments out of their account at the central bank. Their demand for reserves

chiefly depends on (i) the risk (distribution of payment shocks); (ii) predictability

of the payment shocks (the central bank liquidity forecast if publicly available); (iii)

interbank market functioning (how easy is it to fund a short-term funding need in the

market); (iv) the cost of liquidity management errors (the cost of being short or long

of reserves); and (iv) regulatory demand for reserve such as the reserve requirement.

Reasonably assuming that central banks operate standing lending and deposit

facilities, short-term rates are expected to decline as reserves increase, converging to

the deposit facility rate. In the opposite case, when there is not enough liquidity, the

banks would need to borrow at the lending facility. This connection is exemplified in

Figure 1. In the figure, a series of ‘stable points’ are provided, which correspond to the

level of liquidity where the available reserve buffer can absorb liquidity shocks without

impact on short-term rates. Outside of those stable points, liquidity shocks or changes
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in the demand would have an impact on short-term rates, triggering interest rate

volatility, with adverse effects. These are the product of three alternative monetary

policy implementation frameworks (King, 2018; Bindseil, 2014; Ennis and Keister,

2008):

• In the ”mid-corridor” system, the stable point is at an equal distance from the

deposit facility rate and the lending facility rate of the central bank. Therefore,

there is no more incentive of being either short or long reserves. If the reserve

requirement imposes the minimum buffer necessary for inter-temporal smooth-

ing2 of the liquidity shocks, only a small amount of excess reserves is usually

necessary for the stability of short-term rates close to the middle of the corridor.

• In a ”floor” system, the inter-temporal smoothing role previously played by the

reserve requirement is fulfilled by enough recourse to the deposit facility (the

minimum buffer). In that case, rates would be stable and close to the deposit

facility rate, which is the effective policy rate.

• In a ”ceiling system”, banks finance the shortfall compared with their minimum

buffer at the standing lending facility which rate, then, become a stable point.

Central banks need to know the demand for reserve ex-ante to calibrate their

operations and the reserve requirement as parsimoniously as possible. As with any

insurance, liquidity has a cost, which means that the more is not necessary desirable.

Too much buffer would impose low-yielding assets in the banks’ balance sheet; a cost

that will typically be passed to their clients, thereby introducing a form of liquidity

premium. It is also detrimental for the money market, especially for transactions

between counterparts with access to the central bank’s facilities, such as banks. The

2Ability for banks to offset shortfall of one day with surplus on the other days over the course of
the maintenance period
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Figure 1. Stable Points on the Demand Curve for Reserve

Source: Authors’ Calculation
Notes: The dots on the demand curve represent the stable points.

marginal cost of funding, which central banks want to control, moves from transaction

between counterparts with access to these central banks’ facilities to transactions

between counterparts with access and counterparts without access, such as non-bank

financial institutions. Prudential regulation, such as the leverage ratio, could affect

the willingness of banks to accomplish this intermediation. As a result, short-term

rates fluctuate below the deposit facility rate with less central bank control, i.e.,

for a certain level of excess reserves short-term rates leave the stable points defined

by the deposit facility rate. This weakens the effectiveness of central banks’ policy

implementation.

Therefore, what is central to effective monetary policy is the correct identification

of these stable points and the reserve demand curve, or its evolution due to changes

in the market environment. Unconventional monetary policies, especially those con-

sisting in providing ample excess reserves, do not affect the proposed methodology

and usually do not influence the demand for reserve that usually reflects factors that

are not under the direct control of the central banks but under the control of their
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monetary counterparties (i.e. banks). The next section will introduce the method to

assist central bank operations, conditional on the information that would be typically

available to them.

3. Modeling the Excess Reserves Demand Curve

3.1. Functional form

The general form of the model is ri = f(g(Ci)), where ri is the short term interest

rate for observation i, and Ci = [Ri Xi] is a matrix that contains the excess reserve

Ri and p explanatory variables in Xi. Let

g(C) = c+Cwg, (1)

where wg is a column vector of p + 1 coefficients, and c is a constant. For f(·) sev-

eral alternative forms are considered, which are listed in Table 1. Therein, Logistic

and the Reduced Logistic have parameters α, β, and κ controlling the shape of the

curve. Veyrune et al. (2018) use a bivariate logistic curve, while Lopez-Salido and

Vissing-Jorgensen (2022) include additional variables in the logistic but drop α re-

stricting somewhat the control over the asymptotes of the curve. Their modification

has advantages for the estimation of the model parameters. For double exponential

parameters α, β, and ρ control the shape (used by El Gemayel et al., 2022), while

for exponential only parameters α and β are used. The arctangent has been used

by Afonso et al. (2022), with parameter α changing the location of the curve, and

β controlling its spread and ensuring that the resulting sigmoid is decreasing. The

coefficients in g(C) are sufficient to control the phase of the arctangent, reducing the

required number of parameters from the formulation by Afonso et al. (2022). The

effect of the various parameters can be seen in Figure 2. The linear functional form

for f(·) has the role of a benchmark for the more complex non-linear models. For all
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curves, an additive error term is assumed on which there is no further distributional

assumptions imposed, nor homoscedasticity assumption.

Table 1. Functional Forms of f(·)

Curve Function

Logistic ri = α + κ/(1− βeg(Ci)) + εi
Reduced Logistic ri = α + 1/(1− βeg(Ci)) + εi
Double exponential ri = α + βeρe

g(Ci) + εi
Exponential ri = α + βeg(Ci) + εi
Arctangent ri = α + β arctan(g(Ci))
Linear ri = g(Ci) + εi

Figure 2. The Sigmoid Alternatives for f(·) and the Effect of Their Parameters

β
α and κ

α

Increased g()

Decreased g()

Logistic

α

β and ρ

Increased g()

Decreased g()

Double Exponential

α

β

Increased g()

Decreased g()

Exponential

Source: Authors’ Calculation

None of the prescribed curves enable modeling vertical shifts in the reserve demand

curve. Operational changes or otherwise market disruptions can cause such shifts,

which are accounted with the addition of a parameter η to quantify the shift, encoded

by a binary indicator Ii: ri = f(g(Ci)) + ηIi.
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3.2. Selection of Explanatory Variables and Functional Form

The method allows for the inclusion of p ≥ 0 explanatory variables in g(·). The

inclusion of predictively useful covariates is intended to explain the variance of ri.

However, the functional form of f(·), irrespectively of any variables included in X,

will explain the variance of ri as well. Therefore, in selecting which variables to

include in the method, it is desired to simultaneously choose the shape of the curve

and the variables.

Given that there is no distributional assumptions, k-fold cross-validation (CV)

will be employed to assess the functional form. Although CV is effective for this,

it can make an exhaustive search very computationally expensive. To mitigate the

computational requirements, the following search strategy is proposed. First, the CV

data folds will be generated. Second, for each curve, follow a backwards selection

for the variables. Once the best subset is identified, third, compare the CV errors

of the different curves. As the folds are kept common across the search between

specifications, the errors remain comparable. More detail is elaborated below.

Given a curve functional form, f(·), start by building the model that includes all

possible covariates and obtain its CV error. And then the CV error will be evaluated

after removing each of the variables on their own. If any such elimination improves

the CV error, then that variables will be removed and repeat the process till either all

variables have been eliminated or the CV cannot be improved further by eliminating

any variable. At maximum, the selection routine will stop at p steps.

There is ample evidence of the good performance of the general to specific ap-

proach in model building (Hoover and Perez, 1999, 2004; Hendry and Krolzig, 2011).

A detailed overview of its merits is provided by Campos et al. (2005). Nonethe-

less, the implementation can take several forms. In terms of criterion, the CV Mean

Squared Error (MSE) will be examined as this has been shown to be an effective way

to obtain well specified models for predictive purposes (Bergmeir et al., 2018). The
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MSE is chosen, as it is of interest to obtain specifications that accurately model the

expected ri (Gneiting and Raftery, 2007). And the authors are testing “non-nested”

models that encompass the general unrestricted model.

The described backwards iterative search can be greedy, in that it does not explore

all potential specification combinations, and further a stepwise search that would

permit re-inclusion of rejected variables is not allowed. This is done for computation

efficiency, while there is evidence that the specification search does not suffer greatly

(Hastie et al., 2009), in contrast to a forward search that has been shown to explore

a very limited modeling space.

At the end of the backwards variable search the best setup for each functional

form of f(·) is obtained. Given that the cross-validation uses a common sampling,

the errors between the best specifications are directly comparable, and therefore the

selection of best curve and variables without additional computations will be achieved

simultaneously.

In settling with this approach, an additional consideration is that it is trivially

parallelizable, enabling the efficient use of computations resources. Attempt to model

the linear g(·) was made first, with variable selection using the Akaike’s Information

Criterion, and using its predicted values as inputs for f(·). In that case, Xi, the po-

tentially explanatory variables, will be regressed on Ri, the excess reserve. Although

this approach seems reasonable and computationally efficient, it suffers from two im-

portant drawbacks. First, the two stage modeling introduces several biases in that

the first model is built on minimizing the errors in explaining Ri and not ri, and the

sequential parameter optimization of g(·) and f(·). Second, even if these biases are

disregarded, the regression model that takes the part of g(·) can output values that

are inappropriately scaled as inputs for the functional forms in Table 1 due to the

exponent. This can be dealt with by introducing a scaling factor where in Table 1 the

g(Ci) is replaced by ϕg(Ci) with ϕ scaling the outputs of the regression to values that
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do not saturate the exponent. However, the trials indicated that the optimization of

ϕ is non-trivial, failing to identify appropriate ϕ and produce useful predictions of ri.

3.3. Estimation of Prediction Intervals

Instead of assuming a particular distribution for εi it is obtained from the data.

This has multiple advantages. First, the estimation is not biased by an incorrect

choice of the underlying distribution, which connects to the second, assumption is

not needed on symmetry from the mean, or lack of, for the upper and lower intervals.

Third, εi is expected to be heteroscedastic, with an unknown scedastic function of

Ci. For instance, it is anticipated that for high volumes of Ri the variance of ri will

be small. And a similar connection is expected when Ri is very small.

To estimate the upper and the lower intervals for a given probability α we re-

estimate the previously specified curve using the tick loss (or pinball):

S =

α|yi − ŷi|, if ŷi ≤ yt,

(1− α)|yi − ŷi|, if ŷi > yt,

. (2)

where yi and ŷi are the observation and prediction for observation i respectively.

This loss is a proper score for predicting quantiles at levels of α ∈ (0, 1) (Gneiting

and Raftery, 2007) and therefore appropriate to our task. For instance, if we are

interested in the 95% interval, we optimize using S for α = 2.75% and α = 97.25%.

3.4. Parameter Estimation and Constraints

Due to the nonlinear nature of the curves the estimation of their parameters

can be difficult, with the error surface exhibiting local minima. Furthermore, the

various curves in Table 1 allow for more shapes than those depicted in Figure 2 that

connect to our application focus. To achieve good quality estimates we start with

reasonable initial values for the parameters, which already incorporate the appropriate
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overall shape. To initialize the coefficients in g(·) we pre-optimize the model using a

standard numerical optimizer like Nelder-Mead (Powell, 1973). As the quality of the

optimization is not guaranteed, we rely on the Particle Swarm optimization (PSO)

metaheuristic for the final estimates. PSO provides a very effective search of the error

surface. This is achieved by intialising a population of candidate solutions, the search

of which is influenced by both the known local and global best positions at each

iteration. This ensures that the majority of the different solutions converge towards

the global best, while effectively searching the error surface (Bonyadi and Michalewicz,

2017). However, PSO has the disadvantage in that its solution is stochastic, and

different random initial points for the candidate solutions may result in different

outcomes. Depending on the quality of the estimation, these solutions may exhibit

high variation.

The influence of the random initialization can have a substantial effect on the

quality of solutions (Kourentzes et al., 2014). Note that the parameters in the various

curves interact (see Figure 2), with visually similar solutions being potentially the

product of different sets of parameters. Figure 3 demonstrates this. A logistic curve

is optimized on the same data for ten times. The vectors of parameters are projected

using principal components analysis on the left plot. Three clusters of solutions

are identified, between which there are substantial differences in terms of estimated

parameters. The plot on the right shows the corresponding curves. The nine curves

belonging to clusters 1 and 2 are almost identical. Curve resulting from the average

of the sets of parameters is also provided, which has a very poor fit. With this,

both the variations between solutions, and how the parameters in these solutions can

counterbalance each other to result in a very similar fit are illustrated. This effect is

stronger for curves that have more parameters controlling their shape.

Two different strategies to resolve this are considered. For both, we initialize

the optimization randomly multiple times. Then, we either (i) pick the initilisation
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Figure 3. Two Different Visualizations of 10 Different Estimates for a Logistic Curve
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Notes: The plot of the left projects the parameters on a 2D space using principal components,
demonstrating the diversity of the solutions. The plot on the right shows the resulting logistic
curves from the different sets of estimated parameters. We also provided the resulting curve of the
average of the estimated parameters.

that resulted in the lowest objective function value, or (ii) use a carefully designed

combination of the initializations. As a simple combination of parameters will not

result in a good solution, we instead rely a modification of the ”islands” pooling

heuristic by Kourentzes et al. (2019). For j = 1, . . . , u different initializations, we

collect the resulting values of the objective function v = vj. Then:

1. Find the correlations ρ = −ρj of all vectors of parameters with the solution

with the minimum v. Observe the negative sign that ensures that the more

correlated solutions rank lower in ρ.

2. Sort ρ from lowest to highest.

3. Construct ρ′ = {0,∆ρ}, where ∆ρ is the first difference of the sorted ρ.

4. Include in the combination pool all initializations where ρ′ ≤ τ , with τ being a

threshold calculated iteratively as Q3(ρ′
j) + IQR(ρ′

j), with Q3 and IQR being

the third quartile and the interquartile range respectively, and ρ′
j being a vector
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including up to the j-th value of ρ′. This steps eliminates from the combination

poorly performing estimates.

5. Ensure that a second criteria of inclusion is satisfied: ρj ≥ 0.8 where solutions

with very different parameters are not included. This helps avoiding combining

counterbalancing estimated parameters that can perform poorly (see Figure 3).

6. Linearly combine the remaining sets of parameters using the weights: zl/
∑

z,

where zl is the l-th value of v that was included in the combination pool.

The objective of the combination ”islands” is to retain only high performing solutions

in the combination, reducing the number of combination weights to be estimated that

can harm the overall combination (Claeskens et al., 2016), while being able to reduce

the variability of the final set of parameters due to the combination. In contrast, the

first option does not mitigate the variability of the solutions, but is able to provide

good quality estimates nonetheless.

An additional feature of the proposed approach is the ability to incorporate restric-

tions on the coefficients in g(·) that model the impact of the explanatory variables.

It is anticipated that for many of the explanatory variables the analyst will have

some understanding whether a positive or a negative effect is to be expected, which

is translated into a non-negativity or non-positivity constraint for the respective coef-

ficient. By introducing these restrictions, faster optimization can be achieved, which

also help with the selection of variables. If a variable is included in the curve spu-

riously, there is a good chance that its sign may also be inappropriate. Introducing

these restrictions prohibits these solutions, pushing that variable out of the model. If

the analyst does not have an expectation about the sign of a specific variable, then

its coefficient remains unrestricted.

Beyond any statistical benefits, the ability to introduce parameter restrictions for

the explanatory variables can help with the acceptability and adoption of the method
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in practice. The trustworthiness of a method is positively affected by demonstrating

that accepted domain knowledge is captured, as well as the ability of analysts to

introduce their domain expertise (Arrieta et al., 2020). The trustworthiness is further

reinforced by limiting the apparent stochasticity of the solution obtained by the PSO

metaheuristic, providing stable and consistent predictions (Spavound et al., 2022).

Finally, in estimating the prediction intervals, the obtained curve parameters are

used as a starting point, and restrictions to retain the same signs for the estimated

parameters are imposed. An additional restriction is used to ensure that the provided

intervals do not cross the fitted curve.

3.5. Use of the Method and Scenario Analysis

The overall modeling methodology is summarised in Figure 4. Starting from

a number of potential functional forms (summarised in Table 1) and explanatory

variables, through cross-validation, we obtain the best curve f ∗(·). This is then

optimized across the complete available sample using the MSE, and twice with the

tick loss for the upper and lower prediction intervals. If required, we can sample the

predictive distribution in more detail by estimating the corresponding parameters for

any number of quantiles. The approach resembles a quantile regression, as we obtain

an estimated curve for each desired quantile.

The method can then be used to obtain predictions for ri or to evaluate the effect of

different scenarios as captured by the conditions prescribed by the included variables

from Xi, for instance increasing or decreasing market segmentation. This scenario

analysis can be instrumental in supporting planning for a variety of uncertainties

(Wright and Goodwin, 2009; Schoemaker and Tetlock, 2012).

In generating scenarios we often consider a number of alternatives, for instance

mild and severe scenarios. Although the generation of the different scenarios is inter-

esting, it is beyond this discussion and we refer the reader to Wright and Goodwin
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Figure 4. The Proposed Methodology for Identifying the Appropriate Functional Form
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Notes: The proposed methodology for identifying the appropriate functional form. Each curve
should be an instantiation of the general unrestricted model.

(2009) for an overview of good and bad practices. Here, we contrast scenarios with

the probabilistic statements of predictive models. We exemplify the contrast using a

simple bivariate regression: yt = c0+ c1xt+ εt, where c0 is a constant, c1 is the coeffi-

cient of the predictor xt, t refers to a time period t = 1, . . . , T for T observations, and

ε ∼ N (0, σ2) with standard deviation σ. Suppose we are after a prediction for period

t = T +1, which would be the unconditional expectation equal to ŷT+1 = c0+c1xT+1,

with a variance of σ2. In this statement we assume the value of xT+1 is known. In

a conditional setting, where we have no knowledge of the future values, one can con-

struct scenarios for xT+1 and obtain outcomes for yT+1 conditional on the narratives

supporting each scenario. However, obtaining the conditional variance of yT+1 can be

challenging when xT+1 is the outcome of scenarios. The example bivariate regression

implies that εt is independent of xt, and therefore would remain σ2. Here lies a fallacy,

as we build the scenario narratives on various conditions and assumptions that are

not part of the bivariate regression. If we are willing to accept that these omitted

variables will affect the expectation of yt, then assuming that these will not affect

the variance is overly restrictive. The narratives that generate the scenarios and the
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model we use to analyze the effects of the scenarios are not simultaneously valid.

This is typically overlooked and in scenario analysis we often do away with the

probabilistic nature of predictions and instead obtain specific point predictions of yt.

Although these may be perceived as more credible than less involved statistical mod-

els, due to their narrative and vivid nature (Taylor and Thompson, 1982; Schnaars

and Topol, 1987), they do not provide a sense of the respective uncertainty (Athana-

sopoulos et al., 2022) and their usefulness as predictive tools can be challenged (Fildes,

2022). Such scenarios are often associated with some ad-hoc probability of occurring,

supported by the scenarios’ narratives that can be skewed due to various judgmen-

tal biases (Goodwin et al., 2019a,b). Although, this can be partially mitigated by

leveraging multiple experts cancelling out individual biased (Kourentzes et al., 2021),

these ad-hoc probabilities are largely not based on rigorous data modeling.

Figure 5 demonstrates the issue. In panel (i) The distribution of yt, accounting for

the different xt inputs is provided, alongside with three scenarios generated by pro-

viding three alternative values for xt. The plotted densities are obtained using kernel

density estimation. The scenarios fail to provide a probabilistic view, and when con-

trasted with the density of yt their validity can be questioned, or conversely challenge

the validity of the model for yt. In panel (ii) we provide predictive distributions for

the three scenarios based on the variance of εt, which is also problematic, as it does

not account for the conditions that generated the scenarios.

Our approach enables us to construct mean point predictions for various scenarios

and also sample the predictive distribution at the desired quantiles. As the intervals

are generated via curves that include the estimated effect of the explanatory variables

that change in the various scenarios, changes in shape and location of the quantiles

are modelled. (An example is provided in Figure 13.) Athanasopoulos et al. (2022)

showed that the predictive distribution can differ substantially for various scenarios.

In their case, they relied on judgmental estimates from a large number of participants,
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Figure 5. Density Comparison for Probabilistic Prediction
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Notes: In the left panel (i) the density of the probabilistic prediction of yT+1 is contrasted with
three scenarios generated using three values of xT+1. In the right panel (ii) for the same scenario
based predictions the predictive distributions based on the variance of εt are given.

while in our case we obtain the predictive distributions for each scenario quantita-

tively. This makes the approach more scalable, as it does not require collecting the

views of participants. This is important, as the proposed method is meant to be used

in an operational decision making context and not as a one-off tool. Nevertheless,

from the proposed method an analyst can choose to extract the conventional predic-

tive distribution, scenario based point estimates, or more completely scenario-based

predictive distributions.

4. Application to Case Studies

4.1. Experimental Design

To empirically validate the performance of the proposed parametric approaches

we set up two experiments, using data from the European Central Bank, and the US

Federal Reserve. The setup of the two experiments is identical.

To generate out-of-sample test data we use a 30-fold cross-validation (CV). For
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each fold, the training set is used to apply the methodology described in Section 3.

Figure 6 exemplifies the resulting double CV, where the outer 30-fold CV is used to

iterate across test observations (in red in the Figure), and the inner 10-fold CV is

used to generate validation observations to select variables and curves (the different

folds shaded in blue). Eventually, all observations are used as out-of-sample test.

This double CV setup is necessary to avoid specifying and evaluating the curves on

the same data.

Figure 6. Three Example Folds of the Double Cross-Validation

Fold 3

Fold 2

Fold 1

Source: Authors’ Calculation
Notes: Red observations are used as test (30-fold) and blue cross-validated sample (10-fold) are used
for selecting variables and curves.

For the test set we track the following error metrics:

RMSE =

√
1

o

∑
o

(yo − ŷo)
2,

MAE =
1

o

∑
o

|yo − ŷo|,

where yo is the o-th observation in the test set, and ŷo its respective prediction. The

Root Mean Sqaured Error (RMSE) and the Mean Absolute Error (MAE) measure

the accuracy of the predictions. To evaluate the prediction intervals of the competing

methods, the Mean Interval Score (MIS) has been used:

MISα =
1

o

∑
o

(
(Uα − Lα) +

2

α
(Lα − yo)1 (yo < Lα) +

2

α
(yo − Uα)1 (yo > Uα)

)
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4.1.1. Methods

Parametric curves described in Table 1 are tested with the linear option acting

as a benchmark. Furthermore, two non-parametric methods that attempt to approx-

imate the underlying data structure in a data driven fashion are also experimented.

These are useful to assess the restrcitveness of the parametric forms considered in our

methodology.

The first non-parametric alternative is based on a Random Forest implementation.

Random Forest is a popular machine learning method, applicable to both regression

and classification problems, proposed by Breiman (2001). It is an ensemble learner

based on decision trees, where the prediction of multiple trees is combined to achieve

better accuracy and robustness than any individual tree. For each of these trees a

number of variables is included randomly, providing both diversity in the combination,

while avoiding the need to explicit variable selection by the modeler.

The second non-parametric approach uses Generalized Additive Models (GAMs),

proposed by Hastie and Tibshirani (1990). GAMs allow for non-linear relationship

between the explanatory variables and the target, using smooth spline functions to

approximate the connection. The degree of smoothing can be fine-tuned by minimiz-

ing a cross-validation error, which apart from providing a data driven approximation,

it also mitigates the need for variable selection, as the impact of variables that are

not deemed helpful is smoothed to a degree that they have minimal contribution to

the final prediction (Wood, 2006).

Finally, for each dataset two experiments are conducted. First, to model using only

the excess reserve as a predictor, and second, to model using additional explanatory

variables, listed separately in each case study in their respective subsections.

For the purposes of this evaluation, 10 random initializations for the PSO are used,

which is implemented using the pso package (Bendtsen, 2022) for R (R Core Team,
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2021). The variable and curve selection uses a 10-fold cross-validation in the training

set. The random forests are implemented using the package randomForest (Liaw and

Wiener, 2002) for R, with the default settings for the generation of the tree population.

Quantiles for the random forecast are obtained by using the approach by Meinshausen

and Ridgeway (2006), as implemented in the quantregForest package (Meinshausen,

2017) for R. The formulation relies on a similar direct estimation of the quantiles as

described in Section 3. The GAMs are implemented using the mgcv package (Wood,

2006) for R, using thin-plate regression splines (Wood, 2003). Quantiles are obtained

using the qgam package (Fasiolo et al., 2021b) for R that follows Fasiolo et al. (2021a),

who tune the GAMs on the pinball loss.

4.2. European Central Bank

4.2.1. Data

The short-term interest rate used for the European Central Bank (ECB) is the

volume-weighted Euro Overnight Index Average (EONIA) rate, at which commercial

banks borrow from each other with a maturity of one day. Because most contributors

to EONIA have access to the deposit facility, EONIA eligible transactions declined

with excess reserves. The short-term interbank rates are confined within an interest

rate corridor, which comprises the standing facilities as its upper and lower edges (the

ECB lending rates and ECB deposit rates). The EONIA is normalised (r̃i) between

0 and 1 as:

r̃i =
ri −Deposit Ratei

Lending Ratei −Deposit Ratei
. (3)

The rate is also averaged over the reserve maintenance period3 to smooth out intra-

period volatility.

3This is the length of time during which the central bank requires banks and other depository
institutions to maintain a specified level of funds.
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The genuine marginal funding rate moved to transactions between counterparts

with and without access to the deposit facility. EONIA was, thus, discontinued in

October 2019 and was replaced with the Euro short-term rate (ETSR) that includes

transactions between banks and counterparts without access to the ECB deposit

facility. ESTR, on the other hand, is not bound by the deposit facility and may drift

below the deposit facility rate.

Both macroeconomic and financial variables are considered. Monetary aggregate,

domestic production, and consumer prices help capture the money demand (Lopez-

Salido and Vissing-Jorgensen, 2022). Financial indicators such as volatility index,

foreign exchange rate, sovereign bond yields, and credit default swap are used to

gauge the impact from market sentiment and movement (El Gemayel et al., 2022). A

detailed list of variables, data source, and their description is available in Table A.7.

Data are collected from 1999 to 2019, resulting in 239 maintenance periods where all

data is available.

4.2.2. Using Only the Excess Reserves

Table 2 summarizes the results when only excess reserves is used as an input, and

the best parameter vector is used. The objective of this experiment is to evaluate the

fitness of the curves when there are no additional covariates to model the data. The

table provides the mean RMSE, MAE, and MIS over the 30-fold CV test errors. The

columns ”Valid”. and ”Test” provide the mean RMSE rank in the validation and test

CV errors respectively. The best performing result in each column is highlighted in

bold. The table provides the values for the metrics for the case that we select the best

optimal set of parameters, and the percentage gains over these values when we use

a combination of curve parameters. The ”St. Dev” column reports the percentage

reduction of the average standard deviation of distribution of the curve parameters

over the CV samples.
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In terms of accuracy (RMSE and MAE), the Arctangent performs best, followed

by the other parametric curves. The non-parametric methods are close to the worst-

performing parametric curves, with the linear being substantially less accurate than

all alternative specifications. In terms of MIS, the random forest ranks first, with

the parametric curves following, and the spline regression ranking last. To better

understand the results we provide the different curves with their 90 percent intervals

in Figure 7. The poor performance of the linear is apparent and expected. The

Random Forest provides a very non-smooth approximation of the data, yet quite

narrow intervals. The various non-linear curves exhibit different degrees of fitness,

but uniformally fairly good intervals, reflected in the MIS values. In contrast, the

Spline Regression achieves a good fit, yet rather wide intervals. This is an expected

trade-off, as non-parametric methods require an abundance of data. This is reflected

in the Spline Regression with increased modeling uncertainty, while in the Random

Forest with non-smoothness. Arguably, the good fit of the spline regression comes

at the cost that it does not exhibit the expected behaviour (observe the increase of

interest rates for high excess reserves). The validation and test mean ranks exhibit

high correlation (0.76), suggesting that our approach to selection is effective in this

case in picking a useful model.

Proceeding to the percentage gains (negative values are losses) for the combination

of curve parameters, with the exception of the reduced logistic and the arctangent,

for the rest of the curves we observe a reduction in the standard deviation, typically

with a small loss of accuracy, suggesting that the combination of parameters stabilises

the estimates as intended.

4.2.3. Using Additional Predictors

Table 3 provides the summary performance statistics when using all possible co-

variates. We provide only the results for selecting the best set of parameter estimates,
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Table 2. Out-of-Sample Performance for the ECB using Only Excess Reserves

Method
Selection Combination (gains %)

RMSE MAE MIS Valid.⋆ Test† St. Dev. RMSE MAE MIS

Logistic 0.0631 0.0495 0.1750 3.77 4.43 59.03 -2.82 -0.86 2.65
Red. Logistic 0.0637 0.0497 0.1740 2.10 4.33 -11.94 0.04 1.10 0.21
Double Exp. 0.0624 0.0489 0.1750 4.73 3.93 14.68 -6.93 -4.73 -26.80
Exponential 0.0639 0.0498 0.1770 3.20 4.47 2.24 -1.31 -1.13 -1.78
Arctangent 0.0616 0.0484 0.1730 4.50 3.70 -36.40 -7.89 -5.01 -7.04
Linear 0.0811 0.0694 0.2430 8.00 6.10 0.00 0.00 0.00 0.00
Random Forest 0.0676 0.0510 0.1320 6.70 5.10 - - - -
Spline Regr. 0.0635 0.0487 0.3140 3.00 3.93 - - - -
⋆validation CV RMSE rank; †test CV RMSE rank
Source: Authors’ Calculation

as the combination approach behaves similar to the previous case. The best perform-

ing approach per column is highlighted in bold.

Table 3. Out-of-Sample Performance for ECB using All Regressors

Method RMSE MAE MIS Valid⋆ Test†

Logistic 0.0471 0.0372 0.1840 2.97 4.00
Red. Logistic 0.0527 0.0417 0.3430 4.40 4.50
Double Exp. 0.0483 0.0389 0.1800 3.40 4.33
Exponential 0.0701 0.0591 47.5000 6.73 6.00
Arctangent 0.0653 0.0529 0.1950 6.60 6.13
Linear 0.0557 0.0459 0.2420 6.57 4.87
Random Forest 0.0385 0.0295 0.1520 2.10 2.83
Spline Regr. 0.0390 0.0320 0.1720 3.23 3.33
⋆validation CV RMSE rank; †test CV RMSE rank
Source: Authors’ Calculation

The random forest provides the most accurate results across RMSE, MAE, ME,

and MIS, followed by the other non-parametric alternative, the spline regression.

With the exception of the exponential and the arctangent curves, the performance of

the parametric curves improves with the inclusion of additional regressors. To better

understand the differences between the bivariate and the multivariate case, Figure 8

provides the beanplots of the RMSE and MIS for the two cases. Beanplots are rich
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Figure 7. Fitted Parametric and Non-Parametric Alternatives, with 90 Percent Prediction Intervals
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Notes: X axis is excess reserve in unit and y axis indicates normalized short-term interest rate.

variants of violin plots that provide an empirical representation of the distribution

of the plotted quantities, together with indications of the actual values and means of

different beans, allowing a better representation of outlying values and multimodal

distributions (Kampstra, 2008). That is particularly for the case of MIS, the reduced

logistic, exponential, and linear exhibit outliers. The better performing curves have

more parameters and are able to make better use of the additional regressors. The

error distributions are both narrower and shifted lower.

To explain the substantial improvement in the performance of the non-parametric

methods, Figure 9 provides plots of the values for the random forest and the logistic
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Figure 8. Beanplots for the ECB Data for MSE and MIS, using All Regressors or Only the Excess
Reserve
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Notes: The beanplots are comprised by a violin plot, showing the empirical distribution of errors,
with the narrow lines indicating observations, and the wider lines the mean of each bean. The △
indicates the presence of outliers beyond the plotted range. The inclusion of exogenous regressors
improved forecast accuracy but not the distribution of the errors.

curves, the best performer overall and parametric curve respectively. The figure

provides a plot of the model output (upper row) and there is a projection of the first

two principal components, given the multivariate nature of the data. Note that the

non-parametric curve takes advantage of the additional information, but similarly to

Figure 7, it over-explains the variability in the data, suggesting a raise in the interest

rates at high volumes of excess reserves that is contrary to the theory. Therefore, we

interpret the non-parametric curves as useful methods to indicate how well the data

could be explained in a theory-unrestricted case. When there is an abundance of data,

we anticipate well performing curves to be between the non-parametric methods and

the linear case.
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Figure 9. Plots of the Random Forest and the Logistic Curves with all Selected Regressors and their
PCA Projections
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Notes: X axis is excess reserve in unit and y axis indicates normalized short-term interest rate.

Figure 10 provides barcharts with the percentage of the times a variable was in-

cluded, per curve, across the CV samples. Exogenous regressors aim at capturing

factors that can influence the demand for reserves and are not under the central

bank’s control. They revolve around the insurance motive for holding reserve, the

most liquidity asset, and the insurance cost (reserve pay less than less-liquid alter-

native assets). In agreement Lopez-Salido and Vissing-Jorgensen (2022), we find

monetary aggregates (M1, M2, M3) to be useful, assuming that banks keep a cer-

tain amount of reserves to cover their deposits, real GDP growth to control for the

increase in the volume of transactions in the economy, and the yield of alternative

less-liquid assets such as government securities. Like El Gemayel et al. (2022), we find

variables reflecting changes in risk perception, such as the CDS, VIX, and exchange

rate volatility, useful. Concerns about loss of market access encourage banks to hoard

more reserve, thereby increasing the demand for reserves. In addition, the estimate
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includes variables corresponding to market functioning such as market turnover.

Figure 10. Barplots of the percentage of times (across CV samples) that variables were included for
the ECB

bond_yield

eurusd_1w_vol

eurusd_ovn_vol

eonia_volume

vix

eurusd

hicp

m3

cds_pls

rgdp

m2

m1

excess reserve

0% 20% 40% 60% 80% 100%

Percentage of times selected

V
a

ri
a

b
le

Logistic

eurusd_1w_vol

rgdp

bond_yield

m2

hicp

eurusd

eonia_volume

m3

m1

cds_pls

eurusd_ovn_vol

vix

excess reserve

0% 20% 40% 60% 80% 100%

Percentage of times selected

V
a

ri
a

b
le

Reduced Logistic

bond_yield

eurusd_ovn_vol

eurusd_1w_vol

vix

cds_pls

eurusd

m3

rgdp

hicp

eonia_volume

m2

m1

excess reserve

0% 20% 40% 60% 80% 100%

Percentage of times selected

V
a

ri
a

b
le

Double Exponential

bond_yield

eurusd_1w_vol

eurusd_ovn_vol

hicp

eonia_volume

rgdp

vix

eurusd

cds_pls

m3

m2

m1

excess reserve

0% 20% 40% 60% 80% 100%

Percentage of times selected

V
a

ri
a

b
le

Exponential

eurusd_1w_vol

bond_yield

eurusd_ovn_vol

eonia_volume

hicp

eurusd

cds_pls

vix

m2

m3

rgdp

m1

excess reserve

0% 20% 40% 60% 80% 100%

Percentage of times selected

V
a

ri
a

b
le

Arctangent

eurusd_1w_vol

m2

m1

bond_yield

eurusd_ovn_vol

eurusd

cds_pls

eonia_volume

m3

hicp

rgdp

vix

excess reserve

0% 20% 40% 60% 80% 100%

Percentage of times selected

V
a

ri
a

b
le

Linear

Source: Authors Calculation

4.3. US Federal Reserve

4.3.1. Data

Prior to the 2008 financial crisis, the US Federal Reserve intervened daily in the

short-term fund market, absorbing or injecting reserves via the purchase or sale of

government securities, as necessary to keep the Effective Federal Funds Rate (EFFR),

which is a volume-weighted median of overnight federal funds transactions among

commercial banks, near the Federal Reserve policy target (Ennis and Keister, 2008).

In response to the financial crisis, which resulted in a large increase in demand for
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reserves, the Federal Reserve tolerated larger excess reserve balance on accounts that

were not remunerated before 2008. Therefore, it introduced a remuneration of excess

reserves, the Interest Rate on Reserve Balance (IOER), to implement monetary policy

by changing the IOER. Starting in 2013, the high level of excess reserves reduced

transactions between counterparts with access to the IOER, and increased transaction

between them and counterparts with no access. As a result, the floor system started

”leaking” and the Federal Reserve introduced a new operation, the overnight reverse

repurchase agreements (repo), at a slightly lower rate than the IOER (currently 10

basis point) that is available to counterparts with no access to the IOER (such as the

Federal Home Loan Banks and money market funds) to cap by how much the EFFR

could drift from the IOER. At end-April 2022, the amount deposited at the reserve

repo reached levels close to the balance on the IOER account, making the former

as important as the later regarding short-term rate convergence as excess reserves

increases.

Regarding the normalization, we use the primary credit rate of the Federal Reserve

as the ceiling and 0 as the floor. After 2008, we replace 0 by the IOER. Similar

explanatory variables are collected, listed in Table A.7. In addition, we introduced

a binary indicator to distinguish the period before and after the introduction of the

overnight reverse repo program. Data are collected from 2003 to 2022 and are of

weekly basis, resulting in 1042 observations where all variables are available.

4.3.2. Using Only the Excess Reserves

The presentation of the results follows from Section 4.2, with Table 4 summarising

the results for the case that uses only excess reserves, with Figure 11 providing the

corresponding plots. For the FED case the non-parametric spline regression appears

to perform best in terms of accuracy, closely followed by the parametric curves that

all exhibit similar performance. However, in terms of MIS, which evaluates the uncer-
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tainty of the estimated curve, spline regression performs on average about 32% worse.

In Figure 11 we can observe that neither non-parametric methods follow the expected

behaviour, with the excess reserve curve exhibiting multiple increases and decreases.

Therefore, the good summary statistics are misleading. It is also evident from both

the figure and the summary statistics that the random forest has overfit the data. We

can also observe for the parametric curves that the indicator variable influences the

mean prediction and the quantiles differently. In all cases the mean exhibits a shift as

expected, modeling the ”leaky” floor described in Section 4.3.1. Finally, when we look

at the percentage gains from using the combined curve parameters, the behaviour is

similar to the one for the ECB case, with the parameters becoming less volatile on

average, at the cost of accuracy.

Table 4. Out-of-Sample Performance for the FED using Only Excess Reserves

Method
Selection Combination (gains %)

RMSE MAE MIS Valid.⋆ Test† St. Dev. RMSE MAE MIS

Logistic 0.1150 0.0785 0.3450 2.97 3.60 43.29 -0.91 -4.25 -2.41
Red. Logistic 0.1150 0.0790 0.3460 3.30 4.00 -1.31 0.02 -0.50 0.01
Double Exp. 0.1150 0.0787 0.3450 3.93 3.40 17.28 -7.59 -11.27 -115.80
Exponential 0.1160 0.0807 0.3490 5.57 5.00 23.98 -1.11 -2.75 -1.09
Arctangent 0.1160 0.0786 0.3570 4.60 3.97 -38.39 -3.03 -5.42 -1.39
Linear 0.2040 0.1550 0.7180 8.00 8.00 0.00 0.00 0.00 0.00
Random Forest 0.1360 0.1130 0.8210 6.63 6.97 - - - -
Spline Regr. 0.1080 0.0753 0.3940 1.00 1.07 - - - -
⋆validation CV RMSE rank; †test CV RMSE rank
Source: Authors’ Calculation

4.3.3. Using Additional Predictors

Table 5 summarizes the results for the Federal Reserve when additional regres-

sors are used. Across all methods we observe improvements in accuracy. The non-

parametric methods remain best, with the random forest ranking first. This is match-

ing the ECB case, and likewise the non-parametric methods provide a fit that does
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Figure 11. Fitted Parametric and Non-Parametric Alternatives, with 90 Percent Prediction Intervals
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Notes: X axis is excess reserve in unit and y axis indicates normalized short-term interest rate. The
higher variance in negative rate range in the US compared to the Euro area reflect an implicitly
narrower interest rate corridor in the former compared with the later (see section 4.3.1. for a
description of the operational framework).

not follow the expectation from theory. From the parametric methods the arctan-

gent ranks first, followed by the reduced logistic, and the logistic. Observe that

the improvements in accuracy are not reflected in the MIS, which improves only for

the non-parametric methods. For the remaining, the upper interval remains wide,

resulting in the high MIS values.

Figure 12 summarizes the selection of regressors similarly to Figure 10. We observe

that some regressors, such as m1 and hicp, are consistently selected across curves,
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Table 5. Out-of-sample performance for Federal Reserve using all regressors

Method RMSE MAE MIS Valid⋆ Test†

Logistic 0.1040 0.0708 0.5840 5.30 5.20
Red. Logistic 0.1000 0.0702 0.7160 4.60 4.57
Double Exp. 0.1070 0.0740 0.5910 6.53 5.73
Exponential 0.1030 0.0720 0.7620 5.60 4.97
Arctangent 0.0984 0.0668 0.5480 3.00 4.43
Linear 0.1360 0.0921 1.0100 7.97 7.87
Random Forest 0.0468 0.0252 0.1350 1.00 1.03
Spline Regr. 0.0671 0.0402 0.2540 2.00 2.20
⋆validation CV RMSE rank; †test CV RMSE rank
Source: Authors’ Calculation

while others, such as the m2 and rgdp, are consistently selected only by some curves.

The overall conclusions for the selection of the variables are similar to the ECB.

With the Federal Reserve case we demonstrate the efficacy of the inclusion of an

indicator to model changes in the excess reserve curve, both in the bivariate and the

multivariate case. In Section 5.2 we investigate further the stability of the estimated

curve, given the changes that have occurred over the data sample.

5. Discussion

5.1. Scenario Analysis

The modeling objective is to provide tools for the central banks to calibrate their

decisions and operations. To this end, the ability to analyze different scenarios be-

comes useful for making explicit any implicit assumptions of policy makers. In Fig-

ure 13 we exemplify this by providing two scenarios for the ECB case. The alter-

native scenario assumes parity between USD and euro exchange rate, differing from

the baseline that is based on a stronger euro. As discussed in Section 3, each sce-

nario is accompanied by its upper and lower quantiles that correspond to the implied

uncertainty. When transitioning from the baseline to the alternative scenario, the

curve is shifted, implying different stable points, but also the shape and width of the
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Figure 12. Barplots of the Percentage of Times (across CV Samples) that Variables were Included
for the Federal Reserve.
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uncertainty changes. This provides a more complete view to the decision makers than

merely a change in the location of the curve.

It is beyond the scope of this study to investigate the best ways to generate these

scenarios. Nonetheless, it is relevant to highlight potential limitations in the scenario

analysis. As discussed in the challenges associated with the parameter estimation of

the curve, there may be multiple sets of parameters that correspond to similar looking

curves (see Figure 3). This implies that the expectation of the analyst on the impact

of a change of a variable may be invalidated. A remedy to this effect is to impose

restrictions on the signs of the coefficients for the covariates. This will restrict the
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Figure 13. Example of Two Scenarios with Their Uncertainties
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solution to the one that corresponds to the economic understanding of the analyst

and eliminate other approximations.

A further consideration is the generation of the scenarios themselves. In the

provided example we vary the exchange rate between USD and euro by assuming ad-

hoc parity. In practice, the analyst is expected to provide a vector of the future values

of the different variables that are used by the curve. For some, it is reasonable to

assume that they will remains unchanged, while for others forecasts will be required.

These forecasts may be judgement or model based, and ideally will have corresponding

predictive distributions. Therefore, the analyst can provide expectations, or quantiles

of the desired probabilities as inputs for the scenario generation. By evaluating the

scenarios for the quantiles, the complete uncertainty due to the curve modeling and

the forecasts of the variables will be revealed.

Finally, a limitation of our approach is that it cannot guarantee that the quantiles

of the scenarios will not cross the mean prediction or the other quantile. In the

parameterisation of the baseline case there are restrictions to ensure that this does
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not happen, however, due to the nonlinear nature of the curves, this does not ensure

that different values used in the scenarios, which were not seen in the fitting data,

will not result in this problem.

5.2. Stability of Reserve Demand Curve

In Section 4.3.1 we outlined changes that have occurred over time in the Federal

Reserve case, with a reasonable question being, whether the curve has shifted over

time, or conversely whether it is reasonable to assume a consistent curve and use

the complete sample for its estimation. Afonso et al. (2022) argue that the curve

has shifted over time, however they do not provide an empirical evaluation of the

fitted curves and instead demonstrate this through clustering of the observations.

Our methodology allows for an investigation of this question, and we argue that the

inclusion of additional regressors effectively explains changes in the curve.

To demonstrate this we split the available sample into three consecutive periods,

and fit separately bivariate curves to each. We constrast that with a multivariate fit

across all periods that relies on additional regressors. Figure 14 visualizes the results

for the logistic curve. We argue that although the bivariate solutions suggest a shift

over time, in agreement with Afonso et al. (2022) who also demonstrate this in the

bivariate case, when additional regressors are available, a single curve is sufficient.

Therefore, we argue that the regresssors effectively control for the changes in the

reserve demand, and that the curve has not fundamentally shifted.

5.3. Endogeneity

Considering the mechanism of the reserve demand, it can be argued that the excess

reserve and the short term rates are endogenous (for a discussion, see Afonso et al.,

2022). These confounding factors are expected to be high-frequency; for example,

central banks will react within days to increased volatility in the money market by
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Figure 14. Comparison of Biavariate Logistic Curve Fit in Three Consecutive Samples and a Single
Multivariate Fit
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changing the supply of reserves. In principle, it is easy to include lags of the rate as re-

gressors to cater for the endogeneity. However, there are two relevant considerations.

First, endogeneity is critical for inference purposes. If it is not accounted for, it acts as

an omitted variable, biasing the remaining estimates, and by extension, the selection

of regressors. Due to the nonlinear nature of the sigmoid curves we do not rely on

inferential statistics, but rather on a predictively focused CV procedure. The nonlin-

earity also limits the interpretability of any single coefficient. Therefore, endogeneity

is releavant to our methodology in indicating potentially helpful additional inputs,

i.e., lags of the rate, to improve the CV errors, and therefore the quality of the final

curves. Second, as we are not modeling daily data, these high-frequency confounding

factors may be unobservable, and instead evident in the additional regressors.

To assess the importance of including lags of the rate we repeat the empirical

evaluation by providing the curves with this additional input. A better out-of-sample

performance will indicate the importance of treating endogeneity in the curves. Ta-

ble 6 provides the percentage gains (loses in negative) over the results from Table 3

for the ECB. For the majority of cases this leads to a loss of performance. On the
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other hand, the linear case improves by almost 20%. This supports our initial assess-

ment that for the various curves there is little benefit to be had, partially due to their

nonlinearity, and partially due to the inclusion of the rest of the regressors.

Table 6. Percentage Gains by Including Endogeneity

Method RMSE gain %

Logistic -10.75
Red. Logistic 2.19
Double Exp. -8.94
Exponential -3.72
Arctangent 9.14
Linear 19.36
Random Forest -0.98
Spline Regr. -19.94

Average -1.71
Average w/o Linear -4.71

Source: Authors’ Calculation

6. Conclusion

The control over the short-term interest rate is paramount for monetary policy

implementation and depends on estimating the demand for reserves. Given its im-

portance, its modeling has received surprisingly limited attention in the literature.

This work aims to address this by introducing a complete modeling framework to

identify the appropriate demand curve, and useful regressors, and provide estimates

of quantiles that reflect the reserve demand uncertainty for different conditions. The

proposed parametric curves were contrasted with non-parametric approaches, demon-

strating the merits of each in two cases from the Euro area and the US. Finally, our

approach facilitates scenario analysis, where we also contribute by providing predic-

tive distributions that reflect the conditions imposed by the various scenarios.

The work opens multiple avenues of future research. First, given the capabili-

ties to investigate the outcomes of scenarios, their generation becomes of interest.
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Our modeling approach allows for estimating the reserve demand given a variety of

regressors. However, the more complex the model, the more complex the scenario

generation can become. Therefore, future work could make use of the model to ex-

plore different strategies for scenario generation. Crucially, as discussed above, our

approach allows incorporating quantitatively the uncertainty of regressors that is typ-

ically overlooked in scenarios. On the other hand, our approach has the limitation

that it cannot guarantee that the quantiles will not cross in all scenarios. The model

contains appropriate restrictions to ensure this is not an issue in fitting to the data,

but the nonlinear nature of the curves does not guarantee that generally. This remains

an open question in non-linear quantile models more generally.

It is demonstrated that the nonlinear nature of the parametric curves introduces

estimation challenges. Various steps to fortify against these issues have been proposed,

however, these come at a substantial computational cost. Arguably, as our approach

is easily parallelisable this is not a practical issue, however it opens the question of

alternative estimation procedures, potentially making use of Bayesian or shrinkage

estimators.

Finally, with this work, we aim to draw the attention of the wider modeling

community to the problem of reserve demand modeling. The supported decisions are

both high-impact and frequent enough to warrant more research in the area.
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Appendix A. Additional Regressors

Table A.7 lists the variables used in the two case studies. The first column provides

the name of the variable, the second and third columns indicate whether this was

used for modeling the ECB or Federal Reserve case, followed by the abbreviated data

source, and finally a description. For the euro area the CDS is the first component of

a partial least square regression analysis on Italy, Netherlands, Germany, Portugal,

Belgium, France, and Spain CDS. In the case of the Federal Reserve the CDS, US

10 Year Yield, and Fed Fund Transaction Volume are eventually excluded from the

analysis due to the limited range of periods for which we could obtain data.

Table A.7. Additional Regressors

Variable ECB Fed Data⋆ Description

CDS B Credit Default Swaps
EONIA Volume E Overnight interbank lending volume in

the euro area
EUR/USD B EUR/USD foreign exchange rate
EUR/USD Forward Overnight B Forward points for EUR/USD overnight

prices
EUR/USD Implied Volatility B Implied overnight volatility derived from

currency options prices. For ECB also 1
week

Fed Fund Transaction Volume F Overnight interbank federal fund trans-
action volume in the US

HICP† E/F Harmonized Index of Consumer Prices
in the Euro area/US.

M1, M2 and M3† E/F Monetary aggregates in the Euro area
RGDP† E/F Real GDP in the Euro area/US
Sovereign Bond Yield Difference B Difference between German 10 Year

Bond Yield and Italy 10 Year Bond
Yield

US 10 Year Yield B US 10 Year treasury notes yield
VIX B Chicago Board Options Exchange’s

CBOE Volatility Index
⋆ Data source. B: Bloomberg, E: ECB, F: FRED
† Linear interpolation is employed to convert to higher frequency
Source: Authors’ Calculation

40



References

Afonso, G., Giannone, D., La Spada, G., Williams, J. C., 2022. Scarce, abundant, or

ample? a time-varying model of the reserve demand curve. A Time-Varying Model

of the Reserve Demand Curve (May 1, 2022). FRB of New York Staff Report (1019).
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