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1 Introduction

We develop a theory of money and credit as competing payment instruments, then

put it to work in applications. This is a classic issue: as Lionel Robbins put it in

his Introduction to von Mises (1953), “Of all branches of economic science, that

part which relates to money and credit has probably the longest history and the

most extensive literature.” To bring this up to date we use a New Monetarist

approach that involves taking the exchange/payment processes seriously (Section

2 reviews the literature). To get both cash and credit in the model, we adopt

the venerable idea that the former is subject to the inflation tax while the latter

involves transaction costs.1 We consider both fixed and variable transaction costs,

which turn out to work rather differently, and an unanticipated finding is that the

variable cost specification outperforms the fixed cost in terms of theory and data.

An important ingredient is what Burdett and Judd (1983) call “noisy”search,

which means sellers post prices, and each buyer sees a random number of them.

This leads to a distribution of prices F (p), wher any p in the nondegenerate support

yields the same profit —intuitively, lower-price sellers earn less per unit but make it

up on the volume. We integrate this into the model of money in Lagos and Wright

(2005), with alternating centralized and decentralized markets, which is natural

because at its core is an asynchronization of expenditures and receipts crucial for

any analysis of money or credit. In the centralized market agents consume, work,

adjust their cash balances and settle their accounts. In the decentralized market

they trade different goods, as in Burdett-Judd, but with payment frictions: since

buyers have no goods or services to offer by way of quid pro quo, they must use

cash or credit. Consistent with conventional wisdom, they tend to use credit for

large and cash for small expenditures.

1One needs some such device to get both money and credit into general equilibrium in a
nontrivial way. Gu et al. (2016), e.g., prove the following: if credit conditions are loose money
cannot be valued; if credit is tight money can be valued but then credit is not essential and
changes in credit conditions are neutral. Transaction costs can get around this result.
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Costly credit implies a simple demand for money and avoids an indeterminacy

that plagues similar models (see below). The model also generates nominal sticki-

ness. To see how, note that sellers post prices in dollars, since this is a monetary

model. As the money supplyM increases, F (p) shifts so that the real distribution

stays the same, but as long as the supports overlap some firms can keep the same p.

So prices look sticky, even though sellers can always adjust at no cost. For a seller

that sticks to p when M rises, the real price falls, but the probability of a sale in-

creases, so changing p is simply not profitable. While Head et al. (2012) and others

make a similar point, we avoid a technical problem in that approach. Also, while

their model can match some features of price-change behavior quantitatively, we

go beyond that by matching these features plus micro data on payment methods

and macro data on money demand.2

In another application, we find small effects of inflation on welfare —e.g., elim-

inating π = 10% inflation is worth only 0.23% of consumption in the baseline

setting where the welfare effects come mainly from impinging on the cash-credit

margin. Even in an extension with endogenous participation, where π affects out-

put directly, the impact of π on welfare is smaller than similar models, e.g. Lagos

and Wright (2005). The reason is that we use posting instead of bargaining, and

our agents can substitute between cash and credit. We also show the impact of π

on markups and price dispersion is consistent with evidence. We also study differ-

ent specifications for the process by which buyers sample prices. We also describe

nonstationary equilibria where inflation and deflation arise as self-fulfilling prophe-

cies, which is standard, except here it entails dynamics in the price distribution

and not just the price level. Finally, we deliver closed-form solutions for money

demand reminiscent of Baumol-Tobin, but in general equilibrium.

2As is standard, by money demand we mean the relationship between real balances and
nominal interest rates. Head et al. (2012) have no credit, and hence cannot match the micro
data, and do not match money demand at all well. Earlier related work like Caplin and Spulber
(1987) or Eden (1994) do not go to the data. So, while we are not the first to capture sticky
prices this way, one contribution here is quantitative.
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Quantitatively, a fixed-cost specification can match the standard money de-

mand observations but not these plus the money and credit shares in the payment

data. A proportional-cost specification can match both. Either specification is

consistent the salient price-change facts, including long durations, large average

changes, many small changes, many negative changes, a decreasing hazard, and

adjustment behavior that depends on inflation. Although we match these facts

reasonably well, the fit is not perfect due to the discipline imposed by other obser-

vations; without this discipline —e.g., if we give up on money demand —the model

can match price-change data virtually perfectly, but that is too easy. We think

any theory trying to match the price-change facts should also confront the other

facts, since they all pertain to monetary phenomena, and all have implications for

monetary policy. Our objective is to match these simultaneously.

Section 2 reviews the literature. Section 3-4 describe the model and stationary

equilibrium. Section 5 discusses calibration. Section 6-9 consider various exten-

sions and applications. Section 10 concludes.

2 Literature

There is related work in several areas. New Monetarist papers are surveyed gener-

ally in Lagos et al. (2016), but particular models that use Burdett-Judd pricing are

Head et al. (2012) and Wang (2014), who embed it in Lagos and Wright (2005),

and Head and Kumar (2005) and Head et al. (2010), who embed it in Shi (1997).

However, there is a technical problem with indivisible goods and price posting,

as in Burdett-Judd, in monetary economies: it leads to an indeterminacy (i.e., a

continuum) of stationary equilibria.3 The papers get around this by assuming di-

visible goods, but then another problem arises —what should firms post? They

3This comes up in a series of papers spawned by Green and Zhou (1998). See Jean et al. (2010)
for citations and more discussion, but here is a simple version of the problem: If all sellers post
p then buyers’best response is to bring m = p dollars to the market as long as p is not too high.
If all buyers bring m then sellers’best response is p = m as long as m is not too low. Hence, any
p = m in some range is an equilibria.
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assume linear menus, where sellers set p and let buyers choose any q as long as they

pay pq, but that is not generally a profit maximizing strategy, which seems like a

serious issue. Here, with costly credit, the indeterminacy problem with indivisible

goods goes away, so we can avoid the ad hoc assumption of linear menus.

Intuitively, holding more cash reduces the amount of costly credit buyers expect

to use, which delivers a well-behaved money demand function and a unique equilib-

rium with money and credit. While we do not take a stand on whether divisible or

indivisible goods are more realistic, indivisibility is an assumption on the physical

environment, preferable to a restriction on pricing strategies. Also note the inde-

terminacy in question concerns stationary equilibria, not dynamic equilibria, which

are discussed in Section 6.4. There we also make contact with theories of credit like

Kiyotaki and Moore (1997), Gu et al. (2013) and references therein. Despite these

technical differences, we share with Head et al. (2012) the goal of analyzing pricing

without imposing menu costs (e.g., Mankiw 1985), letting sellers only change at

exogenous points in time (e.g., Taylor 1980; Calvo 1983), or assuming inattention

(e.g., Woodford 2002; Sims 2003). While those devices are interesting, we want to

see how far we can go without them.4 Caplin and Spulber (1987) and Eden (1994)

take a similar approach, but do not use the microfoundations adopted here.

As regards empirical work on price adjustment, Campbell and Eden (2014) find

in grocery-store data an average duration between price changes of 10 weeks, but we

do not want to focus exclusively on groceries. Bils and Klenow (2004) find in BLS

data at least half of prices last less than 4.3 months, or 5.5 months excluding sales.

Klenow and Kryvtsov (2008) report durations from 6.8 to 10.4 months. Nakamura

and Steinsson (2008) report 8 to 11 months, excluding substitutions and sales.

These papers also find large fractions of small and negative price changes, plus

evidence of a decreasing hazard. Eichenbaum et al. (2011) report a duration of

4Burdett and Menzio (2016) combine search as in our model with menu costs, making the
analysis more diffi cult, even without money. Other nonmonetary search models with menu costs
include Benabou (1988,1992a) and Diamond (1993).
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11 months for reference prices (those most often quoted in a quarter). Cecchetti

(1986) finds durations for magazine prices from 1.8 months to 14 years, while

Carlton (1986) finds durations for wholesale prices from 5.9 to 19.2 months. Other

empirical work is surveyed by Klenow and Malin (2010). We provide a summary

of the findings in the Appendix C.

One issue in the menu cost literature is that average price changes are fairly

big, suggesting high menu costs. However, there are also many small changes, sug-

gesting low menu costs. Midrigan (2011) explains this with firms selling multiple

goods, where paying a cost to change one price lets them change the rest for free

(see also Vavra 2014). We account for realistic durations, large average changes,

many small and negative changes, and repricing behavior that depends on inflation

with that device. We can also get a decreasing hazard, as is problematic for other

approaches (Nakamura and Steinsson 2008), and get price dispersion at low or zero

inflation, consistent with evidence but not some other models (Campbell and Eden

2014). This suggests that search-based theories should be part of the conversation

on price stickiness.5

A representative studies, Lucas (2000) and Cooley (1995) discuss the cost of

inflation using money-in-the-utility-function or cash-in-advance models. They find

eliminating an annual inflation of π = 0.10 is worth around 0.5% of consumption.

Among much other work, we mention Dotsey and Ireland (1996) and Aiyagari et

al. (1998) as related to our appraoch. In search-and-bargaining models Lagos et

al. (2016) survey work that gets costs closer to 5.0%. Our findings are smaller,

for reasons explained below. On inflation and price dispersion, empirical findings

are mixed: Parsley (1996) and Debelle and Lamont (1997) find a positive relation;

5In discussions with people in the area, we found more or less agreement that these are the
facts: (1) Prices change slowly, but exact durations vary across studies. (2) The frequency and
size of changes vary across goods. (3) Two sellers changing at the same time do not typiclly pick
the same p̂. (4) Many changes are negative. (5) Hazards decline slightly with duration. (6) There
are many small (beow 5%) and many big (above 20%) changes. (7) The frequency and size of
changes, and fraction of negative changes, vary with inflation. (8) There is price dispersion even
at low inflation. Our model is consistent with all these.

7



Reinsdorf (1994) finds a negative relation; Caglayana et al. (2008) find a U-shaped

relation. On markups and inflation, a standard reference is Benabou (1992b), who

reports a small but significant negative relationship. Benabou (1992a) and Head

and Kumar (2005) explain this by inflation increasing dispersion and thus search

effort. Here inflation decreases markups by directly affecting the cash-credit choice.

On money demand, we get exact solutions similar to Baumol (1952), Tobin

(1956), Miller and Orr (1966) and Whalen (1966). The economic intuition is

similar, involving a comparison between the opportunity cost of holding cash and

the cost of tapping financial services. But those papers are partial-equilibrium

analyses, or, more accurately, decision-theoretic analyses of how to manage one’s

money given that it is the only payment instrument. While such models are still

being used to good effect (e.g., Alvarez and Lippi 2014), we like our setup because

it is easy to integrate with standard macro, and allows us to investigate general

equilibrium issues, like the emergence of inflation as a self-fulfilling prophecy.

On money and credit, one approach follows Lucas and Stokey (1987) by sim-

ply assuming some goods require cash and others allow credit. Papers that let

individuals choose subject to a cost of credit include Prescott (1987), Freeman

and Huffman (1991), Chatterjee and Corbae (1992), Lacker and Schreft (1996)

and Freeman and Kydland (2000). See Nosal and Rocheteau (2011) for a gen-

eral discussion; see Gomis-Porqueras and Sanches (2013), Li and Li (2013), and

Lotz and Zhang (2015) for more recent work. There are various interpretations for

these transaction costs, including resources used up in record keeping, screening,

enforcement, etc. Other interpretations include saying that the cost of credit as a

tax that can be avoided by using cash (e.g., Gomis-Porqueras et al. 2014), or that

credit requires resources for monitoring (e.g., Wallace 2013; Araujo and Hu 2014).

Finally, the paper is related to an extensive nonmonetary literature on Burdett-

Judd pricing, including the work in labor following Burdett and Mortensen (1998).

Here, as in those models, if firms are homogeneous then theory does not pin down
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which one charges which p, only the distribution F (p). With heterogeneity, lower-

cost firms prefer lower p since they like high volume. Still, for any subset of sellers

with the same marginal cost, theory does not pin down which one posts which p.

This is relevant for retail, where the marginal cost is the wholesale price. Even if

a few retailers get, say, quantity discounts, many others face the same wholesale

price, making them homogeneous for our purposes. This bears on our discussion

of sticky prices; it is unimportant for the other applications.

3 Environment

As in Lagos and Wright (2005), each t = 1, 2... has two subperiods: first there

is a decentralized market, called BJ for Burdett-Judd; then there is a frictionless

centralized market, called AD for Arrow-Debreu. There is a set of firms (retailers)

with measure 1, and a set of households with measure b̄. Agents consume a divisible

good xt and supply labor `t in AD, while in BJ they consume an indivisible good yt

produced by the firms at unit cost γ ≥ 0. Agents in the BJ market can use credit iff

they access at a cost a technology to authenticate identity and record transactions.

By incurring this cost, they can get BJ goods in exchange for commitments to

deliver dt dollars in the next AD; otherwise they need cash at the point of sale.

We consider both a fixed cost δ and a proportional cost τ . Thus, the transaction

cost is C(dt) = δ1 (dt) + τdt, where 1 (dt) is an indicator function that is 1 iff

dt > 0. The cost is paid by buyers, but not much changes if it is paid by sellers.6

Household utility within a period is U(xt) + µ1 (yt) − `t, where U ′(xt) > 0 >

U ′′(xt), µ > γ+ δ and 1 (yt) is an indicator function. Let β = 1/ (1 + r), r > 0, be

a discount factor between AD today and BJ tomorrow; any discounting between

BJ and AD is subsumed in the notation. Let xt be AD numeraire, and assume it is

produced one-for-one with `t, so the real wage is 1. All agents enter the BJ market

for free (later we introduce a cost). Each firm in BJ maximizes profit by posting a

6This is similar to elementary tax-incidence theory, with a caveat: when the cost of credit is
paid by sellers they may want to post different prices for cash and credit.
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price, taking as given the CDF of other prices Ft(p), with support Ft. Every period

a household in BJ randomly samples n firms —i.e., sees n independent draws from

Ft (p) —with probability αn. As a benchmark we assunme α0, α1, α2 > 0 and

αn = 0 ∀n ≥ 3, but this is generalized in Section 4.3.

The money supply per buyer evolves according to Mt+1 = (1 + π)Mt, with

changes implemented in AD via lump-sum taxes if π > 0 or transfers if π < 0,

but most results are the same if instead government uses seigniorage to buy AD

goods. The AD price of money in numeraire is φt. In stationary equilibrium, π

is the inflation rate, and the nominal interest rate is given by the Fisher equation

1 + i = (1 + π) (1 + r). As is standard, the model growth rate satisfies π > β − 1,

and in stationary equilibrium the Friedman rule corresponds to π → β − 1. Note

that it is easy to introduce bonds explicitly, but there is no need: 1 + i is simply

the dollars agents require in the next AD to give up a dollar in this AD market,

and whether or not such trades occur in equilibrium they can be priced. Again,

this is completely standard.

3.1 Firm Problem

Assuming α1, α2 > 0 and αn = 0 ∀n ≥ 3 for now, profit for a firm posting p is

Πt(p) = bt

[
α1 + 2α2F̂t (pt)

]
(pφt − γ) , (1)

where F̂t (p) ≡ 1−Ft (p). We use bt to denote the measure of participating house-

holds in the BJ market (also called tightness), where for now, because entry is free,

bt = b̄. Thus, net revenue per unit is pφt − γ, and the number of units is deter-

mined as follows: The probability a household contacts this firm and no other is

α1. Then the firm makes a sale for sure. The probability a household contacts this

firm plus another is 2α2, as it can happen in two ways, this one first and the other

one second, or vice versa. Then the firm makes a sale iff it beats the other firm’s

price, which happens with probability F̂t (p). This is all multiplied by tightness bt

to convert buyer probabilities into seller probabilities.
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Profit maximization means every p ∈ Ft yields the same profit. As is standard

in these models, Ft(p) is continuous and Ft = [p
t
, p̄t] is an interval.7 Taking as

given for now p̄t, and anticipating that p̄t is not too high, so buyers do not reject

it, ∀p ∈ Ft profit from p must equal profit from p̄t, which is

Πt(p̄t) = btα1 (p̄tφt − γ) , (2)

because the highest price firm never beats the competition. Equating (1) to (2)

and rearranging immediately yields the equilibrium price distribution:

Lemma 1 ∀p ∈ Ft = [p
t
, p̄t]

Ft (p) = 1− α1

2α2

φtp̄t − φtp
φtp− γ

. (3)

It is easy to check F ′t (p) > 0 and F ′′t (p) < 0. Also, using F (p
t
) = 0 we get

p
t

=
α1φtp̄t + 2α2γ

φt (α1 + 2α2)
. (4)

To translate from dollars to numeraire, let qt = φtpt and write the real price

distribution as

Gt (q) = 1− α1

2α2

q̄t − q
q − γ . (5)

We denote its support by Gt = [q
t
, q̄t], and let Ĝt (qt) ≡ 1−Gt (qt).

3.2 Household Problem

Consider a stationary equilibrium, where real variables are constant and nominal

variables grow at rate π. Framing the household problem in real terms, the state

variable in AD is net worth, A = φm − d − C(d) + I, where φm and d are real

money balances and real debt carried over from the previous BJ market, C(d) is the

transaction cost of using credit, and I is any other income. Generally, I includes

7There cannot be a mass of firms with the same p because any one of them would have a
profitable deviation to p − ε, since they lose only ε per unit and make discretely more sales by
undercutting others at p. Also, if there were a gap between p1 and p2 > p1, a firm posting p1
can deviate to p1 + ε and earn more per unit without losing sales.
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transfers net of taxes, plus profit, since as in standard general equilibrium theory

the firms are are owned by the households (this plays little role, except for making

our welfare criterion unambiguous). All debt is settled in AD, so that households

start BJ with a clean slate; they could roll over d from one AD market to the next

at interest rate r, but since preferences are linear in `, there is no point. Hence

the state variable in BJ is simply real balances, z.

The AD and BJ value functions are W (A) and V (z). These satisfy

W (A) = max
x,`,z
{U (x)− `+ βV (z)} st x = A+ `− (1 + π) z, (6)

where the cost of real balances z next period is (1 + π) z in terms of numeraire this

period. Eliminating ` and letting x∗ solve U ′ (x∗) = 1, after rearranging, we get

W (A) = A+ U (x∗)− x∗ + βmax
z
Oi (z) (7)

where the objective function for the choice of z is Oi (z) ≡ V (z)− (1 + i) z, with

i given by the Fisher equation. As is standard in Lagos-Wright models, we have

(Appendix A contains all non-obvious proofs):

Lemma 2 W ′ (A) = 1 and the choice of z does not depend on A.

The BJ value function satisfies

V (z) = W (A) + (α1 + α2)
[
µ− EHq − δĤ (z)− τEH max (0, q − z)

]
. (8)

In (8), Ĥ (q) ≡ 1−H (q), and H (q) is the CDF of transaction prices,

H (q) =
α1G (q) + α2

[
1− Ĝ (q)2

]
α1 + α2

. (9)

Notice H (q) differs from the CDF of posted prices G (q), because a buyer seeing

multiple draws of q obviously picks the lowest. Also, notice the costs δ and τ (q − z)

are paid iff q > z. Therefore, in terms of simple economics, the benefit of higher z

is that it reduces the expected cost of having to tap credit.
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4 Equilibrium

The above discussion characterizes behavior given q̄, which will be determined

presently. First we have these definitions:

Definition 1 A stationary equilibrium is a list 〈G (q) , z〉 such that: given G (q),

z solves the household’s problem; and given z, G (q) solves the firm’s problem with

q̄ determined as in Lemma 3 below.

Definition 2 A nonmonetary equilibrium, or NME, has z = 0, so all BJ trades

use credit. A mixed monetary equilibrium, or MME, has 0 < z < q̄, so BJ trades

use cash for q ≤ z and credit for q > z. A pure monetary equilibrium, or PME,

has z ≥ q̄, so all BJ trades use cash.

Other variables, like x and `, can be computed, but are not needed in what follows.

Also, in NME prices must be described in numeraire q, while in MME or PME

they can equivalently be described in numeraire or dollars.

The next step is to describe q̄. To that end, we have the following useful results

(again see Appendix A):

Lemma 3 In NME, z = 0 and q̄ = (µ− δ) / (1 + τ). In MME, z ∈ (0, µ− δ) and

q̄ = (µ− δ + τz) / (1 + τ). In PME, q̄ = z ≥ µ− δ.

Lemma 4 In MME, Oi (z) is continuous. It is smooth and strictly concave ∀z ∈

(q, q̄), and linear ∀z /∈ (q, q̄).

In turn in what follows we study a fixed cost δ > 0 with τ = 0, and a variable cost

τ > 0 with δ = 0.

4.1 Fixed Cost

Given δ > 0 = τ , as long as δ < µ− γ there is a NME where all transactions use

credit, which is similar to the original Burdett-Judd model (except for deferred
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settlement). We are more interested in outcomes where monetary is valued. Figure

1, based on Lemma 4, shows the objective function is linear ∀z /∈ (q, q̄) with slope

O′i (z) = −i < 0. It is also easy to check O′′i (z) < 0 ∀z ∈ (q, q̄).

Figure 1: Possible Equilibria with a Fixed Cost

These results imply ∃! zi = arg maxz∈[q,q̄]Oi (z). If zi ∈ (q, q̄), as required for

MME, it satisfies the FOC

(α1 + α2) δH ′ (zi) = i. (10)

To check zi ∈ (q, q̄), let ẑi be the global maximizer of Oi (z), and let O−i (z) and

O+
i (z) be the left and right derivatives. If O+

i (q) ≤ 0 then ẑi = 0, as in the left

panel of Figure 1. If O+
i (q) > 0 then we need to check O−i (q̄). If O−i (q̄) ≥ 0 then

either ẑi = 0 or ẑi = q̄, as in the center panel. If O−i (q̄) < 0 then either ẑi = 0 or

ẑi ∈ (q, q̄), as in the right panel. This leads to the following results:

Proposition 1 In the fixed-cost model with αn = 0 ∀n ≥ 3: (i) ∃! NME; (ii) ∃!

MME iff δ < δ̄ and i ∈ (i, ı̄); (iii) ∃ PME iff either δ̄ < δ < µ − γ and i < ı̂, or

δ < δ̄ and i < i; and the thresholds satisfy ı̄ ∈ (i,∞),

i =
δα2

1

2α2 (µ− δ − γ)
and δ̄ = µ− γ (2α2

2 + 2α1α2)

2α2
2 + 2α1α2 − α2

1

.

As Figure 2 shows, for money (credit) to be used the nominal rate i (transaction

cost δ) cannot be too high. Also note that there is a continuum of PME when
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Figure 2: Equilibria with a Fixed Cost

they exist, for reasons discussed in fn. 3. One of the main benefits of costly credit

is that we get uniqueness of the MME, which is our main object of interest. When

MME exists, we can insert G (q) into (10) and rearrange to get an explicit solution

for money demand, i.e., for real balances as a function of i,

ẑi = γ +
[
α2

1δ (µ− δ − γ)2 /2α2

]1/3
i−1/3. (11)

This is reminiscent of the famous square-root rule of Baumol (1952) or Tobin

(1956), and even more like the cube-root rule of Miller and Orr (1966) or Whalen

(1966). In those models, the usual story has an agent sequentially incurring ex-

penses requiring currency, by assumption, with a fixed cost of rebalancing. The

decision rule compares i, the opportunity cost of holding cash, with the benefit of

reducing the number of financial transactions that are usually interpreted as trips

to the bank. Our buyers make at most one transaction in before rebalancing z, but

its size is random. Still, they compare the cost i with the benefit of reducing the

use of financial services, again loosely interpretable as trips to the bank, although

one might say they now go there to get a loan rather than to make a withdrawal.8

8While we do not model banking explicitly, we could do so following Berentsen et al. (2007),
especially the version in Chiu and Meh (2012) with a fixed cost. Still, is can be useful to think
about banks, heuristically, as in standard textbook discussions of Baumol-Tobin.
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4.2 Variable Cost

Now consider τ > 0 = δ. This is in many respects easier, and avoids a technical

issue with fixed costs that we waited until now to raise: In economies with non-

convexities, like fixed costs, it can be desirable to let agents trade using lotteries.9

One might try to argue that lotteries are infeasible, or unrealistic, but that seems

awkward. Still, we do not analyze lotteries because the setup with a variable

cost actually works better, and it has no role for lotteries. The main reason for

covering a fixed cost at all is that it is used in many models discussed in Section

2 (in principle, those models should also consider lotteries).

Figure 3: Possible Equilibria with a Variable Cost

The price distribution emerging from the firm’s problem is similar Section 4.1,

and in particular,

q̄ =
µ+ zτ

1 + τ
and q =

α1 (µ+ zτ) + 2α2γ (1 + τ)

(α1 + 2α2) (1 + τ)
.

What is nice is that, as is easy to check, Oi(z) is differentiable everywhere, including

q = q̄ and q = q. Hence, as Figure 3 shows, there are only two possible outcomes:

if i > (α1 + α2)τ there is a unique NME; and if i < (α1 + α2)τ there is a unique

9See Berentsen et al. (2002) for an analysis in related monetary models. The idea would be
for a seller to post: “you get my good for sure if you pay p; if you pay p̃ < p then you get my
good with probability P = P (p̃).” In Section 4.1, when a buyer with m = p − ε meets a seller
posting p, he pays p− ε in cash, ε in credit and δ in fixed costs; if ε is small, both parties would
prefer to trade using cash only, to avoid δ, and have the good delivered with probability P < 1.
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NME and a unique MME. A PME cannot exist because buyers are always willing

to use credit with some probability. It turns out this is helpful quantitatively: it

is easier to get a MME for reasonable parameters than in the fixed-cost model,

because in that version, when δ is moderately high agents abandon credit, and we

switch to PME, something that never happens with a variable cost.

Figure 4: Equilibria with a Variable Cost

Proposition 2 In the variable-cost model with αn = 0 ∀n ≥ 3: (i) ∃! NME iff

τ ≤ µ/γ − 1; (ii) ∃! MME iff i < min {τ(α1 + α2), i∗}; (iii) @ PME for i > 0;

where i∗ = i∗ (τ) is the nominal rate that drives buyers’payoff to 0.

As Figure 4 illustrates, MME exists for any value of τ > 0 as long as i is not

too big. Also, from (10) we again get a closed-form money demand function,

ẑi = γ +
(µ− γ)

[
τ + (1 + τ)

√
1 + 4α2i/α2

1τ
]

1 + 2τ + 4α2 (1 + τ)2 i/α2
1τ

, (12)

which is different from the fixed-cost version, but still very tractable, and still has

a similar heuristic interpretation bank. As shown below, both specifications fit the

money demand data quite well, although the variable-cost model does better at

matching the micro payment data.
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4.3 Generalized Sampling Distributions

Here we consider alternative specifications for the probability that a household

randomly samples n prices.10 To begin, let N be the maximum number of prices

that can be sampled, which could be N =∞. For a firm posting any p profit is

Πt (p) = bt (pφt − γ)

N∑
n=1

αnnF̂t (pt)
n−1 , (13)

while for one posting p̄t profit is again given by (2). Using F (p
t
) = 0, we get

p
t

=
γ

φt
+
α1 (φtp̄t − γ)

φt
∑N

n=1 αnn
.

By virtue of equal profits, ∀p ∈ [p
t
, p̄t],

(pφt − γ)
N∑
n=1

αnn [1− Ft (pt)]
n−1 = α1 (p̄tφt − γ) , (14)

from which we get Gt(q) and Ht(q). For households, in the fixed- and variable-cost

models, the FOC’s required for MME are respectively

N∑
n=1

αnδH
′ (zi) = i and

N∑
n=1

αnτ [1−H (zi)] = i. (15)

When N = 2, (14) is linear in Ft (pt) and hence can be solved easily to get (3).

However, we also get closed-form solutions with some parametric specifications

for αn. First, related to Mortensen (2005), consider a Poisson distribution for n,

αn = e−ηηn/n!, where η = En. Then (13) reduces to

Πt (p) = bt (pφt − γ) ηe−ηFt(p).

From this, plus the fact ex =
∑∞

n=0 x
n/n, we get

Ft (p) = 1− 1

η
[log (φtp̄t − γ)− log (φtp− γ)] .

From this we get analogs to Propositions 1 and 2:

10The results are sketched briefly here, but details are in Appendix A. Also, while these exam-
ples are useful for demonstrating the tractability and flexibility of the approach, one can skip to
the applications below without loss of continuity.
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Proposition 3 In the fixed-cost model with a Poisson distribution for n: (i) ∃!

NME; (ii) ∃! MME iff δ < δ̄ and i ∈ (i, ı̄); (iii) ∃ PME iff either δ̄ < δ < µ − γ

and i < ı̂, or δ < δ̄ and i < i; and the thresholds satisfy ı̄ ∈ (i,∞),

i =
e−ηδ

µ− δ − γ and δ̄ = µ− (1− e−η) γ
1− 2e−η

.

Proposition 4 In the variable-cost model with a Poisson distribution for n: (i)

∃! NME iff τ ≤ µ/γ − 1; (ii) ∃! MME iff i < min {τ (1− e−η) , i∗}; (iii) @ PME

for i > 0; and i∗ = i∗ (τ) is the nominal rate that drives buyers’payoff to 0.

As another example, related to Burdett et al. (2016), consider a Logarithmic

distribution for n, αn = −ωn/n log (1− ω), where ω ∈ (0, 1). From the usual

procedure, it is easy to derive

Ft (p) = 1− φt (p̄t − p)
ω (φtp̄t − γ)

.

Notice that Ft (p) is linear — i.e., p is uniformly distributed. Moreover, we have

these analogs to Propositions 1 and 2:

Proposition 5 In the fixed-cost model with a Logarithmic distribution for n: (i)

∃! NME; (ii) ∃! MME iff δ < δ̄ and i ∈ (i, ı̄); (iii) ∃ PME iff either δ̄ < δ < µ− γ

and i < ı̂, or δ < δ̄ and i < i; and the thresholds satisfy ı̄ ∈ (i,∞),

i = − δ

µ− δ − γ log (1− ω)
and δ̄ = µ− γ log (1− ω)

1 + log (1− ω)
.

Proposition 6 In the variable-cost model with a Logarithmic distribution for n:

(i) ∃! NME iff τ ≤ µ/γ−1; (ii) ∃! MME iff i < min {τ , i∗}; (iii) @ PME for i > 0;

and i∗ = i∗ (τ) is the nominal rate that drives buyers’payoff to 0.

In both the Poisson and Logarithmic cases, the results are similar to the baseline

model, and again a variable cost of credit rules out PME and leads to a unique

MME. In MME, with a Poisson distribution, the fixed- and variable-cost models

respectively also deliver nice money demand functions,

ẑi = γ +
[
e−ηδ (µ− δ − γ)

] 1
2 i−

1
2 and ẑi = γ +

(µ− γ) τe−η

(1 + τ) i+ τe−η
, (16)
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as they do with a Logarithmic distribution,

ẑi = γ − δ

i log (1− ω)
and ẑi = γ +

(µ− γ) (1− ω)i/τ

1 + τ − τ (1− ω)i/τ
. (17)

All these specifications entail tight characterizations of the equilibrium set, as

well as closed-form solutions for the price distribution and money demand. And

they have intuitive economic interpretations about substituting between the use

of money and credit given inflation and transaction costs. However, to ease the

presentation, in the applications below we revert to N = 2.

4.4 Repricing Behavior

While this is not the only paper to make the point, and this is not the only point

of the paper, let us sketch the search-based explanation of sticky prices. In the

models presented above, Ft (p) is uniquely determined, but an individual firm’s

price is not. Consider Figure 5, drawn for the calibrated parameters in Section

5.2. With π > 0, the density F ′t+1 lies to the right of F
′
t . Firms with p < p

t+1
at

t (Region A) must reprice at t + 1, because while p maximized profit at t, it no

longer does so at t+ 1. But as long as the supports Ft and at Ft+1 overlap, there

are firms with p > p
t+1

at t (Region B) that can keep the same p at t+ 1 without

reducing their profit. They are allowed to change, at no cost, but they have no

incentive to do so.

Given this, consider the repricing strategy used in Head et al. (2012). If pt /∈

Ft+1 then pt+1(pt) = p̂ where p̂ is a new price; and if pt ∈ Ft+1 then:

pt+1(pt) =

{
pt with prob. σ

p̂ with prob. 1− σ
(18)

This defines a payoff-irrelevant tie-breaking rule. Different from Calvo pricing,

where firms can be desperate to change p but are simply not allowed, our rule only

applies to firms that are indifferent. Also, in the calibration below, σ = 0.90, so

that only 10% of indifferent firms change p. Moreover, once we set σ there is a
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Figure 5: Nominal Price Densities and Inflation

unique symmetric equilibrium, where all sellers that pick a new p̂ draw it from

the same repricing distribution —i.e., there is the only one way to generates the

equilibrium Burdett-Judd distribution. It is given by:

Rt+1 (p) =


Ft
(

p
1+π

)
− σ[Ft (p)− Ft(pt+1

)]

1− σ + σFt(pt+1
)

if p ∈ [p
t+1
, p̄t)

Ft
(

p
1+π

)
− σ[1− Ft(pt+1

)]

1− σ + σFt(pt+1
)

if p ∈ [p̄t, p̄t+1]

(19)

Using (19) we can compute repricing statistics from the model and compare

them to the facts deemed interesting in the literature. While different values of

σ generate different behavior, it is not the case that ‘anything goes’(e.g., at high

inflation most firms must adjust each period). Also, once we pin down σ using data,

there are very precise predictions for observables. Hence, while the theory does not

impose tight restrictions on any individual seller’s behavior, it seems nonetheless

interesting to ask how well it can account for average repricing behavior. At the

very least, to the extent that the model is consistent with the price-change facts,

we submit that the exercise provides a voice of caution about using the data to

make inferences about Mankiw-style menu costs or Calvo-style arrival rates, since

here we abstract from both.
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5 Quantitative Results

In addition to confronting the price-change facts, we try to fit the money-credit

shares in the payment data and a standard empirical notion of money demand. As

in Lucas (2000), e.g., that notion is Li = ẑi/Y , where Y = x∗ + (α1 + α2)EHq is

output aggregated over AD and BJ. We use U (x) = log(x), so x∗ = 1.11 Formulae

for Li and its elasticity ηi are given in Appendix B, and we target these in the

data. Other key statistics are the average BJ markup EGq/γ and the aggregate

markup across both AD and BJ. These are natural targets since BJ equilibrium

can deliver anything from monopoly to marginal-cost pricing as α1/α2 varies, so

the markup contains information about this ratio, while the aggregate markup

contains information about the importance of AD and BJ. As mentioned above,

the average duration between p changes pins down σ in the tie-breaking rule.

5.1 Data

We focus on 1988-2004, because the price-change observations are from that period,

although in principle information from other periods can also be used to calibrate

parameters. For money, the best available data is the M1J series in Lucas and

Nicolini (2012) that adjusts M1 for money-market deposit accounts, similar to the

way M1S adjusts for sweeps as discussed in Cynamon et al. (2006). Lucas-Nicolini

have an annual series from 1915-2008 and a quarterly series from 1984-2013, and

make the case that there is a stable relationship between these and (3-month T-Bill)

nominal interest rates. We use their quarterly series, because the years correspond

better to the price-change sample. In these data the average annualized nominal

rate is Ei = 0.041, which implies LEi = 0.277 and ηEi = −0.116.12

11Obviously this is a normalization. Generally, we can write utility as log(x) + µ1 (y) − ψ`,
with µ capturing the importance of BJ vs AD goods, and ψ the importance of leisure. As is
standard, ψ can be set to match average hours, but the results below do not depend on hours.
12The longer annual sample has Ei = 0.038, LEi = 0.279 and ηEi = −0.149; using these gives

similar results. We also tried truncating the data in 2004, to better match the pricing sample,
and to avoid the financial crisis; that gave similar results, too.
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Markup information comes from the U.S. Census Bureau Annual Retail Trade

Report 1992-2008. At the low end, in Warehouse Clubs, Superstores, Automotive

Dealers and Gas Stations, gross margins over sales range between 1.17 and 1.21;

at the high end, in Specialty Foods, Clothing, Footwear and Furniture, they range

between 1.42 and 1.44. Our target for the gross margin is 1.3, in the middle of

these numbers. This implies a markup of 1.39, as discussed in Bethune et al. (2014).

While this number is above what macro people often use, it is consistent with the

micro data analyzed by Stroebel and Vavra (2015). Moreover, the exact value

does not matter a lot over a reasonable range, similar to the findings in Aruoba

et al. (2011). We choose the target for the aggregate markup to be 1.1, based on

Basu and Fernald (1997). Since the BJ markup is 1.39 and the AD markup is 1.0,

this implies the BJ market accounts for about 25% of total output.

On the shares of money and credit there are various sources. In terms of

concept, we interpret monetary transactions broadly to include cash, check and

debit card purchases. Here is the rationale: (1) Checks and debit cards use demand

deposits that, like currency, are quite liquid and pay basically no interest. (2) As

discussed in various papers on modern monetary economics, for some issues, it

does not matter whether your liquid assets are in you pocket or your banker’s.

(3) For our purposes, the most interesting feature of credit is that it allows you

to pay for BJ goods by working in the next AD market, while cash, check and

debit purchases all require working in the previous AD market, and this matters

a lot especially because BJ transactions are random, so you might have to carry

liquid balances a long time before spending them. (4) This notion of money in the

micro data is consistent with the use of M1J in the macro data. So, here monetary

exchange includes cash, check and debit but not credit cards.

Earlier calibrations of monetary models proceeding in the same spirit (see Coo-

ley 1995) target 16% for credit purchases, but more information is now available.

In detailed grocery-store data from 2001, Klee (2008) finds credit cards account
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for 12% of purchases, although we do not want to focus on just groceries. In 2012

Boston Fed data, as discussed by Bennett et al. (2014) and Schuh and Stavins

(2014), credit cards account for 22% of purchases in their survey and 17% in their

diary sample. In Bank of Canada data, as discussed by Arango and Welte (2012),

the number is 19%. While not literally identical, the Boston Fed and Bank of

Canada data are close, and suggest a target of 20%. Also, this number is fairly

stable over the relevant period, where the bigger changes have been into debit, out

of checks and, to some extent, out of currency (Jiang and Shao 2014a,b).13

For price-change data we mainly use Klenow and Kryvtsov (2008), and bench-

mark their average duration of 8.6, but alternatives are also considered since there

are differences across and within studies depending on details. Their average ab-

solute price change is 11.3%, well above average inflation, because there are many

negative changes. Since the Klenow-Kryvtsov data are monthly, the model period

is a month, and model-generated money demand is aggregated to quarterly to line

up with Lucas-Nicolini. A month also seems natural since it corresponds to credit

card billing period. However, this does not matter much: as usual, a convenient

feature of search models is that they can be fit to different frequencies simply by

scaling parameters like arrival, discount and interest rates.

5.2 Basic Findings

Generally, while we cannot hit all the targets exactly, we get very close except where

indicated. The results are in Table 1. Consider first the fixed-cost model, which

hits all targets except the fraction of credit transactions, because our parameter

search is constrained to stay within the region where MME exists. Trying to

get 20% BJ credit transactions forces δ into a region where MME does not exist

for some values of i in the sample. Hence, for this model we use the smallest δ

13These numbers are shares of credit transactions by volume. In Canadian data the fraction
by value is double, 40%, since as theory predicts credit is used for larger purchase. However, in
Boston Fed data, the fractions by value and volume are about the same. There seems to be no
consensus why American and Canadian data differ on value, but in any case, we use volume.
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consistent with MME at the maximum observed i = 0.103, which yields 11.9%

credit transactions. This δ is about 4.7% of the BJ utility parameter µ, which

comes primarily from matching average real balances. The value of γ, about one-

third of µ, comes primarily from the BJ markup. The probability of sampling one

price (two prices) in BJ is α1 = 0.013 (α2 = 0.081).

BJ utility BJ cost credit cost pr(n = 1) pr(n = 2) tie breaker
µ γ δ or τ α1 α2 σ

Fix 8.62 2.91 0.404 0.013 0.081 0.90
Var 5.93 3.14 0.202 0.034 0.048 0.90

Table 1: Baseline Calibration

For the variable-cost model, in contrast, we approximate all targets very well,

including 20% for BJ credit. Note the trade surplus, µ−γ, is lower than the fixed-

cost case, so BJ goods are now less important relative to AD goods. With EHq

around 4.21, the average transaction cost τEH max (0, q − z) is about 0.017. Scaled

by BJ utility, τEH max (0, q − z) /µ = 0.0029, which is less than average credit

cards fees, which are 1.5-2% without counting small fixed costs per transaction.

The point is that we do not need big transactions costs to get money and credit

both used, which makes sense giving relatively low inflation during the period. Also

notice that α1 (α2) is higher (lower) than in the fixed-cost model. A constant across

specifications is the tie-breaking parameter σ = 0.90, implying that indifferent

sellers change prices only 10% of the time.

Figure 6 shows money demand, with the solid curve from the fixed-cost model

and the dashed curve from the variable-cost model. The fit is good in both cases,

although the curves are somewhat different at low values of i. While this difference

can be important for other issues, it does not matter a lot for our applications.

In general, we conclude that the variable-cost specification can easily match both

money demand and micro payment data well, but the fixed-cost model has trouble

with the latter, given our calibration method.
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Figure 6: Money Demand for Different Specifications

6 Applications

6.1 Sticky Prices

It was discussed in Section 4.4, and in several earlier papers, how models can in

principle generate the appearance of sticky prices without exogenous restrictions

or costs on sellers’behavior. How well can they do quantitatively? Figure 7 shows

the Klenow-Kryvtsov data plus model predictions of the price-change distribution.

Both the fixed- and variable-cost versions capture the overall shape of the empirical

histogram, although the fit is not perfect. We now argue, however, that the theory

is broadly consistent with several facts considered important in the literature.

The average absolute change is 11.3% in the data, 20.3% in the model with a

fixed cost of credit, and 12.3% with a variable cost. So at least the variable-cost

model is close to the data. The fraction of small changes (below 5% in absolute

value) is 44% in the data, 28% with a fixed cost, and 31% with a variable cost. So

on this we are off but not dramatically so.14 The fraction of big changes (above

20% in absolute value) is 16% in the data, 34% with a fixed cost, and 21% with

14Eichenbaum et al. (2015) find a fraction of small prices changes lower than other studies, and
suggest this is because one needs correct for measurement error. While their point is valid, for
this exercise we take the Klenow-Kryvtsov numbers at face value.
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Figure 7: Distribution of Price Changes

a variable cost, while the fraction of negative changes is 37% in the data, and

43% in both models. So on these we are slightly off. Given the literature says it

is not easy to generate large average, many small, many big and many negative

adjustments, this performance is reasonably good, but not perfect. To be clear,

we do not calibrate to match these price-change statistics, but to match money

demand, payment methods, and markups, although we did set σ to match average

duration (robustness on this dimension is discussed below).

Figure 8: Price Change Hazards

Another observation to consider is the hazard rate, the probability of changing

p as a function of the time since the last change. The left panel Figure 8 plots the
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data fromNakamura and Steinsson (2008) and the prediction from the variable-cost

model. We do not generate enough action at low durations, but at least the hazard

slopes downward, something Nakamura and Steinsson say is hard to get in theory.

Now one should not expect to explain every nuance, and there is undoubtedly a lot

missing in the model related to the hazard, including experimentation or learning

(e.g., Bachmann and Moscarini 2014). Still, our hazard decreases for a while,

before turning up at around 4 years, as shown in the right panel. It is U-shaped

over a longer horizon because continuing inflation means any p eventually falls out

of the equilibrium support.15

Figure 9: The Effect of Varying Duration

Figures 9 and 10 show the impact of counterfactually changing duration and

inflation in the variable-cost model. The left panel of Figure 9 is for σ ' 0 and an

expected duration of 1 month; the right is for σ = 0.95 and an expected duration

of 16 months. Given there considerable variability in estimates of average price

durations (see Appendix C), it is worth considering robustness with respect to σ.

Evidently the right panel fits better than the benchmark duration of 8.6 months.

However, with too much stickiness the fit gets quite bad: at σ = 0.9999, e.g., the

fraction of negative changes drops to 1.5%. The left panel of Figure 10 sets π to

15Yet even at 10 years, our hazard is only up to 12.35%. Therefore some sellers can stick to
prices for a very long time, as long as Cecchetti’s (1986) magazines mentioned in Section 2.
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Figure 10: The Effect of Varying Inflation

0, and the right to 20%. This is not a robustness check; rather, we want to know

how repricing behavior depends on π, since this can be checked in data. As π

increases, the fraction of negative adjustments falls, while both the frequency and

size increase. This is not surprising, but still relevant, because it is consistent with

the evidence in Klenow and Kryvtsov (2008), and diffi cult to explain with some

models (e.g., the simplest Calvo model).

Figure 11: Distribution of Changes Ignoring Money Demand

To summarize the findings, while the fit is not perfect, overall it seems hard

to argue that there is anything especially puzzling in the price-change data — it

is pretty much what rudimentary search theory predicts. Moreover, this is true
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even with the discipline imposed by macro and micro observations on money and

credit. If we ignore those observations we of course do better. Figure 11 shows a

calibration that gives up on matching money demand. The fit obviously is very

good. We conclude that it is easy for search models to capture the appearance of

sluggish nominal prices quantitatively if we do not impose the discipline of other

data, and even if we do the models capture broadly the facts. This is not to say

there are no other models consistent with the facts; we only suggest that theories

with search-type frictions constitute a viable candidate explanation.

6.2 Welfare

A genuinely classic economic question asks, what is the welfare cost of inflation?

As is standard, we compute the percent change in consumption that is equivalent

to changing π from a given level to some alternative, which we take to be 0. Given

π, welfare is measured by

Ω ≡ Y − (α1 + α2)

{
δ [1−Hπ (zπ)] + τ

∫ q̄

zπ

(q − zπ) dHπ

}
, (20)

where Y = U (x∗) − x∗ + (α1 + α2) (µ− γ) adds the AD and BJ surpluses, while

the remaining terms subtract the resource costs of credit.
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Figure 12: The Welfare Effects of Inflation

Figure 12 shows the welfare cost monotonically increases with inflation. The

range of the horizontal axis is the range over which MME exists, going down to the
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Friedman rule π = β− 1, and up to about 9% with a fixed cost (left panel) or 20%

with a variable cost (right panel).16 The welfare effects are small: with a variable

cost, eliminating 10% annual inflation is worth .0.23% of consumption. This is

less than estimates in Lucas (2000), and much less than Lagos and Wright (2005).

Intuitively, changes in π here affect neither the intensive margin of trade, since the

good is indivisible, nor the extensive margin, since the population of participants

is fixed. Hence, the welfare effects is mainly due to inflation increasing the usage

of credit, as shown in the right panel of Figure 13. Note that π can affect G(q)

as buyers economize on real balances, but this is a transfer between buyers and

sellers, not a change in Ω.
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Figure 13: The Other Effects of Inflation

We revisit welfare in Section 6.3. First, let us briefly consider the relationship

between inflation, markups and price dispersion. With a fixed cost of credit π

does not affect G (q), markups or dispersion. This is another reason to prefer a

variable cost, where one can show implies G(q) decreases with π in the sense of

first-order stochastic dominance. Consequently, the average markup and dispersion

(coeffi cient of variation) both decrease with π, as shown in Figure 13. In fact, both

16These thresholds are low, but this not surprising in a representative-agent context. Suppose
we introduce heterogeneity across buyers, with some having zero or only very costly access to
credit —e.g., the unbanked, who have to deal with loans sharks, pawnshops or payday advances.
They would presumably continue to use cash up to higher thresholds. While this is worth
pursuing, it must be reserved for future work.
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q̄ and q fall with π, but q̄ falls faster. Benabou (1992) finds a small but significant

negative relationship between markups and inflation, consistent with the model.

On inflation and dispersion, Parsley (1996) and Debelle and Lamont (1997) find

the relationship is positive, Reinsdorf (1994) finds it is negative, and Caglayana et

al. (2008) find it is U-shaped. Hence the facts are not unequivocally established,

but we can match the findings in Reinsdorf (1994). We also mention that matching

the relationship between π and dispersion on markups does not necessarily mean

that inflation has a big welfare cost.

6.3 Participation

We now let buyers choose whether to participate in the BJ market, at cost k > 0,

to make output depend directly on inflation.17 Let W 1 (A) and W 0 (A) be the AD

value functions for households that enter and do not enter the next BJ market,

respectively, so that W (A) = max {W 1 (A) ,W 0 (A)}. In equilibrium where some

but not all households enter, W (A) = W 1 (A) = W 0 (A). This simplifies to

βΨ = k, where Ψ is the expected surplus from participation,

Ψ ≡ (α1 + α2) [µ− EHq − τEH max (0, q − z)]− iẑi. (21)

Buyers’arrival rates now depend on the buyer-seller ratio, or market tightness,

αn = αn(bt). With entry, b adjusts to satisfy (21). An increase in π reduces b, and

hence output, although a one-time unanticipated increase inM does not, as φ falls

proportionately to leave φM and G (q) the same (classical neutrality).

We need to parameterize the α’s. Suppose that buyers attempt to solicit price

quotes, and succeed with probability s = s(b), with s(0) = 1, s(b̄) = 0, s′(b) < 0,

and s′′(b) > 0. While this much is is standard, to generate price dispersion as in

the baseline setup, any buyer who succeeds sees 1 price with probability 1− ξ and

sees 2 with probability ξ. Then α1(b) = (1− ξ)s(b) and α2(b) = ξs(b). As a special

17Similar monetary models with endogenous entry by buyers includes Liu et al. (2011), while
those with entry by sellers include Rocheteau and Wright (2005); of course, prototypical search
models with entry include Diamond (1982) and Pissarides (2000).
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Figure 14: The Real Balance and Free Entry Curves

case of the money demand functions derived above, ẑi now depends on b, as shown

in Figure 14 by the RB (real balance) curve. Similarly, βΨ = k is shown as the FE

(free entry) curve, and the curves intersect at MME. As Figure 14 shows, RB is

decreasing and convex while FE is concave, implying a unique MME, from which

F (p), G (q) and the rest of the endogenous variables are constructed as usual. It

is easy to check that higher inflation shifts both curves toward the origin, reducing

buyer entry and hence BJ output.
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Figure 15: The Welfare Effects of Inflation with Entry

While out theory is consistent with the appearance of sticky prices, the im-

plications are different from models with constraints on changing prices. In those
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Figure 16: The Other Effects of Inflation with Entry

models, a one-time unanticipated jump in M has real effects. This is because

at least some firms do not adjust p, even though they would like to, absent the

assumed constraints, and hence the nominal distribution F (p) does not change

enough to keep the same real distribution G (q). Hence, prices turn in favor of

buyers, making b and output increase. In contrast, in our model economy, a sur-

prise jump inM affects neither G (q) nor b. A policy advisor seeing only a fraction

of sellers adjusting p each period in our economy may conclude that a jump in

M would have real effects; that would be wrong. Although not surprising, it is

worth emphasizing that for policy prescriptions it is not actually enough to say

prices are sticky in the data, it is important to know why.

As Figure 15 shows, compared to the benchmark model, the welfare cost of infla-

tion approximately doubles, because it not only increases resources used to support

more credit, an increase in π also decreases participation. Figure 16 demonstrates

how π affects markups, price dispersion, and payment methods in the variable-

cost model. Compared to Figure 13, endogenizing participation does not change

the impact of inflation on the markup or price dispersion a lot. In particular, now

fewer buyers enter the BJ market at higher π, but since that leads to higher arrival

rates for those that enter, their reduction in real balances is attenuated.
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6.4 Dynamics

General equilibrium monetary models can have nonstationary equilibria because

money conveys liquidity. However, that is also true of other assets, and actually

has little to do with the fiat nature of currency. It has more to do with liquidity

being at least partially self-referential —how much you are willing to give for an

asset depends on how much you think others will give in the future —an idea at

the heart of search-based models at least since Kiyotaki and Wright (1989). To

pursue this in our framework, assume m has a flow return ρ. If ρ > 0, m can

be interpreted as a share in a technology or ‘tree’bearing a dividend of ‘fruit’in

terms of numeraire, as in standard finance. If ρ < 0, it can be interpreted as a

storage cost, as in some models of commodity money, which makesm a poor saving

vehicle but potentially still valuable as a medium of exchange. And ρ = 0 means

fiat currency. Also, here we revert to k = 0 so b = b̄, focus on the variable-cost

model, and keep the supply M fixed.18

The household’s problem is now

W (A) = A+ U (x∗)− x∗ + βmax
z
Oi (z)

where A = ρm + φm − d − C(d) + I includes dividend income ρm, and Or (z) =

V (z)− (1 + r) z. The Euler equation is

φt =
φt+1 + ρ

1 + r

[
1 + (α1 + α2) τĤ (ẑ)

]
, (22)

where we do not impose stationarity of φt. If α1 = α2 = 0 (i.e., if we shut down the

BJ market), (22) is a standard asset-pricing equation, it implies there is a unique

equilibrium, and in equilibrium φt = ρ/r ∀t. This is because any other solution to

the difference equation is explosive and violates transversality.19

More generally, (22) is augmented on the RHS by a liquidity premium capturing

the expected reduction in the credit costs, (α1 + α2) τĤ (ẑ), and that dramatically

18It is not hard to let M change over time, but that is less interesting for real assets than for
fiat currency, where one can think of π as a policy choice.
19See, e.g., Rocheteau and Wright (2013) for details in a class of related models.
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changes the equilibrium set. Inserting H (ẑ), after some algebra we get

φt =
φt+1 + ρ

1 + r

{
1 +

τα2
1

4α2

[
µ−

(
ρ+ φt+1

)] [
µ+

(
ρ+ φt+1

)
(1 + 2τ)− 2γ (1 + τ)

]
(1 + τ)2 (ρ+ φt+1 − γ

)2

}
This dynamical system gives today’s asset price in terms of tomorrow’s, φt =

Φ
(
φt+1

)
. The left panel of Figure 17 shows φt = Φ

(
φt+1

)
and the inverse φt+1 =

Φ−1 (φt), for the calibrated parameters, including ρ = 0. This yields a unique

steady state MME at φ ≈ 4.4. As is typical with fiat currency, the monetary

(nonmonetary) steady state is unstable (stable), implying there are equilibria where

φ→ 0. This features inflation as a self-fulfilling prophecy.
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Figure 17: Phaseplane for Dynamic Equilibria

The right panel of Figure 17 makes one change in parameters, reducing α1 from

0.034 to 0.0001. There is still a unique steady state MME, now with φ ≈ 3.14.

However, textbook methods (e.g., Azariadis 1993) imply the following: because

Φ′ < −1 at the monetary steady state, Φ and Φ−1 also cross off the 45o line at

(φL, φH) and (φH , φL). This is an equilibrium with a cycle of period 2, where φ

oscillates between φL and φH as a self-fulfilling prophecy. Heuristically, if φt+1 = φL

is low then liquidity will be scarce at t + 1, making buyers want more of the

asset at t, and thus making the price φt = φH high. While it is not atypical

for different monetary models to have cyclic equilibria, this intuition comes from

the search literature (Rocheteau and Wright 2013), and is different from OLG
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models, say, where the results are described in terms of backward-bending labor

supply or savings functions (Azariadis 1993). Moreover, a novelty here is that

there are fluctuations in the price distribution F (p), not just the price level, but

the dynamics are still easy because one number p̄ is suffi cient to pin down F (p)

by virtue of (3). A second novelty is the role of liquidity: buyers can use credit at

any time, but prefer to use assets at least some time, to reduce transaction costs.
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Figure 18: Examples with a 3-Cycle and with Two Steady States

For the same parameters that generate the 2-cycle, the left panel of Figure

18 shows the third iterate Φ3 (φ). In addition to the steady state, Φ3 (φ) has 6

intersections with the 45o line. This means there exist a pair of 3-cycles. Standard

results (again see Azariadis 1993) tell us that the existence of a 3-cycle implies the

existence of N -cycles ∀N by the Sarkovskii theorem, as well as chaotic dynamics

by the Li-Yorke theorem. Thus we can generate a large set of perfect-foresight

dynamics, if not for the calibrated parameter values, for values that are fairly

close. There are also stochastic (sunspot) equilibria for these parameters, with

random fluctuations in φ, F (p) and other endogenous variables, illustrating how

costly credit can generate excess volatility as a self-fulfilling prophecy.20

20A proof that sunspot equilibria exist, going back to Azariadis and Guesnerie (1986), is to
suppose the outcome depends on an extrinsic two-state Markov process, s ∈ {s1, s2}, where
εs = prob(st+1 6= s|st = s). If ε1 = ε2 = 1 this reduces to a 2-cycle, the existence of which we
just proved by example. By continuity there are equilibria for εs < 1.
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When ρ = 0, one might think this dynamic multiplicity arises because there

are two steady states, φ > 0 and φ = 0. However, we can eliminate the equilibrium

with φ = 0 by setting ρ > 0, and as long as ρ is not too big, by continuity the

qualitative results are the same. Heuristically, the dynamic equilibria should not

be interpreted as approximating fluctuations across two steady states, but around

one steady state; this is an example where multiple steady states are not necessary

for complicated dynamics. At the same time, setting ρ < 0 leads to two steady

states, say φ1 and φ2, with φ2 > φ1 > 0, as shown in the right panel of Figure

18, drawn for the same parameters except ρ = −0.4. Since the lower steady state

φ1 is stable, in this configuration we can construct sunspot equilibria fluctuating

around it.21

Summarizing, models with costly credit admit cyclic, chaotic and stochastic

dynamics, with price distributions and the use of money and credit varying over

time due to ‘animal spirits.’ This does not require fiat money, as the results hold

for ρ 6= 0. It has to do with a trade-off between paying transaction costs on credit

and accepting low returns on liquid assets. The return on fiat money is low, for

obvious reasons, at least away from the Friedman rule. It may be less obvious

for real assets but the point is similar: if an asset is useful in exchange its price is

above the fundamental ρ/r, as seen in (22), and high asset prices mean low returns.

This is well known, if perhaps less well known in a context where credit is always

available but costly.22

21A method Azariadis (1981) uses in OLG models is this: We seek (φ1, φ2, ε1, ε2) such that
φ1 = ε1Φ (φ2) + (1− ε1) Φ (φ1) and φ2 = ε2Φ (φ1) + (1− ε2) Φ (φ2), where εs ∈ (0, 1) and wlog
φ2 > φ1. These equations are linear in, and hence easy to solve for, ε1 and ε2. Whenever
Φ′ (φs) > 1 at a steady state φs, for any φ1 in some range to the left of φs and any φ2 in some
range to the right of φs, one can check ε1, ε2 ∈ (0, 1), which is all we need to have a proper
sunspot equilibrium.
22We close this part of the discussion by mentioning that in the above analysis assets are

interpreted as facilitating trade as media of exchange —buyers hand them over by way of quid
pro quo —but this story can be changed. In fact, the equations and conclusions are identical
under the alternative interpretation that assets are used as collateral, and the results can be
recast in terms of secured vs costly unsecured credit, rather money vs credit, making contact
with the literature following Kiyotaki and Moore (1997). In the interest of space, for details we
refer readers to the discussion in the survey by Lagos et al. (2016). However, the basic idea is
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7 Conclusion

This paper has explored models of alternative payment methods, with money and

costly credit as the leading example. For this we combined Burdett-Judd price

posting with the Lagos-Wright monetary model. We are not the first to combine

these ingredients, and this was not meant to be the main contribution; the con-

tribution concerned the introduction of costly credit. This was useful, technically,

because it resolved an indeterminacy problem in other models with money and

price posting, and implied a unique stationary equilibrium where both money and

credit are used. For both fixed and variable transaction costs, and for different

assumptions about the way households sample prices, we derived exact money de-

mand functions that resemble classic results in the literature, but we think with

better microfoundations. These functions can match the macro data, and at least

the variable-cost model can also match the money-credit shares in micro data.

In one application, we showed how the theory can account for the price-change

data. It accounts for this very well if we do not impose the discipline of matching

other observations, and fairly well if we do impose it. By accounting for the

price-change data, we only mean there are equilibrium outcomes that are roughly

consistent with the evidence. To be clear, the theory does not pin down which seller

posts which price in the cross section, and hence does not pin down price-change

behavior in the time series. However, once one sets the parameter σ in a pay-off

irrelevant tie-breaking rule, there is a unique (symmetric, stationary, monetary)

equilibrium with very precise predictions about price-change behavior. What we

did is to calibre σ to the average duration of a price, and then compared these

predictions to the facts.23

easy: purchases in frictional markets for goods, inputs, or anything else can have constraints that
are relaxed by asset holdings, and this leads to very similar outcomes whether the assets are used
to finalize spot trades, or forfeited after any (off-the-equilibrium-path) default.
23As reported in fn. 5, recall the stylized facts: (1) Empirical price durations vary across studies,

but are typically fairly long. (2) The frequency and size of price changes vary across goods. (3)
Two sellers changing at the same time do not generally pick the same new price. (4) Many
changes are negative. (5) Hazards decline with duration. (6) There are many small but also
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Another application revisited the welfare cost of inflation, fromwhich we learned

the following: while search-based models with bargaining generate large welfare

costs, this is not the case in otherwise similar models with price posting. We

found this in our baseline specification, where inflation impinged mainly on the

costly use of credit, and in an extension where it also impinged on participation.

This extension is also interesting in its own right, highlighting as it does an entry

channel through which monetary policy affects frictional goods markets and hence

aggregate economic activity. A related application considered the relationships

between inflation, markups and price dispersion, where the model was shown to

be consistent with some findings in the empirical literature. A final application

discussed endogenous dynamics. While the mathematics in that discussion are not

new, there are some novel economic ideas —e.g., fluctuations in a price distribution,

not just a price level, and liquidity considerations emerging from assets reducing

the resource cost of using credit. Many other extensions are possible, such as

incorporating heterogeneity, or combining menu-cost and search-based monetary

models; these are left for future work.

many big changes. (7) The frequency and size of price changes, as well as the fraction of negative
changes, vary with inflation. (8) There is price dispersion even at low inflation. Our model is
consistent with all these, although we did not play up (2); it seems clear, however, that different
values for the preference and cost parameters µ and γ, or arrival rates rates αn, as is reasonable
for different goods, will affect price-change behavior.
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Appendix A: Proofs of Non-obvious Results
Derivation of (8): The BJ value function can be written

V (z) = W (A) + α1

∫ z

q

(µ− q) dG1 (q) + α1

∫ q̄

z

[µ− q − δ − τ(q − z)] dG1 (q)

+ α2

∫ z

q

(µ− q) dG2 (q) + α2

∫ q̄

z

[µ− q − δ − τ(q − z)] dG2 (q) ,

where Gn(q) = 1 − Ĝ(q)n is the CDF of the lowest of n draws from G(q). The

first term is the continuation value if a buyer does not trade. The second is the

probability of meeting a seller with q ≤ z, so only cash is used, times the expected

surplus, which is simple because W ′ (A) = 1. The third is the probability of

meeting a seller with q > z, so credit must be used, which adds fixed cost δ and

variable cost τ(q − z). The last two terms are similar except the buyer meets two

sellers. The rest is algebra. �

Proof of Lemma 3: For part (i), in NME, buyers’BJ surplus is Σ = µ − q −
δ − τq. Note Σ = 0 at q = (µ− δ) / (1 + τ), so no buyer pays more than this. If

q̄ < (µ− δ) / (1 + τ) then the highest price seller has profitable deviation toward

(µ− δ) / (1 + τ), which increases profit per unit without affecting sales. Hence

q̄ = (µ− δ) / (1 + τ).

For part (ii), in MME, for q > z, Σ = µ − q − δ − τ(q − z). Note Σ = 0

at q = (µ− δ + τz) / (1 + τ), and repeat the argument for NME to show q̄ =

(µ− δ + τz) / (1 + τ). The definition of MME has z < q̄ = (µ− δ + τz) / (1 + τ),

which reduces to z < µ− δ
For (iii), in PME, given buyers bring z to BJ they would pay z. Hence q̄ ≥ z,

as q̄ < z implies the highest price seller has profitable deviation. We also have

to be sure there is no profitable deviation to q > z, which requires buyers using

some credit. The highest such q a buyer would pay solves Σ = µ − q − δ −
τ (q − z) = 0, or q = (µ− δ + τz) / (1 + τ). There is no profitable deviation iff

(µ− δ + τz) / (1 + τ) ≤ z, which reduces to z ≥ µ− δ. �

Proof of Proposition 1: Part (i), for fiat currency φ = 0 is always self-fulfilling,

so we can set G (q) according to (5), corresponding to equilibrium in the original

BJ model.

For (ii), from Figure 1, MME exists iff three conditions hold: (a) O−i (q̄) < 0; (b)

O+
i (q) > 0; and (c) Oi(zi) > Oi(0). Now (a) is equivalent to (α1 + α2) δH−(q̄) < i,
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which holds iff i > i. Then (b) is equivalent to (α1 + α2) δH+(q) > i, which holds

iff i < ı̃ where ı̃ = δ (α1 + 2α2)3 /2α1α2 (µ− δ − γ) > i. Also, (c) is equivalent to

(α1 + α2) δH (zi)− izi > (α1 + α2) δH (0), which holds iff∆ (i) > 0 where

∆ (i) = −iγ +
δ (α1 + 2α2)2

4α2

− i 23 δ 13α
2
3
1 α
− 1
3

2 (µ− δ − γ)
2
3 (2−

1
3 + 2−

4
3 ).

Notice ∆ (0) > 0 > ∆ (̃ı) and ∆′ (i) < 0. Hence ∃! ı̄ such that ∆ (̄ı) = 0, and

∆ (i) > 0 iff i < ı̄. It remains to verify that ı̄ > i, so that (a) and (c) are not

mutually exclusive. It can be checked that this is true iff δ < δ̄. Hence a MME

exists under the stated conditions. It is unique because q̄ = µ−δ, which pins down
G (q), and then ẑi = arg maxz∈(q,q̄) Oi (z).

For (iii), from Figure 1, PME exists iff three conditions hold: (a) O−i (q̄) > 0;

(b) O+
i (q) > 0; and (c) Oi(q̄) > Oi(0). Now (a) holds iff i < i and (b) holds iff

i < ı̃. Condition (c) holds iff i < ı̂. For δ > δ̄, it can be checked that ı̂ < i and

i < ı̃, so the binding condition is i < ı̂. For δ < δ̄, it is easily checked that ı̂ > i,

and i < ı̃, so the binding condition is i < i. �

Proof of Proposition 2: Part (i), with fiat currency φ = 0 is always self-fulfilling,

so there is a NME iff buyers’payoff from in the BJ market is nonnegative, (α1 +

α2)[µ − (1 + τ)EHq] ≥ 0. Substituting EHq into this, after some algebra we can
show this holds iff τ ≤ µ/γ − 1.

For (ii), from Figure 3, MME exists iff three conditions hold: (a) O−i (q̄) < 0;

(b) O+
i (q) > 0; and (c) ΨM > 0 where

ΨM = (α1 + α2) [µ− EHq − τEH max (0, q − zi)]− izi

is buyers’payoff from the BJ market. Now (a) holds automatically since O−i (q̄) =

−i. Then (b) is equivalent to (α1 + α2) τĤ+(q) > i, which holds iff i < (α1 +α2)τ .

And (c) is equivalent to

ΨM = α2 (µ− γ) +
α1τ (µ− zi)

1 + τ
− α2

1τ(µ− zi)2

4α2(1 + τ)2(zi − γ)
− izi = Ψ (zi)− izi > 0.

NoticeΨM is strictly concave and continuous in i, limi→0 ΨM > 0, and limi→∞ΨM <

0. Hence there exists a unique solution to ΨM = 0, which defines i∗, so ΨM > 0

holds ∀i < i∗. Hence, a MME exists under the stated conditions. It is unique

because O′′i (zi) = V ′′(zi) < 0, and then ẑi = arg maxz∈(q,q̄) Oi (z).

Finally, for part (iii), from Figure 3 it is clear that there is no PME in the

variable-cost model. �
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Proof of Proposition 3: Substituting αn into (13) we have

Πt(p) = bt (pφt − γ) ηe−η
∞∑
n=1

[
ηF̂t (pt)

]n−1

(n− 1)!
= bt (pφt − γ) ηe−ηFt(p),

since ex =
∑∞

i=0 x
i/i!. As a special case, Πt(p̄t) = bt (p̄tφt − γ) ηe−η. Equal profit

implies

Ft (p) = 1− 1

η
[log (φtp̄t − γ)− log (φtp− γ)]

Gt (q) = 1− 1

η
[log (q̄t − γ)− log (q − γ)] ,

with q̄ as in the baseline model and q
t

= e−η q̄t + (1− e−η) γ. Algebra the yields

Ht (q) =

∑∞
n=1 αn [1− [1−Gt (q)]n]∑∞

n=1 αn
=

1− e−η (q̄t − γ) / (q − γ)

1− e−η .

In the fixed-cost model, (i) holds as in Proposition 1. For (ii), follow Propo-

sition 1 and check : (a) O−i (q̄) < 0; (b) O+
i (q) > 0; and (c) Oi(zi) > Oi(0).

Now (a) holds iff
∑∞

n=1 αnδH
−(q̄) < i iff i > i = e−ηδ/(µ − δ − γ). Then (b)

holds iff
∑∞

n=1 αnδH
+(q) > i iff i < ı̃ = eηδ/(µ − δ − γ) > i. And (c) holds iff∑∞

n=1 αnδH (zi)− izi >
∑∞

n=1 αnδH (0) iff∆ (i) > 0, where

∆ (i) = δ − 2
[
e−ηδ (µ− δ − γ) i

] 1
2 − iγ.

Given ∆ (0) > 0 > ∆ (̃ı) and ∆′ (i) < 0, ∃! ı̄ such that ∆ (̄ı) = 0, and ∆ (i) > 0 iff

i < ı̄. It remains to verify ı̄ > i, so that (a) and (c) are not mutually exclusive.

This is true iff δ < δ̄, where δ̄ = µ − (1− e−η) γ/ (1− 2e−η). Hence, MME exists

under the stated conditions. The rest of the proof is the same as Proposition 1,

except with ı̂ = δ(1− e−η)/(µ− δ). �

Proof of Proposition 4: For (i) we again follow the proof of Proposition 2 and
check

ΦN =
∞∑
n=1

αn [µ− (1 + τ)EHq] ≥ 0.

After substituting EHq, we get ΦN = (1 − e−η − η−η)[µ − γ(1 + τ)]. Thus NME

exists iff τ ≤ µ/γ−1. To prove (ii), we again check: (a) O−i (q̄) < 0; (b) O+
i (q) > 0;

and (c) Oi(zi) > 0, where

Oi(zi) =

∞∑
n=1

αn

[
µ− EHq − τ

∫ q̄

ẑi

(q − ẑi) dH
]
− iẑ.
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Now (a) always holds, and (b) holds iff i < (1 − e−η)τ . For (c), substitute αn
and H and simplify to get

Oi (zi) =
(
1− e−η

)
µ−

(
1− e−η − ηe−η

)
γ − ηe−ηµ+ ziτ

1 + τ
− τe−ηγ (µ− zi)

(1 + τ) (zi − γ)

−τe
−η [µ− γ + τ (zi − γ)]

1 + τ
log

µ− γ + τ (zi − γ)

(1 + τ) (zi − γ)
.

One can show O
′′
i (zi) < 0. Since zi is strictly decreasing in i, O

′′
i (zi) is strictly

convex in i on [0,∞). Moreover, limi→0Oi(zi) > 0 and limi→∞Oi(zi) < 0. There

is a unique solution to Oi(zi) = 0 and that defines i∗, so Oi(zi) > 0 ∀i < i∗. Hence,

there exists a unique MME iff i < min {τ (1− e−η) , i∗}. Finally, as in the proof of
Proposition 2, (iii) is true. �

Proof of Proposition 5: Substituting αn into (13) we have

Πt(p) = bt (pφt − γ)
∞∑
n=1

[
− ωn

log (1− ω)

] [
F̂t (pt)

]n−1

,

and Πt(p̄t) = −bt (p̄tφt − γ)ω/ log (1− ω). Now equal profit implies

Ft (p) = 1− φt (p̄t − p)
ω (φtp̄t − γ)

and Gt (q) = 1− q̄t − q
ω (q̄t − γ)

,

with q̄ as in the baseline models and q
t

= (1− ω)q̄t + ωγ. Also,

Ht (q) = 1− log [1− ω [1−Gt(q)]]

log (1− ω)
= 1− log (q − γ)− log (q̄t − γ)

log (1− ω)
,

where we used
∑∞

n=1 x
n/n = − log(1− x).

In the fixed-cost model, (i) holds as in Proposition 1. To show (ii), we check:
(a) O−i (q̄) < 0; (b) O+

i (q) > 0; and (c) Oi(zi) > Oi(0). Now (a) holds iff i > i =

−δ/[(µ− δ−γ) log(1−ω)], and (b) holds iff i < ı̃ = −δ/[(1−ω)(µ− δ−γ) log(1−
ω)] > i. Then (c) holds iff∆ (i) > 0, where

∆ (i) = δ − δ [log (ẑi − γ)− log (µ− δ − γ)]

log (1− ω)
− iγ +

δ

log (1− ω)
.

It is easy to check ∆′ (i) < 0, limi→0 ∆(i) > 0, and ∃! ı̄ such that ∆ (̄ı) = 0. Hence

∆ (i) > 0 iff i < ı̄. For (a) and (c) to not be mutually exclusive, we check ı̄ > i.

This holds iff δ < δ̄, where

δ̄ = µ− γ log (1− ω)

1 + log (1− ω)
.
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Thus MME exists. Uniqueness follows Proposition 1, as does (iii), except now

ı̂ = δ/ (µ− δ). �

Proof of Proposition 6: For (i), we check

ΦN =

[
1− ω

log (1− ω)

]
[µ− γ (1 + τ)] ≥ 0,

which holds iff τ ≤ µ/γ − 1. For (ii) we check: (a) O−i (q̄) < 0; (b) O+
i (q) > 0; and

(c) Oi(zi) > 0. Now (a) always holds and (b) holds iff i < τ . Then for (c), write

Oi(zi) = µ− γ +
(ω + τ)µ− (1 + τ)ωγ + (ω − 1)τ ẑi

(1 + τ) log (1− ω)

+
γτ

log (1− ω)
log

[
µ− γ + τ (ẑi − γ)

(1 + τ) (ẑi − γ)

]
.

Since log (1− ω) < 0, we have O′i(zi) > 0. Given ∂ẑi/∂i < 0, we also have

∂Oi(zi)/∂i < 0. Define i∗ as the solution to Oi(zi) = 0, so Oi(zi) > 0 holds ∀i < i∗.

Hence, there is a MME iff i < min {τ , i∗}, and it is unique since O′′i (zi) < 0.

Finally, (iii) follows Proposition 2. �
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Appendix B: Formulae for Calibration
Consider first the variable-cost model. Inserting q̄ and q, we get

G (q) = 1− α1

2α2

µ− q + τ (ẑi − q)
(1 + τ) (q − γ)

,

H (q) = 1− α2
1 [µ− q + τ(ẑi − q)] [µ+ τ ẑi + (q − 2γ) (1 + τ)]

4α2 (α1 + α2) (1 + τ)2 (q − γ)2 .

The fraction of monetary transactions and the markup are therefore

H (ẑi) = 1− α2
1 (µ− ẑi) [µ+ τ ẑi + (ẑi − 2γ) (1 + τ)]

4α2 (α1 + α2) (1 + τ)2 (ẑi − γ)2 ,

EGq
γ

= 1 +
α1 (µ+ τ ẑi − γ + τγ) log (1 + 2α2/α1)

2α2γ (1 + τ)
,

where ẑi is given in the text. From this we get

Li =
(1 + τ) ẑi

α1 (µ+ ẑiτ) + (1 + τ) (1 + α2γ)
,

ηi =
α1µ+ (1 + τ) (1 + α2γ)

α1 (µ+ ẑiτ) + (1 + τ) (1 + α2γ)

∂ẑi/∂i

ẑi/i
.

Consider next the fixed-cost model. Inserting q̄ and q, we get

G (q) = 1− α1

2α2

µ− δ − q
q − γ ,

H (q) = 1− α2
1 (µ− δ − q) (µ− δ + q − 2γ)

4α2 (α1 + α2) (q − γ)2 .

The the fraction of monetary transactions and the markup are

H (ẑi) =
[2α1α2 (µ− δ − γ) /δ]2/3 i2/3 − α2

1

4α2 (α1 + α2)
,

EGq
γ

= 1 +
α1 (µ− δ − γ) log (1 + 2α2/α1)

2α2γ
.

From this we get

Li =
γ +

[
α2

1δ (µ− δ − γ)2 /2α2

]1/3
i−1/3

1 + α1 (µ− δ) + α2γ

ηi =
−1

3 + 3γ
[
α2

1δ (µ− δ − γ)2 /2α2

]−1/3
i1/3

.
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