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I. INTRODUCTION

Understanding the link between monetary policy and financial stability hinges on identifying

the channels of transmission. As efforts to deal with the financial and economic fallout from

the great recession clearly demonstrate, banks, and particularly bank holding companies

(BHCs) with trading desks, play a key role in propagating monetary and financial shocks

to the rest of the economy. In addition, post-crisis regulatory frenzy targeting BHCs is

influencing their behavior and profitability, as well as the rest of the economy. For example,

recent efforts by US policymakers and bank regulators to rein in trading operations of BHCs

have resulted in a number of US based BHCs shedding off their proprietary trading while

others have moved their operations overseas.1 More generally, policy makers-especially in

the aftermath of the great recession-have been interested in understanding the reaction of

systemically important financial intermediaries (SIFIs) to the monetary policy stance, and

to changes in micro and macro prudential policies aimed at enhancing financial stability. In

this paper, we analyze the behavior of BHCs and their interaction with financial markets

when subject to regulatory constraints. In particular, we focus on their trading and lending

operations in reaction to market and monetary shocks and to changes in Basel regulations,

and highlight the resulting implications for credit supply.

SIFIs include large commercial banks, and financial as well as bank holding companies (FHCs

and BHCs), among others.2 Recent estimates indicate that BHCs represent 20.51% of do-

mestic financial sectors assets and 99.12% of US GDP (using second quarter 2015 for the

US), with the top 5 BHCs accounting for 51% of total BHC assets.3 These large intermedi-

aries typically encompass both lending and securities trading operations. Generally, there’s

an active trading desk whose book is marked to market, and that is tasked with managing

bank liquidity and interest rate risk. This trading desk exists alongside a lending operation,

where loans are priced at book value. While the trading operation offers ways for the bank to

1Most US BHCs have now spun off their trading desks while retaining trading in government securities,
munis, as well as trading on behalf of their customers-all allowed under the Volker rule.

2Avaham, Selvaggi and Vickery (2012) provide the rules which distinguish between BHC and FHC within
the US. A large percentage of commercial banks are part of either a BHC or FHC. The BHC may be limited
in their ability to trade marketable securities, but FHC are not as restrictive. Universal Banks are similar to
FHC in that they provide a large menu of financial services–See Morrison (2012). The distinguishing element
of our bank is the presence of both trading and loan desks. We refer to these institutions as BHCs, for
simplicity.

3 Source Flow of Funds Z1 June 9, 2016 Table L.108 and Top Tier BHC as of June 30, 2015 from Federal
Reserve Board and Bank of Chicago, respectively.
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manage interest rate risk it also could be a source of risk for the rest of the bank. As Table 1

clearly shows, investment operations for large banks constitute a large part of their business,

with 22.93% of top 5 BHC assets being in marketable securities and 44.80% in loans. Given

their size and impact on local and global markets, researchers, policymakers, and regulatory

bodies have recently been busy trying to understand how best to regulate their behavior. Yet

the academic banking literature, for the most part, has mainly focused on models of banking

with lending operations that typically transform liquid deposits into longer-term (illiquid)

loans. These models have constituted the main framework for understanding bank behavior

and their reactions to monetary and regulatory policies, and for informing the discussions

on optimal regulatory policies.4 Of course, this is understandable, as, traditionally, banking

crises have been credit and liquidity risk crises. The 2007 financial debacle, however, high-

lighted the role of capital markets and market risk along with credit risk in initiating and

propagating the crisis.5 These sources of risk coexist on the same balance sheet of a BHC,

and could potentially interact and affect the overall risk profile of the bank with implications

for financial stability and the rest of the economy.

Table 1: Financial Ratios for the Top 5 BHCs.

Date Stat Tier 1 Leverage Loans Securities Deposits

March Mean 10.28 11.98 44.80 22.93 70.08
2016 Std 3.42 2.74 8.70 16.25 5.23

March Mean 6.72 8.92 42.44 24.24 54.74
2008 Std 0.78 1.03 20.40 5.57 17.92

The question that arises is whether the conclusions regarding bank behavior and regulatory

policy prescriptions gleaned from using only the lending side of the banking business would

continue to hold when the trading business is operating alongside the lending business. In

this paper, we develop a dynamic model of a BHC that encompasses both a trading desk

and a loan desk. We study the behavior of such a bank and the impact of monetary policy

4See Bernanke (1983), Diamond and Dybvig (1983), Bernanke, Gertler and Gilchrist (1996, 1999), Bernanke
and Lown (1991), Bernanke and Blinder (1988), Berrospide and Edge (2010), Calomiris and Mason (2003),
Hancock and Wilcox (1994, 2008), Kashyap and Stein (1994), Kiyotaki and Moore (1997), and Peek and
Rosengren (1996).

5See Adrian and Shin (2010, 2011), Kashyap, Tsomocos and Vardoulakis (2014), Brunnermeier (2009),
and Woodford (2010).
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innovations on BHC behavior in the presence of Basel III type regulations. To our knowledge,

this is a first such exercise.6

We show that a BHC behaves quite differently from a bank with only a lending operation. In

particular, the trading desk confers benefits to the bank through its management of interest

rate risk. This benefit arises because the trading desk has the flexibility to take either short

or long positions in term securities while the loan desk is charged with issuing illiquid longer

term loans. This benefit results in higher capital and profitability to the bank. On the other

hand, it can also impose additional risks on the lending operation and on the overall bank due

to overleveraging, risky trading behavior, or simply due to wrong bets or expectations regard-

ing future yield rates. This gives rise to issues of potential rogue trading-a topic discussed

extensively in the popular domain-the role of bank governance, and optimal regulation; issues

we discuss later in the paper. We show that there is value from maintaining both parts of the

business; an argument that goes against the prescription of outright ring-fencing and other

current attempts at inducing banks to shed their trading business, and we discuss possible

regulatory alternatives.

The BHC, in this paper, operates in an oligopolistic market and maximizes the present value

of all future profits under capital and liquidity constraints a la Basel III.7 Financial markets

are represented by a continuous time affine term structure model of yield to maturity.8 This

is summarized by three interest rate factors that represent the level, slope and curvature of

the yield curve, and can be interpreted as providing information about inflation, the business

cycle, and financial crisis. We trace the impact of shocks to the term structure on the

hedging behavior of the trading desk, loan pricing decisions, balance sheet composition, capital

allocation within the two business lines, and on credit provision.

The paper proceeds as follows: Section 2 develops the financial markets model using a con-

6Froot, Scharfstein and Stien (1993), and Froot and Stein (1998) consider the impact of the financial
markets through the CAPM model. Our framework is developed in the context of no arbitrage term structure
models with optimal behavior by the bank that is subject to Basel III. He and Krishnamurthy (2012) provides
a model with a specialist desk similar to a trading desk that is subject to capital constraints. Nagel and
Purnanandam (2016) consider a bank with overlapping loans and no trading desk in which the underlying
projects, financed by these loans, follow a stochastic process. They then value the option value of loans, debt
and equity.

7See Chami and Cosimano (2001, 2010), Schliephake, and Kirstein (2013), Schliephake (2013), and Corbae
and D’Erasmo (2014) for discussion of oligopoly and capital requirements.

8We use a continuous time version of the term structure model of Joslin, Singleton and Zhu (2011). See
Piazzesi (2010). This allows us to derive probability distributions for key endogenous variables using Forward
Kolmogorov equations following Karatzas and Shreve (1988), Øksendal (2005), and Protter (2005).
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tinuous time term structure model. Section 3 introduces the BHC framework, presents some

stylized facts about these banks, and lays out the capital and liquidity constraints associ-

ated with Basel II and III, including liquidity coverage ratio (LCR), net stable funding ratio

(NSFR), as well as the counter cyclical buffer requirements. Section 4 introduces the trading

desk and explores issues of leverage and risky trading behavior by the desk manager. Section

5 explores the role of the chief operating officer (COO). At the beginning of each period, the

COO allocates bank capital between the two businesses, the trading and loan desks, decides

on the amount of new capital to raise or dividends to pay out, as well as on loan rates. We

explore the value of both businesses to the bank, and show that, under certain conditions, it

is optimal to maintain both lines of business. This analysis sheds light on the possible bene-

fits to the bank and the financial system, which could be lost due to outright ring-fencing of

trading activities. In Section 6, we discuss possible regulatory alternatives to ring-fencing and

highlight the role of bank governance. Section 7 highlights the impact of monetary policy on

BHC capital and on financial stability, and Section 8 concludes with some macroprudential

recommendations.

II. THE FINANCIAL MARKET

The Treasury yield to maturity is driven by an affine process, relating this yield of each

maturity to the N underlying factors, X(s), such that

rτ,s (X(s)) = Aτ +BτX(s). (1)

The time subscript s corresponds to today’s date, and τ is the maturity date. The parameters

Aτ and Bτ for each maturity are set so that there is no arbitrage opportunity for investors in

the financial markets.

These yields to maturity will be related to the risk free rate over the term to maturity for the

various bonds. It is assumed that the risk free interest rate r(s) is also a linear function of

the interest rate factors:

r(s) ≡ r (X(s)) = δ0 + δ1X(s). (2)

The constant δ0 and the vector δ1 are independent of time.

The dynamics of the mean reverting stochastic process describing the factors, X(s), under

the actual probability distribution, is

dX(s) =
(
γP − APX(s)

)
ds+ ΣXdεs. (3)
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εs is a Brownian motion which characterizes the uncertainty in the interest rate factors X(s).

The vector γP and the matrix AP are constants, which determine the stationary mean of

the factors,
(
AP
)−1

γP , and the half life of shocks to the factors. The matrix ΣXΣ′X is the

variance-covariance matrix for the shocks, dεs, to the factors.

The solution of (3) for the interest rate factors at the next period relative to its stationary

value, X̄, is

X(t+ τ)− X̄ = e−A
Pτ
(
X − X̄

)
+ Yτ , (4)

where

Yτ =

∫ τ

0

e−A
P (τ−s)ΣXdεs. (5)

The first term in (4) is the percentage of the deviation of the current interest rate factors, X,

from its stationary value that persists until the next period. The second term is the random

changes of the shocks to the interest rate factor from time t to t+ τ . This random shock has

a normal probability distribution with mean 0 and variance covariance matrix σY (τ).9

To carry out risk neutral pricing of zero coupon bonds of various maturities, the actual

distribution of the factors is changed through a change of variable which accounts for the

price of risk. As a result, the dynamics of the process for the factors, X(s), under the risk

neutral distribution, is

dX(s) =
(
γQ − AQX(s)

)
ds+ ΣXdε

Q
s . (6)

The vector γQ and the matrix AQ are the risk adjusted parameters for this process in which

the variance-covariance matrix remains the same, ΣXΣ′X .

The price of risk in the financial markets is assumed to be affine in the underlying factors.

Λ (X(s)) = λ0 + λ1X(s), (7)

so that the change of variable from the physical to the risk neutral distribution is

γQ = γP − ΣXλ0 and AQ = AP +ΣXλ1. (8)

The expected stochastic discount factor conditional on information at time t, i.e., Xt = X is

9This variance is the solution to a Ricatti differential equation. The solution is found by using recursive
rules, which are implemented in the lyap subroutine in Matlab with inputs AP and ΣX .
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given by10

Et

(
Mτ,t

Mt,t

)
≡M(τ,X) =M(τ) exp

{
− 1

2

(
X−µM(τ)

)′
(σM(τ))−1

(
X−µM(τ)

)}
, 11 (9)

and its random component at time t from state X to Y at time t+ τ is12

pM(t,X, τ, Y ) =

exp

{
− 1

2
Y ′ (σM(τ))−1 Y

}
√

(2π)NσM(τ)
, such that

Mτ,t

Mt,t

=M(τ,X)pM(t,X, τ, Y ).

(10)

Finally, the zero coupon bond price is determined by the expected risk free bond over the

maturity of the bond under the risk neutral distribution for the factors.

Pτ,s ≡ exp [−rτ,sτ ] = EQs exp

[
−
∫ s+τ

s

r(u)du

]
= exp [aτ + bτ ·X(s)] . (11)

The first equality follows from the expectation being calculated under the risk neutral distri-

bution conditional on the information at the current time s, EQs . The second equality follows

from the no-arbitrage assumption used to calculate the coefficients aτ = −τAτ and bτ = −τBτ

for the bond which matures at s + τ . These coefficients satisfy differential equations which

ensure the expected instantaneous holding period return for maturity τ is equal to the risk

free rate over the same period.

Here, the holding period return is given by

dPτ,s
Pτ,s

= [bτΣXΛ (X(s)) + r(s)] ds+ bτΣXdεs

=
[
bτ
(
(γP − γQ) −(AP − AQ)X(s)

)
+ r(s)

]
ds+ bτΣXdεs. (12)

Thus, the expected excess return for a zero coupon bond of maturity τ , Et

(
dPτ,s
Pτ,s

)
− r(s)ds,

is the product of its price elasticity, bτ with respect to the interest rate factors and the price

of risk for all financial instruments
(
(γP − γQ) −(AP − AQ)X(s)

)
ds.

10See appendix,subsection 2.5, for the proof.
11 See equation (63) in the Appendix. Recall that the unanticipated shock to the interest rate factor is

log-normally distributed. Taking the conditional expectation converts the shock into a time-dependent term
only, which we include in M(τ) to simplify the notation.

12In the appendix p.26 this transitional probability is found by solving the Forward Kolmogorov equation.
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A. ESTIMATES OF THE TERM STRUCTURE

We estimate the above term structure model using the monthly unsmoothed Fama-Bliss US

Treasury yields data.13 To keep our analysis within as homogeneous a monetary policy regime

as possible and at the same time to avoid the regime of zero lower bound following the most

recent financial crisis, we use the sample period from 1999M01 to 2007M12. In our estimation,

we use 12 maturities of 3 and 6 months, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 years. The continuous

time model is estimated using discrete data following the procedure initially developed by

Bergstrom (1984) as discussed in Harvey (1990). In this procedure, the continuous time

processes (3) and (6) are integrated over a month which leads to

Xt = Θ + ΦXt−1 + Σξt. (13)

Here, the mapping between the continuous and discrete time processes under the physical

distribution is

Θ =
[
I − e −AP

] (
AP
)−1

γP , Φ = e−A
P
, Σξt =

∫ 1

0

e−A
PsΣXdεs,

and ΣΣ =

∫ 1

0

e−A
PsΣXΣ′Xe

−APsds. (14)

Once the continuous time model is transformed to discrete time we use the Kalman filter

of the state space model with latent factors explained by (13). The observation equation is

given by the yield to maturity (1) plus a measurement error, ηt

rτ,t (X(t)) = Aτ +Bτ ·X(t) + ηt. (15)

This state space model is estimated subject to the no arbitrage conditions, which determine

the coefficients Aτ and Bτ , along with the mapping from the discrete time to continuous time

parameters (14). The Kalman filter yields the conditional normal distribution for the factors

with conditional mean and variance covariance given by

Xt|t ≡ E [Xt|rτ,t] and Pt|t ≡ E
[
(Xt −Xt|t)

′(Xt −Xt|t)|rτ,t
]
. (16)

Consequently, the bank has an optimal forecast of the holding period return given by

E

[
dPτ,s
Pτ,s
|rτ,t
]

=
[
b′τ
(
(γP − γQ) −(AP − AQ)Xs|t

)
+ δ0 + δ1Xs|t

]
ds.

13We use the data in van Dijk et.al. (2014) which they generously provide on the journal’s website.
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We use three factors in the state equation since three principle components explain 99.92% of

the cross section variations of the 12 yields to maturities. This is consistent with the literature

on this subject (see e.g., Litterman and Scheinkman (1991)). Typically, the three factors are

referred to as the level, slope and curvature factors. It turns out that the estimated three

latent factors from our model are closely related with these three factors. Following Diebold

and Li (2006), we define the empirical level factor to be yields(10years), the empirical slope

factor to be yields(10years) − yields(3months), and the empirical curvature factor to be

2 ∗ yields(2years)− yields(3months)− yields(10years). Figure 1 plots the estimated latent

factors from the term structure model together with the empirically constructed three factors

described above, after proper standardization.14 These graphs show that the estimated latent

factors from the term structure model well track the empirical level, slope, and curvature

factors.15 The plot of level factors reveals that the yields curve level overall has declined

throughout the whole sample period. It is important to notice how well the model performs

in terms of approximating all three factors. Specifically, the second latent factor and the

empirical slope factor both declined for a number of years since mid-2003 until mid-2005

when they started to go up till the end of 2007. However, both the third latent factor and

the curvature factor have decreased since mid-2005.

Figure 1: Estimated Factors versus Empirical Factors Explaining Yields to Maturity.

14Specifically, we subtract the mean and divide by the standard deviation from each series.
15However, it is important to note that in this affine term structure model and given the negative eigenvalues

of AQ there is no exact mapping between these empirically defined factors and the extracted latent factors,
as in Nelson-Siegel model (see Diebold and Li (2006)). The Appendix subsection 6.3 demonstrates that the
factors and latent variables capture the monetary policy for the US 1990-2013. See Bauer, Rudebusch and
Wu (2012, 2014), Joslin, Le, and Singleton (2013), Joslin, Priebsch, and Singleton (2014), and Gürkaynak and
Wright (2012) for work on the relation between the macro economy and the term structure factors. We show
the relation between the yield curve factors and the Taylor rule for US monetary policy. The level factor places
the strongest weight on monetary policy variables. The second and third latent factors are better explained by
the US monetary policy. Therefore, this comparison is meant to show that the latent factors from our affine
term structure model approximate fairly well these empirically defined level, slope and curvature factors.
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We provide the impulse response functions of the level, slope and curvature factors in response

to a one standard deviation level, slope and curvature shocks using equation (13) via Cholesky

factorization. The left plot in Figure 2 shows the impulse response to a level factor shock

which lasts about 24 months. Following this shock, the level factor initially increases before

gradually declining while the slope factor decreases initially before gradually going up. On

the other hand, the slope factor, middle plot, declines gradually after an initial increase, and

the curvature factor decreases initially before gradually increasing, both in response to a one

standard deviation of the slope factor shock. Finally, following a curvature factor shock in

the right-most plot, the level factor slowly increases while the slope factor decreases albeit by

a smaller amount over the 24-month horizon.

Figure 2: Impulse Response to Level, Slope and Curvature Shocks.

Figure 3: Expected (9) and Random Components of the SDF (10).

Given the estimate of the parameters for the yield curve we can examine the properties of the

stochastic discount factor implied by the yield curve in the U.S. from 1999-2008. The expected
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(deterministic) (9) and random (10) components of the stochastic discount factor are graphed

in Figure 3 using the parameters in Table 2. In Figure 3 (left hand graph (LHG)), at the

stationary level of the yield curve, X̄1 = −0.0177, the conditional expected stochastic discount

factor is 0.8812. Its maximum is 0.9879, which occurs at X = µM(τ) = −0.0228. Thus, there

can be a 12% expected fall in the market’s valuation of securities for a 0.5% increase in

the level. In general, the impact of an expected decrease in the level of the yield curve is

positive for X > µM(τ) and negative for X < µM(τ). Finally, the standard deviation of the

expected stochastic discount factor is more than four times that of the random component of

the stochastic discount factor.

Table 2: Mean and Standard Deviation for Expected and Random Components of the SDF.

M(τ) µM(τ) σM(τ) σM(τ)

0.9940 -0.0228 0.0465 0.0106

III. THE BANK HOLDING COMPANY MODEL

We define a bank holding company (BHC) as a financial institution which undertakes both

trading and lending activities, and is subject to Basel type regulations. A chief operation

officer (COO), at the beginning of each period, allocates capital to the two business lines,

decides on trading desk leverage, loan rates, and whether to pay dividends or to issue new

equity. Figure 4 highlights the interaction of the BHC with the financial market and Basel

III regulations.

The trading desk invests the capital allocated by the COO in marketable securities, which

are mainly US Treasuries. To trace the role of the trading desk’s attitude toward risk in

affecting the trading strategies and the overall bank, we endow the trading desk manager

with a constant relative risk aversion utility function and a given leverage ratio. The trading

desk manager maximizes the present value of his utility by choosing how much to invest in

various maturities of the marketable securities.

The problem is solved in three steps. First, the trading desk chooses the optimal combination

of marketable securities, given capital allocated by the COO. The marketable securities are

marked to market and are continuously evaluated using an affine term structure model (a

continuous time version of Joslin, Singleton and Zhu (2011)). Next, given the solution to

10



Figure 4: Overview of BHC and the Financial Markets

the trading desk’s problem, the COO, who manages a portfolio of loans of various maturities

subject to Basel III regulation, sets the interest rate margin relative to the yield on the

treasury security with the same maturity. In the final stage, the COO decides on the optimal

allocation of capital across the two business lines.

A. REGULATORY CONSTRAINTS

The balance sheet of bank j consists of reserves Rj, two maturities of loans, Lj, and treasury

securities, T j, for four maturities on the asset side of the bank’s balance sheet. Theses assets

are funded by deposits, Dj, and capital, Kj, on the liability plus net worth side. The bank

chooses loans and the total capital stock at discrete intervals t = iτ for i = 1, 2, · · · . All

the other assets and liabilities are allowed to change at any time. Consequently, the bank’s

balance sheet at time s is given by

Rj
s + Ljτ,s + Lj2τ,s + Lj2τ,s−τ +

4∑
i=1

Tiτ,sPiτ,s = Dj
s +Kj

s , (17)

for s ∈ [t, t + τ ], where τ is the time to the next loan portfolio decision. The treasuries are

of four types, allowing the bank to continuously trade over the interval [t, t + τ ]: short term

treasuries issued at t and maturing at t+ τ , T jτ,s, intermediate term treasuries issued at time

t and maturing at t + 2τ , T j2τ,s, long term treasuries issued at t and maturing at t + 3τ ,

T j3τ,s, and a reference treasury bond maturing at time t + 4τ , T j4τ,s.
16 The holdings of these

16The date of issue for these securities is not relevant, since the trading desk can always swap old securities
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securities could be long (asset) or short (liability) depending on the optimal decision of the

trading desk.

Basel III has two regulatory constraints dealing with the safety and liquidity of the bank.

The newer requirements deal with the liquidity of the bank in both the short term and

longer term. The short term is regulated through a liquidity coverage ratio (LCR) which

measures the high quality liquid assets to meet one month of unanticipated funding outflow.

To represent this requirement, we adopt the liquidity management model of Frost (1971),

Freixas and Rochet (2008), and Dutkowsky and VanHoose (2015). Suppose the trading desk

manages four marketable securities such that

4∑
i=1

Tiτ,sPiτ,s = ξKj
M(s) (18)

for s ∈ [t, t + τ ]. Here, ξ is the leverage ratio, so that 1 − ξ represents the amount of funds

Kj
M(s) invested in the risk free asset. The treasury securities are all zero coupon bonds which

trade continuously through time.17 The bank faces unanticipated deposit withdrawals for a

portion of its deposits. Suppose there is a uniform distribution of deposit flows between two

discrete time periods with support [−D̄, D̄]. The bank can use its marketable securities as

collateral for short-term financing of these deposit withdrawals.18 If the bank needs to borrow

in excess of the net worth of its marketable securities ξKj
M(t), then the bank pays a penalty

rate rp. The present value of the expected cost of borrowing these funds is

C(Kj
M(t)) =rpM(τ,X)

∫ D̄

ξKj
M (t)

x− ξKj
M(t)

2D̄
dx =

rp

4D̄
M(τ,X)

[
D̄ − ξKj

M(t)
]2
. (19)

Consequently, the cost of meeting the deposit withdrawals is smaller when the bank holds

more marketable securities. Thus, the regulator can modify the liquidity of the bank by

restricting the leverage ratio or raising the penalty rate when the bank has to borrow from

the central bank.

with new securities with the same maturity. In practice, the 2 period security can be replaced with a j period
security and the 3 period security can be replaced with the k period security without any change in the
analysis.

17If a secondary market is not present in the country, then both the treasury and loan decisions would be
made in discrete time.

18This short term funding can be in the form of repurchase agreements on the marketable securities. If the
bank is not able to borrow in the markets, the bank would then have to borrow from the central bank at some
interest rate.

12



The longer term liquidity regulation is the net stable funding ratio (NSFR), which is the

ratio of available stable funding (ASF) relative to the required stable funding (RSF). In the

appendix subsection 6.1, we map King’s (2010) formula for the NSFR into the current banking

model from which we get the following constraint:

Kj
t ≥ ατL

j
τ,t + α2τ

(
Lj2τ,t + Lj2τ,t−τ

)
+ αT ξK

j
M(s)− αKRj

t . (20)

The weights placed on the various categories of funding and assets are given in Table 3. The

weight placed on short term loans is less than the one on the longer term loans so that longer

term assets lead to a larger increase in RSF. In addition, the weight on government securities

is lowest, since these assets are considered more liquid than short term loans, leading to a

smaller weight in RSF. Finally, reserves reduce the need for capital since excess reserves can

be used to fund liquidity problems.

Table 3: Parameters for Regulatory Constraints (20) and (21).

ατ α2τ αK αT κT κL cb

0.055 0.08 0.459 0.027 0.0 0.08 0.02

The risk weighted capital constraint is now

Kj
s ≥κT ξK

j
M(s) + κL

(
Ljτ,s + Lj2τ,s + Lj2τ,s−τ

)
+ cb

(
Pτ,s
P̄τ,s
− 1

)+

(21)

with κT < κL. Here, P̄τ,s = exp
[
aτ + bτ · X̄

]
where X̄ is the stationary mean of the state

vector. κT and κL are the risk weighted capital requirements ratios for treasury securities

and loans, respectively. A new item in Basel III is the counter cyclical buffer for all banks

cb

(
Pτ,s
P̄τ,s
− 1
)+

, where cb is a positive constant. During good economic times, Pτ,s > P̄τ,s and

the counter cyclical buffer is positive. This corresponds to the level of interest rates below

normal, X1(s) < X̄1. This counter cyclical buffer does not apply during periods of higher

interest rates and lower bond prices.

As in Roelands (2014), there are critical levels of short term loans at the decision time s = t

such that the liquidity (20) and capital (21) constraints just bind.

Ljl,t =
1

ατ

[
Kj
t + αKR

j
t − α2τ

(
Lj2τ,t + Lj2τ,t−τ

)
− αT ξKj

M(t)

]
, (22)
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and

Ljκ,t =
1

κL

[
Kj
t − κT ξK

j
M(t)− κL

(
Lj2τ,t + Lj2τ,t−τ

)
− cb

(
Pτ,t
P̄τ,t
− 1

)+ ]
. (23)

The treasury securities are all zero coupon bonds which trade continuously through time. The

bank’s loan and capital decisions are made at discrete intervals and remain fixed within the

interval so that time is associated with the beginning of each discrete period, t, rather than

s ∈ [t, t+ τ ]. This means that the Basel III constraints (20) and (21) are not updated within

the interval, but imposed by the regulator at the start of every discrete period. If these

regulatory constraints applied every instant, then the complexity of the portfolio problem

would increase substantially.

1. Counter Cyclical Buffer

The bank regulator imposes a regulatory cost on the bank based on the state of the financial

market. In particular, the regulator wants the bank to hold more capital when the price of

financial assets are higher than normal or interest rates are below normal. The purpose is

to slow down the expansion of credit, which could be used to fund additional purchases of

these assets thus pushing up their prices even further. The counter cyclical buffer (CCB)

constraint becomes more binding for the bank in good times, as it forces the bank to raise

rates and limit the credit supply. The CCB, in essence, provides insurance to the regulator

when market prices heat up. We will show that the CCB can be characterized as a put option

that the bank is forced to provide to the regulator. This put option is in-the-money for the

regulator when the level of the yield curve is below normal. From the perspective of the bank,

this is a regulatory cost which is conditional on a low level of interest rates.

The critical level of the factors such that the counter cyclical buffer is zero is given by

ρb ≡ e−A
P (τ−t)(X̄ −X). (24)

The put option characterizing the counter cyclical buffer has a strike price X̄ and the payoff

is positive when X < X̄. The expiration date of the option is the next time period.
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The expected cost of the counter cyclical buffer is19

CCB(X) =M(2τ,X)cbEt

(
pM(2τ, Y )

(
Pτ,s
P̄τ,s
− 1

)+
)

= cbM(2τ,X)

(
P(τ,X) exp

{
1

2
b′τσM(τ)−1bτ

}[
1− Φ

(
Σ−1
M (ρb − σMbτ )

)]
−
[
1− Φ

(
Σ−1
M ρb

)])
, such that

∂CCB(X)

∂X
< 0 for X > µM. (25)

The cutoff (24) leads to the cumulative probability distribution of Z ∈ RN given by

Φ(ρb) =
1√

(2π)N

∫ ∞
ρb

e−
1
2
Z′ZdZ, such that

∂Φ(ρb)

∂ρb
< 0. (26)

CCB(X) is the product of the expected stochastic discount factorM(2τ,X) and the expected

payoff of this buffer, seen as an option. Here, P(τ,X) = exp

{
bτ

[
e−A

P (τ−t)(X − X̄)

]}
> 1

for X < X̄, so that the expected payoff is always positive in this case. In addition, the

expected payoff is still positive for some X > X̄, since there is an adjustment term for risk,

exp

{
1
2
b′τσM(τ)−1bτ

}
, which accounts for the uncertainty in the stochastic discount factor.

Figure 5: The Expected Payoff of Counter Cyclical Buffer (25).

The expected payoff is multiplied in (25) by the expected stochastic discount factor, which

has a normal form for the seller of a put option. As a result, the option value of the counter

19See pages 34-36 of the appendix for the derivation.
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cyclical buffer for the bank is the mirror image of a normal form in the RHG of Figure

5. Recall that the stochastic discount factor is time varying as it depends on the level of

the yield curve. The RHG in Figure 5 allows the level of the yield curve to vary over the

interval X1 ∈ [−3ΣX1 , 3ΣX1 ]. The highest value of the counter cyclical buffer is only 0.018%,

since cb = 0.02 and the probability that the buffer applies is small. If the regulator requires

additional capital of 1.8% for the counter cyclical buffer, the value of cb would have to be 100

times bigger.

IV. THE ROLE OF THE TRADING DESK

There has been much discussion in the popular media and in policy circles about the role of

rogue traders and their excessive risk taking and leveraging behavior as factors in abetting,

if not outright precipitating, the recent financial crisis. Interestingly, there is very little

analysis of the trading desk’s behavior within the context of a bank or a BHC. This section

investigates the role of the trading desk manager’s risk attitude as well as leveraging behavior.

The analysis sheds light on the behavior of the trading desk manager and its impact on the

bank overall risk profile and profitability. By doing so, we hope to help better inform the

discussion on bank governance as well as regulatory policy aiming to target trading activities

within banks.

Consider, first, the problem of the trading desk manager who is in charge of a trading portfolio

for BHC j facing interest rate risk, where treasury securities are traded continuously. In

contrast, the loan, deposit, and capital decisions are made at discrete times; and these will

be explored in the following sections. The capital of bank j is composed of two parts, one

related to the marketable securities, Kj
M , and one related to the loan portfolio, Kj

L.

Kj = Kj
L +Kj

M . (27)

The marketable securities are invested by the trading desk following the regulatory constraint

(18). Consequently, the return on these securities of a specific maturity follows the stochastic

process (12) which the bank takes as given. The trading desk is allowed to re-balance these

funds throughout the time period s ∈ [t, t + τ ]. We use four securities namely 3 month, 2,

5, and 10 year bonds, since the constraint (18) reduces the number of independent choices to

the number of factors, 3.

To integrate the trading desk’s problem into the overall problem for the bank we define the
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change in the trading desk’s capital by

dKj
M(s) = πjM(s)ds+ σπdεs. (28)

The profits of the trading desk at each instant are

πjM(s) ≡(1− ξ)r(s)Kj
M(s) +

4∑
i=1

µiτ (s)Tiτ,sPiτ,s,

subject to (18). The instantaneous expected excess rates of return on marketable securities,

from (12), are

µiτ (s)− r(s) ≡b′iτ
[
(γP − γQ) −(AP − AQ)X(s)

]
, i = 1, 2, 3, 4.

There is also a volatility component of profits earned by bank j at any time s ∈ [t, t+τ ] given

by

σπ ≡
[
T jτ,sPτ,sbτ + T j2τ,sP2τ,sb2τ + T j3τ,sP3τ,sb3τ + T j4τ,sP4τ,sb4τ

]
ΣX . (29)

In order to highlight the role of attitude toward risk in affecting the type of investments

made and implications for the rest of the bank, the trading desk manager j is assumed to

be risk averse with a constant relative risk aversion utility (CRRA) with parameter γj. We

can now specify the portfolio problem of the trading desk manager for bank j, which is to

maximize the expected utility from terminal capital at a fixed time τ given its current market

capital, Kj
M(t) = Kj

M and interest rate factors, X(t) = X. The trading desk of bank j has

an investment horizon τ . The bank’s conditional expected value related to the actions of the

trading desk manager is

J(Kj
M , X, τ, t) = e−βτE

(Kj
M(τ)

)1−γj

1− γj

∣∣∣∣∣Kj
M(t) = Kj

M , X(t) = X

 , (30)

where β is the discount rate for the bank.
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The bank capital, Kj
M , associated with the marketable securities in the bank’s portfolio follows

dKj
M(s)

Kj
M(s)

= [(1− ξ)r(s) + ω(s)′µ(s) + ω4(s)µ4τ (s)] ds+ ω(s)′bΣXdεs + ω4(s)b4τΣXdεs

for s ∈ [t, t+ τ ], and ω(s)′ι+ ω4τ (s) = ξ,where the weights are now defined as:

ω(s)′ ≡
[
T jτ,sPτ,s, T

j
2τ,sP2τ,s, T

j
3τ,sP3τ,s

]
/Kj

M(s), ω4τ (s) = T j4τ,sP4τ,s/K
j
M(s)

µ(s) ≡ [µτ (s), µ2τ (s), µ3τ (s)] ,

with µiτ (s) ≡ r(s) + b′iτ
[
(γP − γQ) −(AP − AQ)X(s)

]
, i = 1, 2, 3, 4.

Here b =

 bτ
b2τ

b3τ

 .

(31)

The trading desk’s problem has been solved by Sangvinatsos and Wachter (2005) and Liu

(2007). They find that the value function for the trading desk manager is20

J(Kj
M , X, τ, t) =

(
Kj
M(t)

)1−γj

1− γj
J(τ,X), (32)

where J(τ,X) = J(τ) exp

{
−1

2
(X − µJ(τ))′ (σJ(τ))−1 (X − µJ(τ))

}γj
.

Given the solution, the portfolio rule for the trading desk is given by

ω(t) =ω1

{
(b− ιb4τ )

[
(γP − γQ) −(AP − AQ)X(t)

]}
+ ω2ξ + ω3γ

j (σJ(τ))−1 [X − µJ(τ)]

ω1 ≡
[
γj (bΣXΣ′Xb

′ + ιι′b4τΣXΣ′Xb
′
4τ − 2bΣXΣ′Xb

′
4τ ι
′)
]−1

with ι′ =
(

1 1 1
)
,

ω2 ≡2ω1 (bΣXΣ′Xb
′
4τ − ιb4τΣXΣ′Xb

′
4τ ) and ω3 ≡ ω1 (b− ιb4τ ) ΣXΣ′X .

ω4(t) = ξ − ι′ω(t).
(33)

The first term in the portfolio rule is the traditional Sharpe ratio adjusted for risk γj, since the

expected excess return on the treasury securities is (b− ιb4τ )
[
(γP − γQ) −(AP − AQ)X(t)

]
and the variance-covariance matrix bΣXΣ′Xb

′+ ιι′b4τΣXΣ′Xb
′
4τ −2bΣXΣ′Xb

′
4τ ι
′ from (12) deter-

mines ω1. However, the excess return is measured relative to the 4th asset. Consequently, the

price of risk (γ−γQ) −(A−AQ)X(t) is multiplied by the elasticity of the bond with maturity

1, 2 or 3 minus the elasticity for the 4th bond, b− ιb4τ . In addition, the variance-covariance of

20In the appendix, section 1, it is shown that the coefficients σJ(τ), µJ(τ) and J(τ) satisfy three ordinary
differential equations.21 These equations are solved within a Matlab program with γj = 10, β = 0.05, and
ξ = 1.
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the first three bonds, bΣXΣ′Xb
′, is adjusted for the variance of the fourth asset, b4τΣXΣ′Xb

′
4τ

and the covariance of the three assets with the fourth asset, bΣXΣ′Xb
′
4τ . The second term is

an adjustment to ensure that the portfolio weights add up to ξ.

The last term in the portfolio rule (33) is the hedging demand for treasury securities from

Merton (1971). This term consists of the regression coefficients (beta) for the excess returns

on treasury securities against the interest rate factors, ω3, and the sensitivity of the expected

lifetime utility with respect to the factors γj (σJ(τ))−1 [X − µJ(τ)]. This latter term can be

interpreted as the risk adjusted duration of bank j. Table 4 provides the key parameters

for the lifetime utility of the trading desk with an investment horizon of 1 year, coefficient

of relative risk aversion γj = 10, discount rate β = 0.05, and leverage ratio ξ = 1. The

graphs use only the level of the yield curve factor so that the graphs are two dimensional.

As a result, the investor has only two independent bonds to invest in. The lifetime utility is

for an investor that invests in 3 months, and 5 year bonds using the estimated parameters

for the term structure from section II.A. LHG of Figure 6 gives this lifetime utility for the

level of the yield curve X1 ∈ [−3σJ(τ) + µJ(τ), 3σJ(τ) + µJ(τ)]. The range of the level is

X1 ∈ [−3ΣX + X̄1, 3ΣX + X̄1] = [−0.1115, 0.0609]. Consequently, it is possible for the level

of the lifetime utility curve to be above or below the mean of the lifetime utility, so that the

hedging demand can be positive or negative, respectively. This result is shown in the RHG in

Figure 6. The hedging demand (red dotted line) is zero at the mean of the expected lifetime

utility.

For X > X̄, mean reversion (4) implies that the trading desk manager expects the level of the

yield curve to fall, and hence longer duration bonds would lead to a larger capital gain. As a

result, the trading desk is long five year bonds (blue dashed line) and short three month bonds

(green short-dashed line) for a high expected level of the yield curve, X1 > X̄1 = −0.0177. If

the random change in the future yield factors is positive, Yτ > 0, then the trading desk would

suffer a large capital loss. The trading desk’s position is reversed for lower levels of the yield

curve, X1 < X̄1, since mean reversion implies that the trading desk expects the level of the

yield curve to move back to its stationary value by (4). If the random change in future yield

factors is negative, then the trading desk would suffer a capital loss.

We can now calculate the impact of the trading desk manager’s investment behavior on his

conditional expected gross growth rate of capital, given the stochastic process for the term

19



Table 4: Solution to the Lifetime Utility of the Trading desk manager.

γj β J(τ) µJ(τ) σJ(τ)

10 0.05 0.9757 -0.0593 0.1065

Figure 6: The Expected Lifetime Utility of the Trading desk manager (32)
and Portfolio Weights (33).

structure factors (3).22

Et

(
Kj
M(t+ τ)

Kj
M(t)

)
≡ K(τ,X) = K(τ) exp

{
−1

2

(
X−µK(τ)

)′
(σK(τ))−1

(
X−µK(τ)

)}
, (34)

where K(τ), µK and σK are derived in the appendix. These parameters are given in Table 5

for the trading desk characterized in Table 4. Note that equation (34) is deterministic and

conditional on information at time t, i.e., Xt = X.

Table 5: Mean and Standard Deviation for Expected and
Unexpected Gross Growth Rate of Trading Desk Manager’s Capital.

γj K(τ) µK(τ) σK(τ) σK(τ) X̄1 − ΣX1 X̄1 X̄1 + ΣX1

10 1.2138 -0.0639 0.1065 0.0104 0.0934 0.0054 0.2640
5 1.0584 -0.0567 0.1167 0.0105 0.2030 0.0085 0.4672

22In the appendix, subsection 2.6, we provide the solution procedure which is similar to that for the
stochastic discount factor.
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A. THE ROLE OF THE ATTITUDE TOWARD RISK

Figure 7: Gross Rate of Return for the Trading Desk Manager’s Capital, γj = 10 (LHG)
and γj = 5 (RHG).

In Figure 7 (top LHG), the conditional expected gross growth rate of the trading desk’s

capital (34) is plotted against the first factor for the term structure for γj = 10. Figure 7 (top

RHG) plots the same graph for γj = 5. At the stationary value for the level of the yield curve

X̄1 = −0.0177, we have that K(τ,X) = 1.1048 for a time horizon of one year and γj = 10,

so that the expected growth rate is 10.48% under normal circumstances. However, there can

be a substantial capital loss of 18.52% when the level of the yield curve reaches its maximum

observed value of 0.0256, as calculated using (34). If the trading desk has 20% of the bank’s

capital, then the total capital of the bank could fall by 3.70%.

The risk averse trading desk hedges against the mean reversion of the level of the yield curve

by going long (short) in 5 year government securities for a high (low) level of the yield curve.

In the bottom LHG of Figure 7 we reproduce the portfolio decision for γj = 10, while the

bottom RHG corresponds to γj = 5. As depicted in these two graphs, the trading desk

manager with a lower aversion to risk increases the magnitude of the bet that the level of the

yield curve will revert to its long term mean. This implies that the less risk averse trading desk

manager will choose a portfolio with higher duration, relative to the manager that is more
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risk averse. Interestingly, and perhaps, initially, more surprising, the expected gross growth

rate of capital for the less risk averse trading desk manager is lower than that of the more risk

averse manager. In other words, the more risk averse trading desk manager is providing more

value to the bank than the more risk aggressive manager. How is that possible? The answer

is that, first, the higher duration portfolio of the less risk averse manager is more susceptible

to interest rate volatility, and, second, the no arbitrage condition rules out profiting from

such volatility. As a result, the expected gross growth rate of capital for the more risk averse

manager is higher.

Moreover, the convexity correction, due to interest rate volatility, is higher for the higher

duration portfolio, which lowers its expected value. As a result, and given the inverse rela-

tionship between price and return, the expected holding period return for that portfolio will

be higher. This can be observed in the last three columns of Table 5, which provide the

holding period return at the stationary value of the level of the yield curve and this level

plus or minus one standard deviation. At all levels of the yield curve, we see that the current

expected holding period return on the portfolio is larger for a lower aversion to risk.

Next, we explore the role of the random component for the gross growth rate of capital

for the trading desk. Using the forward Kolmogorov equation, we calculate the transitional

probability pK (t,X, τ, Y ) from the state X at time t to the state Y at time t+ τ :

pK (t,X, τ, Y ) =

exp

{
− 1

2
Y ′σK(τ)−1Y

}
√

(2π)N det (σK(τ))
. (35)

This probability distribution represents the capital loss when Y > 0, since the future level of

the yield curve is above what the trading desk expected.

We can therefore write
Kj
M(t+ τ)

Kj
M(t)

= K(τ,X)pK (t,X, τ, Y ) . (36)

Given the estimates of the term structure model and using a one year horizon, we find that

the trading desk’s capital has σK(τ) = 0.0104 given the trading desk follows the optimal

portfolio rules (33) with CRRA γj = 10, β = 0.05, and ξ = 1.

The partition of the growth rate of capital for the trading desk into deterministic and random

components is useful for various evaluations of the performance of the bank. First, we can
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now calculate the expected cash flow from the trading desk to the overall bank using (33)

and (35).23

Et

[
exp

{∫ t+τ

t

[(1− ξ)r(s) + ω∗(s)′µ(s) + ω∗4(s)µ4τ (s)] ds+ σπ

∫ t+τ

t

dεs

}]
= K(τ,X).

(37)

The market valuation of the cash flows generated by the trading desk uses the stochastic

discount factor given by (10). The present value of the marginal value of the trading desk’s

capital is also a function of the gross growth rate of the trading desk’s capital, and is given

by

Mτ,t

Mt,t

Kj
M(t+ τ)

Kj
M(t)

=M(τ,X)K(τ,X)

exp

{
− 1

2
Y ′ (σM(τ)−1 + σK(τ)−1)Y

}
√

(2π)N det
[
(σM(τ)−1 + σK(τ)−1)−1] . (38)

The conditional distributionM(τ,X)K(τ,X) of the current yield factors, X, has a Gaussian

form with parameters µMK(τ) = −0.0294 and σMK(τ) = 0.0427. The parameters of the

distribution of the random changes in the yield curve factors Y are given in Table 6. This

distribution still has mean zero but the variance is larger relative to the stochastic discount

factor (10) and the gross growth rate of the trading desk’s capital (36).

Table 6: Mean and Standard Deviation for the Discounted Expected and
Unexpected Gross Growth Rate of Trading Desk Manager’s Capital.

M(τ)K(τ) µMK(τ) σMK(τ) (σM(τ)−1 + σK(τ)−1)
−1

1.2215 -0.0294 0.0427 0.0106

Thus, the present value of the expected cash flow for the trading desk’s capital (38) is deter-

mined by his starting capital allocation Kj
M(t), the deterministic component of the growth

rate of the trading desk’s capital (34), and the expected stochastic discount factor over the

trading desk’s time horizon.

23The details for this derivation is contained in the appendix section 1 and subsection 2.6.
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B. THE ROLE OF LEVERAGE

We now turn our attention to exploring the implications of leverage on the trading desk

portfolio decisions and bank capital. Leverage here is modelled as a parameter ξ rather than

a decision variable. Moreover, we have, so far, limited its value to be ξ = 1. We can now relax

this assumption and explore what is the impact on the portfolio decisions of the trading desk

manager. Figure 8, RHG, portrays the investment position (lower panel) and the impact on

the expected gross growth rate of capital in the case where the trading desk is overleveraged

with ξ = 5, while the relative risk aversion parameter is kept at 10. In the LHG of Figure

8, we reproduce the LHG graphs from Figure 7 for γ = 10 and ξ = 1. Interestingly, the

overleveraging by the trading desk manager leads to shorting the risk free asset (see equation

(33)) along with the 3 months treasury to finance the long position in the 5-year treasury.

This results in a portfolio with higher duration, which is subject to volatility of interest rate

factors. The only way for the trading desk manager to make profits, in this case, is for

the level factor X1 to be large enough and far away from the long term mean, X̄1, so that

mean reversion would result in high profits. Unfortunately, the probability of that occurring is

clearly low, and this can easily be seen from the upper panel of the RHG of Figure 8 where the

expected gross growth rate of capital corresponding to the stationary value of X̄1 = −0.017

is very low, in comparison to the LHG panel in Figure 8. Again, the point of this exercise is

to highlight how leverage would affect the portfolio composition of the trading desk. Later in

the paper, we will explore further the role of the leverage of the trading desk in affecting the

overall capital and risk profile of the bank.

To sum up, the attitude toward risk of the trading desk manager and his leverage behavior

lead to trading decisions that subject the investment portfolio to potential capital losses and,

as a result, negatively impact the capital accumulation of the bank. As we will show in the

next section, there are also risk implications for the lending operation and the overall bank.

Later on, we return to this topic when discussing potential regulatory approaches to dealing

with BHC governance and risk behavior.

V. THE ROLE OF THE COO

In this section, we will focus on the lending business of the BHC, and then discuss how

it is affected by the trading desk decisions. We denote by πjL(s) the profits of the lending

desk (to be defined in the next section). As discussed earlier, the COO has the option to

24



Figure 8: Gross Rate of Return for the Trading Desk’s Capital (34) ξ = 1 (LHG) and ξ = 5
(RHG).

raise additional capital Ijτ,t =
∫ t+τ
t

qjds = qjτ at the beginning of the period. This is done

continuously over the period at the constant rate qj. The COO may also choose to pay

dividends at the constant rate rjKτ,t over the period [t, t + τ ]. Consequently, the evolution of

the bank’s capital is

dKj(s) =
[
πjL(s)− rjKτ,t + qj

]
ds. (39)

The change in capital for the bank over the horizon t to t+ τ is

Kj(t+ τ)−Kj(t) =
[
πjL(t)− rjKτ,t + qj

]
τ. (40)

Given the current capital of the bank, the COO has to allocate it between the trading desk

and the loan desk so that

Kj(t) = Kj
M(t) +Kj

L(t).

The COO takes the trading desk’s balance sheet constraint (18) as given, so that the balance

sheet of the bank (17) reduces to

Rj
t + Ljτ,t + Lj2τ,t + Lj2τ,t−τ = Dj

t +Kj
L(t) + (1− ξ)Kj

M(t). (41)

25



The value of the bank consists of the sum of the values of the lending and trading businesses.

As discussed earlier, the market stochastic discount factor (10) is used to price all cash flows.

The bank’s objective is24

V
(
t,Kj

M(t), Kj
L(t), Lj2τ,t−τ , r

j
2τ,t−τ , X(t)

)
= max

qj ,rjKτ,t ,K
j
M (t)

M(τ,X)

{
Kj
M(t)K(τ,X)

− rp

4D̄

[
D̄ − ξKj

M(t)
]2

+ max
rjτ,t,r

j
2τ,t,K

j
L(t+τ)

Et

{[
πjL(t)− (1− χ)rjKτ,t − rDτ,tD

j
t + (1− η)qj

]
τ

+
M(2τ,X)

M(τ,X)
Et
[
pM(2τ, Y )V

(
t+ τ,Kj

M(t+ τ), Kj
L(t+ τ), Lj2τ,t, r

j
2τ,t, X(t+ τ)

)]}}
,

(42)

The first term in (42) is the expected value of the discounted cash flows generated by the

trading desk from t to t+ τ . Each cash flow over the period t to t+ τ is the gross growth rate

of capital for the trading desk which is discounted using the stochastic discount factor (10)

for s ∈ [t, t + τ ]. Consequently, the present value of the expected cash flows of the trading

desk is given by (38) for any time period s ∈ [t, t+ τ ].

The Bank COO knows Ωt,τ =
{
εjτ,t, ε

j
2τ,t,M(τ,X)K(τ,X), pK (t,X, τ, Y )

}
at time t. Note

that the marginal cost of raising net new capital η reflects the fact that a seasoned offering

of new shares is costly. On the other hand, the marginal benefit to the bank, χ > 1, ac-

counts for the benefit to shareholders of regular dividend payments. The bank COO chooses{
rjτ,t, r

j
2τ,t, K

j
L(t+ τ), rjKτ,t , q

j
}

subject to the regulatory capital constraint (21) with Lagrange

multiplier λ1(t), the net stable funding constraint (20) with Lagrange multiplier λ2(t), and

its balance sheet constraint (41).

The cost of seasoned equity offerings and the benefit of initiating dividend payments have

been examined over the last twenty years.25 Gao and Ritter (2010) examine seasonal equity

offerings which arise from the effort of the investment banker to improve the elasticity of

demand for the corporation’s shares. This effort, however, would be limited in a financial

crisis. Following Corwin (2003) and Mola and Loughran (2004), among others, the cost of the

offering depends on, both, an explicit fee from the investment bank and an underpricing of the

offering. In addition, the cost of the offering escalates as the offering increases. Starting with

Michaely, Thaler and Womack (1995), the benefit from the payment of dividends has been

24To simplify notation we use pM (2τ, Y ) for the transition probability pM (t,X, 2τ, Y ) (10), since it is not
dependent on t,X in this case.

25See Bessembinder and Zhang (2013) for a survey of this work.
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measured by either the initiation of dividends or their omission. They find a gain of about

3% from the initiation of dividends and −7% from the suspension of dividend payments.

Bessembinder and Zhang (2013) examine the impact of these corporate events on the long

term return on corporate stocks. In both cases they confirm previous results and find that the

impact is dependent on the corporate environment including change in momentum, illiquidity,

and idiosyncratic volatility. Consequently, the values of these parameters are dictated by the

specific characteristics of the corporation including whether or not the firm is in financial

crisis. For the purpose of our exercise, we take the cost or benefit to be 7%.

The COO issues new equity based on

M(τ,X)(1− η)τ +M(2τ,X)Et

[
pM(2τ, Y )

∂V

∂Kj
L(t+ τ)

]
≤ 0. (43)

If this inequality is true, then the bank does not issue equity.

The COO’s decision to pay dividends is based on

M(τ,X)(χ− 1)τ −M(2τ,X)Et

[
pM(2τ, Y )

∂V

∂Kj
L(t+ τ)

]
≤ 0. (44)

If this inequality is true, then the bank does not pay dividends.26

The COO’s first order condition to allocate the capital of the bank is conditional on whether

Kj
M(t) is at the lowest value of zero or the highest possible value Kj(t).

∂V

∂Kj
M(t)

− ∂V

∂Kj
L(t)

≤ 0 for Kj
M(t) = 0 (45)

or
∂V

∂Kj
M(t)

− ∂V

∂Kj
L(t)

≥ 0 for Kj
M(t) = Kj(t). (46)

If the value of the trading desk’s capital is between these two extremes, then Kj
M(t) is chosen

such that
∂V

∂Kj
M(t)

=
∂V

∂Kj
L(t)

. (47)

26 The second order condition for payment of dividends or issuing stock is true, as long as the expected
marginal value of capital is decreasing in the capital for the loan desk.
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A. DETERMINING THE OPTIMAL LOAN MARGIN

In this section, we will analyze the loan decision of the bank, given the trading desk’s position

and in the presence of capital and liquidity constraints. The bank COO has to choose the

interest rate margin for loans, L, with two maturities, τ ∈ {τ, 2τ}. For each maturity, the

value of total loan demand for bank j is given by

Ld,jτ,t = γj0,τ − γ
j
1,τr

j
τ,t + σ(rjτ,t)ε

j
τ,t for τ either τ, or 2τ, (48)

where rjτ,t is the interest rate charged on loans of maturity either τ , or 2τ . Following the bank-

ing literature, borrowers undertake riskier projects when interest rates increase.27 Specifically,
dσ(rjτ,t)

drjτ,t
> 0 with εjτ,t = g or b, with p being the probability of a good outcome, g.28 In partic-

ular, the standard deviation of this shock is

σ(rjτ,t) = σ0 + σ1r
j
τ,t > 0⇒ σ′(rjτ,t) = σ1 > 0. (49)

If the bank commits one unit to loans or the safe asset, the shocks satisfy

b <
Ld,jτ,t − (γj0,τ − γ

j
1,τr

j
τ,t)

σ1r
j
τ,t + σ0

< g.

Consequently, bank j has the largest marginal revenue in the good state, which is larger than

the return from the safe asset. In addition, the marginal revenue from the loan in the bad

state is worse than the benefit from the safe asset.

The interest rate charged by bank j on its loans consists of two components: the interest rate

on U. S. Treasuries of the appropriate maturity, rτ,t, and the interest rate margin, mj
τ,t, which

follows from market power of the bank in the loan market for each bank. We have

rjτ,t = rτ,t +mj
τ,t for j = 1, · · · , N. (50)

The interest rate margin will be set relative to the marginal cost of loans cj. This marginal

cost cj = 0.0378 is given in Table 7. It is set in subsection 6.2 of the appendix using the Call

Reports for the 500 largest commercial banks in the U. S. from Quarter I of 2001 to Quarter

IV of 2007.29 This parameter is set equal to the average of the ratio of non-interest expenses

relative to total assets, across all banks and time.

27See for example, Barnea and Kim (2014), and Corbae and D’Erasno (2014).
28The solution for the bank’s problem is found for an arbitrary number of states while the discussion is in

terms of just two.
29The data from Report of Condition and Income data for Commercial Banks was organized for the 500

largest commercial banks by Sebastian Rolands.
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Table 7: Parameters for Deposits (51) and Reserves (52).

cj d0 d1 rp D̄ r0 r1

0.0378 0.0111 0.0282 0.1 0.0022 0.1340 0.3936

To close the loan desk problem, we have to specify a model for the interest rate paid on

deposits rDτ , and reserve balances Rj. The bank’s deposit rate would in general be lower than

the corresponding yield to maturity on government securities, such that the bank can still

cover the marginal cost of providing deposits.30 As a result, we assume that

rDτ,t = d0 + d1X(t). (51)

The interest rate factors determine the yields to maturity so that the constant d1 is related

to the coefficients in (1), while the constant d0 is related to the marginal cost of deposits.

To set the parameters for the deposit rate in Table 7, we estimate a linear regression of

the interest expenses on deposits to deposit ratio on the first latent variable from the term

structure estimates. A panel regression with bank fixed effects is estimated for the 500 largest

commercial banks from 2001 to 2007. The statistically significant parameters are recorded in

Table 7.31

Dutkowsky and VanHoose (2015) provide a model of reserve holding in the face of interest

payment on reserves. They find that the optimal holding of reserves under an interior solution

is dependent on the other interest rates in the economy, which are related to the interest rate

factors. The central bank would have to set the interest on reserves so that the demand for

reserves is equal to the amount the central bank wants to supply. This implies that the interest

rate on reserves would also have to be dependent on the interest rate factors. Consequently,

we assume reserves are related to the interest rate factors.

Rj
t = r0 + r1X(t). (52)

Here the constant r1 is dependent on the marginal cost of the various assets and liabilities

of the bank and the coefficients in (1). The constant r0 would be related to the amount of

reserves the central bank wants within the banking system.

30See Chami and Cosimano (2001) for example.
31The details of the data and regressions are reported in subsection 6.2 of the appendix.
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The parameters for the model for reserve holdings are given in Table 7. In this case, a panel

regression with bank fixed effects is estimated using cash balances plus deposits due from

other depository institutions as the dependent variable and the first latent variable from the

term structure estimates is the independent variable. The panel of banks is the same as for

the deposit rate regression. The parameters are the statistically significant estimates of the

coefficients from this panel regression. In Table 7, we assume a penalty rate of 10% and the

maximum deposit withdraw to be 0.22% of the bank’s assets, which determine the cost of the

short term liquidity constraint (19) under Basel III.

We now consider the loan problem given the solution to the trading desk’s problem. The

profit from the loan portfolio is

πjL(s) =(rjτ,t − cj)L
j
τ,t + (rj2τ,t − cj)L

j
2τ,t + (rj2τ,t−τ − cj)L

j
2τ,t−τ − rDτ,tD

j
t for s ∈ [t, t+ τ ].

(53)

If the COO pays dividends, then (44) is an equality, so that the first order condition for

choosing the loan margin is

χ
∂πjL
∂mj

τ,t

= [λ1κL + λ2ατ ]
(
γj1,τ − σ1ε

j
τ,t

)
. (54)

Here,

∂πjL
∂mj

τ,t

=
[
2
(
−γj1,τ + σ1ε

j
τ,t

)
rjτ,t −

(
cj + rDτ,t

) (
−γj1,τ + σ1ε

j
τ,t

)
+ γj0,τ + σ0ε

j
τ,t

]
τ.

If the bank issues equity, then χ is replaced by η.

If regulatory constraints (20) and (21) are not binding, then the COO equates marginal

revenue with marginal cost so that the first order condition (54) becomes

mj∗
τ,t =

1

2

(
cj + rDτ,t

)
−

γj0,τ + σ0ε
j
τ,t

2
(
−γj1,τ + σ1ε

j
τ,t

) − rτ,t(X). (55)

In this case, λ1(t) = 0 and λ2(t) = 0. The ′∗′ refers to the unconstrained solution. If this

interest rate margin is substituted into the demand for loans, we get the loan level L∗ when

the capital or liquidity constraints are not binding. By construction, the COO sets the margin

such that the loan rate covers the marginal cost of bank liabilities. In addition, there is a

surcharge for the monopoly power of the bank based on the elasticity of the loan demand

with respect to a change in the loan rate.
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We now consider the optimal loan margin of the bank when the capital constraint is binding,

so that we can identify the expected marginal value of bank capital (see Chami and Cosimano

(2001, 2010)). When Ljκ,t < L∗, the capital constraint (23) is binding and λ∗1(t) > 0. The

loan rate will be determined by the demand for loans (48). The loan margin is

mjκ
τ,t =

1(
−γj1,τ + σ1ε

j
τ,t

) [− (γj0,τ + σ0ε
j
τ,t

)
+ Ljκ,t

]
− rτ,t(X). (56)

The subscript ′κ′ in the loan margin refers to the loan margin under the capital constraint

(21).

Given the optimal loan margin, we can use (54) to find the Lagrange multiplier for the liquidity

constraint.

λ∗1(t) =2τ
χ

κL

[
rjκτ,t −

1

2

(
cj + rDτ,t

)
+

γj0,τ + σ0ε
j
τ,t

2
(
−γj1,τ + σ1ε

j
τ,t

)]
= 2τ

χ

κL

[
rjκτ,t − r

j∗
τ,t

]
.

(57)

Suppose the current level of bank capital is Kj
t , which would correspond to a regulatory level

of loans, Ljκ,t, (21), and loan rate from (56), rjκτ,t. Now, if the bank finds it optimal to choose

the unconstrained loan rate rj∗1,t > rjκ1,t, then the optimal level of loans is Lj∗τ,t < Ljκ,t so that

Kj∗
t < Kj

t . In this case, the capital constraint does not bind and the Lagrange multiplier is

zero, since the bank’s choice of capital is inside the capital constraint. As a result, we have

λ∗1(t) =

{
2τ χ

κL

[
rjκτ,t − r

j∗
τ,t

]
for rjκτ,t > rj∗τ,t

0 for rjκτ,t ≤ rj∗τ,t.
(58)

When the liquidity constraint is binding χ
κL

is replaced by χ
ατ

and the loans are binding at

rate rjlτ,t, so that32

λ∗2(t) =

{
2τ χ

ατ

[
rjlτ,t − r

j∗
τ,t

]
for rjlτ,t > rj∗τ,t

0 for rjlτ,t ≤ rj∗τ,t.
(59)

In the rest of the paper, we set the parameters for the bank’s loan demand to those in Table 8.

In order to do so, we use the average interest expenses on deposits relative to total deposits,

rD = 0.0165, the average ratio of interest and fees on commercial and industrial loans to

32The properties of the two period loans are shown in the appendix section 3 to be proportional to the one
period loans and dependent on the expected stochastic discount factor, M(τ,X), in equation (9) over the
additional period of the loan.
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total commercial and industrial loans, rj = 0.0643, and the ratio of the average non-interest

expenses to total assets cj = 0.0376 across all 500 commercial banks from 2001 to 2007. Using

(55) under εjτ,t = 0, we can set the ratio of the constant to slope from the demand for loans

(48) (without uncertainty) at
γj0,τ

2γj1,τ
= 0.0372. We then use the demand for loans without

uncertainty (48) to set its constant and slope in Table 8, so that the demand for loans is

the average value of commercial and industrial loans relative to total assets across all 500

commercial banks and time.

Table 8: Parameters for Loan Demand (48) and (49).

γ0,τ γ1,τ σ0 σ1 z0 z1

0.8972 12.0621 0.0331 0.2067 -0.6150 0.00035

To set the parameters for the uncertainty in loan demand (48), we also use information from

the 500 largest commercial banks: σ0 = 0.0331, is the standard error from a panel regression

with bank fixed effects. The regression uses the ratio of commercial and industrial loans to

total assets as the dependent variable. The independent variables are the interest and fee

income on commercial and industrial loans relative to commercial and industrial loans and

the logarithm of total assets. The parameters for the loan specific shocks are set using the

mean and standard deviation of total charge offs relative to total assets for the 500 largest

commercial banks.33

B. YIELD CURVE, REGULATORY CONSTRAINTS, AND LOAN RATES

In this section, we analyze the competing effects of the yield curve factors on the interest rate

charged and quantity of loans offered by the bank operating under regulatory constraints.

First, recall from (4) that the future yield curve factors include a percentage of the current

shock to factors at time t which persists until time t + τ , and a random change, Y, in the

yield curve factors from t to t+ τ .34 The effect of expected changes in the yield curve as well

33These parameters are determined in the appendix subsection 6.2 using a binomial probability distribution.
We set the probability of the bad outcome being p = 0.00566 which corresponds to the average charge offs
across all banks in the panel.

34Recall Et [Xt+τ ] = e−A
P(τ−t) (X − X̄).
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as the future random factor on the margin are given by

∂Et
[
mj∗
τ,t+τ

]
∂Et [Xt+τ ]

=

[
1

2
d1 −Bτ

]
< 0, and

∂mj∗
τ,t+τ

∂Y
=

[
1

2
d1 −Bτ

]
< 0, (60)

since Bτ > d1. As a result, the loan margin falls when the expected and future levels of

the yield curve increase. Notice, however,that the loan rate, rj∗τ,t+τ = mj∗
τ,t+τ + rτ,t(X), would

increase and the quantity of loans would fall since the marginal cost of deposits, d1, is higher.

Now, suppose the capital constraint is binding. Then, the effect on the interest rate margin

of a change in the current yield is

∂Et
[
mjκ
τ,t+τ

]
∂X

= −e−AP (τ−t)Bτ −
1(

γj1,τ − σ1ε
j
τ,t+τ

) ∂Ljκ,t+τ
∂X

. (61)

The first term is the traditional effect of a higher expected future treasury rate e−A
P (τ−t)Bτ ,

which lowers the interest rate margin. The second term is the impact of the change in the

yield on the quantity of loans.35 In particular,

∂Ljκ,t+τ
∂X

=− 1

κL
(1− κT ξ)Kj

M(t)K(τ,X)pK (t,X, τ, Y ) (σK(τ))−1

(
X − µK(τ)

)
− 1

κL

[
1

M(τ,X)

∂CCB

∂X
+ cbb3τe

−AP (τ−t)
(
Pτ,s
P̄τ,s

)+
]

when X > µM(τ) > µK(τ). (62)

Equation (62) highlights two effects on the constrained level of loans: the first, is the impact of

the investment decision of the trading desk and, the second, is the effect of CCB. Specifically,

for an increase in the level of the yield curve, X1:

1. The first effect (see (34) when X1 > µK1(τ)), highlights the decrease in the trading desk’s

expected gross growth rate of capital which restricts lending. This effect is smaller for

X1 near µK1(τ), but increases for extreme levels of the yield curve, X1.36

2. The second term in (61) highlights the drop in CCB due to an increase in the current

level of the yield curve (see (25) and for X1 > µM1(τ)). In this case, the bank is required

to hold less capital and the constrained level of loans increases.

35Note that when the capital constraint binds the marginal cost of deposits, d1, is no longer relevant, since
the quantity of loans associated with the capital constraint (23) precludes equating marginal revenue with
marginal cost. As a result, the loan rate margin rises and fewer loans are issued.

36The subscript 1 refers to the first (level) factor for the yield curve.
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Figure 9: Loan Rate Margin (61) (LHG) and (64) (RHG).

In short, the net effect of a higher level of the yield curve on the quantity of loans is dependent

on the relative magnitudes of these two effects. Figure 9 highlights the impact of the two

effects on the loan margin in (62) along with the traditional negative effect of a change in the

current yield curve −e−AP (τ−t)Bτ (first effect in 61). This latter effect is represented by the

red line in the LHG of Figure 9. When the capital constraint binds, however, the first effect of

a change in the current level of the yield curve on the trading desk investment decision is now

represented by the blue line in the LHG of Figure 9. For the level of the yield curve close to

the mean of the expected gross growth rate for the trading desk’s capital, µK1(τ) = −0.0639,

the first effect in (62) is near zero. As a result, the blue and red curves in the LHG of Figure

9 intersect.37 The second effect in (62) is from the CCB, and it is a smaller effect relative to

the first. This results in a larger supply of loans, so that the blue curve in the LHG of Figure

9 would shift down by the magnitude of the drop in the CCB and the slope of the demand

for loans.

The above analysis points to the importance of the change in the value of the trading desk’s

portfolio in determining the total effect of a change in the yield factor on the loan rate margin

in (61). For example, when the losses to the trading desk portfolio due to an increase in yield

factor are small, then the total effect on loan rate margin would be negative; the negative

traditional impact of a change in the expected level of the yield curve is reinforced by the

negative CCB effect in (62). In contrast, if losses to the trading desk portfolio are large

the loan rate margin would increase. This happens for example when X is larger than the

stationary level of the yield curve X̄1 = −0.0177–the black dashed line in the LHG of Figure

37This simulation is for the case of γj = 10, ξ = 1, and Kj
M = 0.05.

34



9. These results are summarized in the following:

Proposition 5.1. In general, the higher future expected yield curve factors have a positive

effect on the constrained level of loans, (62), and a negative impact on the interest rate margin,

(61), for X > µM(τ) > µK(τ). However, an increase in the expected future yield curve factors

could reduce lending and increase the interest rate margin, when the higher expected yield curve

factors are far enough away from the mean µM(τ).

We can also consider the impact of random changes in the future yield factors, Y , on bank

lending and the loan margin–the RHG of Figure 9, when the capital constraint is binding.

In this case, there is only one effect, that is, on the trading desk’s capital, since the CCB is

set based on expected yield curve factors rather than the random change in these factors. In

the case of constrained loans (23), the trading desk’s capital falls due to an increase in the

absolute value of the random yield curve factors by (35). With less capital the bank must

lend less:

∂Ljκ,t+τ
∂|Y |

=− 2

κL

[
(1− κT ξ)Kj

M(t)K(τ,X)pK (t,X, τ, Y ) (σK(τ))−1 |Y |
]
< 0, (63)

As a result, the impact on the loan rate margin is now given by:

∂mjκ
τ,t+τ

∂|Y |
= −Bτ −

1(
γj1,τ − σ1ε

j
τ,t+τ

) ∂Ljκ,t+τ
∂|Y |

. (64)

If the random yield curve factors increase in absolute value, the probability distribution for

the future capital of the trading desk falls, and the constrained loans decrease by the second

term in (64). This leads to a larger loan margin under the capital constraint by (64) relative to

the traditional effect, Bτ , on the yield to maturity of treasury securities. This is represented

in the RHG of Figure 9 by the shift from the red line to the blue curve.38

Proposition 5.2. For shocks to the yield curve near zero, the random changes in the yield

factors have a negative impact on the level of loans and the interest rate margin. For larger

shocks to the yield curve, the interest rate margin can increase, when the capital loss by the

trading desk dominates the traditional channel.

38Note, this effect is stronger the larger is the absolute value of the yield curve factors such that it is below
a one standard deviation shock to the level of the yield curve σK(τ) = 0.0104.This follows from the inflexion
point of the Gaussian probability density function.

35



Interestingly, the above propositions 5.1 and 5.2 highlight the role of volatility of the yield

factors in negatively affecting bank credit under the capital constraint. If the volatility is

large enough, this will also result in higher interest rate margins. This raises the issue of the

role of forward guidance by the central bank in mitigating the effect of volatility, by allowing

banks to better anticipate future changes in yield factors. In particular, forward guidance

would lessen the occurrence of extreme random values of the yield curve factors.

C. THE CHOICE OF CAPITAL FOR THE LOAN DESK

In this section, we will derive the choice of capital for the loan desk by the COO. In order to

do so, we need to evaluate the expected marginal value of capital (EMV) for the loan desk as

in (43) or (44), where the Lagrange multipliers are replaced by (58) and (59).

Et

[
pM(2τ, Y )

∂V

∂Kj
L(t+ τ)

]
= Et

{
pM(2τ, Y )

[
rD(t+ τ)τ

+ 2χMax

[
1

κL

(
rjκτ,t+τ − r

j∗
τ,t+τ

)+
;

1

ατ

(
rjlτ,t+τ − r

j∗
τ,t+τ

)+
]

+ (χ− 1)τ

]}
.

(65)

Note, henceforth, we make use of the option terminology to highlight better the possibility

that the regulatory constraints may or may not be binding, which, as we will see shortly, could

be due to the actions of the trading desk or due to monetary and financial market shocks.

This, in turn, will impact the EMV and choice of capital. In this sense, capital becomes more

valuable to the bank as constraints are more likely to be binding. Thus, (•)+ is zero when

either interest rate spread is negative. Max [x; y] means that the COO calculates the option

payoff under the liquidity and capital constraints separately and chooses the largest option

payoff.

The EMV then can be viewed as an option with expiration date t + τ and strike price

given by rjκτ,t+τ or rjlτ,t+τ . The payoff of the option under the capital constraint is obtained

by substituting the constrained (56) and unconstrained (55) loan rate margin into (65). In
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addition, replacing the level of loans under the capital constraint with (23) and (18), we get39

1

κL

(
rjκτ,t+τ − r

j∗
τ,t+τ

)+
pM(2τ, Y ) =

1(
γj1,τ − σ1ε

j
τ,t+τ

)( cb
κL

(
Pτ,s
P̄τ,s
− 1

)+

+
1

2

(
γj0,τ + σ0ε

j
τ,t

)
− 1

κL
Kj
L(t+ τ)− 1

2

(
γj1,τ − σ1ε

j
τ,t

) (
cj + d0 + d1X(t+ τ)

)
− 1

κL
(1− κT ξ)Kj

M(t+ τ) +
(
Lj2τ,t+τ + Lj2τ,t

))+

pM(2τ, Y ).

(66)

As alluded to earlier, equation (66) demonstrates that the probability the capital constraint is

binding depends on the CCB, future values of the yield factors, market valuation as reflected

in the SDF, and on the actions of the trading desk. In particular, this payoff is dependent on

the probability distribution for the random change in the factors (5), the stochastic discount

factor (10) and the random changes in the gross growth rate of capital for the trading desk

(36). Each of these distributions are normal with mean zero and distinct variance-covariance

matrices. Thus, the valuation of these options is more complicated than in the Black-Scholes

case, since both the strike price and the unconstrained interest rate on loans are random and

this randomness has uncertainty arising from the level, slope and curvature of the yield curve.

In Figure 10, we plot the payoff for the EMV for the loan desk (66). In the LHG, we keep the

capital for the trading desk constant and the current level of the yield curve at its stationary

value X̄1 = −0.0177. For a given capital of the loan desk, say Kj
L(t) = 0.1, then the EMV is

at its lowest, or the option payoff is at its lowest, at the mean of zero for the future level of

the yield curve Yτ . This is because at this level of the Y, the trading desk’s hedging portfolio

is likely to result in higher capital for the bank. We observe that the hedging behavior by

the trading desk confers expected benefits to the lending operation and the overall bank, by

providing more capital. This, in turn, lowers the probability of the capital constraint binding.

Recall that the random component of the gross rate of return on the capital of the trading

desk is normally distributed following (35). As a result, the payoff on the option can be

represented as an inverted normal distribution of Figure 10. In the RHG, we limit the future

level of the yield curve to be positive, so that we can observe how the payoff varies with Kj
M(t)

from 0.05 through 0.2. In this case, the payoff for the EMV for the loan desk is negatively

influenced by an increase in the capital of the trading desk. This impact is largest when the

39For the payoff of the option under the liquidity constraint, replace the level of loans under the liquidity
constraint with (22) and (18). See appendix pp.33-36 for the derivation under the capital constraint and
pp.42-44 for the liquidity constraint.
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future level of the yield curve is near the mean of zero. Again, with Y at its mean of zero,

the hedge of the trading desk delivers higher capital for the trading desk, and in turn for the

loan desk and for the bank.

Figure 10: Payoff for the Embedded Option (66).

D. THE PROBABILITY OF DISTRESS AND LOAN DESK’S CAPITAL

In order to calculate the EMV in (65), we first need to evaluate the embedded option. We

examine the payoff (66) for this option in Figure 10 for values of capital of the trading desk

Kj
M = 0.05 through Kj

M = 0.2. If the trading and loan desks’ capital are given, then the

future level of the yield curve determines the payoff of the option. We plot this figure for

positive future values of the yield curve.40 Note, the option is in–the–money, or the EMV is

at its highest, when the level of the yield curve is at its extreme values. However, when the

future yield curve is near its zero mean the option is out–of–the–money, or the EMV is at its

lowest. As a result, the EMV for the loan desk behaves like a combination of long European

put and call options. The options expire at the next period. Also, note that the strike price

for the put option is below that for the call option. The combined options are referred to as

a Long Strangle, an option that is in–the–money only for extreme values of the level of the

yield curve.

For extreme future values of the yield curve Y , be it negative or positive, the hedging strategy

by the trading desk manager does not pay off, and the portfolio investment results in capital

losses for the trading desk. This, in turn, reduces the capital for the loan desk and for the

overall bank. This also implies that high volatility of future yield curve factors is likely to

40There is a mirror image of this curve for negative values of the future yield curve.
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increase the chance of capital losses for the trading desk and, in turn, exacerbate capital

losses for the rest of the bank. This raises the probability that the capital constraint binds

and increases the EMV. On the other hand, for normal conditions, that is, when future rates

Y are around their mean, the hedging behavior by the trading desk insures the loan desk and

the bank against interest rate risk, and, thereby, lowers the chance that the capital constraint

binds, which reduces the EMV.

Next, we need to identify when the payoff for the Long Strangle option in Figure 10 and (66)

is zero.41 For given values of variables X,Kj
M , K

j
L(t + τ), εjτ,t, we use the notation ρκ for the

critical value for the future level of the yield curve at t+ τ such that rjκτ,t+τ = rj∗τ,t+τ , and the

payoff of the option crosses the zero plane.

ρκ = ρκ
(
τ,X,Kj

M , K
j
L(t+ τ), εjτ,t

)
. (67)

This critical value of the level of the yield curve is increasing in the capital of the loan desk

and trading desk–since the EMV is decreasing–but is decreasing in the random change in the

demand for loans, εjτ,t.
42 The impact of the interest rate factors is determined by the following

Condition:

1.
(
γj1,τ − σ1ε

j
τ,t

)
d1 > 0, and X > µK is close to µK

2.
(
γj1,τ − σ1ε

j
τ,t

)
d1 > 0 is close to zero and X > µK.

A higher level of the yield curve always leads to a higher deposit rate. This higher deposit

rate results in a higher unconstrained interest rate margin by (55). X − µK determines the

slope of the gross growth rate of capital.

Under Condition 1 the future critical factor is increasing in the interest rate factors, while it

is decreasing under Condition 2.

In the LHG of Figure 11, we keep the level of the yield curve at its stationary value and graph

the cutoff versus the capital of the loan desk. This graph represents a tranche of Figure 10.

It is constructed using all the planes that go through zero for different values of capital for

the loan desk Kj
L. These critical values are portrayed in Figure 11. Consider the LHG in

Figure 11. For given values of X1 and Kj
M , the strangle (66) is in–the–money outside any of

41The zero payoff also occurs at the negative value of the cutoff in Figure 10.
42The explicit formula for solving for this cutoff is in the appendix section 4.1.
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Figure 11: Critical Cut off ρκ, (67), such that Capital Constraint Binds, (23).

the curves. In this case, the EMV is increasing since the capital constraint on loans (23) is

binding. This is likely to happen for extreme values of the random shocks Y . In this case,

the values of the capital stock for the trading desk, Kj
M(t + τ), and the stochastic discount

factor, M2τ,t

Mt,t
, in (66) are lower.43 Inside the curve the capital constraint does not bind and

the payoff of the strangle is zero.44

The LHG in Figure 11 shows that for higher values of capital for the trading desk, the capital

needed by the loan desk to maintain a positive critical cut off is lower. That is, successful

hedging by the trading desk results in higher capital overall, as it buffers the loan desk against

interest rate risk. Outside and to the left of the curves in the LHG the capital constraint

binds and the payoff of the strangle is positive. Indeed, when the magnitude of future yield

rates Y is large, the trading desk’s hedging strategy does not shield the trading and lending

operations as well as the bank against interest rate risk, and, with losses the capital constraint

will likely bind.

The RHG in Figure 11 highlights the impact of a change in the level of the yield curve, given

Kj
M = 0.2. A decrease in the absolute level of the yield curve will cause the critical value to

increase for given capital for the loan desk and ρκ ≥ 0. In this case, the capital constraint is

less likely to be binding, i.e. the region inside the curve in which the constraint does not bind

43For valuing the option, we use the larger critical point for the cutoff (67), so that the probability the

capital constraint binds is 2Φ
(
ρκ

(
τ,X,Kj

M (t),Kj
L(t+ τ), εjτ,t

))
by (26), because the payoff of the option is

symmetric about zero in Figure 10.
44To the left of any given curve the probability the capital constraint binds is one.
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has increased. This conclusion follows from the capital gain on the trading desk’s portfolio

as the level of the yield curve declines, as shown in the bottom graph in Figure 7.

Given the critical cutoff (67), we can now calculate the cumulative probability that the bank

becomes capital constrained, or in distress:

Prob
[(
rjκτ,t+τ − r

j∗
τ,t+τ

)
≥ 0
]

= 2Φ
[
ρκ
(
τ,X,Kj

M(t), Kj
L(t+ τ), εjτ,t

)]
where ρκ > 0. (68)

Consequently, we can see the impact of changes in the interest rate factors, the trading desk’s

capital and the loan manager’s capital on the likelihood that the bank becomes distressed.

In particular, a lower ρκ leads to a higher chance that the bank will be in distress and, as

a result, be subject to restrictions by the financial regulator. Also, for given capital of the

loan desk, a lower capital for the trading desk, Kj
M , leads to a lower critical value, ρκ, in

the LHG of Figure 11, which means the overall bank has a larger possibility of being capital

constrained. We can now summarize our discussion in the following result:

Proposition 5.3. The probability of a bank becoming distressed, given by (68), is decreasing

in the capital of the trading desk and the loan desk, while it is increasing in the shock to the

demand for loans. This probability of distress is decreasing in the yield curve factors under

condition 1 and increasing under condition 2.

The above analysis allows now to flesh out the various components of EMV for the loan desk.

In particular, it is a combination of Black-Scholes formulas at the two critical values for Z,

i.e. ρl and ρκ. When the capital constraint binds, i.e. λ1 > 0 and λ2 = 0, the EMV for the

loan desk can be written as45

45We also have to account for the random shock to the demand for loans εjτ,t. It is assumed to have a discrete

distribution with S values εji . Here, it is assumed for simplicity that the demand for loans is independent of
the interest rate factors. To account for a correlation among the interest rate factors and the demand for loans,
one can assume: The demand for loans has a normal distribution, which is correlated with the normal interest
rate factors. One then solves the option problem conditional on the shock to the demand for loans followed
by a discrete representation of the probability distribution for the loan demand shock using a Gauss-Hermite
polynomial approximation. See also Cosimano and Gapen (2005), for example. In the appendix pp.43-46 we
also provide the formula when the liquidity constraint binds.

41



EMV (X,Kj
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(69)

Given this explicit formula for the EMV for the loan desk, which can be understood as a

combination of embedded options, we can calculate the option delta ∆κ =
∂EMV (X,Kj

M )

∂Kj
L(t+τ)

< 0,

which satisfies the second order condition to issue equity or pay dividends, ∆κ < 0.46

Figure 12: EMV of Kj
L (69) and optimal Kj

L (70).

Proposition 5.4. The COO’s choice of capital for the loan desk is given by

Kj∗
L (t+ τ) = Kj

L(τ,Kj
M , X). (70)

46In the appendix, section 5 we explore the needed condition for an interior solution for the issuing of equity
or payment of dividends (43) or (44).
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Figure 12 highlights the choice of the capital for the loan desk for a given level of the trading

desk’s capital and interest rate factor. Note that EMV for the loan desk is decreasing in the

capital for the loan desk.

VI. IS RING-FENCING OPTIMAL?

So far, we have analyzed the behavior of a BHC where the COO is maintaining both lines

of business. In this regard, we highlighted the implication of the trading desk behavior and

market shocks on the rest of the bank, and derived the optimal level of capital for the loan

desk. We showed that the trading desk’s behavior can insure the lending desk and the bank

against market shocks, but, the trading desk’s investment decisions could in some cases lead

to capital losses for the rest of the bank, resulting in bank distress. We will now take a step

back and ask the question: is there a benefit from having both lines of business, or should the

trading desk be separated from the rest of the bank? We believe this is an important question,

especially in light of the impact of the recent bank regulations on proprietary trading business

at banks–with a number of these banks shutting off their proprietary trading businesses.

In order to do so, assume that the two businesses are indeed separate. In this case, the trading

desk is now akin to a money market mutual fund with deposits funding the investment in

treasury securities. The mutual fund is subject to random deposit withdrawals (19). In

addition, the mutual fund reserves are either invested (ξ < 1) or borrowed (ξ > 1) at the risk

free rate. Then, the EMV for this mutual fund in each period is

∂V

∂Kj
M

|Kj
L(t)=0 =K(τ,X) + ξ

rp

2D̄

[
D̄ − ξKj

M(t)
]

= 0

⇒KjR
M (t) = D̄

[
2

ξ2rp
K(τ,X) + 1

]
.

(71)

Here the superscript ‘R’ refers to the optimal capital of the trading desk which is ring fenced.

The mutual fund manager chooses his scale of operation based on the marginal gain from

portfolio management K(τ,X).47

Now, suppose the two businesses are now part of the BHC, such that the trading desk’s

operation becomes part of an overall financial institution, now and in future periods. The

EMV for the trading desk is higher, because its capital can be used to help satisfy the capital

47This solution satisfies the second order condition for a maximum. When the COO steps in he will take
account of the cost of raising equity or paying dividends.
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constraint for the loan operations of the bank.

∂V

∂Kj
M

=M(τ,X)

[
K(τ,X) + ξ

rp

2D̄

[
D̄ − ξKj

M(t)
]

+ (1− ξ)rD(t)τ + (1− ξκT )λ1(t)

+ (1− ξαT )λ2(t)

]
+M(2τ,X)EMV (X,Kj

M , K
j
L(τ,Kj

M , X)) > 0.

(72)

Notice that the first two terms in the square brackets correspond to condition (71). The extra

terms are all positive for ξ ≤ 1, so that the EMV for the trading desk adds value when it

becomes part of a BHC.48 Thus, we have our next result:

Proposition 6.5. The COO finds value from maintaining both business lines; a trading desk

and a loan desk.

Given that both operations provide value to the bank, the COO now determines how the

capital of the financial institution is allocated between the trading and loan desks. This

decision is based on (47), which is now given by49

∂V

∂Kj
M(t)

− ∂V

∂Kj
L(t)

=M(τ,X)

[
K(τ,X) + ξ

rp

2D̄

[
D̄ − ξKj

M(t)
]

− ξrD(t)τ − ξκTλ1(t)− ξαTλ2(t)

]
= 0.

(73)

The capital for the trading desk then satisfies:

Kj∗
M(t) =

2D̄

ξ2rp

[
K(τ,X) + ξ

rp

2
− ξrD(t)τ − ξκTλ1(t)− ξαTλ2(t)

]
. (74)

We can also examine when the COO transfers capital from the trading desk to the loan desk

and vice versa. This is done by evaluating (73) when the trading desk is ringed fenced. In

this case, we find

rp(1− ξ) T 2
[
rD(t)τ + κTλ1(t) + αTλ2(t)

]
. (75)

If ξ ≥ 1, then
∂V

∂Kj
M(t)

|Kj
L(t)=0 <

∂V

∂Kj
L(t)
|Kj

M (t)=0, (76)

48 If the bank takes on leverage, ξ > 1, then some of the terms are negative including the deposit cost.
However, the second order condition is still satisfied for the parameter values in Tables 3 and 7.

49Specifically. the second order condition for an interior solution is ∂2V

∂Kj
M

2 − ∂2V

∂Kj
L∂K

j
M

= −ξ2 rp

2D̄
+

2χ(1−ξκT )κT ξ
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L(γj1,τ−σ1ε

j
t)
< 0 when the capital constraint (21) is binding.
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so that the COO transfers capital from the trading desk to the loan desk. Recall our earlier

discussion (section 4.2) on leverage, where the trading desk manager’s investment position

leads to higher expected capital losses. As a result, the high leverage by the trading desk is

harmful to the overall bank, and the COO scales back the portfolio of the trading desk. In

fact, there exists a leverage level such that the second order condition fails, and the trading

desk is ring-fenced. We now have the following result:

Proposition 6.6. There exists a critical level of the leverage for the trading desk ξc such that

the COO finds it optimal to ring-fence the trading desk. This critical leverage is decreasing

in κT and αT . Moreover, for a trading desk with a leveraged portfolio of treasury securities

1 < ξ < ξc, the COO transfers some capital to the loan desk from the trading desk.

Notice that the overleveraged position can be decreased by the bank regulator by increasing

the regulatory capital weights for treasury securities, i.e. κT and αT .

We can also examine the COO’s decision for the case where the trading desk is not overlever-

aged, i.e., ξ < 1. In this case, there is a penalty rate such that the COO transfers capital

from the loan desk to the trading desk:

rp >
2

1− ξ
[
rD(t)τ + κTλ1(t) + αTλ2(t)

]
(77)

such that
∂V

∂Kj
M(t)

|Kj
L(t)=0 >

∂V

∂Kj
L(t)
|Kj

M (t)=0.

Thus, we have our result:

Proposition 6.7. If ξ < 1, then the COO finds it optimal to transfer capital to the trading

desk under a penalty rate satisfying (77).

We can now solve for the optimal level of trading desk capital using (74),50

Kj∗
M(t) =κ2

L

(
γj1,τ − σ1ε

j
t,t

)
ηM [K(τ,X) + 2rp − ξ(d0 + d1X)] (78)

− 2ξχκLτηM

{
γj0,τ + σ0ε

j
t,t

2
− 1

κL

[
Kj(t)− cb (P(t,X)− 1)+

]

− 1

2

(
γj1,τ − σ1ε

j
t,t

) (
cj + d0 + d1X

)}
.

50The choice of the capital for the trading desk is derived in the appendix section 5.1.
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Here ηM ≡ 2D̄

ξ2[2κTχD̄τ+rpκ2L(γj1,τ−σ1ε
j
t,t)]

.

The solution for the capital for the trading desk (78) assumes the constraint is binding at the

current time. If the constraint is not binding, then λ1 = 0 and λ2 = 0 in (74), and the capital

for the trading desk is decreasing in the yield curve factors for X > µK. This optimal choice

of capital for the trading desk is portrayed in Figure 13. The blue line is for rp = 0.1 and

D̄ = 0.0022 for X1 ∈ [−12ΣX , 12ΣX ]. The stationary value of the level of the yield curve (the

black vertical line) is X̄1 = −0.0177. As a result, the optimal capital for the trading desk is

5% when the black line intersects the blue curve. We can find the optimal capital for the loan

desk Kj∗
L ≈ 0.09 at the intersection of the red and black lines in the LHG of Figure 12.

Figure 13: Optimal Capital for the Trading desk manager (74).

We can also examine how an increase in the variance of the deposit withdrawals influences

the optimal decisions of the COO. Suppose we increase D̄ to 0.0044, so that there is a mean

preserving spread in the probability of deposit withdrawals. From (74) we see that this could

also be true for a decrease in the penalty rate. In Figure 13, we portray this by the shift from

the blue to the red curve. If the level of the yield stays at its stationary level, the optimal

capital for the trading desk increases to 10%. This will decrease the probability of a bank

being in distress following (68). However, the ambiguous change in the capital of the loan

desk from a change in the trading desk’s capital means the probability of distress of the BHC

is also dependent on its circumstances.

Given the optimal allocation of capital by the COO between the two businesses, we can now

solve for all the other decisions of the BHC. In particular, equation (33) along with the capital
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of the trading desk determine the allocation among the government securities. Equations (43)

and (44) determine whether the bank issues equity or pays dividends, when the marginal value

of capital for the loan desk is given by its option value (69). The one period loan rate margin

is determined by (55) or (56), when the constrained loans are based on the capital constraint,

depending on whether the liquidity (22) or capital constraints (23) are binding, respectively.

VII. MONETARY POLICY, BANK CAPITAL, AND FINANCIAL STABILITY

Having established the relation between yield curve factors and financial markets (through

the stochastic discount factor), regulations, and the choices of trading and loan desks, we can

now analyze the impact of monetary policy on the optimal level of bank capital. How each

of those factors reacts to changes in monetary policy is important in piecing together the full

impact of a policy change on bank capital and its probability of distress.

Consider monetary easing (henceforth, ME) which would lower the level of the yield curve.

First, ME is likely to raise the stochastic discount factor, (10), for X > µM as future cash

flows are more highly valued, (42), which raises EMV, (66). The COO is likely to raise capital

next period for the loan desk,(43) and (44), and the probability of bank distress is likely to be

lower by Proposition 5.3. Second, ME is likely to cause CCB to be more binding by (25). This

is likely to raise the loan margin and reduce constrained loans, (23) , which raises EMV, (66).

The COO, in this case, is likely to raise more capital for the loan desk in the next period, see

(43) and (44), which reduces the probability of bank distress, see Proposition 5.3. Third, ME

is also likely to raise the loan margin, see (60), given the oligopolistic behavior of the bank.

This is likely to reduce the EMV, (66), with the COO being more likely to pay dividends,

(43) and (44), thus raising the probability of bank distress by Proposition 5.3. Finally, ME is

likely to raise trading desk capital for X > µK , by (34), (35), and (36), which raises capital

of the loan desk–raising constrained loans by (23) and lowering the loan rate by (48). This is

likely to reduce EMV, (66), with the COO being more likely to pay dividends, (43) and (44),

thus raising the probability of bank distress, see Proposition 5.3.51

The above analysis highlights that the impact of a change in monetary policy on bank prof-

itability and distress is dependent on the specific bank circumstances such as its elasticity of

loan demand and the level of the yield curve. It is also clear that monetary policy stance

has financial stability implications through its impact on bank distress. Some of the channels

51Section 4.1 of the appendix derives each of these effects.
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described above are likely to amplify the negative externality, with trading desk behavior,

for example, amplifying bank distress, while others are likely to mitigate the impact, such as

the CCB. Irrespective of the conflicting effects described above, our framework highlights the

close link of monetary policy to financial stability, and provides insight on the need to focus

on bank specific reaction to each of the above effects.

VIII. POSSIBLE REGULATORY REMEDIES

Our analysis offers a framework for understanding the functioning of BHCs and provides

insights into their critical role in transmitting monetary and financial sector shocks to the

rest of the economy. Given their role and market size, it is no surprise that policymakers and

researchers have dedicated quite a bit of attention to how best to mitigate their impact on

local as well as global markets.

A number of important implications and recommendations for BHC governance and regula-

tory policies can be gleaned from our analysis. First, it is clear that the management’s choice

of the trading desk manager is important. Our exercise shows that the attitude toward risk

of the trading desk manager can have unintended consequences for the rest of the bank. In

section IV.A, a less risk averse manager chooses a riskier portfolio which results in higher

expected losses in capital for the trading desk. This translates to lower capital for lending,

and causes the regulatory constraints to likely bind and leads to fewer loans. The LHG in

Figure 14 reproduces Figure 10 for the case of a more aggressive trading desk manager. Com-

paring the LHG in Figure 14 with that in Figure 10, the hedging benefits are now replaced

with higher volatility for the lending desk. In the language of options, the Strangle becomes

a Straddle, and the bank will be more exposed to volatility of interest rate factors. Bank

management, in this case, should seek to replace such a manager with one that brings best

value to the bank. In our exercise, it is the trading desk manager that is more risk averse, as

the no arbitrage condition rules out any profits from exploiting random changes in the yield

factors, such as mispricing of assets. The same argument goes for the issue of leveraging,

discussed in section IV.B. The RHG in Figure 14 highlights the impact of overleveraging on

the lending desk. Comparing the RHG in Figure 14 with the LHG in Figure 10, higher bets

on interest rate volatility by the trading desk manager leads to higher volatility exposure for

the bank (again, the Strangle becomes a Straddle). From a risk management perspective,

bank management should specify to the trading desk manager the level of leverage that is

acceptable.
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Figure 14: Payoff for the Embedded Option γj = 2 (LHG) and ξ = 5 (RHG).

Interestingly, our analysis shows that hedging by the trading desk manager does not neces-

sarily immunize the bank against interest rate risk. Extreme future values of the yield curve

factors or high volatility of these factors could subject the trading desk to losses, which, in

turn, would reduce the capital cushion provided to the lending operation and lead to higher

possibility of bank distress. Thus, there is a need to distinguish better between rogue trading,

which has received attention in the public domain and in policy circles, and hedging gone bad

due to uncertainty regarding future rates. One solution to this is better communication by

the central bank about its future policy rate setting intentions. This forward guidance by the

central bank would help banks better position their portfolios, and limit the losses from the

underlying interest rate volatility.

Figure 15: Probability of a bank distress for ξ = 1 (LHG) and ξ = 5 (RHG)with KM = 0.05,
X1 = xbar, and γj = 10.

The concern for bank distress and its implications for the larger economy have galvanized
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policymakers and bank regulators to enact rules and laws that require the separation of

proprietary trading from the lending business. Our analysis, however, shows that there are

benefits from maintaining both businesses, as the trading desk confers insurance benefits

on the rest of the bank by reducing interest rate risk and lowering the probability of bank

distress. This is true despite the fact that both business lines are subject to the same market

risk. But, as discussed earlier, we also provide conditions where overleverage and aggressive

risk behavior on the part of the trading desk manager result in bank distress. In this case,

the COO may find it optimal to ring-fence the trading business. To see this clearly, Figures

15 and 16 illustrate the role of leverage and risk attitude in exacerbating bank distress. For

given values of capital for the trading and loan desks, and keeping the interest rate factor

at its stationary level, the RHG in Figure 15 illustrates that high leverage (ξ = 5) results

in higher probability of bank distress compared to the case of low leverage ξ = 1. Similarly,

Figure 16 portrays how low risk aversion leads to higher probability of bank distress.

Figure 16: Probability of a bank distress for γj = 10 (LHG) and γj = 2 (RHG)with
KM = 0.05, X1 = xbar, ξ = 1.

The policy question then is whether it is possible to keep the benefit from maintaining the

two businesses while ensuring, to the extent possible, that the trading business does not

unnecessarily impose negative externality on the rest of the bank? One approach could be

for the regulator to work closely with bank management to specify the acceptable probability

of bank distress, for given levels of capital for the trading and loan desks. Once that is done,

then management would ensure that a trading desk manager with suitable risk attitude is

chosen, see Figure 16, and the leverage ratio is specified, see Figure 15. Of course, holding

bank management accountable is not a new concept. The Uniform Financial Institutions

Rating system, which also encompasses the well-known CAMELS ratings system for banks,
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emphasizes the role of Management in identifying, measuring, monitoring, and managing

risks. Our proposal would be bank specific, and, in this way, bank governance is once again

an important ingredient in formulating incentive compatible regulatory policy that seeks not

only to stabilize individual banks but also enhance financial stability.
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