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Abstract 
 

The views expressed in this Working Paper are those of the author(s) and do not necessarily 
represent those of the IMF or IMF policy. Working Papers describe research in progress by the 
author(s) and are published to elicit comments and to further debate. 

 
Dealers learn about asset values as they set prices and absorb portfolio flows.  These flows causes 
inventory imbalances.  Previous work argues that dealers deviate from their estimates of asset values to 
induce flows that unwind inventory imbalances. This study models dealer price-setting using multiple 
instruments to smooth inventory imbalances and update priors about asset values. This approach shows 
that canonical models in which price-setting is the only instrument for inventory control, and incoming 
order flow is the only source of asymmetric information, are misspecified.  Thus, estimates of canonical 
models reject predicted asymmetric information and inventory effects because of omitted and extraneous 
variables. These estimations miss information from sources other than incoming order flow, and they 
overemphasize price shading in managing inventories.  Estimates of the model presented support 
heretofore elusive inventory and asymmetric information effects.  Price shading is found to have smaller 
role in inventory management and information effects are shown to be stronger than previously estimated. 
Additionally, this approach yields direct measures of the structural liquidity cost parameters in the model 
akin to Kyle’s Lambda. For example, estimates presented suggest that a standard $10 million incoming 
purchase pushes price up by roughly one basis point, and dealers expect to immediately lay-off one-third 
of every incoming order.   
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I.   INTRODUCTION 

 
 The evidence supporting a tight relationship between a market’s absorption of 
portfolio flows and its assets’ returns is mounting.2 At the very least, it implies that asset 
returns depend on how dealers interact with each other and with end users. The question now 
is how long market trading affects asset returns. Assuming that asset fundamentals follow a 
random walk, there could be permanent effects if trading reveals new information. For 
example, dealers aggregating portfolio flows may also aggregate information dispersed in the 
economy. Conversely, the market’s temporary indigestion from absorbing large portfolio 
shifts may imply transitory effects, as in microstructure inventory models. At the level of the 
individual dealer, however, there is surprisingly little (if any) evidence supporting 
theoretically predicted inventory effects. This paper presents a new model of asset trading 
that shows evidence of both information and inventory effects at the individual dealer level. 
The empirical results link portfolio flows to asset prices at the highest resolution, and provide 
direct estimates of the cost of liquidity, asymmetric information, and inventory effects. The 
results suggests that previous models have underestimated, if not missed or rejected these 
effects in markets with multiple dealers, such as bond or foreign exchange markets.  An 
example illustrates why. 
 

Consider a foreign exchange (FX) dealer who is trading U.S. dollar-Euro and 
watching the price of the currency fluctuate throughout the day. Assume that the dealer is 
constrained with a finite inventory (or, equivalently, inventory costs). If random-walk asset 
values drive incoming trades, she must respond with an inventory-management strategy or 
exhaust her supply. Past models suggest that this dealer divert her price away from the 
equilibrium full-information value to induce trades that compensate for inventory 
imbalances. But changing prices to induce trades equates to intentionally selling low or 
buying high. What if there is another way? In markets with multiple dealers she can call 
other dealers and unload her inventory imbalances on them. This allows the dealer another 
instrument for managing inventory and learning about asset values. In this example, the 
dealer’s instruments are to change prices to induce incoming trades (i.e., incoming order 
flow), or to call others and use outgoing trades (i.e., outgoing order flow).  Canonical single-
dealer models fail to consider how this affects price formation. 

 
Canonical modeling of dealer price-setting is grounded in the two general 

microstructure-pricing effects. The first is the inventory effect, in which the dealer must 
manage a finite stock of the asset against a demand that responds to a random-walk 
fundamental value.3 In this situation, if the dealer passively fills orders, the probability of a 
                                                 
2 Examples in equity markets include Froot, O’Connell and Seasholes (2001), and Froot and 
Ramadorai (2001a). Examples in foreign exchange markets include Evans and Lyons (2002), 
Froot and Ramadorai (2001b),  and Rime (2001).  Examples in bond markets include Massa 
and Simonov (2001).   

3 For example, Stoll (1978), Amihud and Mendelson (1980), Ho and Stoll (1981, 1983), 
O’Hara and Oldfield (1986) among others. 
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stock out is unity. Hence, inventory models argue that dealers changes prices away from the 
expected asset value to induce trades that unwind undesired positions. The second effect is 
the asymmetric information effect, where, for example, the dealer faces a market where some 
insiders have information about the asset’s liquidation value.4 Recognizing that incoming 
order flow partially reflects this information, the dealer changes her price accordingly. 

 
When multiple increasing-marginal-cost instruments are available for managing 

inventory, as in the example, the dealer optimally spreads her inventory management across 
all of them. Furthermore, communication with other dealers through outgoing calls is as 
informative as communication through incoming trades. The dealer may use this information 
to update her prior beliefs about asset values and adjust inventory levels. Hence, part of 
observed inventory and price changes may be correlated with innovations in information, but 
be unrelated to either inventory carrying costs or incoming order flow. This paper models 
this phenomenon in the context of foreign exchange markets. In the model, the ability to 
make outgoing trades alters both inventory driven price changes, and learning about asset 
values. Ignoring outgoing orders leads to both neglecting the role of information learned 
from these orders and overemphasizing price changes in inventory management. Modeling 
price setting without considering these effects explicitly leads to misspecified tests of 
information and inventory effects.  

  
While empirical evidence of asymmetric information based on canonical dealer 

pricing models abounds,5 tests for inventory effects have failed. For example, Madhavan and 
Smidt (1991) and Hasbrouck and Sofianos (1993) reject expected inventory effects in equity 
and futures markets, respectively. Madhavan and Smidt (1993) only find evidence of 
unexpectedly long-lived effects by modeling inventory mean reversion with shifts in the 
desired inventory level. Manaster and Mann (1996) actually find robust effects opposite to 
theoretical predictions. Lyons (1995) extends microstructure models to foreign exchange 
markets and does find inventory effects; however, Romeu (2005) overturns the Lyons (1995) 
result supporting canonical models’ inventory specifications – specifically, inventory and 
information effects are not simultaneously present in subsamples. Other studies of foreign 
exchange markets also fail to find inventory effects, and hence, the evidence supporting these 
is at best a mixed bag.6 
                                                 
4 For example, Kyle (1985), Glosten and Milgrom (1985), Admati and Pfleiderer (1988), 
Easley and O’Hara (1987, 1992), among others. 

5 For example, Hasbrouck (1991 a, b), Hasbrouck (1988), Madhavan and Smidt (1991, 
1993), Lyons (1995), Evans and Lyons (2002), Yao (1998), Bjonnes and Rime (2000), 
Ausubel and Romeu (2005), among others. 

6 In foreign exchange markets Yao (1998) and Bjonnes and Rime (2000) find no evidence of 
inventory effects. The former suggests that it is due to dealers’ aversion to revealing their 
position (or private information) through inventory-induced bid shading, whereas the latter 
suggest that the introduction of electronic brokering is the cause. The model here suggests 
that misspecification is the cause. More generally, see O’Hara (1995) on the empirical 
difficulties of predicted inventory effects.   
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The model presented here nests canonical dealer pricing models, and demonstrates 

why they fail empirically. Previous models are misspecified insofar as they neglect both 
alternatives to controlling inventory through price-induced flows, and alternative sources of 
market information.  The model presented uses decentralized markets with multiple dealers 
to underscore the impact of these alternatives on price setting.  At its heart is the idea that 
dealers exploit every alternative when rebalancing portfolios, rather than relying solely on 
price-induced order flow to change their portfolio composition. As dealers face increasing 
marginal losses for inducing flows through price shading, they turn to other methods of 
unloading unwanted positions. Competitive dealer markets offer a clear opportunity to 
observe this phenomenon.  

 
Previous work on price formation in decentralized markets, both at the dealer and at 

the market-level, support the model presented here.  For example, in discussing inventory 
control, O’Hara (1995) singles out foreign exchange dealers’ ability to lay off orders on one 
another.  At the dealer level, the Ho and Stoll (1983) framework permits interdealer trading 
(although it does not arise in the model solution) which is the basis of the approach presented 
here.  Moreover, Romeu (2005), Lyons (1995) and Mello (1996) all speculate that non-
linearities in dealer pricing models related to inter-transaction time or multiple inventory 
control instruments may be present in canonical estimations of dealer behavior – both of 
which are central to the model presented here. At the general-equilibrium level, the “hot 
potato” model of Lyons (1997) favors dealer pricing with multiple instruments. In that 
framework, high trading volume in the FX market results from dealers passing on inventory 
imbalances.  

 
Market makers in all types of markets have an incentive to minimize guaranteed 

losses from inducing trades via price changes, not just in FX. While laying off inventory on 
others is an alternative in multiple dealer settings such as FX or bond markets, there is 
evidence that similar phenomenon exist in more centralized markets as well. For example, 
Madhavan and Sofianos (1997) find that New York Stock Exchange (NYSE) specialists 
engage in selectively trading to balance inventory. Hence, previous equity market studies 
possibly overemphasize the role of prices in inventory management and miss other inventory 
effects. In addition, if previous models account perfectly for inventory costs, they still 
overlook price changes resulting from new information that alternative instruments yield. 
Accounting for both these effects presents more complex behavior, where the market maker 
is using multiple instruments to both manage inventory and update priors. 

 
Empirical tests presented here support the model and offer several novel results. For 

example, asymmetric information effects driving price changes are likely twice as large as 
previously estimated – not only is the price response to order flow effect larger, but there are 
more instruments.  One can graphically compare prices with the new information signals that 
the dealer sees. Inventory pressure on prices is lower, perhaps as low as one-fourth previous 
estimates.  This makes sense since multiple instruments will keep inventory management 
costs at the lower end of an increasing marginal cost curve.  After controlling for inventory 
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and information effects, the base bid-ask spread is wider than previously estimated, and 
statistically indistinguishable from the market spread convention (3 pips).7 When setting 
prices, the dealer plans to trade out about one-third of the difference between her current and 
the optimal inventory positions. A standard ($10 million) incoming trade moves the dealer’s 
price less than 2 pips or $1,000, and the expected cost of executing an outgoing trade is about 
double that amount.  Accordingly, the dealer is observed accepting incoming trades about 
nine times more often than outgoing trades, and five times more volume is handled through 
incoming trades.   

 
A Federal Reserve intervention of $300 million in the data temporarily moves prices 

about 6.7 pips per $100 million.8 This increases the asymmetric information impact of trades 
on price changes by fifteen percent, which suggests that order flow becomes more 
informative as the market learns of the intervention.  That is, the estimates of how much our 
dealer shades her price in response to inventory imbalances is fairly robust to intervention.  
This, taken with the result on asymmetric information, suggests that the central bank 
intervention was transmitting information rather than inducing portfolio balance effects. 
Finally, the base spread tightens by five percent when the intervention is included in the 
estimation.  

 
While both transitory and permanent effects are present in the data, the results suggest 

a stronger permanent impact of portfolio flows on prices.  With multiple instruments, market 
participants share intraday inventory more efficiently. That is, dealers exhaust the gains from 
sharing a large inventory position more quickly and with less price impact in this model. As a 
result, the transitory effects of inventory imbalances are present, albeit less important in 
determining intraday price changes than estimated previously. Furthermore, multiple 
instruments facilitate a more efficient aggregation of the dispersed information embedded in 
order flow, which can be interpreted as favoring permanent price movements.  

 
The paper is organized as follows. Section II describes the theoretical framework and 

the model solution, which is detailed in the Appendix I. Section III shows empirical 
estimates, tests of the model, and discusses intervention effects. Section IV concludes. 
Estimation details are in Appendix II.  

 
II.   INTRADAY PRICE DISCOVERY IN MARKETS WITH MULTIPLE DEALERS 

 
 This section generalizes the Madhavan and Smidt (1993) framework in which an 
uninformed market maker with inventory carrying costs sets prices in a market with informed 
agents. Optimally, the market maker extracts information from arriving order flow, and sets 
prices to induce inventory-balancing trades.  The Madhavan and Smidt (1993) framework is 
                                                 
7 A pip is the smallest price increment in a currency.  The value depends on the currency pair. 
The data used here are dollar/deutsche mark, so a pip is DM 0.0001. 

8 This amount observed concords with studies of intervention, e.g. Evans & Lyons (1999) 
estimate 5 pips and Dominguez and Frankel (1993) estimate 8 pips per $100 million. 
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representative of the canonical microstructure hypothesis of price formation. In actuality, 
however, this abstraction may miss important alternatives available to dealers in competitive 
dealer markets, such as bond and FX markets.  For example, an FX dealer only sets prices 
when she passively receives an order (i.e., another dealer initiates the trade).9 This price-
setting is the focus of this study.  Besides setting prices, however, she can initiate interdealer 
bilateral dealer trades, initiate brokered dealer trades, or initiate IMM Futures trades, as well 
as receive information from these, or her sales and floor managers or fellow traders, among 
other sources.  At no time does she set interdealer prices under any of these alternatives; 
however, they may indirectly affect her price setting.  It is intractable to model all these 
alternatives explicitly.10  Furthermore, the data available (inventory levels, incoming orders, 
and their corresponding prices) would limit empirical tests of any such model.  These 
limitations withstanding, the dealer modeled here has two instruments for balancing 
inventory: inducing order flow through price changes, and initiating outgoing trades with 
others at their prices.  She also has two instruments for updating priors: information reflected 
in incoming quantities, and information reflected in unplanned (at the time of price-setting) 
outgoing quantities.  The optimal price updates priors from both information sources and 
spreads inventory costs across both instruments, hence the misspecification in canonical 
models.   
 
The following sections formalize this modeling approach. Subsection A describes the model 
setting: the market, inventory, capital, and information variables. Subsection B shows the 
optimal updating using multiple informative signals. Subsection C shows the optimal 
inventory management, and the model solution. Subsection D shows the model nesting 
previous work, and their misspecifications. Proofs are in the appendix.  
 

A.   The Market 
 

Consider an economy where a dealer holds a portfolio of three assets. She only makes 
markets in the first, a risky asset with a full information value denoted by vt, which evolves 
as a random walk. Write this value as: 
 2

1 , ~ (0, )t t t vv v Nθ θ σ−= + . (1) 

                                                 
9 An extensive description of the Foreign Exchange (FX) market’s institutional make-up can 
be found in Lyons (2001). FX is traded bilaterally, over–the–counter, and privately, via 
computer emailing systems called Reuters Dealing. There are also electronic brokers similar 
to bulletin boards, provided by Reuters or EBS. Most large trades are done via the Reuters 
Dealing system, and the spread is fixed by convention.    

10 That is, the return in economic insight to modeling competitive dealers is likely to be small 
relative to the cost of overcoming the intractability, particularly in terms of the necessary 
assumptions.  See O’Hara (1995) on precisely this intractability. 
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The second is an exogenously endowed risky asset that is correlated with the first, 
and generates income yt. The third is capital, the risk-free zero-return numeraire, denoted by 
Kt. The distribution of the two risky assets is:11 

2
1

2,
0

t v vyt

t vy y

v v
N

y
σ σ
σ σ

−
⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞

≡ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦⎝ ⎠
. (2) 

The dealer’s total wealth is: 
 t t t t tW v I K y= + + , (3) 
With It being the dealer’s inventory or risky asset position.  

 
The market is open for 1,2,...,t T=  periods. The terminal date T  is unknown, 

however, at the beginning every period t T=  with probability (1 )ρ− . Hence, every period 
the probability that the market closes is (1 )ρ− , at which time the dealer liquidates her 
position and pays a inventory carrying cost.12 With probability ρ , t T≠ , so the dealer 
engages in trading activities, pays the inventory carrying cost, and goes on to the next period.  

 
Figure 1 (page 24) depicts the timing of the model. The total change in the dealer’s 

inventory from one event to the next occurs in two stages. In the first stage, the dealer faces 
an incoming order (denoted by qjt) and knows her inventory (denoted by It). Part of qjt comes 
from informed dealers who know the full information value ( tv ). The informed part of qjt, 
denoted by Qt, is driven by differences between the dealer’s price, denoted pt, and the asset 
value vt: 
 ( ), 0.t t tQ v pδ δ= − >  (4) 
The rest of the incoming order is an uninformed or liquidity component, denoted by Xt: 
 ( )20,t XX N σ≡ . (5) 
One can think of the uninformed as quantities demanded by parties not monitoring the 
markets or constrained to trade independent of price, for reasons not modeled here. The 
dealer only observes the aggregate order, (qjt), and sets the price. Hence, the incoming order 
flow is: 
 ( )jt t t t t tq Q X v p Xδ= + = − + . (6) 
  
 When our dealer sets her price at (incoming) trade t, she knows she can also call 
others and initiate outgoing trades (denoted out

tq ).  These outgoing trades are depicted in the 
upper box of Figure 1. out

tq  indicates our dealer’s desired outgoing quantity in expectation, 
and conditional on information available at the time of price setting.  Because the dealer has 

                                                 
11 Note that this is a one-period-ahead conditional distribution, as the unconditional 
distribution would have a time-varying variance. 

12 The inventory carrying cost, shown below, follows Madhavan and Smidt (1993).  It is a 
cost proportional to the variance of the dealer’s wealth. 
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this tool of outgoing trades ( out
tq ) available, she does not control inventory solely through 

price induced order flow.  In this sense out
tq  captures the planned amount the dealer prefers to 

lay off by initiating trades rather than by shading price to induce incoming trades. 
 
 The role of outgoing trades ( out

tq ) in price formation is a departure from canonical 
dealer models.  In considering multiple dealer markets, it is an empirical reality one typically 
has data on trade prices for only a subset of all dealer trades (this is particularly because they 
are relatively unregulated with much lower reporting requirements).  We want to model the 
subset of available trades to the fullest extent possible, while at the same time recognizing the 
role of trades not in that subset.  In this case, prices, inventories, and quantities traded are 
available only for incoming trades.  Inventory, however, summarizes all quantities: incoming 
and outgoing.  That is, we at least have quantity information for integrating the trades 
without price data into the analysis of the available data.  Thus, we decompose the total 
change in inventory from one trade to the next into three components: the observed incoming 
trade (qjt), the expected outgoing trade ( out

tq ), and unexpected quantity shocks to inventory, 
as shown in Figure 1. 
 
 Denote the unexpected quantity shocks to inventory as tγ . While our dealer is trading 

out
tq ,  these exogenous quantity shocks change her inventory beyond the outgoing trade ( out

tq ) 
planned at the time of setting prices.   The source of these shocks can be unplanned trading 
with clients of our dealer’s bank (her employer), other bank dealers, brokered trading, the 
trading floor manager, and so on. Accordingly, the total quantity 1 1( )out

t tq γ− −+  will be the 
inventory change apart from the incoming trade (qjt-1) from t-1 to t. Hence, last event’s 
inventory (It-1), adjusted for the last incoming trade (qjt-1), as well as the total realized 
outgoing quantity 1 1( )out

t tq γ− −+ , yields next event’s inventory (It). 
 

An example using actual dealer transactions helps motivate the key assumptions 
regarding out

tq and tγ .  Table 1 (page 26) shows the first five incoming trades received by a 
NY based foreign exchange dealer on a given trading day (these data are discussed in detail 
below). The first column indexes the trades according to their order of arrival; the second 
column shows the price set by the dealer at each incoming trades.  The next columns show 
incoming order flow, followed by the inventory at the beginning of the trade.  The last 
column shows out

tq + tγ , which are observed jointly.  Consider, for example, the third 
incoming trade, which  was a sale to the dealer of $28.5 million.  At the time of the trade, the 
dealer was long $1 million, as reflected in her inventory.  Canonical models of price 
formation assume that incoming orders are the only instrument by which a dealer can adjust 
inventory levels and update prior information.  If one assumes that this were the case, and 
since the dealer buys $28.5 million, her inventory at entry four should be $29.5 million long 
(the next incoming trade).  Instead, the dealer is short $1.5 million at entry four, which 
implies that her inventory declined by $30.5 million between the third and the fourth trade.  
This decline is reflected in the last column, out

tq + tγ .  It captures the inventory evolution that 
incoming order flow did not generate.  This column is expressed as the sum of two 
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components because out
tq  reflects the optimal amount that the dealer should trade given the 

information available at the time of the incoming trade.  It is a first order condition.  Any 
deviation  from out

tq  must be a result of new information, and is reflected in tγ .  Therefore, 
the part of inventory changes not generated by incoming trades is the sum of planned and 
unplanned outgoing trades,  out

tq + tγ .   
 
Hence, new information and events occurring in the clock time between events t-1 

and t are assumed to be driving the quantity shocks 1( )tγ − ;  The shock 1tγ −  is informative 
because after the dealer chooses her outgoing quantity ( 1

out
tq − ), she should trade this quantity 

and nothing else unless new information motivates a revision in the outgoing trade.  That is, 
the choice made at t-1 is optimal until new information (at the next incoming order, qjt) 
arrives.13  Hence, the only reason our dealer would deviate from the optimal outgoing 
quantity ( 1

out
tq − ) between t-1 and t is that new information is revealed. For this reason, the 

evolution of tv  can be inferred from 1tγ − , and the total outgoing quantity will reflect the 
desired quantity ( 1

out
tq −  ) plus the quantity driven by new information ( 1tγ − ). 1tγ −  captures that 

information in the dealer’s decision process beyond strictly what is derived from incoming 
order flow, while keeping the analysis tractable.14  

 
In summary, the identity that describes the evolution of inventory is:  
 ( )1 1 1 1 1 1

out
t t t t t t tI I v p X qδ γ− − − − − −≡ − − − + +  (7) 

In contrast, at the time of setting prices, the dealer’s expectation of next period’s inventory is: 
 
 1[ | ]j out

t t t jt tE I I q q+ Ω = − + . (8) 
 
Our dealer manages inventory because she pays a cost every period that is 

proportional to the variance of her portfolio wealth, which includes the cash value of the 
inventory. One can motivated this cost, for example, by risk aversion or marginally 
increasing borrowing costs. Assume that the dealer incurs a capital charge due to the γ  
shocks. That is, any gains (losses) entering into the dealer’s wealth due to γ are subtracted 

                                                 
13 An alternative to this interpretation of 1tγ −

 is that it could be an (uninformative) systematic 
factor missing in the analysis of available price changes.  This would not introduce 
interesting alternative economics because dealers can anticipate this fully – there is no news 
in it. 

14 Although they include multiple informative signals, incoming order flow is the only source 
of private information in Madhavan and Smidt (1991) or Lyons (1995).  
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(added) from (to) the dealer’s capital, Kt at a cost vt.15 Incorporating this charge, at trade t the 
dealer’s wealth position is given by:  
 ( ) ( )1 1 1 1[ | ] [ | ]t t t t t t t t t tW v E I E K v yγ γ− − − −= Φ + + Φ − + . (9) 

 
This assumption implies that the dealer only pays the inventory carrying cost on the 

expected wealth, and the inventory carrying cost due to quantity shocks is canceled by the 
capital charge. The appendix shows that the inventory cost is a function of the deviations 
from the optimal hedge ratio of the risky assets, given by dI .  This hedge ratio optimally 
smoothes the dealer’s wealth, and enters the inventory cost as:  

 ( )22
0 1

d
t W tc I Iω σ ω φ φ⎡ ⎤⎡ ⎤= = + −⎣ ⎦ ⎢ ⎥⎣ ⎦

. (10) 

 
B.   The Information Structure 

 
What is of interest is how the dealer sets prices, which occurs only in the event of an 

incoming trade. The incoming trade is, in part, based on the equilibrium asset value, vt. The 
dealer wishes to learn this value, and she will estimate the full information value of the asset 
based on her trading history and any publicly available information. The appendix shows the 
solution to the dealer’s learning problem modeled as a rational expectations consistent 
Kalman filter.16 This section outlines the two sources of information available for learning vt 
and updating prior beliefs in this model. Denote the dealer’s expectation of the full 
information value of the risky asset as:  
 [ ]|t t tE v µΦ = . (11) 

 
The dealer has two ways of updating 1tµ −  and learning about the full information 

value of the asset tv . The first is the incoming trade, qjt. From this incoming quantity the 
dealer extracts a signal of the asset value, tv . Denote this signal by st. The second source of 

                                                 
15 This assumption simply eases the exposition of the problem at hand, and keeps it in a 
discrete time framework. As discussed below, γ  has a time-varying variance. This 
complicates calculating the variance of the portfolio – this would involve moving the entire 
model to a continuous time framework. Because of the discrete-time arrival process of 
incoming calls, this would make for a cumbersome solution with little added payoff in 
relation to the problem of how dealers set prices on incoming orders. It would not, however, 
change the model’s conclusions regarding price setting with multiple instruments.  

16 In the empirical estimation, this study uses total incoming orders (rather than the 
unexpected component) as signals, as in Lyons (1995), Madhavan and Smidt (1991), Yao 
(1998) and others. The ts  represents a function that reflects the information in incoming 
order flow, and 1( )tκ γ −  represents a function reflecting the information in inventory shocks, 
consistent with the approach Hasbrouck (1991a), Madhavan and Smidt (1993), and others.  
Generally, estimations are robust to either approach, as is the case here. 
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information about tv  is the information learned while executing the outgoing trade, which is 
reflected in a function of the inventory shock, 1( )tκ γ − . While both 1( )tκ γ −  and st are used to 
update 1tµ − , assumed that the variance of 1( )tκ γ −  is increasing in the real time (i.e., clock 
time) elapsed between incoming trades. That is, assume that 2var( )t ws σ=  and 

2
1var( ( ))t wκ γ σ τ− = ∆ , with τ∆  being the clock time elapsed between events t-1 and t. As the 

appendix shows, this gives an updating as a function of: 
 ( ) ( )1

1 11 1( )t t t tsτ
τ τµ µ κ γ∆

+∆ +∆− −− = + . (12) 
In equation (12), as elapsed inter-transaction time gets larger ( τ∆ →∞ ) the dealer 

places the majority of the weight on the incoming order’s information, ts . The longer the 
time in between trades, the less relevant is the information from that time in relation to the 
incoming trade’s information. Intuitively, (12) says that the moment the dealer is setting pt, 

ts  has just arrived because it is based on the incoming order itself (qjt). The quantity shock 
signal ( 1( )tκ γ − ) also serves to signal the new innovation, but it arrives between t-1 and t, and 
hence it is not assumed to have the same precision as ts . Instead it is assumed that 1( )tκ γ − ’s 
precision decreases (i.e., variance increases) as the clock-time elapsed from event 1t −  to t 
increases. As more time has passed in between trades, 1( )tκ γ −  has more noise.17  

Finally, the appendix shows that the estimate of the full-information asset value, tµ , 
generates an unbiased estimate of the liquidity trade, Xt.  We denote this statistic as 

[ | ]t t tE X xΩ = . 
  

 
C.   The Dealer’s Optimization  

 
Here the problem is set up as a stochastic dynamic programming problem; ~ denote 

random variables, and the solution is given in the appendix. The dealer solves: 
 ( )[ ]{ }1 1 1 1

,
max( , , , ) 1 ( , , , )

out
t t

t t t t t t t t t t t t t
p q

J I x K E v I K y c J I x Kµ ρ ρ µ+ + + += − + + − + , (13) 

subject to the following evolution constraints: 
Inventory: ( )1 | i out

t t t t t t tE I I p x qδ µ+⎡ ⎤Φ = − − − +⎣ ⎦ , (14) 

Noise Trading: 1 | 0i
t tE x +⎡ ⎤Φ =⎣ ⎦ , (15) 

                                                 
17 One might argue that as 0,τ∆ →  the dealer has less time to carry out planned transactions, 
but she can always elect to not answer the incoming calls until the part of planned 
transactions she wants done are satisfied. Furthermore, the increasing frequency of incoming 
calls and shortening of inter-transaction time would itself be a source of new information for 
the dealer, as suggested by Easley and O’Hara (1992). Indeed, Lyons (1995) finds evidence 
supporting that longer inter-transaction clock times increases the informativeness of 
incoming order flow, as interpreted in this study.   
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Information: 1 | i
t t tE µ µ+⎡ ⎤Φ =⎣ ⎦ , (16) 

Capital: ( )1 | (i out out
t t t t t t t t t t t tE K K p p p x q q cδ µ µ α+⎡ ⎤Φ = + − + − + ) −⎣ ⎦ , (17) 

 
Equations (10), and (13) through (17) comprise the optimization problem. (14) 

constrains inventory evolution. (15) constrains liquidity trades to be zero in expectation. (16) 
constrains the asset to a random walk. (17) constrains the capital evolution, and specifies that 
when the dealer trades out

tq , she expects to pay a price centered on the full-information value, 
and with a price impact ( out

t tqµ α+ ) . α captures the price impact of a marginal increase in her 
outgoing quantity. Hence the dealer, while not a monopolist in the interdealer market, does 
face a downward sloping demand curve in her trades. Assuming that the dealer faces α when 
trading out is similar to assuming that there is marginal declining revenue from selling to an 
informed agent (recall that revenue from the sale is ( )p pδ µ − ). Modeling outside prices 
explicitly requires a general equilibrium framework that normally mutes dealer level pricing 
effects.18 The appendix shows the model solution to be: 

 
 ( ) ( )1 (1 )

(1 ) 2 (1 )( ) dp I I xδα βα
δα δ δαµ β + −

+ += + − + ; (18) 

 ( )1
1

( ) ( )out dA
Aq I I p xα δ µ− ⎡ ⎤= − − + − +⎣ ⎦ ; (19) 

 (1 )
2( )dI I I I xββ +′ = + − − , (20) 

 ( )1 (1 )
(1 ) 1 1 1 1 2 (1 )( )( ) (1 )out

t t j t t t t t t tp q q q xδα βα
δα δ δαψη β γ ψ η γ + −

+ − − − − +∆ = + + + + − + ∆  (21) 
 
Equation (18) shows the price of the dealer as a function of the estimated asset value, 

( tµ ), the deviation from optimal inventory, ( d
tI I− ), and the liquidity shocks (xt). In (19) the 

outgoing quantity shows that as the price impact of outgoing trades goes to zero, i.e., 0α → , 
outgoing trades fully adjusts inventories to the optimal level (in the appendix, A1<0 is 
shown). In this case, the price will depend only on the estimate of v and the liquidity demand. 
In equation (21), st is the information from incoming order flow (qjt) and the elapsed time is 
measured by 1

τ
τη ∆

+∆= . This equation shows that the increment in dealer price contains 
information-driven components from both the current incoming order ( tsη ) , and the 
previous inventory shock ( 1(1 )t tη γ −− ), both weighted by the Bayesian updating term, ψ . The 
( 1 1 1

out
t t tq qγ− − −+ + ) term captures component of the price change attributable to inventory 

pressure – it is the change in the inventory. Finally, the dealer changes her price due to the 
noise-trading component ( tx∆ ).  

 

                                                 
18 For example, the Evans and Lyons (2002) assumes that dealers submit bids simultaneously 
and transparently, which in equilibrium implies that prices be based on common information 
only. This paper avoids such restrictions because the focus is on interdealer price dynamics, 
but this comes at the expense of the market-wide price determination of such models.  
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Intuitively, the dealer would like to maintain inventory at the optimal level, but as a 
market maker she must accept incoming orders that constantly disturb her inventory position. 
As incoming orders arrive, she tries to restore balance to her inventory with 1

out
tq −  and price 

changes. Adjusting back to the optimal level Id via 1
out
tq −  implies absorbing the costs from the 

outgoing order’s price impact (α ). Adjusting inventories via price induced orders implies 
absorbing the certain loss to the informed dealers, via ( )t tpδ µ − . The coefficients in (21) 
reflect the balance between these competing losses. Furthermore, the price is centered on the 
best guess of vt, which is derived from two information sources, st and 1( )tκ γ − . The 
respective coefficients reflect the information extraction, which involves weighing these 
signals by the time elapsed between events.  

 
D.   A Comparison with Existing Models 

 
This section shows how the model presented nests the previous dealer-level 

frameworks. Restricting the model to no outgoing trades, and consequently no inventory 
shocks, the solution would be (22). This is the Madhavan and Smidt (1993) pricing behavior 
for an equity market specialist;  
 1 2( ) 0d out

t t t t t tp s I I x q t Tζ ζ γ∆ = + − + ⇔ ≡ ≡ ∀ ≤ . (22) 
 
 This model suggests, however, that these restrictions may shut down other avenues of 
inventory management available to specialists. That is, as NYSE specialists face increasing 
marginal costs to inventory management through price changes, they optimally spread these 
costs across different avenues available. For example, Madhavan and Sofianos (1997) find 
evidence supporting this. Hence, restrictions that yield (22) would lead to biased estimates of 
inventory effects since they overemphasize the role of changing prices to manage inventory. 
Romeu (2005), Bjonnes and Rime (2000), Yao (1998), Lyons (1995) and Madhavan and 
Smidt (1991) postulate that prices are set according to:  
 
 ( )d

t t t tp I I Dµ α γ= − − +  (23) 
 
Equation (23) yields the price change as: 
 
 0 1 2 1 , 1 1 1 3 1 4 5 1( )out

t jt t j t t t t t tp q I q q I D Dβ β β γ β β β− − − − − −∆ = + + − + + + + +  (24) 
 
With the data used here, Romeu (2005) shows that estimates of (24) are misspecified. 

Breaks present in the data coincide with systematic differences in the length of inter-
transaction time ( τ∆ ). Previous studies using canonical dealer pricing models have indeed 
noted that inter-transaction times imply changes in the precision of incoming order flow, 
however, there are, in fact, changes in both informative variables ( ,jt tq γ ). The model 
presented here shows why inter-transaction times would cause breaks.  Rewriting (24) 
consistent with this paper’s data generation process, note the omitted term in brackets 
weighed by (1 tη− ) below: 
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0 1 2 1 1 1 3 2 1 5 4 1 1( ) ( ) (1 )[ ( ) ]out
t jt jt t t t t t t jt

extraneous term omitted term

p q q q I x qϕ ϕ ϕ γ ϕ ϕ ϕ η ϕ κ γ ϕ− − − − −∆ = + + − + + + − + ∆ + − −  

 
The data generating process under the hypothesis of multiple instruments places zero weight 
on lagged inventory (the extraneous term), which would tend to bias ( )3 2ϕ ϕ− toward zero. 
However, the estimated coefficient 2ϕ  captures not only the inventory effect, but it partially 
reflects information from 1tγ −  which is contained in the inventory term.  Thus, the omitted 
term would normally transmit information from 1tγ −  to prices, but its absence drives the 
inventory term to partially reflect this information.  Hence, the variation in the 
informativeness of 1tγ −  will affect the inventory term.  When inter-transaction times are long 
( τ∆ → ∞  and ( )1 1τ

τ η∆
+∆ ≡ → ), the omitted term should be irrelevant. At such times, one 

should expect the incoming order flow coefficient ( 1ϕ ) to be significant, and 

1var( ( ))tκ γ − → ∞ , hence 1tγ −  will be mostly noise, and uncorrelated to price changes. This 
would in turn make 2ϕ  less correlated with the information effect in p∆ , since the inventory 
term picks up the information in 1tγ −  in lieu of the omitted term. Hence, one would expect to 
see the inventory effect dampened at these times. When inter-transaction times are short 
( 0,τ∆ →  and 0η → ), one would see the order flow coefficient ( 1ϕ ) become less 
significant, whereas the coefficients on the inventory terms would be more significant, and 
pick up the inventory effect more clearly.  Hence, canonical models fail to find inventory 
effects because they are confounded with information effects, or they include extraneous 
variables that are assigned the inventory role.   
 

III.   DATA CONSIDERATIONS 
 
 This section discusses the data sources employed in testing the model, and then 
presents the data graphically to motivate both the new inventory and the asymmetric 
information effects predicted here, as well as those predicted by canonical models.   
 
  The data set consists of one week of a New York based foreign exchange dealer’s 
prices, incoming order flow, inventory levels, and transaction clock times. Hence, pt, qjt, It, 
and τ∆ (and η ) come directly from the recordings of a Reuters Dealing trading system. Out 
of the 843 transactions, four overnight price changes are discarded since the model at hand 
deals exclusively with intraday pricing.  A few measurement errors are present in transaction 
clock times, and these are treated with a dummy variable in the estimation.19  Table 2 (page 
26) presents some descriptive statistics. One observes that the dealer keeps the average 
inventory at $2.1 million, however, it deviates as much as ±$50 million. Given a median 
                                                 
19 The data are for the dollar/DM market from August 3–7, 1992. See Lyons (1995) for an 
extensive exposition of this data set. The transaction clock time measurement errors show up 
when the sequential order of the trades is not consistent with the clock-times, e.g. trade 2 
cannot have occurred earlier than trade 1.   
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incoming order of roughly $3 million, reversing a one standard deviation swing in inventory 
necessitates about five sequential incoming trades.  This suggests alternative measures of 
inventory management other than inducing incoming trades are at work, which is also 
suggested by other FX studies.20  
 

Table 3 (page 26) shows the observed incoming trades received by the dealer, as well 
as bilateral trades that our dealer initiates with other dealers in the FX market.  The table 
shows on average 20 outgoing trades per day initiated by our dealer.  These, however, are 
conceptually different from outq , which represents an outgoing quantity planned at the time 
of price-setting that captures alternatives to shading  the incoming transaction price for 
inventory control.  Thus out

tq  is unobservable in that it represents the dealer’s commitment to 
an outgoing trade at the moment of price setting only. At this moment she commits 
irreversibly to trading at a price who’s optimality depends on being able to trade out

tq ; one of 
the messages of this model is that the price set by the dealer would be different if out

tq  were 
not available for inventory control. Observed outgoing quantities differ from the planned out

tq  
because the dealer reoptimizes in response to unanticipated information, frictions, or 
differences in the trading venues utilized to execute the outgoing trade. For example, at each 
incoming trade, because a price is set, there necessarily exists an expected outgoing trade.  
However, the dealer may not execute an outgoing trade before then next incoming trade is 
observed in the sample.  Although they are unobservable, the model solution provides 
equations which allow estimation of out

tq  and tγ .  Table three shows that the spread on both 
incoming and outgoing trades is tightly maintained at the market’s convention of 3 pips.  
Diverging from this spread is frowned upon by others in the market, as it is interpreted as 
failing to provide predictable over the counter liquidity.  Hence, point estimates of the model 
that imply widening or narrowing the spread should be interpreted as theoretical constructs 
that in practice manifest themselves in other ways, e.g. as shifts in the midpoint of the spread. 

 
The fundamental question of interest is how dealers set prices, i.e. equation (21). Its 

estimation requires decomposing the inventory change so as to get at the outgoing orders, 
out
tq  and inventory shocks. Because tγ  is driven by new information, the model solution 

reflects this information in our dealer’s estimate of the liquidation value of the asset.  That is, 
price changes depend on updating priors using two sources of information: the incoming 
order flow, and the unexpected outgoing order flow ( 1tγ − ). Canonical models typically 
employ incoming order flow as a source of information; however, the use of 1tγ −  as a source 
of information is new. To get a feel for this variable, Figure 2 (page 25) superimposes 

                                                 
20 For example, Lyons (1995) finds evidence that observed outgoing bilateral interdealer 
trades and brokered dealer trading are used to control inventory in the context of a canonical 
dealer pricing model.  These do not include a small amount of brokered trading (which 
occurs at 5 percent of the sample) which the dealer also engages in.   
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cumulative daily unexpected order flow on the price, and Figure 3 does the same for 
cumulative daily inventory shocks (i.e., cumulative daily 1tγ − ). 

 
The vertical lines represent the end of each day of the five-day sample (Monday 

through Friday). The correlation of two signals with price seems to vary. For example, on 
Monday and Wednesday, incoming order flow appears to be a more precise signal of price 
than inventory shocks, whereas on Friday the opposite seems to be true. In the model, 
elapsed clock-time affects the relative precision between these signals. Table 4 (page 26) 
reports the daily correlations and average inter-transaction clock-time. Although these are 
cumulative signals, Friday gives an example of short inter-transaction clock-time, and higher 
correlation in the (cumulative) inventory shocks than (cumulative) order flow shocks.  
Hence, these signals seem to compliment each other and are weighted by inter-transaction 
time in the model. 

  
IV.   ESTIMATION 

 
The framework presented provides sufficient identifying relationships so as to permit an 
almost direct system estimation of the model solution.  Only leveling constants, an 
autoregressive error on the inventory equation, and bid-ask bounce dummies on the pricing 
equation are added.  Table 5 (page 27) lays out the system of equations given in the model 
solution (the first column), with the empirical implementation of the solution (the second 
column), and the parameters recovered from each equation (third column). The first equation 
in the system, the inventory evolution, yields the optimal inventory level. The second 
equation identifies the optimal outgoing order out

tq  and tγ .  This is simplified as: 
 

 ( ) 1
1 3 1 1 1 1 1

2

ˆ ˆˆ , ( ) ( )
(1 )

out d d out
t t jt t t t jt

cq c I I q with I and q I q
c

γ− − − − − −= − + + = + ≡ ∆ +
−

 (25) 

Solving for 1tγ −  by adding and subtracting c3It, yields: 

 ( ) ( )1 3 1 1 3 1 3
ˆ ˆ( ) (1 )( )d d

t jt t jt t jt tI q c I I q c I q c I I− − − −∆ + − − + + = − ∆ + + −  (26) 

Hence, the transformation of (26) allows the estimation of the proportion of incoming trade 
that is expected to be traded out, 3c , as a moving average of the net outgoing order flow 

( )1t jtI q −∆ + , and the deviation from target inventory ( )ˆd
tI I− .  Moreover, in the pricing 

equation (the third row of Table 5), removing expected outgoing trade, as well as the 
incoming trade, from the inventory change identifies the  outgoing trade shock 1t̂γ − .  
However, since (26) is a function of terms such as tI∆  that are already present in the pricing 
equation, it is necessary to transform it so as to eliminate multicollinearity.  Thus, (26) is 
simplified for the pricing equation to: 

 ( ) ( )
1ˆ( )

3 1 3 3 1 3 1
ˆ ˆ(1 )( ) (1 )

out
tq

d d
t jt t t jt t jtc I q c I I c I q c I I q

−−

− − −− ∆ + + − = − ∆ + + − −  (27) 
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one can express (27) in a more conceptual way using 1ˆout
tq − : 

 ( )3 1 3 1 3 1 1
ˆ ˆ(1 ) (1 ) ( )d out

t jt t jt t jt tc I q c I I q c I q q− − − −− ∆ + + − − = − ∆ + −  (28) 

Equation (28) identifies 1t̂γ −  as a weighted function of the inventory change which the 
dealer did not trade, less the part of the last incoming order that the dealer did not trade out.  
Grouping the terms on tI∆  in (28) with the inventory effect permits estimation of the system 
without multicollinearity in the pricing equation. 

In estimating the incoming order flow’s information content canonical models use 
either order flow or its unexpected component.  This study uses order flow directly in the 
price equation, so as to maintain comparability to FX market studies, such as Lyons (1995), 
however, estimation is robust to either measure.21 In addition, the model predicts that the 
only difference in the informativeness of incoming and outgoing order flow is due to the 
clock time between trades,η .  Thus, the solution allows the identification of the information 
effect from the different components of (28) since the inter-transaction times are observed.  
Hence, since the model solution predicts identical coefficients on these terms, the 
components of 1tγ −  outlined above are accordingly constrained to have the same coefficient 
as incoming order flow after accounting for η .22  Two direction-of-trade dummy variables 
are included to capture the fixed costs such as order processing costs, and pick up the base 
spread for quantities close to zero. These variables equal unity if the incoming order is a 
purchase (i.e., the caller buys), and negative one if the incoming order is a sale (i.e., the caller 
sells). The elapsed time in between transactions is measured to the minute, and estimates are 
robust to monotonic transformations of η .23  Finally, scaling constants are included in all 
three equations, and the first equation is estimated with an AR(1) error to control for 
autocorrelation.  The system is estimated simultaneously using Seemingly Unrelated non-
linear least squares. Table 6 (page 28) shows the estimations of the model. Below, Table 7 
presents canonical model estimates of the same data as a basis for comparison.  

                                                 
21 For example, Hasbrouck (1991) and Madhavan and Smidt (1993) use the unexpected 
component of incoming order flow, and estimate this measure as a residual of a vector 
autoregression.  In the case of the FX data used here, these autoregressions tend to have little 
explanatory power, making the residual almost identical to the incoming order flow.   

22 Estimating the model with independent information coefficients on incoming order flow 
and gamma is possible, and support the restriction imposed here.  However, under such 
estimations some inventory terms cannot be grouped as presented here, and collinearity 
prevents satisfactory estimations of the inventory effect, hence these estimable forms are not 
used.   

23 Some measurement error in the time stamps leads to the inclusion of a dummy interacted 
with the absolute value of the clock time (which turns out to be insignificant). 
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The estimations in Table 6 indicate that the model fits the data fairly well.  The main 

results are the very significant and properly signed coefficients on the information and 
inventory effects, c11 and c12, as well as the predicted inventory evolution and outgoing trade 
estimates, c1, c2, and c3.  Canonical model estimates are presented in Table 7 as a basis for 
comparison.  Note that the canonical estimates are not robust to subsample estimation.  
Specifically, canonical model predictions of inventory effects are rejected in the first half of 
the sample, and similarly, predicted information effects are rejected in the second half of the 
sample. 24 The model presented here is robust to subsample estimation, notwithstanding the 
lower p-values of estimated coefficients in the first sub-sample.  Moreover, all three 
equations in the system are jointly significant as predicted, and the estimates fail to reject any 
of the testable restrictions. Hence, this model rejects canonical model point estimates of 
asymmetric information and inventory effects.  The model predicts that the dealer plans to 
trade out roughly one-third of each incoming trade ( 3ĉ =0.34) each time she quotes a price.  
Additionally, the model estimates the dealer’s target inventory at about two million 
( ˆdI =2.09).  From Table 2 the average inventory is 2.16, which is statistically 
indistinguishable from our dealer’s observed average.25  

 
Asymmetric information 
 

The asymmetric information component (c11) is significant and larger than canonical 
model estimates given by 1β  in Table 7 (105 multiply the pricing equation coefficients). One 
way to interpret the estimates is that the dealer widens her spread by 3.5 pips per $10 million 
of incoming order flow or inventory shocks (twice c11, since orders are quoted based on 
absolute size). These estimates indicate a more intense asymmetric information effect than 
previously estimated; not just because of the higher estimated effects, but because there are 
two sources of private information – both incoming and outgoing order flow – both pushing 
price changes. In terms of economic significance, the estimates suggest that the marginal $1 
million dollar order pushes the dealer’s price by about 2 basis points, given the average 
exchange rate in the sample of roughly DM 1.5 per US dollar, or 2 percentage points per 
excess US$1 billion traded. This is higher than market-wide estimates of the price impact of 
US$ 1 billion of excess order flow, which fluctuate around half a percent.26  However, these 
latter these estimates are not comparable because of the inherent difficulties of linearly 
interpolating one dealer’s behavior to the market-wide equilibrium.  These difficulties are 
particularly acute since the dealer generating these data predominantly provides interdealer 
liquidity, not end-user liquidity.  The hot potato hypothesis of Lyons (1997) would suggest 

                                                 
24 Note that Romeu (2005) documents evidence of model misspecification and structural 
breaks present in these estimates of the canonical dealer pricing model used here for 
comparison. 

25 A Wald test fails to reject equality of the mean to the target with a p-value of 0.94.   

26 See Evans and Lyons (2002) or Chaboud, et. Al. (2006).   
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that this dealer pushes prices in response to excess order flow more than others who have 
access to end-users that absorb order imbalances.27 Put crudely, an FX position is like a hot 
potato.  Liquidity providers such as our dealer pass it around, pushing prices until an end user 
is found who is willing hold the off-setting position.   

 
One may consider why previous work underestimates the information component. Even if 
pure inventory pressures were perfectly explained by previous models, there is a component 
of inventory change driven by new information. Inventory theory cannot explain this 
information-driven inventory component. This component is one of multiple signals that, 
according to the model, vary in precision depending on elapsed clock-time. This suggests 
that incoming order flow can be relatively less informative at different times, and should be 
weighed accordingly. Previous estimations assign all information-driven price changes to the 
(at times, noisy) incoming order flow that mute its true informative impact.  
 
 
Inventory effects 
 

Turning to inventory effects, comparing coefficient estimates of the canonical model 
and the model presented here is unsatisfactory because the dealer’s pricing decision is 
affected differently by inventory. Instead, it is more useful to compare estimates of the 
structural parameters that reflect the dealer’s bid-shading in response to inventory pressure. 
Canonical models’ inventory specification depend crucially on the linear price relationship 

( )d
t t t tp I I Dµ α γ= − − + , as shown in equation (23) (Section II.D, page 14).28  That pricing 

assumption yields two inventory terms: 

2 3

2 3 1 2 1 1 1 1 3 1 2 1 1 1 2 3 1
0 0; | |

( ) ( ) ( )out out
t t t jt t t t jt t t tI I I q q I q q I

β β
β β β γ β β γ β β− − − − − − − − − −

< < >
+ ≡ − + + + ≡ − + + + + .      (29) 

The estimate in Table 7 (page 28) of 3
ˆ 0.72β =  from (29) is the canonical model’s 

(absolute) structural price adjustment per one-million dollar deviation from the desired 
inventory level (i.e. 3β̂  is the empirical estimate of the canonical model parameter α  in 
equation (23)).  In the model presented here, the analogous relationship is given in the first 
order conditions specified by equation (18), where (1 )( )α

δαβ +  is our structural inventory effect 
on prices. A direct estimate of our model’s parameterβ  (the inventory evolution parameter 
in equation (20)) is  2

ˆ ˆ( 1)cβ = − , as shown in Table 5 (page 27).  This yields ˆ 0.34β = − .  
Moreover, (1 )( ) 1α

δα+ <  for the range of 0α >  and 0δ >  consistent with our model. Hence, 
the total inventory effect in our model is β  multiplied by a factor that approaches unity from 
below.  That is, to arrive at the equivalent measure of the canonical inventory effect in 

                                                 
27 Lyons (1996) describes this dealer as a “liquidity machine” in reference to the interdealer 
market.  

28 For example, this pricing relationship forms the basis of  Madhavan and Smidt (1991) or 
Lyons (1995).   
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equation (18), one must multiply 2
ˆ ˆ( 1)cβ = −  by a factor of at most, one. Hence, in comparing 

the price impact per million dollar deviation from the desired inventory level in equation (23) 
against (18), canonical model estimates of inventory costs are at least two to three times 
larger than the estimates presented here.  Ignoring multiple instruments will overweigh the 
inventory component because price changes are empirically assigned such an important role 
in inventory management. The model presented here suggests that price is but one of 
multiple instruments used to control inventory costs. As a result, inventory accumulation is 
not as important in explaining price changes. 
 
Expected cost of outgoing trades and the base spread 
 
 The use of multiple increasing–marginal–cost instruments to manage inventory 
requires having an expected cost of the outgoing trade at the time of price setting. This 
expected cost is estimated at α̂ =0.35 pips.  This measure reflects the dealer’s expected 
marginal cost of trading out an extra million dollars, i.e. the dealer’s opportunity cost of 
changing the spread in response to a $1 million incoming trade. In principle, the dealer’s 
alternative is to change the price to offset the inventory carrying cost, estimated to be at most 
0.34 pips per million, as discussed above.  Hence, the estimates suggest that trading out 
excess inventory has a higher marginal cost for the dealer than accepting incoming trades, 
and the estimated proportion of excess inventory that  is traded out, C3, is 0.33, meaning that 
for each incoming dollar, the dealer expects to trade out one third.  Finally, c4 measures the 
effective spread for qjt close to zero. It suggests that after having controlled for information 
and inventory effects, the baseline spread is roughly 2.5-2.8 pips (twice c4 times 10-5). Note 
that these estimates are approximately equal the median interdealer spread observed in the 
FX market of 3 pips.  
 

Fed Intervention  

The last five percent of recorded trades that occurred while the Fed intervened to 
support the dollar. In Figure 2 (page 25), the sharp appreciation on the last day reflects the 
market reaction to the intervention. It perhaps succeeded in slowing the slide of the dollar, 
but was unsuccessful in sustaining a reversal. The market closed down on the day, and down 
from its high after the start of intervention. It involved multiple dollar purchases totaling 
$300 million after the close of European markets. The Fed does not reveal the exact start 
time and there are too few observations to meaningfully estimate the intervention in 
isolation.29 Wald tests fail to reject equality between estimates of the model with and without 
the intervention period (i.e., 95 percent of the sample, versus 100 percent). 

                                                 
29 Quoting the Wall Street Journal, August 10, 1992: “The Federal Reserve Bank of New 
York moved to support the U.S. currency... as the dollar traded at 1.4720.” This is the most 
precise documentation available of the intervention start, and that price corresponds to 12:32 
pm. Other times are selected because of reports of a mid-day start (hence, 12:02 pm), and at 
12:26 pm the price jumps 36 pips, suggesting a possible intervention start at that point. 



 - 22 -  

 
Table 8 (page 29) shows the impact of the intervention on the estimated parameters. 

The intervention increases the asymmetric information effect of incoming order flow (c11) by 
over 8 percent, while the change in the estimated inventory effect (c12), as well as in other 
model parameters, is negligible. The dealer price appreciation recorded during the Fed 
intervention period, which presumably would be induced by Fed purchases of dollars, serves 
as a rough check on market wide studies of market liquidity.  While the exact start time is not 
revealed, the $300 million intervention moved the market price between 20 and 32 pips 
before falling back.  At the lower end of the range, this concords with estimates of between 5 
and 8 pips per 100 million from Evans and Lyons (5 pips per $100 million), and Dominguez 
and Frankel (8 pips per $100 million).  At the higher end, 12 pips per $100 million implies a 
market-wide elasticity closer to the estimates of dealer costs in this study.    
 

V.   CONCLUSIONS 
 

The model presented incorporates the realistic options available to market makers for 
absorbing portfolio flows. In canonical models making markets entails moving prices away 
from the full information value to induce trades that compensate inventory imbalances. But 
these models constrain the dealer behavior to either paying inventory costs, or intentionally 
selling low and buying high. This paper suggests that there are multiple ways to control 
inventory costs.  

 
One clear example is that in foreign exchange markets, the dealer has the ability to 

call others in the market and unload her unwanted inventory on them. Of course, this is not to 
suggest that outgoing orders are a panacea for inventory control, so these are modeled with 
price impact (i.e., increasing marginal costs). However, at the margin, she will equate the loss 
of trading unwanted inventory to incoming calls with the marginal price impact (i.e., the loss 
of trading unwanted inventory in outgoing calls) and with the marginal loss of the inventory 
imbalance (i.e., the marginal inventory carrying cost). 

 
In addition, these outgoing calls do not occur in a vacuum. As long as events transpire 

during the outgoing call period, the dealer will learn through trading at those times and 
update her beliefs. These updates bring about price changes that neither inventory costs nor 
incoming order flow can explain. And FX dealers are just one example of market makers that 
smooth costs over multiple instruments. This paper argues that one should consider where 
dealers or specialists might be substituting away from conventional inventory costs when 
modeling price setting. Moreover, price-induced order flow is one of a multiplicity of 
informative instruments available to market makers.  

 
The estimations support the proposed model and provide several novel empirical 

results. Generally, these indicate that previous studies overemphasize the role of price 
changes in inventory management, since no other instruments are considered. This omission 
biases downward the role of information in price changes, can make inventory effects appear 
insignificant, and tightens the bid-ask spread. The data generating process modeled here 
suggests that information effects are also biased downward in canonical estimations, since 
the dealer infers asset values from multiple signals which vary in their precision.  Canonical 
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estimates fail to correct for the varying precision of the informative flows, and hence, the 
information effect is biased downward as it overweighs the signals at uninformative times.  
The estimates also suggest that at the time of price setting, planned outgoing trades are one-
third of the difference between dealer’s current and optimal inventory positions, and a Fed 
intervention increases the informativeness of order flow, and lowers the cost of liquidity for 
the dealer. It also lowers inventory costs and tightens the spread.  

 
Finally, the model addresses the broader relation between portfolio flows and asset 

prices. The presence of inventory effects suggests that part of observed price changes is 
transitory. However, with multiple instruments, dealers exhaust the gains from sharing a 
large inventory position with less price impact. As a result, the transitory component of price 
changes is less important than the information components from the multiple instruments. 
Hence, while both transitory and permanent effects are present in the data, the model favors a 
permanent impact of portfolio flows on prices. 
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Figure 1. The Timing of the Model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The figure above describes the timing of the model. At every event: 

1. if t≠T, the dealer knows her current inventory (denoted It), and a new incoming trade (one source of 
information for updating priors) occurs. The incoming quantity is qjt.  

2. The dealer decides her price (denoted by Pt) and plans her outgoing trade (denoted by out
tq ). These are 

the alternate methods available for offsetting inventory disturbances caused by the incoming trade.  
3. Between events, the dealer executes the planned outgoing trade ( out

tq ), and faces a quantity shock, 

(denoted by tγ ). This is another source of information for updating priors. 

4. In addition, the dealer observes time elapsed between trades (denoted by τ∆ ).  
5. At the next event (t+1), the dealer uses the new incoming trade qjt+1 as well as the quantity shock 

between trades and the time elapsed between trades to update priors on the evolution of the asset value, 
and set prices.  

 

Event t≠T; 
Incoming order: qjt 
Known: 1, , 1t tI γ τ− ∆ −  

Choose: , out
t tP q  

 

Event t+1≠T; 
Incoming order: qjt+1 
Known: 1, ,t tI γ τ+ ∆  

Choose: 1 1, out
t tP q+ +  

 

Between Events t & t+1; 
Trade: out

tq  at price ( )out
t tqµ α+  

Shock: tγ  

Elapsed clock-time: τ∆  

Event time 
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Figure 2. Canonical Models’ Information Effect: Incoming Order Flow and Price 
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 Figure 2 superimposes price on cumulative incoming order flow, August 3-7, 1992.  
 

Figure 3. New Information Effect: Cumulative Inventory Shocks and Price 
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  Figure 3 superimposes price on cumulative unexpected inventory shocks, August 3-7, 1992.  
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Table 1. Inventory Control: First Five Entries of Lyons (1995) Dataset 

entry pit qjt It qt
out + γt

1 1.4794 -1 1 1
2 1.4797 -2 3 -4
3 1.4795 -28 1 -30.5
4 1.4794 -0.5 -1.5 0.25
5 1.479 -0.75 -0.75 ...  

 
 
Notes: Table 1 shows the first five entries of the price (second column), incoming order flow (third column), 
and inventory (fourth column) variables from the data set.  The last column captures the part of inventory 
evolution that is not due to incoming order flow, which reflects the optimal outgoing trade (qout), and deviations 
driven by new information (γ).  Lyons (1995) data: NY based dollar/DM dealer, August 3–7, 1992. 
 
 

Table 2. Descriptive Statistics 

Inventory Order flow Order flow
(absolute value)

 Mean 2.16 -0.4 3.8
 Median 0.7 0.5 2.5
 Maximum 56.8 20.0 28.0
 Minimum -42.7 -28.0 0.0
 Std. Dev. 15.4 5.2 3.6
 Observations 838 838 838  

Table 2 shows descriptive statistics for the dealer’s inventory and incoming order flow.    
 

Table 3. Observed Incoming Order Flow and Outgoing Trades 
Observed Trades Daily No. Size Spread

(mean) (median) (median)
Incoming 170 3 0.0003
Outgoing 20 5 0.0003  

Table 3 shows observed trades made by the dealer (not including a small amount of brokered trades).  Note that 
outgoing refers to trades that the dealer is observed initiating.  This is conceptually different from outq , which 
represents an outgoing quantity planned at the time of price-setting that captures alternatives to shading  the 
incoming transaction price for inventory control. Lyons (1995) data: NY based dollar/DM dealer, August 3–7, 
1992.
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Table 4. Information Effect: Daily Correlation of Order Flow Variables with Price 
Order Flow Unexpected Inventory Mean Elapsed End of Day

Order Flow Shocks Time* Observation
Monday 0.83 0.83 -0.54 1.77 181
Tuesday 0.69 0.71 0.58 1.86 330
Wednesday 0.53 0.48 0.03 2.44 440
Thursday 0.82 0.81 0.66 2.01 592
Friday -0.03 -0.02 0.71 1.31 843  

Table 4 shows the daily correlation between price and the order flow variable used to update priors. The first 
column shows incoming unexpected order flow and the second inventory shocks correlations for each day, 
August 3-7, 1992. The last column shows daily mean elapsed inter-transaction time. 
* Reporting errors imply mean absolute value transaction time. 

Table 5. System of Estimable Equations 
 

Model Solution 
 

 
Empirical Implementation 

 
Testable Restrictions 

 
Equation (20), inventory: 
 

 
( )( )1

2' ( )dI I I I xβ
αβ += + − +

 
 

 
 

1 2 1 1t t tI c c I ε−= + +  

 
1

2

2

ˆˆ
ˆ(1 )
ˆˆ (1 ) 0

d cI
c

c β

=
−

= + >

 

 
Equation (19), outgoing trade: 
 

( )1
1

( ) ( )out dA
Aq I I p xα δ µ− ⎡ ⎤= − − + − +⎣ ⎦  

 

 

( ) ( )1

22 3 1 3 1(1 ) c
t t jt t cc I q c Iε − −= − ∆ + + −  

 

( )
( )1

1

1 2

1 3 1 1

3

ˆ ˆ

ˆˆ ˆ

ˆ 0

t t

out d
t t jt

A
A

q c I I q

c α

γ ε−

− − −

−

=

= − + +

= >

 

 
 
Equation (21), price change: 
 

( )
(1 ) 1 1 1

1 (1 )
1 2 (1 )

( )( )

(1 )

out
t t t t t t

t t t

p s q q

x

α
δα

δα β
δ δα

ψη β γ

ψ η γ

+ − − −

+ −
− +

∆ = + + + +

+ − + ∆  
 

 

1

2
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η

η

η
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Outgoing Trade, Expected Marginal Cost: 12 3
3

ˆ ˆ( 1)
ˆˆ c c
cα ′ −=  

 
 
Table 5 compares the algebraic solution to the model (in the first column) with the estimable equations these 
imply (in the second column). The final column shows testable restrictions on the model parameters.  Row (1) 
shows inventory evolution, row (2) shows outgoing quantity, and row (3) shows price changes. The bottom 
shows the structural parameter measuring the expected cost of liquidity at the time of price setting, α̂ .  The 
system is estimated simultaneously using seemingly unrelated non-linear least squares.   
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Table 6. Price Formation with Multiple Instruments 

( ) ( )1

2

1

2

1 2 1 1

2 3 1 3 1

10 11 12 2 11 3

11 3 1 11 1 13 14 1 15 31

(1 )

[ (1 )(1 )]

(1 ) [ ( )] (1 )

t t t

c
t t jt t c

t t jt t t

c time
t jt t t jt t t t tc

I c c I

c I q c I

p c c q c c c c I

c c q I c q c D c D c D

ε

ε

η η

η η ε

−

− −

− − −−

= + +⎧ ⎫
⎪ ⎪
⎪ ⎪= − ∆ + + −⎪ ⎪
⎨ ⎬
⎪ ⎪∆ = + + + − − ∆ +
⎪ ⎪
⎪ ⎪+ − − + − + − + + + +⎩ ⎭

 

 
Model C 1 C 2 C 3 C 10 C 11 C 12 C 13 C 14 C 15 adj R 2 α I d

(pips) US$ M
Full sample 0.72 0.66 0.34 0.00 1.71 -1.79 11.85 -9.40 -0.40 0.20 0.35 2.09    
Sample: 2 838 0.03 0.00 0.00 0.26 0.00 0.00 0.00 0.00 0.92

First half -0.71 0.58 0.42 0.00 1.16 -0.70 15.07 -9.07 -0.23 0.30 0.09 -1.70
Sample: 2 460 0.09 0.00 0.00 0.28 0.05 0.10 0.00 0.00 0.96

Second half 2.35 0.69 0.29 0.00 2.21 -3.22 9.93 -11.42 5.54 0.29 0.78 7.51
Sample: 460 796 0.00 0.00 0.00 0.07 0.01 0.00 0.00 0.00 0.40  

Table 6 estimates the system of equations imposing all identifying restrictions. Estimation is robust over 
subsamples of this dataset, including around the approximate break points found in previous canonical model 
estimations. α  measures the expected price impact of augmenting the planned outgoing trade by $1 million in 
pips, and Id measures the implicit optimal inventory level used by the dealer.  All estimates multiplied by 105, p-
values in italics, Lyons (1995) dataset. 
 
 

Table 7. Canonical Model Estimates  
0 1 2 3 1 4 5 1 (1)t jt t t t tp q I I D D maβ β β β β β− −∆ = + + + + + +  

Full Sample -1.34 1.47 -0.91 0.72 10.30 -9.12 0.22
Sample (adjusted): 2 838 0.32             0.00             0.00             0.01 0.00 0.00

First half -1.87 1.34 -0.45 0.21 12.44 -8.76 0.34
Sample (adjusted): 2 460 0.11             0.00             0.10             0.43 0.00 0.00

Second half -2.99 1.13 -1.99 1.82 10.00 -10.50 0.28
Sample: 460 796 0.18             0.11             0.00             0.00 0.00 0.00

Memorandum:
Break Tests Observation F-statistic Log likelihood ratio

460 0.03             0.03             
796 0.00             0.00             

0β 2.A d j R1β 2β 3β 4β 5β

 
 
Table 7 reproduces canonical microstructure estimates using the Lyons (1995) dataset.  All estimates multiplied 
by 105. Estimating over the two halves of the sample reveals that the simultaneous presence of inventory and 
information effects predicted by canonical models are significantly not different from zero (See Romeu (2005)).  
Hence, while inventory and information appear to be present in the data, canonical model predictions are 
overturned as predicted by Section II.D.   
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Table 8. The Impact of a Federal Reserve Intervention 

Model C 1 C 2 C 3 C 10 C 11 C 12 C 13 C 14 C 15 adj R 2 α I d

(pips) US$ M
Full Sample 0.72 0.66 0.34 0.00 1.71 -1.79 11.85 -9.40 -0.40 0.20 0.35 2.09    

0.03 0.00 0.00 0.26 0.00 0.00 0.00 0.00 0.92

No Fed Intervention 0.72 0.67 0.33 0.00 1.48 -1.78 12.99 -9.84 2.44 0.28 0.36 2.20
0.03 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.51  

Table 8 shows cost comparisons for the $300 million Fed intervention on August 7, 1992. The exact start time 
and sequence of the intervention is unknown. * Wall Street Journal, August 10, 1992: “The Federal Reserve 
Bank of New York moved to support the U.S. currency... as the dollar traded at 1.4720.” This is the most 
precise documentation available of the intervention start, and that price corresponds to 12:32 pm. Other times 
selected because of reports of a mid-day start, and because between 12:26 and 12:32 pm, the price jumped 36 
pips, suggesting a possible intervention start there.  
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APPENDIXES  
 

I. MODEL SOLUTION 
 

Inventory Carrying Cost 

From equations (2) and (3) the variance of the dealer’s portfolio is 
 2 2 2 2 2

tW V t y t vyI Iσ σ σ σ= + + . (30) 

Add and subtract 
2

2
vy

v

σ
σ

⎛ ⎞
⎜ ⎟
⎝ ⎠

into (10) to get: 

 
2 2 2 2

2 2 2 2 2
2 2 2 22vy vy vy vy

t y V t t vy y v t
v v v v

c I I I
σ σ σ σ

ω σ σ σ ω σ σ
σ σ σ σ

⎡ ⎤⎡ ⎤ ⎛ ⎞ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥= − + + + = − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦
(31) 

Which is the right-hand-side of (10) with coefficients: 

 
2

2 2
1 02 2

vy vyd
v y

v v

I
σ σ

φ σ φ σ
σ σ
−⎛ ⎞ ⎛ ⎞

= = = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (32) 

 
Dealer’s Beliefs 

Given market demand qjt, the dealer creates a statistic based on the intercept of the demand 
curve, which is independent of her price. Denote this statistic as Dt. 
 ( )t jt t t t t t t tD q p v p X p v Xδ δ δ δ= + = − + + = + . (33) 
From the signal of market demand Dt the dealer forms two statistics. The first is an 
innovation in the full information value of the risky asset, which shall be denoted as st. The 
second is a signal of the liquidity demand, which is denoted as (lower case) xt, and will 
depend on the estimate of full information value, tµ . 

 1 ; [ ]tX
t t t t tw D v E w vδδ −= = + =  (34) 

 [ ],t t t t tx D E x Xδµ= − = . (35) 
Consistent with rational expectations, assume that the dealer’s previous estimate, 1tµ −  is the 
steady state distribution over the true asset value vt, and that the variance of tµ is proportional 
to the variance of wt . Hence, one can write 2 2

wµσ σ= Ω . Given the variance of wt, form a 
signal to noise ratio given by: 

 
2

2 2 2
2 ,v

w x
w

withσ σ δ σ
σ

−ϒ = = . (36) 

The dealer uses the recursive updating of a Kalman filter to form the expectations over vt. 
This implies that she updates the prior belief 1tµ −  using the current order flow wt. The 
resulting posterior, tµ , converges to a steady-state distribution whose time varying mean is 
an unbiased estimate of the true value of vt. The recursive equations to generate this estimate 
are given by: 



 - 31 -  

 
2 4

2
−ϒ + ϒ + ϒ

Ω = , (37) 

Hence, if the dealer had only information based on the incoming order, she would use the 
following estimate, which is denoted as Z

tµ , as the estimate of tv :  
 ( ) 11Z

t t twµ µ −= Ω + −Ω . (38) 

Note, however, that the dealer also receives information for updating 1tµ −  through a linear 
function of the inventory shock which is denoted by 1( )κ γ − . Given 1( )κ γ − , an unbiased 
estimate of tv is given by: 
 1 1 1 1 1[ ( )] (1 ) ( )t t t t t t

γµ µ κ γ µ µ κ γ− − − − −= Ω + + −Ω = +Ω , (39) 
where the same Kalman filter algorithm as defined above is used. Hence there are two signals 
of tv  at the time of setting the price. Given the assumption, the variance of t

γµ  is a linear 
function of the variance of Z

tµ . That is, 
 2 2var( ) , var( ) *Z

t Z t Z
γµ σ µ σ τ= = ∆ , (40) 

where τ∆ is the elapsed clock time between incoming order (t-1) and t. The optimal signal 
for the dealer is then:  
 1 1 1(1 ) [ (1 ) ] (1 )[ ( )]Z

t t t t t t twγµ ηµ η µ η µ η µ κ γ− − −= + − = Ω + −Ω + − +Ω . (41) 
 
with ( )1

τ
τη ∆

+∆= . Now grouping and rearranging:  

 1
1 1 1 1 1( ) (1 ) ( ) ( ) (1 ) ( )t t t t t t t tw Dµ µ η µ η κ γ η δ µ η κ γ−
− − − − −− = Ω − + − Ω = Ω − + − Ω  (42) 

Since ,t
t t t

Xw D vδ
δ

−1= = +
 

 1
1 1 1( ( ) ) (1 ) ( )t t jt t t tq pµ µ η δ δ µ η κ γ−
− − −− = Ω + − + − Ω  (43) 

Add and subtract δµ  to get: 
 1

1 1 1[ ( ) ( )] (1 ) ( )t t jt t t t t tq pµ µ η δ δ µ δ µ µ η κ γ−
− − −− = Ω − − + − + − Ω  (44) 

Solving for 1( )t tµ µ −−  yields, 
 1

1 1( )[1 ] [ ( )] (1 ) ( )t t jt t t tq pµ µ η η δ δ µ η κ γ−
− −− −Ω = Ω − − + − Ω  (45) 

Which gives the final relationship for the updating: 
 1 2 1( )t t tsµ ξ ξ κ γ −∆ = + , (46) 
Where ( )t jt t ts q pδ µ= − −  is the unexpected order flow, and  

 1 2
1 2

(1 )& 0; & 0
(1 ) (1 )

ξ ξη ηξ ξ
δ η η δ η η

∂ ∂Ω − Ω
= > = <

−Ω ∂ −Ω ∂
. (47) 

 
Hence, 1ξ  and 2ξ  are inversely related with respect to η , and as inter-transaction time is 
longer, more weight is placed on the unexpected incoming order flow signal st. Here, 

1( )tκ γ − is assumed to be some simple linear function: 1 0 1 1( )t tκ γ ω ω γ− −= + , where 0ω may be 
assumed zero if desired.  
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The Dealer’s Problem 

The dealer’s problem is reproduced here: 
( )[ ]{ }1 1 1 1

,
max( , , , ) 1 ( , , , )

out
t t

t t t t t t t t t t t t
p q

J I x K E v I K c J I x Kµ ρ ρ µ+ + + += − + − + , (48) 

subject to the following evolution constraints: 
 ( )1 | i out

t t t t t t tE I I p x qδ µ+⎡ ⎤Φ = − − − +⎣ ⎦ , (49) 

 1 | 0i
t tE x +⎡ ⎤Φ =⎣ ⎦ , (50) 

 1 | i
t t tE µ µ+⎡ ⎤Φ =⎣ ⎦ , (51) 

 ( )1 | (i out out
t t t t t t t t t t t tE K K p p p x q q cδ µ µ α+⎡ ⎤Φ = + − + − + ) −⎣ ⎦ , (52) 

For expositional simplicity, in what follows the expectation operators on the evolution 
equations and the time subscripts are dropped, and a forward lag is denoted by a 
‘superscript.’ The first order conditions are given by: 
 [ ] [ ]: ( ', ', ', ') ( 2 ) ( ', ', ', ') 0I Kp E J I x K p x E J I x Kδ µ δµ δ µ+ − + = , (53) 
 [ ] [ ]: ( ', ', ', ') ( 2 ) ( ', ', ', ') 0out out

I Kq E J I x K q E J I x Kµ µ α µ− + = . (54) 
Substituting (54) into (53), and assuming for now that [ ]( ', ', ', ') 0KE J I x Kµ ≠  (I confirm 
this later), price is: 

 
2

outxp qµ α
δ

= + + . (55) 

Denote from here on the value function without its arguments for notational simplicity, 
maintaining the convention that ( )J ′  is the forward lag of ()J . Furthermore, in what follows 
a subscript denotes the derivative of the function with respect to that argument. The envelope 
conditions for this problem are: 
 [ ]1() (1 ) [ (')] 2 ( ) (1 ) [ (')]d

I I KJ E J I I E Jρ µ ρ ωφ ρ ρ= − + − − − + ; (56) 

 ( )() [ (')] [ (')]x I KJ E J pE Jρ= − − ; (57) 

 () (1 ) [ (')] [ (')] ( ) [ (')]out
I KJ I E J E J p q E Jµ µρ δρ ρ ρ δ= − − + + − ; (58) 

 () (1 ) [ (')]K KJ E Jρ ρ= − + ; (59) 
Based on the envelope conditions, it is conjectured that the value function takes on the 
functional form: 
 2 2

0 1 2 3( , , , ) ( ) ( )d dJ I x K A I K A I I A x I I A xµ µ= + + + − + − + . (60) 
Using the conjecture, and the evolution equations, taking the derivatives with respect to I and 
K updating:  
 1 2 1[ (')] [ ' 2 ( ' ) '] 2 ( ' )d d

IE J E A I I A x A I Iµ µ= + − + = + − . (61) 
 [ (')] [1] 1KE J E= = . (62) 
Plugging (61) and (62) into (54) yields the optimal outgoing quantity: 

 1 ( ' )d outA I I q
α

− = . (63) 

Substituting (63) into (55) for outq  yields the pricing equation: 
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 1( ' )
2

d xp A I Iµ
δ

= + − + . (64) 

Taking the evolution equation for inventory, (49), one can substitute (64) in for p and solve 
for 'I  to get:  
 (1 )

2( )dI I I I xββ +′ = + − − , (65) 
with  

 1
1

1

(1 )
(1 ) (1 )(1 )

A A
A

δα βαβ
α δα β δα
⎛ ⎞ ⎛ ⎞+

= ⇔ =⎜ ⎟ ⎜ ⎟− + + +⎝ ⎠⎝ ⎠
. (66) 

Given the inventory evolution of (65), one can solve for the optimal pricing policy function, 
recognizing that relationship in (66) simplifies the implicit function of 1A  multiplied by 
(1 )β+  to (1 )1(1 ) ( )A α

δαβ β ++ = , and substituting: 
 
 ( )1 (1 )

(1 ) 2 (1 )( )( )dp I I xδα βα
δα δ δαµ β + −

+ += + − + . (67) 
Taking first differences of (67), and substituting in:  
 ( )1 (1 )

(1 ) (1 )1 1 1 2 (1 )( ) ( )( )out
jt t tp q q xδα βα α

δα δα δ δαµ β β γ + −
+ +− − − +∆ = ∆ − + + + ∆ . (68) 

Substituting the relationship for the updating of the tµ  given by (46) yields: 

 ( )1 (1 )
(1 ) (1 )1 2 1 1 1 1 2 (1 )( ) ( ) ( )( )out

t t jt t tp s q q xδα βα α
δα δα δ δαξ ξ κ γ β β γ + −

+ +− − − − +∆ = + − + + − ∆  (69) 
Next the conjectured functional form of (60) is confirmed. Begin by taking the envelope 
condition for x, (57), and solve for coefficients A2 and A3 of the conjectured functional 
form’s derivative, which is: 
 
 2 2 3( ) 2dJ A I I A x= − +  (70) 
Substituting the optimal policy functions into (57), as well as the updated derivatives of the 
conjectured functional form which are given by (61) and (62) yields: 2 1(1 )A Aρ β= − + , and 

1(1 (1 ))
43

AA ρ δ β
δ

+ += .  Continuing, the envelope condition on I in (60) can be solved with the 
conjectured functional form’s derivative, which is given in (61). This yields 

( )1
1 (1 )1A ωφ

ρ β
−

− +⎡ ⎤= ⎣ ⎦ . An economically sensible solution requires A1<0, hence, using the 

definition for A1, it is required that: 

 (1 )(1 ) 0
1 (1 )

ωφ β δαβ
ρ β
+ +

+ =
− +

. (71) 

This implies ( 1,0)β ∈ − . As 1β → − , the right-hand-side of (71) goes to negative one. As 
0β → , the right-hand-side of (71) is positive. Hence, since (71) is a continuous function, by 

the Mean Value Theorem ( )1,0β∃ ∈ − ∴ (71) holds.  
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The Informed Trader’s Problem 

This section shows that the conjectured behavior of the informed trader is optimal given the 
dealer’s optimal solution for price setting.  This proof adapts the Madhavan and Smidt (1993) 
proof that conditions exist such that any deviation from the conjectured result would be 
suboptimal.  The informed maximizes her terminal wealth after observing the liquidation 
value of the asset, and facing the same stochastic probability of a trading event occurring as 
the dealer of the previous section.  Hence, prior to trading at time t, the informed faces a 
probability (1 )ρ−  of no trade occurring, in which she keeps her expected wealth, t t tv B C+ , 
with B and C representing the endowments of risky asset and capital, respectively.  In the 
alternative, the informed trades, and updates her stocks to t tB Q+  and t t tC p Q− , 
respectively.  We show that for∆  different from zero, ( )t t t tQ v pδ= − + ∆  is suboptimal.  
The informed observes the dealer’s price, which is a function of her order through its effect 
on the dealer’s inventory and information.  Taking the information effect first, using 

1
t tw Dδ −= , the dealer’s signal, with ( )t t t t t tD v p X pδ δ= − + + ∆ + , the introduction of a 

non-zero deviation yields a distorted signal, 1
t t tw w δ −′ ′= + ∆ .  This, in turn, yields price as an  

increasing function of the deviation: 
 1( ) ,t t t tP p withλ λ ηδ −∆ = + ∆ = Ω  (72) 

Where tp would be the price prevailing if 0t∆ = held.  As in the case of the dealer, denote 
by ( , , , )t t t tV v p B C  the maximum expected wealth given the state, represented by the price, 
asset liquidation value, and the capital and inventory stocks.   The informed trader chooses 
the optimal quantity for the order, which, by construction, allows the problem to be 
expressed as: 
 
 ( , , , ) max [(1 )( ) ( , , , )]

t
t t t t t t t t t t tV v p B C E B C V v p B Cρ υ ρ

∆
= − + +  (73) 

With transitional equations, 1[ ]t tE v v+ = , 1t t tB B Q+ = + , and 1t t t tC C PQ+ = − , with 

t t tP p λ= + ∆ , and ( )t t t tQ v pδ= − + ∆ .  Turning to the transitional equation for the notational 
base price, note that the price next trade depends on the trader’s current quantity through 
information and inventory effects, which in turn in a function of t∆ .  Hence, we can restate 
the dealer’s solution consistent with (67) as: 
 1 1 1 1 2 1( ) ( )d

t t t t tp I I xµ ζ ζ+ + + += ∆ + − +  (74) 

Where, 1[ ( )] ( )t t t tE µ µ+ ∆ = ∆ by iterated expectations, and from (41), ( )t t t tµ µ λ∆ = + ∆ , 
which implies that the dealer’s expectations of the liquidation value are adjusted by the non-
zero t∆  “excess” trade if the informed deviates.  From (67), we can rewrite the expectation 
of tµ  as 1 2( )d

t t t tp I I xµ ζ ζ= − − − .  Using the expression derived for ( )t tµ ∆  and (74), we 
have that price evolves by 1 1 1 2 1( ) ( )t t t t t t tp p I I x xλ ζ ζ+ + += + ∆ + − + − .  Taking expectations, 
and using (19) for outq ,  we have:  
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1 11 1 1 2 1[ ] ( ) ( )( ) ( )d

t t t jt t t tA AE p p q I I x xα α
α αλ ζ ζ ζ+ +− −= + ∆ + − − + −  (75) 

Here, we can assume without loss of generality that the informed trader does not have a 
priori knowledge about our dealer’s inventory levels.30 However, this equation shows the full 
impact of a deviation affects the future price both through changes in the dealer’s 
expectation, and through her inventory pressure.  Note that in the event that the marginal cost 
of trading out to other dealers is zero (i.e. 0α = ), only the information channel is relevant, as 
the inventory adjustment is complete, illustrating the dichotomy between multiple 
instruments in this approach and canonical models.  Omitting time subscripts, using 
superscripts to denote one-period ahead, the first order condition for (73) is: 
 1( ( ) 2 ) ( ) 0B C pEV v p p EV EVλδ λ λ ζ′ ′ ′− − + + ∆ + + =  (76) 

Taking the envelope conditions: 

 1(1 ) ( )v v B v pV B EV EV EV p EVρ ρ ρδ ρ δ λ δ ρ ζ δ′ ′ ′ ′= − + + − + ∆ +  (77) 

 1(1 ) ( ( ) (1 ) )p B p CV EV EV v p p EVρδ ρ ζ δ ρ δ δ λ′ ′ ′= − + − + − − + + ∆ −∆  (78) 

 (1 )B BV v Vρ ρ ′= − +  (79) 

 (1 )B CV v Vρ ρ ′= − +  (80) 

These suggest a conjectured functional form for the value function of: 

 2( )V vB C A v p= + + −  (81) 

With derivatives, 2 ( )vV B A v p= + − , 2 ( )pV A v p= − − , BV v= , and 1CV = .   

The transitional equations yield 
1 11 1( ) ( )(1 ( ) ) (( ) )A AE v p v p α α
α αζ δ ζ λ− −′ ′− = − − −∆ + , which we 

can substitute into the first order condition, and set the deviation to zero, which in turn gives 
a condition for A:  

 
11 1

(1 )
2( )(1 ( ) )A

A
α
α

λδ
ζ λ ζ δ−

−
=

+ −
. (82) 

Taking the envelope condition for vV , and substituting in the expected values with the use of 
the evolution equations, a second condition is imposed on A: 

                                                 
30 This is consistent with other inventory models and evidence from financial markets.  In the 
alternative, it is straightforward to show that including a non-zero expectation on either of the 
last two terms in (75) leaves the pricing equation unaltered.   
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11 11 (1 )(1 ( ) )A

A
α
α

ρδ
ρ ζ δ ζ δ−

=
− − −

. (83) 

Note that conditions (82) and (83) are analogous to the restricted case presented in Madhavan 
and Smidt (1993), where differences will appear in both the wedge associated with the 
inventory adjustment due to outq , in this case, 

1
( )A

α
α− , and the scaling of the updating 

coefficient, Ω  by the elapsed time fraction.  As indicated in Section II.D, the model 
presented would yield the informed trader of Madhavan and Smidt (1993) if the 
aforementioned effects are restricted away.   
 
Since δλ η= Ω , we can express the conditions imposed by (82) and (83) as finding a 

(0, )δ ∈ ∞  such that the function below satisfies: 
 

 
1 1

1

1 1 1

(1 ) 0
2 (1 ( ) ) 1 (1 )(1 ( ) )A A

α α
α α

δζ ηη
ρ ζ δ ρ ζ δ ζ δ− −

+Ω−Ω
− =

− − − −
 (84) 

 

Equation (84) represents a continuous function in δ , directly and indirectly through both Ω  
and β .  We can express ( )

(1 )1 1(1 )A β δα
δαδζ δ β += + = , and it is straightforward to show that as 

0δ → , 0Ω→ , and 1 0δζ → , and we can express ( )1 1 (1 )1( )A
δαβα

δα βα ζ δ −
+ +− = .  Hence, as 

0δ → , (84) is positive, and converges to 1
2 0ρ > .  Moreover, as δ →∞ , 1Ω→ , 1β → − , 

and 1 1δζ → − , and 
1 1( )A
α
α ζ δ− →∞ .  Applying L’Hôpital’s rule, it can be shown that (84) 

becomes negative, and hence, by the mean value theorem, (0, )δ∃ ∈ ∞ ∴(84) holds.  
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