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I. INTRODUCTION

Vector autoregressive systems { VARs) are a useful device to summarise and analyse the dynamic
interaction of a given set of variables of interest as originally proposed by Sims (1980). When
there are several decision units to be considered (i.c., several agents, countries, or sectors)On the
one hand, the possibility of pooling them in a single system emerges. Pooling different decision
units is attractive because it increases the number of degrees of freedom available and, potentiaily,
the efficiency of the estimates so obtained; thus, it potentially also reduces the risk of overfitting.*
On the other hand, pooling different decision units poses inferential problems with regard to the
representative or typical unit: it may introduce an aggregation bias, if the slope parameters of
individual regressions are heterogeneous, which is called “heterogeneity bias” in this literature.

We can think of a VAR estimated with panel data (a Panel VAR or PV AR) as a standard
dynamic panel data model (D PM) where no regressor is strongly exogenous.

Much of the existing literature on D PMs is focused on the problem of pooling heterogeneous
units with respect to the unconditional mean (the intercept of the regression equation), and/or the
uncondittonal variance (the variance of the error term in the regression equation), of the variables
of interest, The problem of pooling heterogeneous units with respect to the time series correlations
of the variables of interest (the slope parameters of the regression equation) has started to be
investigated only more recently by Robertson and Symons (1992) and Pesaran and Smith (1995).
Pesaran and Smith (1995), in particular, have shown that if the slope parameters of a standard
DFPM differ across individual units, then a number of commonly used pooled estimators give
rise to inconsistent estimates of the true cross sectional mean of the parameters of interest, even
when both the number of individual units and time periods are large. To solve this problem,
they propose an arithmetic average of the time series estimates of the parameters of interest, and
indeed they show that this estimator, called the mean group estimator, is consistent. Furthermore,
Pesaran, Smith, and [m (1996) give Monte Carlo simulation evidence showing that the bias in
conventional estimates induced by the presence of slope heterogeneity may be substantial m finite

samples.

This paper extends some of the results for heterogeneous D P M s of Pesaran and Smith (1995);
Pesaran, Smith and Im (1996) and Hsiao, Pesaran, and Tahmiscioglu (1997) to a PV AR

specification.

In the broader context of the existing theoretical literature on PV ARs, the analysis carried out

in the paper is limited in scope. First, consistent with the rest of the literature, I shall restrict my
attention to exactly identified V' A Rs in the time series sense and hence focus on the estimation

of the reduced-form of the model.® Second, [ shall assume that slope parameters are constant

2 The risk of overfitting is underlined by proponents of a Bayesian approach to estimation
of V ARs such as Doan, Litterman, and Sims (1984).

3 On the difficulties arising from the interaction between estimation and identification issues
in dynamic panel simultaneous equation models, see Krishnakumar (1996).



over time; consider only stationary systems; and, unlike most of the existing literature, focus only
on the estimation of the short-run dynamics of the system as Hsiao, Pesaran, and Tahmiscioglu
(1997) do.* Third, I neglect in part interdependence between individual units by assuming that
this can be satisfactorily modelled through the inclusion of common, exogenous, and observable
variables in each individual VAR as assumed.> Finally, motivated by typical macroeconomic
applications such as those using the Heatson and Summers (1991) dataset, as is most of the
literature, I consider only long panels and pay particular attention to unfavorable panel dimensions
in the Monte Carlo simulations. Nonetheless, the reduced-form model studied in the paper may be
applied to the analysis of the dynamic impact and the relative importance of different shocks—as
for instance done by Rebucci (1998)—or the analysis of Granger causality issues—as for instance
done by Carrol and Weil (1994)—when either economic theory or prior analysis of individual
time series indicates that stationarity is assured.®

Within the boundaries of these limitations, this paper studies the determinants of the heterogeneity
bias of the fixed effect estimator (FEY in a model in which the regressors are not strongly
exogenous, because either weak exogeneity or Granger causality fails, and studies the finite
sample properties of the F'F, MG, and a simple instrumental variable estimator {IV'), by means
of Monte Carlo simulations, in a model in which both weak endogeneity and Granger causality

fail.

The main results of the analysis are that (i) asymptotically, the heterogeneity bias of the FE may
be more or less severe in V AR specifications than in standard D P M specifications; (i1) in Monte
Carlo simulations, slope heterogeneity must be relatively high to be a source of concern for pooled
estimators; (1ii) when this happens, the panel must be longer than a typical macro dataset for
the MG to be a viable solution. The main implication of the analysis is that empirical Bayesian
estimators such as those proposed by Hsiao, Pesaran and Tahmiscioglu (1997) and Canova and
Ciccarelli (2000) seem more promising alternatives to estimate VARs with heterogeneous panel

data.

*  For surveys on the now large literature on nonstationary )P Ms and testing for unit root and cointegration in panel
data, see Banerjee (1999). Phillips and Moon (2000), and Simith (2000). For extensions

of some of these results to a general VAR specification, see Larsson ¢t al. (1998 and 1999) and Banerjee et al. (2000).
Note, however, that these latter contributions bring the analysis back to a pure time series

dimension, thus essentially defeating the purpose of using panel data estimators to improve efficiency and hence reduce
the risk of overfitting. Sec Holtz-Eakin et al. (1988) for a framework in which parameters

may change over time, and hence stationarity is not required, but must be homogencous across-section.

5 Both seminal contributions of Pesaran and Smith (1995) and Phillips and Mocn {1999) assume

cross-section independence. To my knowledge, Robertson and Symons (2000) were the first in this literature to develop
a seemingly unrelated regression model allowing for some, limited cross-section interdependence for panel data

sets of non trivial sectional dimension. Alternative approaches to modeling cross-section

interdependence typical of macro data sets include dynamic factor analysis pioneered by

Fomni et al. (2001} and numerical Bayesian estimation of large time series VARs proposed

by Canova and Ciccarelli (2000). But these contributions use rather different technologies than these used in this paper.

§ See Boyd and Smith (2000) and Attanasio and others (1999} for comparisons of the estimators
analysed in this paper with actual data.



The paper is organised as follows. Section II spells out the model and discusses alternative
estimation strategies. Section I11 studies the bias of the F'E estimator asymptotically. Section IV
sets up the Monte Carlo experiment and reports the finite sample results. Section V concludes.
The derivation of the asymptotic bias of the ¥ E estimator in the most general case considered and
the analysis of one of the two special cases considered are reported in the appendix. The GAUSS
code for the Monte Carlo exercise is available on request.

II. THE MODEL AND ALTERNATIVE ESTIMATION STRATEGIES
A. The Model

Consider the following general V AR describing the behavior of the " individual unit:
N )
Y;!f = Z Af,’s(Lﬁ?,z—l + X;,S(L)d;— + 0 E;.,t.' (1)
j=1

with
t=1,---N; t=1---Ty s=1,---5 andS <T.

Here, Y7, and d; denote, respectively, a (A1) and (Kz1) vector of individual and time specific
“and common-across-individuals observable variables of interest; AffS(L) and x; (L) are (MzM)
and (M K) time-varying matrix polynomials in the lag operator L (e.g., LY/, = ¥;,_.), of order
p and g, respectively; o is a (M 1) vector of individual spectfic fixed or random effects; &, , is a
(M 1) vector of error terms with ] , ~ 71d(0, ¥i,5); and S denotes the number of sub-samples.

This is a general heterogeneous PV AR in that, in addition to unconstrained contemporaneous
and lagged individual units’ interdependence, it allows for the maximum degree of parameter
heterogeneity, places few restrictions on the data as far as stationarity and exogeneity is
concerned, and is potentially suitable for forecasting as well as for inference and policy analysis.
Unfortunately, however, this model cannot be estimated in most commonly encountered contexts
without imposing additional restrictions.

Tn the rest of the paper, as anticipated in the introduction, I shall make the following assumptions,
for all 7
()The VAR in (1) is a covariance-stationary, mean square ergodic process and its parameters are

constant over time.

(11)Individual units are not interrelated except for common exogenous factors; thus, Z?:l A;’f'( ) =
AV(L) with E(zje,) = (I @ %), where ¢, = [ &, -+ &%y, |', E denotes the expectation
operator with respect to the distribution of £, I is an identity matrix of conforming dimension,
and @ denotes the Kronecker product.

(1ii)In addition, following Pesaran and Smith (19953), I assume that ¢} is a vector of constants to be
estimated (a vector of pure fixed effects) and A} varies across individual units according to the



random coefficient specification:
A= A, @

where A’ is a (MxA) constant matrix and »; is a (Mxz}{) random matrix distributed
idependently of =}, and Y7,. with zero mean and constant variance-covariance matrix equal
to Q—i.e., vec(r,) ~ iid(0,5). Thus, individual specific effects are fixed while the siope
parameters of the V AR vary randomly across section and are distributed independently of the
regressors and the error terms.

T assume further and without loss of generality that p = 1 and M = 2 and xj(L) = 0 for all i.7
Then, mode! (1) becomes the following stationary, bivariate heterogenous PV AR of first order:

Zit — A .Bi Zi -1 + o + Ef,t (3)
Tyt Yi P Tig—1 e Eim,t ’

where
f . f I -4 x 1 ot -1 i !
}/i,t = [ Zig o Lig } ) Oy = [ oy oy } B = [ €t it } :

X B, N o; ¢
A= [ i i ] > and E(cgrtsi’t) == l : ; :l .

Tt is now easily seen that Pesaran and Smith’s (1995) DPM may be interpreted as a restricted
heterogenous PV AR in which, in addition to the hypothesis (i)-(iii} above, 7, = 0 and the
“correlation” between the variables considered has been organized as “economic causation” from
7;, to 2;;. Pesaran and Smith (1995) specify the following heterogeneous dynamic panel data

model (DM PY: B
Zip = NiZigo1 + Pein + 0 Ul “4)

Ty = PFip—1 + 05 (1 = p) + ujy,

with
A 7 -
A=A gi=e At (5)
where 17} = [ T T has zero mean and constant variance-covariance matrix (©) and is

distributed independently of Y/, = [ zi; =i, | and wf, = [ uf, uf, 1, B(ufui,) = v,
E(ufug,) = vf, and E(u}ul,) = Bufwui;) = 0.5 1f we multiply (3) by the inverse of the

7 Assuming p = 1 and M = 2 is certainly not restrictive for the purpose of comparing

results with the 22PM literature. In addition, a VAR of order p may always be represented

in companion form as 2 VAR of order one. As shown by Abadir et a. {1999), however,

the number of variables entering a VAR may not only affect the efficiency but also the biases of the estimator used.

8 Here, the process for z;, does not need to be univariate and its lagged values can be
included in the equation for ; , without affecting the properties of the parameter estimates.
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unique matrix ®; such that ¥; = ®;V;®’ and drop (without loss of generality) the term B@&‘?i, (—1 in
the equation for 2, ; above, where

1 | vi O
o fi8) o[ 5]

z_

with A; = (A — Givi) = A, B = (B, — @), & = (of — 07 ), Ui, = (5f,t - @iaﬁt): u‘ft = E;ir,t:
and E(u} ui;) = E(®7V e} 2:,87") = V;, we then find that

1~ Zit N G Zit-1 oy i
) = o ' e | T T »
oLl ] e
which is exactly the same as (4). Thus, the key assumption distinguishing (3) from (4) is that, in
the latter, x; ; is weakly exogenous for the estimation of X, ¢, and z;; does not Granger-cause

T —i.e., ;¢ 18 strongly exogenous for the estimation of ; and :ii implying that the process of z; ;
and x; , can be estimated separately.”

B. Alternative Estimation Strategies

Suppose one is interested in estimating A (or A and ¢) the cross-sectional average of A; (or
and ., respectively). When 7 is large enough to estimate individual time series regressions
separately, this can be obtained in three different ways.! First, by stacking the data and using
pooled estimators such as the F'E estimator {(sometime called also least squares dummy estimator,
within estimator, or covariance estimator), the random effect estimator ( RE), or instrumental
variables-type estimators (I'V), possibly correcting for cross section heteroschedasticity in the
variance of the innovations U}, if necessary. Second, by averaging data across scction and
estimating an aggregate time series regression (AT'S). Third, by estimating individual time series
regressions and averaging these estimates across section or groups, a procedure called mean group
(M@G) estimation by Pesaran and Smith (1995)."

If the panel is not only /ong but also homogeneous in the slope parameters—i.c., n; = 0 for all

9 As known, this decomposition exists always but is not unique and depends on the variables’
order, The complications involved in moving from a standard DPM specification to a one
in which explanatory variables are only weakly rather than strongly exogenous are discussed also by Kiviet (1998).

10 Pesaran and Smith (1995) actually assume that 2, ; is strictly exogenous (i.¢., is independent of 1], at all lads and
lags) for the estimation of A; and ¢, in the equation for 2;,. This implics that parametrizing '
the equation for z;,; differently, as for instance by inverting the transformation discussed
in the previous sub-section, weak exogeneity of «; ; for the estimation of A; and ¢, in the equation for »; ; could fail,

11 There is also a fourth method that is averaging the data over time and estimating an
. aggregate cross section regression. While this estimator (sometime called between estimator) has
better asymptotic properties than pooled or aggregate time series estimators when the panel
is heterogeneous, it does not allows for estimation of the model’s short run dynamic, and thus is not considered here.

12 The average of time series estimates may be weighted or unweighted, in principle. In the paper, I used
only unweighted averages. The weighted average of the time series estimates is sometime called *Swamy estimator’, as
was originally proposed by Swamy (1970) for the estimation of static models with randomly varying slope parameters,
or empirical-Bayes estimator, as it can be interpreted as a ‘mixed estimator” in the sense of Theil (1971).
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i—-then all three estimation procedures yicld consistent estimates of the parameters of interest for
large T and fixed V, even though they are all biased in finite samples because of the presence
of the lagged dependent variable."® In this case, the choice among alternative estimators ought
to be dictated by efficiency considerations based on assumptions on the nature of the individual
specific effects () the initial condition of the data (z; ¢ and ; ), and the particular dimension of

the dataset at hand.

The FF estimator is asymptotically equivalent to the RE iestimator in terms of efficiency,

but since the latter is inconsistent when the individual specific effects are correlated with the
regressors even for large 77, the former is generally preferable. Simple 7V -type estimators and
generalized method of moments-type estimators (G'M M) are consistent also for large NV and fixed
T.'* In this case, GM M-type estimators are more efficient than simple 7V estimators, but they
have been shown to perform worse when T is relatively large because of overfitting problems.
Therefore, the question of how large should be 7" relative to N to prefer the FE estimator

to IV -type of estimators in long, homogeneous DP M s remains open.” In addition, the F'E
estimator and 1V -type estimators have recently been shown to be asymptotically equivalent in
terms of efficiency when both V and T are large, but their asymptotic biases depend on the rates
at which N and T increase in this case.'

If the panel is long and heterogeneous in the slope parameters, Pesaran and Smith (1995) have
shown that pooled estimators (the F K ¢stimator as well as 7'V-type estimators) and the ATS
estimator generally yield inconsistent estimates of A and ¢, regardless of the time dimension of
the panel, while the A/ estimator is consistent for both V and T large."”

To see why pooled estimators cannot be consistent, substitute (5) in the first equation of (4). The
model becomes:

A ¥
. z z
Zig = MZig1 + @i + 0f + Wi, Wiy = Upg TNy Zig—1 T 0 Tig (6)

It is now evident that the new error term, w;,, is contemporaneously correlated with the regressors
and also autocorrelated to extent to which the regressors are autocorrelated. Similarly, averaging
(4) across section (and denoting simple averages with over-bars), shows that the new aggregate

¥ See Nickel (1981) and Anderson and Hisiao (1981 and 1982) on the FE and simple
IV -type estimators; see Pesaran and Smith (1995) and the references quoted therein on the AT'S estimator.

% The literature on short, homogeneous I'P M s is vast and reviewed in any textbook on panel data analysis.

1% See Judson and Owen (1999) for Monte Carlo simulation evidence on the relative performance
of F'IY and I'V-type estimators in relatively long, homogeneous panels.

16 See Arellano and Alvarez, (1998) on this point.

17 See Hsiao, Pesaran, and Tahmiscioglu (1999) for altemative Bayesian estimators when
the panel is not only Aeterogeneous in the slope parameters, but also short,



error term is not independent of the aggregate regressors:
N
[— — — — — — '\ g
Zp = AZio1 + @I + W wf = uf -+ Z(m Zit—1 ﬂfi’iaﬁ,n)-
i=1

Pesaran and Smith (1995) argue also that standard corrections for error autocorrelation are
uniikely to solve this problem given the structure of the composite error terms (w;, and 7).
Similarly, they show that IV estimation can work only in very special cases.

More specifically, they study the heterogeenity bias of the I'E’ estimator and show that, when
there is only one source of slope heterogeneity, the probability limit of Mg and &g 18:

3 \ p(1-2p){1-22)8
i FFE _ T
N—,Iilgl_m ( Cpp— 0 ) o _;ppz(l‘ljj\g)ﬂ )

U= (i of) (1—p)) (1=2p)" + (1= XNp) 0+ (1—p") 3.

where

The size of this bias depends upon: (i) on the mean coefficients A, ¢, p; (ii) the variance of ¢,
denoted #; (iii) and the ratio (v7/v7), with @5 always underestimating ¢, and Apg over or
underestimatimating A depending on wether p is positive or negative. The bias disappears only if
p = 0or & =0, or if A approaches ong from below when p # 0 and # # 0. Moreover,

plim(:‘;FE) =1 plim{@,.) =0,

p—s1 p—
irrespective of the true values of A and .

In the case of a VAR specification, the MG estimator is the natural benchmark because it is
consistent under both heterogeneity and homogeneity, even though it could be less efficient
than the F'E under homogeneity.'® In addition, as noted, the RF estimator is asymptotically
equivalent to the F'E' estimator in DM P specifications if the individual effects are uncorrelated
with the regressors, but is not consistent when this assumption is violated. In order to avoid
making specific assumptions on the properties of the individual effects, I consider only the EF
estimator in the rest of the paper. At the same time, the A7'S estimator is unattractive even under
slope homogeneity in V AR specifications because it does not increase the number of degrees of
freedom available, which is often a critical issue in this context. Therefore, I shall not pursue this

18 The consistency of Ayer, @412, and their estimated varaince-covarjance matrix,
~ 13~ N o ~ N N
Qe = v E [()\z'o,zs = Aua) (Biors — “r';MG)] [()\ioz,s —Aura) {Fiors — ‘fMG)] ;
L
i=1

is proven by Pesaran, Smith, and Im (1996). Hisiao, Pesaran, and Tahmiscioglu (1999)

show also that the A7 estimator is asymptotically normal for large N and T as long as

VN/T — 0 as both N and T — oc. These results may be easily generalized to a VAR specificatiuon. The proof of the
consistency of the MG estimator and a discussion of its asymptotic properties is available on request.
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alternative estimation procedure further here.

Unlike in DIPM specifications, as noted implicitly by Holtz-Eakin et al. (1988), there are no
special cases in which one can find valid instruments for consistent estimation of the parameters
of a heterogenous PV AR. This is because both lagged 2;, and lagged z;, depend on n; and
ni in a VAR specification, and hence contemporancous and lagged z;,, are correlated with the
composite error term w; , even if the there is only one source of slope heterogeneity (ic., 7 =0
for all 4)."> More generally, exogenous variables that are uncorrelated with w;; will also be
uncorrelated with the regressors. Furthermore, as noted before, the class of IV -type estimators
for homogeneous DPMs is wide, ranging from simple first (or quasi-first) difference estimators
to computationally more demanding G M M-type estimators, but there is no consensus yet in the
literature on which is the most appropriate choice when the panel is long. Therefore, I shall not
investigate the heterogeneity bias of IV -type estimators asymptotically and will consider only a
simple IV estimator that has been shown to preform well when 7' is relatively large (by Judson
and Owen, 1999) in the Monte Carlo experiments.

Tn the next section, therefore, I study the heterogeneity bias of the F'E estimator, asymptotically.
In the following one, I compare the performance of the MG’ estimator with that of the 'l

estimator and a simple IV alternative by means of Monte Carlo simulations.

HI. ASYMPTOTIC ANALYSIS
A. Notation
In order to derive the FE estimator and its properties we need to establish some notation.

Let us transpose (1) and (2) and substitute the latter in the former to obtain:

Yie =Y 1A + o+ giy, A=A+, 8

Yie=VYie1A+o;+vig Vi.,t = €y + Yot 17y 9)

i=1,-- N, t=1--T,

where };,t = {%,t: T 1y@ﬂﬂ Y = {yzlt 1+ 795:{_1]9 0 — {C" R _,CL’?TL Eip — [E},u . ,E%Tﬂ,

Vig = Vi -+, v2i] have all dlmensmn (1:1:M)

Collect all T time observations for each individual unit ¢ in the (T'z M) vectors

Yii Yio V11 £1,0
Y;: 51/;,—1: ;V’i: :Eii ]

Yir Yiro1 viT Ei,T

19 See Pesaran, Smith, and Im, 1996, pp. 149-150.
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o write (8) as:

V=Y 1A +{®ir) + & i=1,---N. (10)
Applying the vec operator to both sides of (10) and defining 3; = vec(Y;), X; = (Iy @ Yi 1),

a; = vec(A;), g = vee(Z;), for all T time observations and each individual unit 7, the model can
be represented also in SUR format as:

¥ = Xia; + (i @ ir) — &5 =1 V] (11)
where ¥, (a; ® iy}, and g, have dimension TM 1, X; has dimension TMzM?, and g; has
dimension M?3zl.

Similarly, stack all IV time series in the (NTxA) vectors

Y Y V1 £
Y=1: YYo= 2V = e= {1 »
Yy Yn 1 VN EN
o
221
G = & 'iT = (23] .
iy
Gy |

with ¢, denoting a (T'xz1) vector of ones, to write (9) as:

Y=Y, A+a+F T=F+Y.m, (12)
Applying the vec operator to both sides of (12) and defining y = vec(Y), X = (I3; & Y1),

a = vec(A), a = vec(R®), v = vec(T), ¢ = vec(Z), the model can be rewritten in SU R format, for
all T time observations and N individual units, as

y=Xa+o+v

v =&+ Xvee(n,); (13)
where y, a, v, and & have dimension NT M z1, X has dimension NTMxM?, and a and vec(r;)
have dimension M%z1.

Now define the following matrix operators:

D=1y ®1r;
Pp =DD'DY'D = Iy Qipin /T = Iy ® ip(ifpir) ity
Qp = Iyt — Pp = Iyt — D(D'DY'D = Iy @ [Ip — ir(ipir)~ i)
P =1y ®Pp:

Q =1Iy®Qp;
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where D is the usual matrix of individual dummies, Pp and ) are the usual (symmetric and
idempotent) ‘between’ and ‘within’ operator, respectively (e.g., Baltagi, 1995), with Iy, Ir, Iy,
Inr denoting identity matrices of conforming dimension. P and @ generalise the latter two
operators to a system of seemingly unrelated regressions (SUR) (see Cornwell, Schmidt, and

Wyhowski, 1992).

Finally, define Hy = [I; —ip(ipir)~'i}] so that Qp = In © Hy. Noting that iy = T, we
can see by direct inspection that H transforms any row vector of T elements in deviations from
their average. It follows from this that the operator (7p; @ Hr) transforms all M components (of
dimension T'z1) of vectors like ; (of dimension TMz1) in deviations from their time averages;
and hence (I; @ Hy ) transforms the stacked vector of all 7' time observations on all M variable
of system (11) in deviations from time averages, for each individual unit 4. It is ¢casily seen that
(Ip; ® Hy) is also symmetric and idempotent as it has the same matrix structure as Qp-

B. Resalts

The General Case

Take deviations from time averages for all individual units NV by applying the generalized within

operator () to (13), to obtain: _
7=Xa+v,

where 77 = Qy, X = QX. 7 = Qu, and Qo = 0. The FE estimate of a therefore is:

G = (55’55)—1 (5537) . (14)

Proving the inconsistency of the FE estimator is a bit more tedious. In the appendix at the end of
the chapter, [ show that:

(E A7 (B [Ami])

plim (Grp—a) = (15)

My (B M) (B [a)

where
vee(A) = (I — A, ® A;)_l vee(X;)

with A; denoting the unconditional variance-covariance matrix of the data, nf the j** (M=z1)
column of vec(n,) for j = 1,--- M, and E the expectation with respect to the joint distribution of

Ai and Et

Under stationarity, the expectations in this equation are well defined and generally different
from zero. Equation (15), therefore, shows that the heterogeneity bias of the F I estimator
is asymptotically different from zero in general. In principle, an explicit solution for the
heterogeneity bias of the F'E estimator can be obtained computing these expectations under
suitable distributional assumptions for A; and ¥;. In practice, however, even the simplest,
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heterogeneous V AR specification has no closed-form solution.

Consider, for instance, (3) with only one source of slope heterogeneity and homoskedastic error

terms:

_ p z _z
Zip = A1+ B+ of +el,

1 xZT I .
Tig = Y1+ PTip—1 T 05 + &5,

;A B 10 & L e_ 09
A“['yp]’m_l()O]andzz_z_{qb'r]'

It is easily seen that

where

1-X =A3, —-\3, -3
=AYy 1=2Ap =By DB
N =By 1=XAp B
- = - 1

(- 4@ A)=

It can also be shown that the inverse of this matrix is given by

Tii: TirB  TafB; 1287
f__l_ Tixy  Tige Tiafy Tiahi
XY Tay TaaByy Tiee  Tiaf |

T-i,ﬂz Ti:S'}’ Ti,s’)f Ti_.B:S

(1 - A A)™

where:

Tio = (1=By—A—p+Ap)(1=By+A+p+p)(\p— v —1);
T ()\p2 — pBy — )\) :
Tia = —{(Ap—08y+1);
Tis = (Mp=A8v—0p);

Tign = (=3 + 0"+ 78+ 2o+ By — 1)

Tiny = (NP +Mpy+p + X+ 8y —1);

Tiga = (—/\3,0 + X AE + A+ By 1).

By direct inspection, we can also see that A; must equal the (2x2) matrix,
i,1 =3 :l

r— 4
i3 2

Ei,l = (Ti!1=102+2’r1‘11ﬁ33‘¢+ nggﬁ?”'g) ?

L1 1]

1
Tio

where

Sip = (TigY*o 2 igyd+ Tias)

Zis = (Ti1y0 + 220 + T80+ Ti,3f6i7_2) :

(16)

(17)
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In fact, its vectorised form is given by

vee(Ay) = (I — A @A) vee(T)

1 o - o = q
= [:i,l =i3 =43 %:,21

Tio

(Ti=1!10'2 + QT;;:LB?;(f) -+ Tiggﬁgﬁ"g)
1 | (Yi1v0° + Tigad+ YiofBiyd + TisBir)
T Yo | (Teavo? + Tigzod+ Tiafive + Tia8,7%)
(Tinv?0? + 2T 570 + TizaT")

Consider now the first equation of (3), with 1}’ = [ 0 & } denoting the first column of 7;.
Substituting for A; in (15) we find that, even in this simple case,

plim ( f-\\FE - ) = (18)

N—oc, T—oo F{QFE -_ JH

1 Ei,4§i _.:L..,. Ev’..l Ei,3 -
(E{T@:o [ Zi.s8s }}) (E{Ti,o [ Sig Sig ]}) ’

Zid — (Ti,1702+Ti,2,2¢5 + 108,70 + Tz‘,333:‘7'2) )

where

Sis = (TL?'TZ‘TQ*QT-LS”.’(b + Tq‘.,s.lg’fz) .

This equation cannot be simplified further without additional assumptions because it involves
non-linear functions of the random variable 3;. Tn the case of a general PV AR specification,
therefore, it is not possible to predict the sign and analyse the determinants of the heterogeneity

bias of the F'E estimator.

An explicit solution for the heterogeneity bias of the FE estimator, however, can be obtained
in two special cases of interest. First, a close form solution can be obtained by assuming that

v = 0—i.e., assuming that weak exogeneity of « for the estimation of A and /3 fails, but Granger
non-causality of z for = continues to hold. This case allow us to study the role of ¢ in (18).
Second, an approximate solution for v £ 0 can be obtained by assuming that ¢ — 0 and that

M\ = p = (—i.e., assuming that weak exogeneity of x for the estimation of A and 3 holds, but
Granger non-causality of 2 for x fails. This second case allows us to examine the role v in (18).
The next two subsections look at each of these two special cases in turn. A third special case, in
which both ¢ and ~y are different from zero but A = p = 0 and v = 1—i.e., a case in which both
distinguishing features of a PV AR specification are present—is analyzed by means of Monte
Carlo simulation in the final section of the chapter.
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A First Special Case: Weak Exogenity Fails

Let’s assume that ¢ £ 0 but y = 0, then (16) becomes:
Zip = Azig1+ BTz o + Ef}; s (19)

]

P — oy T I
Liy = PLig1t O T €.

In the appendix at the end of the chapter I show that, in this case,

N 3 p(1—2p)(1-2 )
i AFE - _ Uy ¥y . 20
(3 )| i | o
’ . ‘ - Wy o

where:

U o= (o)) (1- Pg) (1—Xp)’ + (1— )\2,02) w+(1- pg) 3%
Uy = —(¢/7) (1= p) (1 =2 = 2e/7) (1— ) (1~ N) B;
Uy = (¢/7)(1-0") (1= N) .

In this case, the size of the asymptotic bias of the F E estimator depends not only upon the mean
coeflicients (A, 3, p), the variance of 3; (), and the ratio (o2/72) as in the standard DPM case
analysed by Pesaran and Smith (1995), but also on the sign and the magnitude of ¢.% Moreover,
in the appendix, I show that in this case both 3,z and Apg may over- or underestimate the true
values of 5 and X depending on the sign of p and ¢ and the magnitude of the absolute value
of ¢ relative to the absolute value of (287/(1 + A)). If ¢ # 0, therefore, it is possible that the
heterogeneity bias compounds instead of offsetting the small T bias of the F'E estimator, thereby
yielding estimation results potentiafly more distorted than in standard DIPM specifications.
Nonetheless, the bias disappears if p = 0 or w = 0, or if A approaches one from below when p # 0
and w # 0, as in the case analysed by Pesaran and Smith. The result that

plim(’j\\pE) =1 plim(ﬁFE) =0

p—1 p—1
irrespective of the true values of A and ¢ also continues to hold, as ¥ and W3 tend to zero as p
approaches unity.

In summary, the main difference compared to the result of Pesaran and Smith is that, when ¢ # 0,
it becomes more difficuit to predict the sign of the heterogeneity bias of the FE. In particular, it
Is possible that the heterogeneity bias of both ez and 8pp compounds instead of offsetting the
small T bias if the correlation between the error terms is sufficiently enough.

20 Tndeed, it is easy to see that, further assuming that ¢ — 0 in (19), we obtain Pesaran
and Smith’s result previously reported in (7).
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A Second (Very) Special Case: Granger Non-Causality Fails

Suppose v # 0 but A = p = 0, then the model becomes:
Ziy = B 05 +Ely, (21)
333‘:,5 = YTit-1 - CL’;-U =+ Ef,t‘

Assume also, without loss of generality, that 6% = 72 = 1. Substituting these hypotheses in
equation (18) and simplifying the resulting expression, it is easily seen that:

plim f\\F 5= A =
N—oo T—0a IBF‘E - B

1| F (%5 B (w5 - ( ) ((1;2)60 (22)
A e s E(il_’*lf_) E(( ))E((l‘ﬁﬁ,”)

(1-65) (-A27)

sty (1))

If we now assume ¢ = 0 in (22), we can see that the heterogeneity bias of Arg vanishes, while

that of @F 1 15 given by:
E ( gl )
1-574°

plim (B - ) = ———-
N—ooT—oo E 1
(=)

where

By taking a second-order Taylor expansion around the cross-sectional mean of &, (which is zero)
of the two non-linear functions of ¢, inside the brackets of the numerator and the denominator
of this expression and calculating the expectations with respect to the distribution of §;, the
asymptotic bias of 35 can be approximated as follows:

plim (EFE - ﬁ)
N—oo—oa
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1 ™23 gyt 27 2
E (1_7252 + (1—12‘{32)25?: + ((1_72!32)3 + (1—-‘\'{2;32)2) g’y‘,)

E (0 + it (1_4;:;)253)

o

4+%8 W
=N

- 1 By 50 292 , :
= (e i)
(1—~%5") (1*B)w
(1- 72{32)2 + (674/32 +27?) w

According to this approximation, 3 #p, always underestimates 5. This bias vanishes only if

w = 0, or if either v or F are equal 0, or if |y/3| approaches one from below when w, 7y, and 3
are different from 0. For a given value of -y its size depends on the average value of the roots of
the system (equal to £=(y3)'/* in this case) and the variance of 3; (w). Moreaver, it is possible
to show that, for given values of v and /3, the bias is always increasing in w, by noting the first
derivative of the expression approximating the asymptotic bias of 3 g With respect to w 1s positive

if (l - (1 - 72,6’2) 2) > (0, which is always satisfied under stationarity. The relation between

average persistence (measured by the average absolute value of the roots of the system) and the
size of the bias for given variance of 3;, instead, does not seem to he monotonic.

This last point may be seen clearly in a very special case (a case analysed also by means of Monte
Carlo simulations in the next section) assuming that v = 1. If A = p = 0, stationarity requires that
|£(¥3)'/%| < 1 and constrains the range of variation of 3, for given -y, and vice-versa. If v = 1,
then stationarity requires |3;) < 1 for all i and average persistence increases one-to-one with /3.
Further, assume that &, is uniformly distributed over the interval [£w(1 — £)| with0 < w < 1
(where w now denotes a scale parameter that controls the dispersion of §; around a given /3), and
0 < /3 < 1 for simplicity.? In this very special case, the asymptotic bias of 5.5 is given by
1(1- 8% 8 (2FE)

12

(1- ) + (68° +2) (£52)

24)

plim  (Bep— )

N—oo,T—0oo

Figures 1 and 2 plot this expression (for 0 < w < 1 and 0 < 7 < 1) in absolute value and in
percent of the true value of 3, respectively. As we can see from these plots, the absolute value
of the bias increases with 3 initially, peacks around /3 = 0.5, and then decreases toward zero as
3 approaches one. In percent of the true value of 3, instead, the bias is monotonically decreasing
in 3 for any given value of w. The intuition is simple: slope heterogeneity induces correlations
between the error term and the regressors, and autocorrelation in the error term to the extent to

21 If ¢, is distributed uniformly over the interval [+w(1 — 3)], then 3, is also uniformly distributed
a2 — 32 . . B . . . . )
with mean J and vanance L};L Increasing w for given 3 therefore implies increasing the variance of 3;.
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which the regressors are autocorrelated. Higher persistence, induces stronger autocorrelation in
the error term, and hence a larger bias. However, since we have assumed that all V A systems are
stationary, above a certain level of persistence, the scope for heterogeneity decreases. In the limit,
when average persistence in the system is maximal, all individual units must have very similar
parameter values, and hence the heterogeneity bias disappears.

In summary, the main difference compared to the result of Pesaran and Smith for standard DPMs
is that, in the presence of a feedback from 2; ¢ to z;, (i.¢., when v # 0), the bias of [J‘ 7 does not
vanish even if the process for x; ; is serially uncorrelated. This confirms what previously noted
discussing the TV-type estimators, and thus that in VAR specifications there are fewer special
cases in which the heterogeneity bias of pooled estimators disappears. The magnitude of this
bias, however, could be small in percent of the true value of the parameters of interest if average
persistence in the system is sufficiently high. This forther suggests that slope heterogeneity should
be a more serious source of concern for V ARs estimated in first differences rather than levels of

the variables of interest.

The study of this second special case concludes the analysis of the large sample properties of the
F E estimator. [n the next section, I shall study the performance of the F'E, the MG and an IV
alternative in a model in which both distinguishing features of a V AR specification are present.
However, before proceeding, it is opportune to summarize the conclusions of the asymptotic

analysis.

When A = p = 0, the heterogeneity bias of the /' estimator disappears in a standard DPAM
specification. In a V AR specification, instead, it does not. Under stationarity, the expectations in
equation (22) are well defined and generally different from zero, and the bias depends on both 3,
and ¢, unless £, = 0 for all 7. Thus, predicting the magnitude and the sign of this bias theoretically
is difficult in a reasonably general case. However, we have shown that, first, the heterogeneity bias
of the FE estimator could change sign for a given average value of the parameters of interest if
the correlation between the error terms is sufficiently strong, possibly compounding rather than
offsetting its small 7" bias. Second, the magnitude of heterogeneity bias of the F'E estimator
may be small relative to the true value of the parameters of interest if persistence in the system
is relatively high. In a VAR specification, therefore, the heterogeneity bias of pooled estimators
could be more or less severe than in standard DPM specifications.

1V. MONTE CARLO ANALYSIS

This section looks at Monte Carlo simulation evidence in a specification in which both weak
exogeneity and Granger non-causality fail (i.e., both ¢ and ~y are different from zero) while

X = p = 0. The model studied is (21) and the implicit form of the heterogeneity bias of the
FE estimator is given by (22). This simple case is interesting because it helps us analyse

the interaction of the two distinguishing features of a VAR specification discussed above, the
contemporancous correlation between the variables of interest and their lagged interdependence,
while maintaining full control over the Monte Carlo experiment. Richer V AR specifications (e.g.,
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with A #£ 0 and/or p # 0, or with multiple sources of heterogeneity) would be more realistic, but
the generalizability of the Monte Carlo results (in the sense of Hendry, 1984) would diminish
because it would be practically unworkable to control for all the features of the model potentially
affecting the outcomes of the experiment. The model is also interesting to analyse because the
short run effects of z;, on %, and z;; on x;, coincide with their long run effects under the
assumptions made.

In the rest of this section, I will compare the performance of alternative estimators under different
assumptions on the siz¢ of the panel, and degree of heterogeneity and average persistence across
sectton. The next subsection describes the set up of the experiment. The following one reports
and discusses the simulation results.

A, Experiment Design

Following Pesaran, Smith, and Im (1996), and consistently with the analysis in the previous
section, [ consider only one source of slope heterogeneity (i.e., 3; = 3 + &; with §; uniformly
distributed over the interval [+w(1 — )| with 0 < w < 1and 0 < /3 < 1). Unlike Persaran ¢t a.
(1996), I use the uniform rather then the normal distribution to characterise the cross-sectional
distribution of £, because this allows me to control for the degree of slope heterogeneity introduced
in the model through a single scale parameter (w), while guaranteeing that no individual unit
violates the stationarity assumption as long as |y4] < 1.2

Somewhat arbitrarily, I maintain v = 1 throughout the experiment and let 3; vary in the open
interval (=1). If v = 1, the absolute value of the true cross-sectional mean of 3; (|5|) controls
the average degree of persistence in the model. This is minimal for |5 = 0 and maximal as |5
approaches one. As the variance of 3, is fi%;—"r’iz, for given persistence, w controls the dispersion
of the cross-sectional distribution of 3; around S (i.e., the degree of slope heterogeneity introduced
in the model), which is minimal for . = 0 and maximal for w = 1, always ensuring that both
individual eigenvalues are less than one in absolute value.”

1 consider the specific values 5 = {0.2;0.8} and w = {0;0.2; 0.8}, which represent six points
in the parameter space plotted in Figures 1 and 2 and characterised in the table below for

w # 0. Choosing 3 = {0.2;0.8} implies average characteristic roots equal to +0.45 and
+0.89 respectively: a relatively low and relatively high degree of average persistence. Choosing

22 Hsiao, Pesaran, and Tahmiscioglu (1997) use the truncated normal distribution rather
than the uniform in their Monte Carlo experiment to avoid explosive (or unstable} simulated
series. There are two reasons why I prefer to use the uniform distibution. First, under
this assumption, I can derive the exact asymptotic value of the heterogeneity bias of the F'I estimator in the special
case section in which ¢ = A = p = 0 and vy = 1 by integrating analytically the numerator and the denominator of (23).
Second, assuming that slope heterogeneity is uniformly distributed within some theoreticatly
determined bounds does not seem a bad assumption in practice: it is not immediately evident that one could have strong
a-priori reasons to assume a hump-shaped distribution across sections for the short run parameters of interest.

23 As already noted, if A = p = 0, the eigenvalues of individual VAR systems are given
by £+/7v3,. Stationarity requires that |+, /”r'.5i| < 1 and constrains the range of variation of 3; for given -y, and vice-
versa. Therefore, if £, is distributed umiformly over the interval [=tw(1 — )], stationarity is assured for all ¢ for given .
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w = {0;0.2; 0.8}, means considering the homogeneity case, a case of low heterogeneity, and a
case of high heterogeneity, relatively to a given level of average persistence. In fact, we can see
from the table below that, under the assumption made, the range of 3; and £, and the variance of
3., for given absolute of the average roots in the system, increases monotonically.

Characterising four points of the parameter space
F=w=102 F3=08w=02 f=02w=08 f=w=08

Average roots +0.4 +0.9 +0.4 +0.9
Range of 3; (+0.36] [+0.84] [+0.84] +0.96]
Range of ¢, [£0.16] [£0.04] [+0.64] [+0.16]
Variance of 3; 2.1 x 107° 1.3x 1074 3.4 x 1072 2.1 x 1073

I assume an homogeneous variance-covariance matrix of the error terms and set % = 7% = 1.
The choice of a homoskedastic specification is dictated by the desire to assess the influence of ¢
on the finite sample properties of the estimators considered in insulation from the possible role
of its heteroskedasticity. By setting 72 = 72 = 1, ¢ does not only determine the covariance
between z and 2, but also their correlation which is bounded to lie between —1 and 1. [ consider
¢ = {0; 0.9}, the case of uncorrelated error terms and the cases of, either positively or
negatively, highly correfated error terms to highlight the potential effects of this feature of the
model on the finite sample properties of the estimators.

I examine typical dimensions of a macro panel dataset and, in addition, one case¢ to control for
situations in which there are very few individual units, likely to arise in working with subgroups
of individuals, as for instance in the next chapter of the thesis:

(N, T) = {(50,50); (20,50); (50, 20): (20, 20; (10, 50)} .
Finally, the vector of error terms is generated from a bivariate normal distribution with variance-

covariance matrix ¥ and the initial conditions equal zero, while a standard assumption is made to
generate the individual effects of and of. Thus:

[ u;ﬁ,i ] ~ NITD(0,%), Y= { 1 @} , ¢ = {0; £0.9},

Uiy
ZiD _ 0
Zin o 0 !
af ~ NIID(1,1)
of ~ NIID(1,1)

Each experimental run is based on 1000 replications and different runs start from the same seed so
that the results can be easily replicated, and different experimental runs are based on the same set
of randomly generated numbers. For each replication, 30 + 7" observations are generated with the
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final T observations used to compute the estimates.?

B. Results

Tables 1 through 5 report the results of the Monte Carlo experiment. The experiment consists of
90 runs or different cases (5 panel dimensions, times 2 degrees of persistence, times 3 degrees of
heterogeneity, times 3 values of ¢).

Each table reports the results for a different panel dimension: Table 1, (N, T) = (30, 50);
Table 2, (N, T) = (20,50); Table 3, (N,T) = (10,50); Table 4, (N,T) = (50,20); Table 3,
(N, T) = (20,20)).

in these tables, heterogeneity increases from left to right (w = 0,0.2,0.8), and the
contemporaneous correlation of the error terms varies from top to botton (¢ = 0,0.9, —0.9).
Persistence is relatively low (3 = 0.2) in the upper part of the tables and is relatively high in the
lower part (3 = 0.8). Inallruns, A = p=0and v = 1.

For ¢ach run of the experiment, the tables report the estimated parameters (A and 3, denoted
‘Lambda’ and ‘Beta’ respectively in the tables), their estimated standard errors (denoted ‘S.e.”),
the absolute value of the finite sample bias (denoted ‘Bias”), which equals the estimated parameter
value in the case of A, their experimental standard deviations (denoted °S.d."), and, for 3 only, the
finite sample bias as a percentage of the true value of 3 (denoted as “Fbias as % of true value”).

If applicable, the exact asymptotic bias of /3 as a percentage of its true value is also reported
(denoted as “Abias as % of true value™), where the latter is computed by integrating analytically
the two expectations in (23) with respect to the distribution of £; under the assumptions made in
the experiment and described in the previous subsection.

Homogeneous Panels

In the benchmark case of a homogeneous, large and long panel dataset with relatively low
persistence and no correlation between the error terms (see upper left corner of Table 1), the TV
estimator does quite well with very small finite sample bias and standard errors, which, although
considerably higher, are of the same order of magnitude than those of the FE and the MG
estimators. The F'E estimator performs well too in this benchmark case, even though, as expected,
the finite sample biases of 5 and A are of one and two orders of magnitude larger than those of the
IV estimator, respectively. The MG estimator, in this case, scores as well as the F'E estimator in
terms of efficiency and finite sample bias of the estimate of A. However, it clearly underperforms
the F'E estimator in terms of bias, underestimating the true value of 3 by more than 14 percent
even when 7" = 50. The downward bias of the F'E, instead, is only about 7 percent in this case.

Decreasing NV to 20 for fixed T = 30 does not affect these results (see Tables 2 and 3), while
decreasing T to 20 for fixed N = 30 has strong impact (see Table 4): in this case, the bias of the

24 The Monte Carlo experiment is programmed in Gauss and the code is available on request.
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F I estimator of 3 increases to morc than 15 percent of the true value and that of A moves from
-0.02 to -0.06 in absolute value; the M G’s bias of 3 shoots up to more than 30 percent of the true
value and that of A rises from -0.03 to -0.06 in absolute value.

Interestingly, the introduction of a correlation between the error terms in the benchmark,
homogeneous case above (i.e., N, T = 50,50 and ¢ / 0) affects considerably the MG and the
FE estimates of both A and /3, albeit in a different way: the bias of A is smaller (larger) in absolute
value than the case in which ¢ = 0 if ¢ > 0 (¢ < 0); the bias of 3 is always larger and even more
so when ¢ < 0. The IV estimates of A and 3 are also affected by ¢ + 0 in a similar way, but the
magnitude of this effect is practically insignificant.”

Experimenting with larger time dimensions, everything else equal, i.e., 7' = 100 and 7" = 200, it
was possible to establish that we would need at feast 70-75 time observations to bring the MG
bias down to below 10 percent of the true value of 3 with ¢ = 0, and more than 160 observations
to bring it below 10 percent with ¢ = —0.9. Instead, only 60-70 time observations would be
needed, instead, to get the bias of the F'F estimator of /7 down to below 10 percent of the true

value even with ¢ = —0.9 (Results not reported).

Increasing persistence by rising 3 from 0.2 to 0.8 (see lower part of Table 1) reduces the bias

of the F'E and the MG estimators considerably without affecting their efficiency. The standard
errors of the IV estimates, instead, increase dramatically with persistence. Decreasing N to 20
for fixed 7' = 30, with relatively high persistence (see lower part of Table 2), does not affect
the results for F'E and the MG estimators, but exacerbates the inefficiency of the IV estimator,
which yield a standard error of the estimate larger than the estimate itself in this case, and hence
render this estimate of 3 insignificant. Instead, reducing T to 20 for fixed N = 50 (see tower part
of Table 4) pushes the biases of the F'E and MG estimators back to their benchmark values under
low persistence and renders the 7V estimator not only inefficient but also as biased as much as the

MG.

In summary, this first set of Monte Carlo results in the absence of slope heterogeneity bears out
a well known conclusion in the dynamic panel data literature and help to qualify it in the case
of a VAR specification: there is a trade-off between consistency and efficiency in estimating
homogeneous models suggesting to use [V -type estimators when the panel is relatively short and
FE or RE-type estimators when the panel is relatively long—say 7" > 20 — 30, as recommended
by Judson and Owen (1999). However, one should not disregard the small sample bias on
coeflicients other than that on the lagged dependent variable as negligible when working with a
V AR specification because, as we saw, their small 7" bias may be substantial. In addition, and
more importantly, in a VAR specification, the number of time observations needed to reduce
the small T bias of FE and RFE-type estimators is probably larger than 20-30 as generally
recommended for standard DPMs because the variance-covariance matrix of the error terms is
unlikely to be diagonal in practice. In a VAR specification, the time dimension needed to neglect
the small 7" bias of these estimators appears to depend upon the degree of persistence at system

%5 Note that these results are fairly robust to increased persistence and/or changed panel dimensions (see below).
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level rather than only upon the average value of the coefficient of the lagged dependent variable
as in a standard DPM. By pushing up the estimated standard errors of IV-type estimators and
pushing down the bias of FE and RE-type estimators, for a given T, higher persistence may
actually tilt the balance in favor of the latter.

Heterogeneous Panels

Under relatively low heterogeneity, the results are generally very close to those under homogencity
(see the second three columns of each table). 1 deduct from this that heterogeneity must be
relatively high to be a serious source of concern in finite samples for pooled estimators. Instead,
as expected, the bias of pooled estimators of both A and 5 may sizable under relatively high
heterogeneity (see the last three columns of each table).

In the benchmark case of a large and long panel dataset with relatively low persistence and
uncorrelated error terms (see upper right part of Table 1), the IV estimator does particularly badly.
Tts biases and standard errors arc larger than those of the F'F estimator and the MG estimator,
respectively. Instead, the MG estimator does quite well in this case, with biases less than half
those of the F'E estimator in absolute value and standard errors considerably higher than those
of the F'E estimator only for 3.2 The FE estimator lies between the MG and the IV estimator,
with a bias (of approximately 30 percent of the true value for 5) comparable to that of the 7V
estimator and the lowest standard errors.

Two more facts are worth noting from the resuits in this benchmark, high heterogeneity casc.
First, the presence of slope heterogeneity appears to exacerbate the (negative) small T bias of
pooled estimates of \: the FE and IV estimates of A equal —0.05 and —0.08, respectively,
compared to a true values of zero and estimates under homogeneity equal to —0.025 and 0.0001,
respectively (see upper left part of Table 1). Second, the heterogeneity bias of the F'E estimator
of /3 appears to approach its asymptotic value rather quickly. The overall finite sample bias of
the F'E estimator of 3, in fact, turn out about 60 percent of that predicted by asymptotic theory
(i.., 48 percent of the true A in this case—see “Abias as % of true value” in the upper right part
of Table 1). This despite a small T bias of opposite sign partially offsetting it. At the same time,
decreasing T for fixed N, the heterogeneity bias of the FE estimator of 3 drops to less than 20
percent of its theoretical value (see upper right part of Table 4), while decreasing N for fixed T’
(see upper right part of Table 2 and 3) leaves it above 50 percent of its asymptotic value.

The results found by introducing correlation between the error terms are similar (see middle right
part of Table 1). In this case too, the MG estimator performs better than the F E estimator, which
in turn improves upon the 7'V estimator. We have no theoretical benchmark for the asymptotic
value of the heterogeneity bias of the F E estimator when both ¢ # 0 and vy # 0. Nonetheless,
it appears that introducing correlation between the error terms compounds rather then offsetting
the small T bias of both ) and 3, when this correlation is large. This result suggests that the

26 Note however that. even if the number of individual units is relatively small (N = 20 for T' = 50), the MG
estimates are still precise enough to distinguish between the significance of 5 and the insignificance of
X (see upper right part of Table 2). This ceases to hold for a very small N, sayN = 10 (see Table 3 and the text below).
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heterogeneity bias of the F E estimator of 5 has the same (negative) sign as the small 7" bias when
the error terms are strongly correlated, regardless of the sign of this correlation, thereby giving
rise to potentially more distorted estimates that in a standard D P .

A smaller N = 20 for fixed T = 50 does little difference to the performance of the MG estimator.
But a very small V (say equal 10) does affect the efficiency of the estimates obtained considerably
(cfr. Table 2 and 3).

None of the estimators considered give satisfactory results if the panel is heterogeneous and
relatively short. A shor T = 20 for fixed N = 50 causes much more serious problems, especially
for the estimation of /3 (see Table 4). The small T bias of the MG estimator increases sharply to
about 30 percent of the true vatue of 3 when ¢ — 0, and exceeds 60 percent when ¢ = —0.90. On
the other hand, the small 7" bias of the F £ estimator is large enough to offset the heterogeneity
bias almost completely when ¢ — 0, yielding an overall finite sample bias that is less than 10
percent of the true /3 in this case. But, as already noted, its performance deteriorates sharply once
correlation between the error terms is introduced (with a bias equal to almost 70 percent of the true
value of 3 if ¢ = —0.9). This is because of the strong compounding effect of the heterogeneity
bias of 3. If the time dimension of the panels is reduced from 7' = 50 to T = 20 for fixed N = 30,
with or without correlated error terms, the performance of the 7V estimator does not deteriorate
further (as compared to the benchmark heterogenous case in which 7' = 50 and N = 50), but it
does not improve either; the 7V estimator is still of no help in this case.

All three estimation procedures show lower finite sample biases when persistence is higher (see
bottom right part of Table 1), and hence better performance. The I'E and the MG estimators
also have somewhat lower standard errors in this case, while the efficiency of the IV estimator
deteriorates further, compared to the case in which persistence is low; thus, yielding a misleading
estimate of 3. Interestingly, in this case, the F'F estimator behaves better than the M (7 estimator
even in terms of bias: the bias of the F £ estimator in percent of the true value of 3 is about

4 percent when ¢ — 0 (compared to a theoretical value of 6.2 percent), about 2 percent when

® = +0.9, and about 7 percent when ¢ — —0.9, whilc the biases of the MG estimator are -6.2,

-8.0, and -9.5 percent, respectively.

The asymptotic analysis in the previous section suggests two reasons for this result. First, as
shown by Figures 1 and 2, higher persistence reduces the scope for heterogeneity under the
(“homogeneity”) assumptions that all individual V AR systems are stationary; the asymptotic
value of the heterogeneity bias of pooled estimators should be relatively smaller in these cases.
For instance, when ¢ = O and v — 1 and 3 = w = 0.8, the variance of /3; is one order of
magnitude smaller than that implied by ¢ = 0 and v = 1 and 3 = 0.2 and w = 0.8 (see summary
table in the text above), and the asymptotic bias of the F E estimator decreases from 48 percent to
just over 6 percent of the true value of /3 in this case (compare “Abias as % of true value” in the
upper and lower right part of every table). Second, the heterogeneity bias of the F'L estimator
seems to be become positive when 3 increases from 0.2 to 0.8, and hence offsets rather than
compounds the effect of the F E’s small 7" bias; a possibility which we had identified clearly in
the case (not considered in the Monte Carlo experiments) in which ¢ # 0, buty = 0.
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With relatively high persistence, as in the case of low persistence, a smaller N = 20 for fixed

T = 30 affects negatively the efficiency of the F'E and the MG estimates, but leaves their biases
almost unchanged (see bottom right of Table 2). Instead, decreasing 7" to 20 for fixed N = 50,
increases their small 7' biases enough to offset completely the heterogeneity bias of the F.E
estimator and to push the bias of the MG estimator well above 10 percent of true value of /3,
regardless of the value of ¢ (see bottom right part of Table 4). As a result, in this case, the F'E
estimator does remarkably better than the MG notwithstanding a relatively high degree of slope
heterogeneity. If either of the two panel dimensions is decreased, with high persistence, the IV
estimates of both A and 3 become misleading (see bottom part of Table 2 and 4), and break down
completely when both panel dimensions are relatively small (see Table 5).

In summary, in a model in which both distinguishing features of a V AR specifications are
present, IV -type estimators can yield very misleading results if the panel is heterogeneous: they
are not only inefficient, but also badly biased. The performance of FE and RE-type estimators
depends on the time dimension of the panel, the degree of average persistence, the degree of siope
heterogeneity, and also the strength of the correlation of the error terms in a V AR specification.
The presence of strongly correlated error terms, in particular, may induce shifts in the sign of the
heterogeneity bias of these estimators regardless of the degree of persistence. Tt is thus difficult to
formulate recommendations that have general validity.

Nonetheless, we learned that F'E and RE-type estimators may produce better estimates than
the MG in some points of the parameter space, even under relatively high heterogeneity, and
particularly so in the presence of high persistence and contemporaneous correlation among the
error terms.? This is because the small 7" bias and the heterogeneity bias of these estimators have
opposite sign in some points of the parameter space. By the same token, in those points of the
parameter space in which the heterogeneity bias has the same sign as the small 7" bias, the FE
estimator may perform particularly badly. The MG turns out a safe bet when heterogeneity is
high and 7 is very large. However, if T is not long enough, the MG risks solving one problem by
creating another one of equal magnitude and opposite sign. When the panel is heterogeneous and
relatively short—say as short as 7' = 20, which would be regarded rather long in the traditional
literature on 12 P M s—there is no obvious solution to the problem posed by slope heterogeneity.

In this latter case, a Bayesian estimation approach, as pursued by Hsiao, Pesaran, and
Tahmiscioglu (1997) for DPMs and Canova and Ciccarelli (2000) for PV ARs, seems a viable
solution, as long as the cross-sectional dimension of the panel is moderate. In fact, computational
costs are likely to limit the applicability of the estimation procedure proposed by Canova and
Ciccarelli (2000) to very large cross sections of multivariate time series.” Alternatively, one could

27 Persistance and contemporaneous correlation might explain why Attanasio et. al (1999)

do not encounter significant differences between F'F and M estimates when applied to

a VAR for saving, investment, and growth in a large sample of industrial and developing countries despite

the evidence of relatively high heterogeneity, at least among developing countries, provided by Boyd and Smith (2000).

28 One additional advantage of a Bayesian estimation approach to panel VARs is that the problem posed by norn-
stationarity can be solved in much more simple and direct way in this framework by designing appropriate priors. (Sec
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try to correct the MG estimator for its small T" bias by using expansions similar to those derived
by Pesaran and Zhao (1997) for standard D P M s, or to develop a correction for the F'E estimator
based on approximations of its heterogeneity bias similar to on¢ developed in the previous section
of this paper in the special case in which v # 1 but ¢ = 0 and advocated by Judson and Owen
(1999) for standard DP M s.

V. CONCLUSIONS

Applied researchers sometimes estimate ¥ ARs with panel data relying on known asymptotic and
finite sample results for DPAMs. In this paper, I have shown that estimating a V AR with a macro
panel dataset may be more complicated than that: the choice of the right technique depends on
the time dimension of the dataset, the dispersion of the cross-sectional distribution of the slope
parameters, the average degree of persistence in the system, and the variance-covariance matrix
of the error terms, including particularly the strength of the contemporaneous correlations that are
usually different from zero in most applications.

The asymptotic analysis suggests that (i), in a model in which strong exogeneity fails because of
contemporaneous correlation between the error terms, the covariance term may add or subtract
to the magnitude of the heterogeneity bias of pooled estimators, depending on its own sign and
magnitude, and may induce changes of sign in the bias as compared with the case in which the
error terms are uncorrelated; (ii) in a model in which strong exogeneity fails because of a lagged
feedback from the endogenous variable to the weakly exogenous variable, the heterogeneity bias
in relation to the true value of the parameters of interest is always positive, increasing in the
degree of heterogeneity for given persistence, and decreasing in the level of persistence for given

heterogeneity in the system.

These results suggest that it is more difficult to predict the sign and the order of magnitude of the
heterogeneity bias of pooled estimators in a general V AR specification than in a standard DPM,
and warrant particular caution when the V AR is estimated in first differences (and persistence
is usually lower), or when the estimated elements of the correlation matrix of the reduced-form
residuals are relatively large (as often happens when estimating V AR in levels).

The Monte Carlo experiment indicates that (i) the finite sample value of the heterogeneity bias
of pooled estimators converges rather quickly to its asymptotic value, at least in the very special
case for which we have both asymptotic and small sample results; (ii) the dispersion of the slope
parameters around their mean must be high in absolute terms for the heterogeneity bias of pooled
estimators to be substantial: (iii) the FE estimator may perform worse than in standard DPM
specifications in those points of the parameter space in which the heterogeneity bias has the
same sing as the small 7" bias, but could perform better than the MG estimator in others, and
particularly so when persistence is relatively higher; (iv) on the other hand, the time dimension
of the panel must be longer than generally thought for the small T" bias of the 3/ G estimator 10
be negligible when the covariance of the error terms is different from zero. The Monte Carlo

a special issue of the Journal of Applied Econometrics (1991, Vol. 6.) for more details on this issue.
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experiment has shown also that (v) a few individual units are sufficient to obtain relatively efficient
M@ estimates, and (vi) IV -type estimators are particularly vulnerable to slope heterogeneity
and/or high persistence, but they perform very well if the panel is relatively homogeneous and
persistence is low.

These resuits suggest using the MG estimator only when slope heterogeneity is relatively high
and the time dimension of the panel is very long. However, how heterogeneous a panel dataset
must be to become a source of concern, and how long the panel must be for the mean group
estimator to represent a valid solution, remains an empirical question given that the actual size of
the overall biases will depend on the nonlinear interaction of a large number of parameters. More
generally, these difficulties suggest that other approaches, such as those proposed by Pesaran et al.
(1997) and Canova and Ciccarelli (2001), could be more successfully applied to the estimation of
VARSs with heterogeneous macro panel data.
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I. THE HETEROGENEITY BIAS OF THE FIXED EFFECTS ESTIMATOR

A. The General Case

From (14) and (13) in the text, we know that

e = (¥%)" (79)

- ( X (XXa+X")

= a+ (X 55) - (%9),
asy = Xa + 7. Hence, as (2 is symmetric and idempotent,

Gre—a) = (XX) " (X7)
(X'QX)™ (X'Qu).

In order to derive plimy_, . r_,. (@re — a) we need to take a few intermediate steps.

First, note that
N
Yo (In®@Hp) Yo=Y Y, HrYi 1.
=1

In fact, suppose N = 2,

Hr 0O ¥, _
e mva = (L w10 4 ][]
= }/1’,—1HTY1,—1 + YVQZ_IHTYQ’“:[

2
= > Y HpYi .

=1
Then, because of the definition of X, ), and v, and the properties of the Kronecker product, we
have

XQX = (IuoY.,)(Iu®@Qp)(Iu®@Y,)
= (Im®@Y.,,QpY-;)
= (IM®Y’ IN®HT )

N
= Iy® Z Y HrYi 4,

i=1
Ziv=1 Y/ (HrYi1 0 0
- 0 0
0 0 Zil Yi{—lHTY;,—I
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and
X’QV = (IM®Y11) (IM ®QD)V
= (In®@Y',Qp)v
Vl
= (In®Y,Qp) | :
M
Y!,Qpv!

L YilQDVM

Y, (Iy © Hy) o'

| Y/, (In ® Hr)v™

[ Zil }/i‘:—lHTV%

| XL Yo Hrvl!
where ¥; _jis the ¢*(TzM) element of Yy v9 = [l -+ vigp oo Wy ] isthe

. . L7L
5% (NTzl) element of v, and ] = [ vl -« vlp ] is the i** (Tz1) element of v/ for
j = 1,--- M. Note also that v =&l Y1 7 where 17} is the j®* (Mx1) element of
( s with =1, - ey ]’ being the j* (NTz1) element of & and
= [ “ee s:g,T ]’ being the it* (T'z1) element of £/ for j = 1,- - - M. Therefore,
-1
(Zil Yz’f—1HTYi,—1) (Zil }/;':—IHTU})
(EFE - a) = . (25)

ORI AN N (SN, Y2 Hyvk)

Second, since (8) is covariance-stationary, assuming further that the process started a long time
ago (i.e., lim,—,o; Y7 —s A = 0), we have:

Y (qu. ® ZT "l'" Z Ez -—S 'R (26)

and thus
}/1, 1= (a’l b3 ?'T + Z £; -s-lez'; (27)
Y/ = -A) " (u®ir) + Z AYE_, ), (28)

5=0
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where €; _, (] _,) are the (T'z M) martices of observations on the sth-order lags of ;. In fact,

Vi = YioA+oQir+s
(Vi 2Ai +a; Qip +ei1) Ai + o @i7 + 5
= Y 0A? + (i ®ir) + (4 Qir) Ai + & + Eim1 As
Y;,_sAf + (o ® i7) + (0w @ 1) Ai + (0 ® i) A2 4 + B A B o A

{

= lim Y. A} + (o ® ir) 1y ZE“ —sA;.

S—rO
s=0

Third, following Appendix C of Pesaran and Smith (1995), it is possible to show that:

. g;,..sH'I‘g‘i,—T ¥ for s=r7
() B

Finally, note that

N
N Y HrYi_ Y{_ HrYi_
plim (Zﬁ-l o ‘) __phm-—E plim (— 1; : 1) (30)

N—oo,T—co NT N—-N)O T—}oo
: Pl Y1-'—1HTVéj) 1 (Y Hw!
plim ( et = plim — E plim [ ———— 31
N—ooo,T—co NT N-so0 N =1 T—oo T

forj=1,- M.
Consider first plimy_,, (Y/_, HrYi _1/T) in (30). Substituting (27) and (28) for ¥; _; and Y} _,
we have:
. Y;’_lﬂTn,—l
plim | = ———— (32)
T T
= plim ((I — A Y (i ®ip) Hr (e ®i7) (I — A,-)_l)
T—oo T
' ((Es“"qs"i o) Hr (z:r;oa,ﬂ_m;r))
+ plimn
T—oo T
- ZAS’E*'AS = A= E(Y_,Yi1)
5=0
where

vec(A;) = (I — A, @ A P vec(Sy),

with F denoting the unconditional expectation with respect fo the distribution of €;. In fact,
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(@ @ iz) Hy = 0, plimq_ . (:“;L) — 0 for s # 7 because of (29), and

vec (i Af’EiA;?)
s=20

vee (AT, A7)

|
NE

0

S

(AY @ A7) vee ()

s 11

(Al ® A;) vec (%)

I
(=1

5

= (I-A'®A)  vec(Sy),

where vec(A+ B) = vec(A) +vec(B), vec (ALB) = (A ® B)veck, and (A* @ B*) = (A® B)*
for any suitable matrix A and B, because of the properties of the vec operator and the
Kronecker product, with the last equality of this expression deriving from a standard multivariate
generalisation of the convergence of an infinite geometric series with argument less than one in
absolute value, under stationarity.™

Consider then plimTHw(Y;’,leTuf/T) in(31) for j = 1,--- M. Recalling that V{ = sj-; + 1’2,717?‘;,
where 7} and &! were defined above and substituting this in (plimg_,.. (Y] _; Hyv]/T)), for
j=1,--- M, we obtain:

Y H ;4
glim (%TJ) (33)
—00
= plim { Yenrfroi) oy (il
e Y P\ T )"
= (ZA:'&A;*) U
=0
= Ainga

where vec(A;) was defined above. In fact, for each j = 1, --- M, we have:

plim —K!"IHTE%’J‘
T—co T

28 See Hendry (1995, page. 112} and Hemilton (1994, page 264-266 and page 298-300)
and their mathematical appendices for more details.
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= plim (= A4) " (e ®ir) + ¥, AT, o] Hreig
. (I - Az‘)“u (a; ® iT)’ Hre, ; i . (E;: —s—1HT€='j)
= plim L)+ AY plim | 2=~
o ( T Z:; gl e T
= 0
as (x ®ir) Hy = 0 and plimg_, (E—f‘%&ﬁ]) = 0 because equal to the 5% column of

plimg._ (_—zi;‘“_;) in (29).

Now, substituting (32) and (33) in (30) and (31) we have, for s = 1,--- M,

2{1 1’;!_1HTY5 —1 1 N
i=1 ) — plim — ST A
( NT PN ; )

plim

N—oo,T—o0

N j N
L) 1

phm (Zi—l —1T ) == p].lII]. 7 Ik’in‘i,j
i=1

N—oo,T—o0 NT N-oo

and since A; and X; are ¢id across ¢, by the law of large numbers, we also have

S Y HyY
I =1 =V =EA
N—»Eo{gl—mo ( NT [ ]

. .
Y] Hrvl
plim (Z““‘l 417 ) =B [Amy]

N—oo,T—00 NT
for 7 = 1,--- M, where E denotes expectation with respect the joint distribution of A; and ;.

Therefore, substituting these last two expressions in (25), we obtain equation (15) in the text,

(B [Ai})_l (E [Am}])
quh;}l‘q (re—a) = | :
T (E[AD™ (B [Am}1)

which is generally different from 0, unless 7; = 0 for all 4.

B. A Special Case: Weak Exogeneity Fails

Suppose that v = 0 in the bivariate V AR in equation (16), then (18) in the text becomes:

phim ’):F g A =
N—oco,T—oo JBFE - !8
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1 [ a+2Tﬂ¢5+T’ﬁ22 ¢+ Y487 -
(Bl | T Tl sT) S e

LT T+ YaBir %,
<(efg | P })

To = A=A—p+ )1 +A+p+A0)(Ap—1)
= —(1=X)(1~p)(1 - M)

Ty = (A=A

T, = —(Ap+1);

Ty = (Np—p);

= AP A1)

Tis = (—Xp+ X +Xp—1)

with:

Substituting for these expressions, which once divided by T, simplify considerably, and defining
§ = —4F) e have:
plim iFE —A =
N—oo,T—o0 )6 FE ,8

(1-X3%)(1—2p}
7232 72 :
R 5 278, PBiTy ( b

E (1- Az) + (1 (1-23)a-xp)  (1=2p)(1-p?) 1-Ap)
pﬁa‘rl q5‘- _Ii__
T2 T T3 =
4 (.013t )6,
x| FE (1- Ef\p) (1-2p)(1-p%)
T

Taking expectations with respect to the distribution of 3; and denoting w the variance of £, we

also have R
plim :\xF B = A =
N, T-o00 ﬁpg - ,8

o? 26(8%+w) 2789 pBr? -
(1-22) + 1—p2 ) + (1-22)(1-2p)  (1-20)(1-p%) * (1- Ap)
ppT} W
a=ea—» T - Ap) =

pwr?
X ((Jl—f\p)(l—pz) .
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Thus we get,
plim iF 5= A =
N—oo,T—oo )8FE — ,8
—Tf‘g Pﬁ‘r &
_ 1] 1= T2 (107 (1-2p)
N Y . i+ ¥ o? n 726( 0% +w) 20
(1-2)(1-p%) (=20} (1-22) (1-p%) (1-2%)(1-2p)
puT?
X [ (1-Ap)(1-p%) ]
0
L pors
_ 1 (1—.02) ((1 AP)(l—P2))
A ( pﬁTQ _I_ ¢’ ) ( PWT? )
(1-20)(1—p%) T (1-Ap) J \(1-2p)(1-p?)
where

I . 11 G k) 2084, 2
A = ((1_)\2) + (1—p%) + (1_)\2) (I—Ap)) (1—p2)

_ pB;7? o ?
((1 -/ (1—Ap))

After some algebric simplifications we finally obtain

~~ . —2u}

N o\ B (1B 35)
W+
with:
I, = (2/'r2)( 2)(1—,\p) (1 )\zpz)w-l—( )52
Ty = —(¢*/r)(1- 2)(1 ) 2(¢/7) (1 —P)(lw)\)ﬁ,

Uy = (¢/7)(1=p") (1= X) pw

To study the sign of (35), write it as:

; Arg — X [ it ]
plim ~ = G fes | (36)
N—ooo, T—oo ( !BFE - )6 ) _“gli$2

where,
Yy=p(1—Ap) (1 - )\2) W22,
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and
Us = Bp° (1 — X?) waa.

For {A\| < 1and |p| < 1, ¥, is always positive because sum of positive terms. Noting that ¥ is an
incomplete linear equation of the second order in ¢, it is easy to show that:

Uy >0 iff>0and 32 <¢ <0, orif < 0and0 < ¢ < 32,

T+A
Uy <0 ifﬁ>0and¢>00r¢5<%g\—7,0rifﬁ<0and¢<00r¢>%§_‘i—”’, (37)

and hence that, for |¢| > |12%r\

for ¢p > 0, and hence:

, ¥4 is negative regardless of the sign of 3. Note also that U3 > 0

Ty >0 if¢g>0andp >0, or¢p <Oandp <0,

U, <0 iféd<Oandp>0 oré>Oandp < 0. (38)

Finally, it is evident that ¥, > 0 for p > 0, and that 5 > 0 for 3 > 0.

We can now see that, unlike the case in which ¢ = 0, for any given value of p (which 1s the
only determinant of the sign of ¥, under stationarity), the sign of the asymptotic bias of ,)IFE
(determined by the sign of the term ¥4/(¥; + ¥3)) will change for a sufficiently large absolute
value of the covariance term. This is because W5 is negative for any |¢| > ]%f_fﬂ and offsets ¥,
(which is always positive) for a sufficiently large value of || , while the sign of I, is affected only
by p. Suppose for instance that p > 0, A = 0.6, 7 = 1, and || = 0.4, than for any |¢| > 0.125 the
large sample bias of g becomes negative, compounding rather than offsetting the small T bias
of this estimator in finite samples.

Similarly, the sign of the large sample bias of ] g, in the case in which ¢ # 0, may be positive
or negative, depending on the sign of p and ¢ and the magnitude of ¢. To see this, consider the
term (U5 + U3) / (¥ + ¥y), which determines the sign of this bias. If > 0 and both ¢ and

p are either positive or negative, then {¥5 + W) is always positive because both V5 and U3 are
always positive (see equations 37 and 38). However, if 3 > 0 and ¢ > 0, ¥, is negative (see
equation 37), and, for a sufficiently large value of ¢, ¥, will offset ¥, (which is always positive),
thereby causing (s + ¥3) / (U1 + ¥3) to change sign. It is straightforward to see that the same
result holds also in the case in which 3 > 0 and both ¢ and p are negative, for ¢ sufficiently
more negative than ’l—i% If 3 < 0 and ¢ and p have opposite signs, (V5 + ¥3) is always negative
because both ¥y and W5 are always negative (see equations 37 and 38). However, (¥ + ¥y) will
be negative only for ¢ sufficiently smaller than 0 or more positive than :ﬁ_g, thereby causing

(¥s + ¥3) / (P + ¥s) to change sign at some point.
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Figure 1: Heterogeneity Bias of Bpy for v = 1 (in absolute value)
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Table 1. Monte Carlo Results (N, T=50,50)

MG FE v MG FE IV MG FE v
Omeg=0 Omega=0.2 Omega=0.8
Beta=0.2
Fi=
Lambda
S.e. 0.0195 00193 0,084t 0.01%5 40153 0.0874 G.0178 03,0162 0.129
Buus -0.0246 -t 0241 Q.6001 -0.0244 -0.0247 .003¢ -0.0224 -0.0492 -3.0827
S.4d. (.0198 G.0195 0.0351 ool9s 0,0199 0.0335 0.0iR3 0.0341 0.0533
Beta 1715 0.1866 0.1986 0.E718 0.1399 0.2017 0.1724 0.2614 G.2674
Se 0.4z 0.0141 00487 0,018% 0014 0.0496 4.0518 0.0127 0.0783
Bias -0.0285 0134 -00014 -0.0262 -0.0101 0.0017 -0.0276 G.0614 00674
Fhing as Yo of irne enifue -14.3% ~5.7% 746 -f4.1% -5.1% 0.9% -f3.8% 36.7% 33.7%
Abias s % of true value 1.8% 48.8%
8.4, 0.0144 0.014 0.0243 0.0193 0.0156 0.0278 4.0516 10657 0.0658
Fi=+}.9
Lambda
Be 0.0292 0.0291 0.0507 0.0291 1.0287 0.052 0.0265 0.0236 0.0897
Fias 0454 -0.0075 Q001 &.0i3 Q0072 f.007 0.0076 0.1833 0.0635
S.d. 0.0301 0.0262 0,0325 0.029% 0.02938 .0329 ¢.0275 0.0441 00456
Hieta 0.1516 0.1794 0.i977 0452 1743 .1894 0.1564 0.1258 L0867
S 0.0205 0.02t1 0.0415 00243 0.021 00413 0.0534 4.0186 0.0416
Bias -0.0484 -0.0206 -0.0023 =0.048 -0.0257 -0.0106 -6.0436 -0.0742 -0.1133
Fleiua as 85 pf oo sulur -24.2% -10.3% -1.2% -24.0% -12.9% -5.3% -208% -37.7% -56.7%
S.d. 0.0214 0.0209 0.0308 0.0247 0.0251 0.0337 $.0538 0.0557 2.0727
Fi=-0.9
Lambda
5.2 00303 0.0299 0.3198 0.0302 0.0295 0.3239 0.0283 00241 0.3199
Bl ~0.0741 -0. 0493 -0.0018 00734 -0.06358 -0.0242 -0.0624 -0.3 -0.2722
S.d. 0.0301 00295 (.0883 00302 0.0302 0.087% 0.0202 0.0455 §.1084
Teta 0.1435 01715 0.1981 0.1437 0.1663 0.1936 01472 01134 21827
S.e 00213 90,0214 01776 00243 04212 01761 0.0523 G.OIRS 02039
Bias -0.0555 00285 -Lo01y -0.0563 -0.0337 -0.0064 -0.0528 -0.0866 00173
Thimg ax %% of 1ane esiue -28.3% 1434 -1.0% -28.2% -16.9% -3.2% ~26.4% -43.3% BFH
S.d. 0.0212 0.0209 0.0512 00245 00249 00524 0.0522 2.0538 0.0665
’ Beta=(0.8
Fi=0
Lambda
B.e. Q0119 00103 1.5832 G019 00103 0.726 0.0118 00086 0.9041
fHae -0.0282 -0.028 0.0032 -.0283 06256 - 28 -0.0263 -0.8177 0.1019
8d. 0012 00106 {.EBEL 0.0121 0.G108 0.7508 0012 00178 05751
Bcta 0.1474 0.778 0.8015 0.7474 0.7798 (.7988 0,750t 9.8309 0.9428
Se 0.0108 0.0094 050 0.0113 0093 0.6507 0.0168 0.008 0.8263
Bias 00526 -0.022 0OMS -0.0526 -G.0202 -0.0012 -0.04%9 0.0309 0.1428
Pl as Sy of Tue valsg 6,624 -2.8% 0.2% -5.6% -2.5% -0.2% ~0.2% 3.9% 17.9%
Abigs ay % of trae valug 6.3% 6.2%
5.d. 0.011 0.0096 0.1688 0.01 1§ .0104 0.6722 0.0171 10234 0.5218
Fi=+0.9
Lambda
5.e. 0.0233 0.0212 0.2685 0.0238 0.0211 02787 00235 0.0182 2,78
i -0.005% 0022 08,6022 -0.460¢ -02i6 00008 -0.0083 ~0.0071 «0,1399
S.d. 0.0238 0.0267 0.0644 0.023% 0.0208 0.067 0.0237 0.0242 5.8661
Beta 0.7339 0.7773 0.7993 0,734 0.7784 0.8004 0.7363 GELGL 0.7146
S 00216 0.4193 0.2413 0.0218 0.0192 02502 0.0252 10169 24414
Bias -(.0661 -04227 -0.0007 -0.065%9 =0.0216 0.0004 -D.0637 40101 -0.0854
Fhsim s 33 8 o vafun -8.3% -28% -0. 7% 85.2% -1.7% 1% -&.0% 1 3% -10.7%
5.d. 0022 0.(19 0.05% 0.0223 0.0194 0.0614 0.0256 {0266 53667
Fr—0.4
Lambida
S.e. 0.0282 0.0248 42,7986 0.0282 0.0247 43.1479 1.0269 40127 0.316
Bizs -0.0682 -00462 27192 00631 0.0484 -1. 7058 -{.0582 ooe} 00712
S.d. 0.029 0.0259 94,3066 0.029 0.0262 28.8504 0.027 0.0264 0.1303
Beta G728 0.7592 26971 0.7131 0,75%6 0.7272 1.7239 08376 0.9149
S.e 0.0254 0.0224 382932 0.025% 0.06224 181168 {10234 00118 0.2899
Bias -0.0872 -0.0408 1.8971 -0.0869 00404 -1.5272 0761 00516 0.1t49
Fhiun 92 of fre vaioe =i 9% 3 1% 237.1% -10.9% -5.1% -191% -2.5% 71.2% f4.4%
5.d. 0.0261 0.0232 84.3605 .0264 0.0237 25.8701 {.0289 0.0305 01166

Note - S.e.: estimated standard errors;
Bias: absolute valug of the finite sample bias {equal to the estimated parameter value in the case of lambda).
§.4.: finite sample bias' experimental standard deviations.
Fbias as % of true value: finite sample bias as 2 percentage of the true value of beta.
Abias 25 % of true value: asymptotic bias as a percentage of the true value.
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Table 2. Monte Carlo Results {N,T=20,50)

MG FE v MG FE v MG FE v
Cmeg=0 Omega=0.2 Omega=0.8
Beta=0.2
Fi=0
Lambda
S ) 00312 0.0309 1366 0.031 0.0306 0.1387 0.0283 0.0259 02038
Plan B.0245 0241 -0.0607 -0.0243 -0.0247 ~0.0047 -0227 -0.0463 00805
s4d. 0.0308 0.0304 0.053¢ 0.0304 0.0312 0.G53 0.0273 Q.0508 Q0EDS
0.1731 0.187%6 02001 01727 .19 0.202 D.17L3 0.2547 0.25835
0.0222 00323 0.0718 0.0284 00222 90788 0.081¢ 00202 01244
-0.0269 -0,0524 .0001 00273 «0.01 0002 (L0287 00547 0.0585
IS 00 e vl -13.5% -6.2% a.l% «13.7% -5.0% 10% -14.4% 27.4% 29.3%
Abias as % of true valug 18% 48.8%
Sd. 00225 0.0227 0.0363 0.0295 0.031 0.0421 0.0811 0.102 00042
Fi=+{0.9
Lambda
S.e. 0.0464 0.0459 00804 00462 0.0454 0.0825 0.0419 00376 0.1403
Hiaw 0.013¢ -6, 0oyl -0.0007 0.013} 0,004% 0.0044 0.0053 0.1817 0.0571
s.d. 0.0444 00446 (0499 D.0442 0.0449 0.4496 0.0405 08677 0.0658
Hela 0.1539 0.1813 G.2014 01536 04755 0.1927 01557 01267 0.0918
S5& 0.0329 0.0334 0.0661 0,037 0.0332 0.0657 0.0836 0.0294 0.0675
Bies -0.0461 -0.0187 .00 & «{.0464 -0.0245 -0.0073 0.0443 -0.0733 <0,1682
Fliee ax 2% of true - -33 1% -9.4% a.7%% ~23.2% -12.3% -3.7%4 -22.2% -36.7% =54 1%
54d. 0.0328 00336 1.0468 00373 0.0354 0.0514 0.0833 00814 0.1124
Fi=-{.9
Lambda
s.e. G.0477 0MT2 1.5253 90477 0.0467 0.516 00446 0.0383 0.5204
Geh o7& 0. 0478 o014 -0.0714 -0.0632 -0.0214 -0 8612 -0.2837 -0.2616
Sd. 0.0493 00489 0.1318 00455 00497 013 00463 0.0772 0.1666
Beta 0.146 01735 {2015 0.5453 0.1678 0.1955 0.1465 0.[148 0.1765
Se 0.0333 0.0338 ¢.2032 0.037% 00335 0.2808 0.082 0,029 0.3336
Bias -0.054 -0.0265 0.0015 -0.0547 -0.0321 -0HMS -0.0535 -0.0852 -0.0235
Fhias as %2 of e valus -27.0% -13.3% 2.8%% -27.4% -T6I% -23% -26.8% -42.6% -11.8%
Sd 0.0344 0.0343 .077 0.0387 (.04 0.0788 00819 0.0846 0.1086
“ Beta=0.8
Fi=0
Lambda
Se. 0.0187 0.0164 1.6225 4.0187 0.0163 BO41E 0.0187 0.0139 60483
FEEs -0.0289 0.0261 0.0263 -0.0289 -0.0266 14099 08269 0242 .6189
Sd. 0.01% 0.0166 1.3374 0.0y 0.0168 49.817% 049 06,0242 26.1986
Beta (.7485 U.TIE2 0.8236 0.7485 0.7798 20226 0.7507 0.8259 2549
Se 0oLy 0.0148 1.452 20177 0.0148 T.0503 0.0263 G129 5.6312
Bias 0.0515 -0.0258 0.0236 -0.0515 -0,0202 12226 -0.0493 00259 -0.5451
Fhisg as % of wee vakue -, 4% -2.7% 1.0% . 436 -25% 132.8% -6.2%6 3.2% ~64.1%
Abiss 85 % of tue value 0.3% 6.2%
8.d. 8.0172 00152 |, 1504 BOLTT £.0161 43,2428 0,026 0.0346 249263
Fr=r0.9
Lamixla
Se. 6.0376 1.0336 0.4914 0.03% 0334 $1.5352 0.0373 4.0292 69102
Pinx -0.611% 0244 2.0041 4.0116 -0.0241 1.003% -0.8107 -0.650% 0707
54. 0.0383 0.0327 .21 0.0382 00325 1.1628 00377 00358 30:7153
Beta 09,7361 L7788 0.8451 0.7361 0.7797 0.8071 0.737% 0.8078 0.2452
S 4.0339 0.0305 0.4435 0.0243 .0303 0.4819 0.0394 0.027 5.9619
Bias -0.0639 00212 D.0G51 -0.0639 -0.0203 40071 -0.0621 00078 -0.5548
Fhias g %h of e vl -8.0% -1.7% 0.6% -8.0% -2.5% 8% -7.8% 1.0% -69, 454
54d. 0.0343 0.029% 0.(107 0.0344 0.6299 0.1486 00391 {.0381 26.1715
F1=0.9
Lambda
S 9.0441 0.0394 123.3333 0044 0.0392 124.5329 0.0417 0.0223 7.3664
s -0 0876 00473 26.474 -0.0672 -0.0492 -26.3017 -0.0577 -0.002% <0.0769
s.d. 9.0441 0.0396 74,2592 0.0439 {0397 B43.9118 0.0415 0,0426 4.156
Beta 07148 0.7588 24.4217 0.7151 0759 -22.9458 0.72% 0.3432 0.7783
Se 0.0398 0.0356 115.0734 0.04 0.0355 110.5616 0.0441 0.0207 6.555
Bias -0.0852 ~0.0412 236217 -0.084% -0.0408 -23.7458 £.075 00432 -0:0287
Fhias 12 Ta of we vilie 10.7% -5.2% 2952.7% {0.6% «5.1% -2968% -9.4% 4% -2.7%%
S.d. . 0.0403 0.0351 713181 D.0407 §.0366 753.1006 0,045 00515 3.7241

Note - S.¢.: estimated standard errors;
Bias: absolute value of the finite sample bias {equal to the estimated parameter value in the case of lambda).
§.d.: finite sample bias' experimental standard deviations.
Thias as % of true value: finite sample bias as a percentage of the true value of beta,
Abias as % of true value: asymptotic bias as a percentage of the true value.
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Table 3. Monte Carlo Results (N,T=10,50)

MG FE IV MG FE v MG FE v
Omeg=0 Omega=0.2 Omega=0.8
Beta=0.2
F1=0
Lambda
Se. ’ D.0424 0.0438 9.192 0.0421 0.0433 0.1953 0.0382 0.0368 0.2945
T, -0.023% -0.0227 RiXeirig L0236 -0.0236 -0.005 -.0224 0444 =0.0804
Sd. 0.0437 0.0434 0.0751 0.0432 0.0444 0.0756 0.0397 0.0681 0.1267
Beta 0.1719 0,1859 0.1957 01717 0.1882 0.1974 01706 0.244% 0.2414
S G031 D03 k6 0,091 00418 00314 0.1113 0115 0.0287 0.1841
Bias -0.0281 0.0t41 <0.0043 -0.0283 -0.0i18 -0.0026 0,0294 0.0449 0.0414
Fiong o S of hare vl 14 0% -2 % «2.2% -14.29% -5.9% -1.3% -i4.7% 22.5% 20.7%
Abias as % of true value 1.8% 48.8%
8d. D.0315 0.0332 10.0535 00424 {3,0438 0.0627 {.1158 0.1425 0.1504
Fi=+0.9
Lambda
e 0.0634 00658 01128 00629 0.0643 0.1159 00573 00534 0.1957
Bias 0462 ~0.0047 0.0037 00154 0.0085 0.0087 0.00748 81707 0.0529
sd. 0.066 0.0656 00721 0.0656 0.0662 0.072 0.0599% 0.0926 0.0954
Beta 01518 01775 0.194 0.152 0.1722 0,1851 0.155 0.1256 0.08563
Se 0.0457 0.0474 0.0932 0.05833 0.047 0.0929 0.0 184 0.0418 0.0996
Bias -0.0482 0225 «0.006 0048 .0278 -0.0149 -.045 00744 -0.1137
Firbaa a1 b 1702 vilee -24.0% =11.3% 3.0 =409 -i3.9% -7.5% -22.5% -37.2% -56.9%
5d. 0,0468 0.047] 00681 0.0546 0558 0.074% 0.1193 2.131 01574
F1=~(.9
Lambda
S.e. 0.0659 0.0669 0.741 0.0656 0.0661 0.7337 0.0608 00546 0.8846
fias -n72! 0. 0491 -0.01 -B.0718 -0.0647 ~(.0335 -D.0617 . 2692 0.255%
sd. 0.0664 0,0658 0.1922 b.0661 0.0666 0.193 0.0621 0.L056 04019
Beta 0.1445 0.1704 0.1921 0.1442 1.1648 .1859 0.1457 0112 0.1624
S 0.0465 0.0479 0.3994 0.0534 0.0475 04002 01156 0.0426 0.5923
Bias -0.0555 00296 -0.0079 00558 -0.0352 -GH 4t -0.0543 -0.088 -0.0376
Fhing na Y ol drue vathe -27.8% -14.8% «4.0% -37.9% -1 7.6% -71% -27.2% -#4.0% -18.8%
s.d. 0.5465 0.0467 0.1135 0.0536 0.0553 0.1191 0.1165 0.122 03062
* Beta=0.8
Fi=)
Lambda
8¢ 0.0259 D.0234 572 0.026 0.8233 1.30338 0.0257 0,0203 33193
e -6271 ~0.0243 81,3348 -0.27¢ ~0.0249 01447 -0.G249 £D.0201 0.2187
sd. 0.0277 0.0247 2577.9821 0.0276 0.025 36137 0.0269 0.0329 38278
Bota 0.7467 0.775 747 0. 7465 0.7764 o 0.7491 08161 1.0382
Se 0.0238 00212 516.0427 0.0248 0.0211t 29555 00371 0.0188 30166
Dias -0.0533 0025 7337 -0.0535 -0.0236 1R ¥4} 0.0509 D.olsl 0.2382
Fivigs a3 %% of tiur valud -6.7% -3.1% 2i71.3% -6.7%% -3.0% 15.9% -6.4% 2.0% 29.8%
Abiag s % af true value . 0.3% 6.2%
5.d. 0.0249 0.022 23258173 0.0257 10233 32442 0.0376 0.0475 15135
Fi=+0.9
Lambda
Se 0.052 0.048 1.0%14 0.852 0.477 1.6528 00514 0.0422 32541
s -0.003 00587 0.0259 -R.008 -2.018F 00228 -0.004 -0.0078 0.2363
5.4 00545 0.0453 061587 0.49542 0.0494 1178 0.0532 00513 6.3481
Beta 0.7313 0.7712 P13 0.7312 0.7728 0.8112 07339 0,7982 1.0633
Se 0.0473 0.0435 0.979 0,048 0.0433 1.4716 0.0556 0.0389 29758
Bias -.0687 -0, 028 00133 {10688 0.0272 0.0112 -0.0669 -0.0ME 2633
Fhins o Yol e vahie -8.6% -3.5% L7% &.6% -34% 1L4% B.4% -0,2%6 JL.9%
5.d. 00498 0.0442 0.5826 0.0495 0.0448 1 0444 0.0565 0.0571 62401
Fi=-0.9
Lamhbda
5.8 0.0615 0.0562 21.8603 0.0614 04559 4393 0.0552 00359 5.0536
FE -,0667 ). 0404 42119 00665 00483 19709 B.057 0,013 0358
84, 0.0647 a.0574 10411 0.0644 Q0575 3734841 0.0613 0.06 31825
Beta 0.7136 0.756 0.6051 0.7136 0.756 11.4596 0.7233 08221 1.1569
e 0.0558 0.0508 19.5658 0.0561 0.0506 39.2(48 G.0619 00331 4.528
Bias -0.0864 -0.044 -0.1949 -0.0864 =044 10,6596 -0.0767 00221 0.3569
¥hlag g5 % 2t in =10.8% -5.5% =4.é% -J0.5% -5.5% 1332% -.6% 2849 44.6%
54d. 00582 00518 6,2987 0.0583 £0.0523 1323963 0.0637 0.0714 33687

Note - 5.¢ .; estimated standard errors;
Bias: absolute value of the finite sample bias (equal to the estimated parameter value in the case of lambda}.
§.d.: finite sample bias’ experimental standard deviations.
Fhbias as % of trae value: finite sample bias as a percentage of the true value of beta.
Abias as % of true value: asymptotic bias as a percentage of the true value,
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Table 4. Monte Carlo Results (N, T=50,20)

MG FE v MG FE v MG FE v
Omeg=0 Omega=0.2 Omega=0.%
Beta=0.2
Fi=0
Lambda
S.e, ) 0.03id D.0317 0.1369 0.0516 G034 0.1391 0.0293 0.0269 02116
Bias -R059 -0.0582 0.006! -0.0383 -0.0596 4.0024 0.0347 I -0.0837
5.d. 0.0328 0.0322 6.0629 - 0.0326 (0328 0.063 00301 0.0493 05108
. Beta 0133 G.1679 0.2014 133 017 0.2041 0.133 02175 0.2632
S 00235 60228 0.0775 0.0262 0.0227 0.078% 0.0527 0.021 0.128
Bias 0,067 EiXitys] a.0014 -0.067 0,03 0.0041 0,067 00175 00632
Fbias as % of true value -33.5% -1, 1% 0.7% -13.5% -15.0% 2.0% -33.5% 5.8% 31.6%
Abias as % of 1ue value 1.8% 48.8%
5.4 0,023% 0,022% 0.6434 0.0257 0.026 0.0461 0.0509 0.0665 0.0922
Fi=+}.9 :
Lambda
S.e, 70473 0.0462 0.0806 0.0471 (0457 0.082% 0.0436 10,0381 0.1459
Bins 0.0349 -0.01% 6.0057 8.034 -0.005¢ 00115 0.0148 0.1367 0.0624
S.d. Q.0468 0.0474 0.053% 0.0487 0,0475 .0539 0.0455 0.0568 00874
Beta 0.0858 0.1504 02004 0.0861 01444 ©.1915 0.0054 0.0843 (0852
Se £,0336 0.034 0.0659 00354 0.0338 0.0655 0057 0.029% 0.0665
Bias -0.1142 0.0456 (00604 -0.1139 -0.0556 -.0085 -0.1046 -0.1157 «0.1147
Tbiss as % of true value ~571% «248% 0.2% -57.0% -27.8% ~£.3% +52.3% -57.9% 5T A%
Sd. 00338 0.0335 0.0529 0035 0.0354 0.0345 {.0535 0.0641 0.0871
Fi1=-0.9
Lambda
S.e. 0.0501 0.0493 5291 9.0502 0.0487 0.5191 0.0496 00397 05305
Bies -2 1774 -.1198 00089 -3.1763 -0.136 -0.0431 .1519 -0.374 -0.2682
5d. 0.0505 0.0457 0.1961 0.0505 0.0506 Q.17 0.0506 0.0707 0.2345
Beta 0.0637 0.1308 0.203 0.0653 0.1249 0.1982 0.0721 0.0614 0.1821
S5 0.0345 10,0345 0.285 00361 0.0346 4,2821 0.0565 2.0309 0.3381
Bias (11343 {0692 0.003 (.1347 0.0751 -0.0018 -0.1279 -0.1386 0.0179
Fbias as % of true valse 47,29 -34.6% 1L.5% 67 4% -37.6% -0.9% -54.0% -9, 3% -%.0%
S ,0344 £.0343 01118 0.0355 0.0357 0.1L16 0.0552 0.0548 0.150%
* Beta=0.8
Fi=0
Lambda
Sx. 00228 00182 3.74%4 0.0228 0.0187 3.5867 0.0227 0.0166 3.9044
Bias 0740 00679 07404 -0.0746 -D.0687 D17 -0.0704 <0683 -D.2768
5d. 0.0233 0.0194 4.3626 0.0233 0.0196 5.01% 0.0229 0,0249 B.2833
Bela 06755 0,7417 09232 0.67%6 0.743 0.6472 0.6853 00,7864 0,5948
Se 10211 0017 33473 (3.0213 0.0169 3.2269 0.0246 00153 31,5664
Bias -0.1205 -0.0583 0.1232 =0.1204 -0.057 -0.1528 0.1147 -0.0136 -0.2052
Thiag a5 % of irue vahze -151% -A3% I5.4% -151% «7.f% -19.i% -}4.3% L% -5
Abias as % of true value 3% 6.2%
S5.4d. 0.0207 0.0183 3.895% 0.021 10186 44719 0.0244 0.0278 7.5651
Fr=+0.9
Lambda
Se. 0.0421 0.0343 1.0586 0.0421 00341 39655 0458 0.03 3A4N7T
Bias ~0.0353 00615 0.0396 30353 D061 D.7848 041324 -0.057¢ 0.6043
- 0.042 0.0325 [.6292 00448 0.0325 242966 0.041 5.0338 17.0949
Beta 0.6531 07412 0.8357 0.6532 0.742 1.474 0.6574 0.7706 1.4006
LX) 0,0385 0.0312 0.9543 0.0386 00311 3.4341 0.0405 0.0277 3.1393
Bing -0.145% -0.0588 00387 1 1468 -0.058 0.674 £.1426 2.0294 0.6006
Foias as % of true value -18. 4% -T4% 4.5% -18.4% -7 3% 54.3% [7.8% -3.7% 75.1%
Bd. .0376 0.0302 15258 L0375 0.0302 20.8421 00388 0.0324 15,9502
F1=-0.9
Lambda
Se 00583 0.0483 16,2352 0.0581 0.0482 14.781% 0.0552 04,0292 03055
Bias -0. 1697 -D.[231 0.3404 -f), 1695 -3.1239 0.5422 D147} -0.0454 0.06
S.d. 0.0589 0.049% 18.0415 0059 0.058 17.8643 0.0564 G.0487 01114
Betz 0.5966 0.6923 1.2844 0.5972 0.6918 12877 0.6216 0.8078 06031
S« 0.0528 0.0436 145313 ¢.0529 00435 13.2459 0.0527 0,027} 0.2802
Bias -0.2034 &.1077 04844 -0.2028 -0.1082 RAETT 01784 0.0078 0.1031
Tbias as % of true valug -254% -13.5% 60.6% -25.4% -13.5% &% -2h3% 1.0% 12.9%
54 0.0541 00456 16.1269 0.0544 0.045% 16,0029 0.0547 00499 0.1011

Note - S.e .: estimated standard errors;
Bias: absolute value of the finite sample bias {equal to the estimated parameter value in the case of lambda).
S.d.: finite sample bias' experimental standard deviations.
Fbias es % of true value;: finite sample bias as a percentage of the true value of beia.
Abias a5 % of true value: asymptotic bias as a percentage of the true value.
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MG FE v MG FE v MG FE IV
Omega=0 Omega={.2 Omega=0.8
Beta=0.2
Fi={
Lambxda
S.e. 080502 0.0501 0.2154 0.0499 0.0497 0.2185 0.0463 0.0428 0.3428
Bz -GG BeRL1 AR feust Bl ST RiRs ot T - S 052
5.4d. 0.0491 00451 0.0998 0.0487 0.0497 0.1012 0.0457 0.0729 8191
Bela 0.1345 0.167% 0.1975 61345 0,1697 0.2 0.1337 02117 0.2431
Se 0365 0.0361 0.1221 0.041 0.036 0.1241 0.083 0.0333 0,209
Bias -0.0655 -0.032t -0.0025 0.0655 -1.0303 o -0.0663 0.6117 D.0481
ey tis % af trse walue -3IH% R Ev) {38 -FlAY -1 A1 -35.3% S s
Abins as % of true value 1.80%% 48.76%
S.d. 00365 0.0352 0.0676 0,0MD5 0.0409 0,0733% 0.083 0.1615 0.1505
Fi=+).9
Lambda
S.e 0.0737 0.073 0.1267 0.0734 0.0722 0.1298 0.068 0.0603 0.2248
Hiay a{398 it GA1ER2 {0 s 4 i GRS Gr282 G454
S.d, 0.0713 00711 0.0832 0.0713 00718 0.0839 0.0674 0.0848 0.1435
Beta 0.088¢ 0.151 0,i967 0.0383 01434 0.1884 0.0962 0.0867 00827
Se 0.0521 0.0338 D.1045 0.0552 0.0534 1039 0.0893 0.0474 0.1085
Bias 41119 -0.049 -0.0033 31117 D.0546 -0.0116 -0.1038 01133 -0.E173
Fhias as ¥ of e vadus WJE 2§ 3 AR CEE 27 3% PR SFROw -1 -3E T
S.d 0.0522 0.0326 0,0802 10548 {0568 0.0831 0.0882 01027 10,1351
Fi={0.9
Lambda
S.c. 00791 00781 0.8462 0.0791 0.07H 0.83 0.0778 0.5633 0.9303
Bias # FTAN B A BGG LTI ETE Ry TARx fLIC3T -3.2FF
5.d. 0.0801 0.0735 03038 0.0802 0.07 0.3051 0.0787 0,174 0.5014
Beta 0.0675 Linz 01952 0.0674 01235 0.9 4.0732 0.0607 0,1667
Se 0.0539 0.0552 0.4559 0.0565 0.0548 0.4512 0.0886 0.049 05947
Bias 0.1325 -0.0688 0.0048 0.1326 0.075 .01 0.1263 -0.1393 -0.0333
Flrians gis o of 1rus value -G53V 3L R -6t 335 -3 =34 W61 % -6id T 16 7
S.d. 00545 0.0346 0,116 0,057 1.0572 0.175 0,087 D.0873 {.3248
Beta=0.8
Fi=l
Lambda
S.c. 00355 0.0299‘ 4,7085 0.0356 0.0298 5.0005 0.0353 0.0269 56,5440
Hias ST LMY (dehis ST Qi ~thA7E] B/ R ~RGFE ~f3253
S.d. 0.0354 0.0305 8.0247 0.0352 0.0306 9.5895 0.0344 0036 205.1086
Beta 0.6807 0.7395 ©.8012 D.6806 0.7408 0.4154 0.6853 0.7784 ~13.322
0.0328 0.027 4.1968 0.0331 0027 4.4947 0.0382 0.0248 52,6981
-0.1193 -0,0604 0.0012 0.1194 -0,0592 -0.3846 01147 0.0216 -14.622
o of tries valus BIEA -7 A #2% PR B N - 3o -2.75% ~fH22844
Abias as % of true value 0.3% 6.20%
5.d. 0.034 0,0277 7496% 0.0342 0.0281 85703 0.0385 0.0408 467,954
Fi=+H0.9
Lambda
Se. 0.0659 0,0547 1.7036 0.066 00545 2,362 0.0633 0.0485 39622
fias I GO R et 5 033 BRI LT BN TP T LU Qg
Sd 0.0657 0.0502 1.5336 0.0653 0.0498 3.5297 1.0647 G.0503 4.6627
Beta 0.6541 0.7388 08136 0.6538 1.7396 0.6908 0.6564 0.7642 03488
S.e 0.0601 00459 1.533¢ 00503 10496 2.1583 0.061% 0.0447 1296
Bias 0.1459 -0.0612 0.0t356 1462 00604 -0.1092 -0.1436 -0.0358 0,0488 .
Fhhus ud % of s valoe -4 2% W77 £ -fE TR 2T G0 wf, 3y 6.0
S.d. 00636 0.0469 13586 0.0635 0047 3.6605 0.0648 00514 35815
Fi={.9
Lambda
S.e 0.0505 04770 21.63%2 0.0%04 0.0768 16.4314 00859 0.0508 1.0953
Pias Wik §TIE i § 304 F 308 ML PPN - ) TR -84 525 Rixi AN EEEN
S, 0.0914 0.078% 33.8497 0.0509 0.6739 23.7062 0.0868 0.0774 2.6257
Beta 0.5961 0.6882 0.6630 0.5967 06877 1.4318 0.6183 0.7852 6.9633
S5 1,0820 0.0695 19.3838 0.0820 0.0694 14,7130 0.0820 0.0469 0.9944
Bias -0,203% -0.1118 «0.137¢ 2033 -0.1123 06118 -0.1817 -0.0148 01633
Fhins ox 3h of rue vidius ~25.3% R ~EE e Rek it “F4e TRt ~20 T i P8 i)
5.d. 0.0835 0.0710 303672 [1.0832 0.0710 21.3443 08819 0.0778 2.3588

Note - S.e.: estimated standard errors;

Bias: absolute value of the finitc sample bias (equal to the estimated parameter value in the case of lambda).

S.d.: finite sample bias' experimental standard deviations.

Fbias as % of true value: finite sample bias as a percentage of the true value of beta,
Abias as % of true value: asymptotic bias as a percentage of the true value.
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