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I.   DEFINING THE PROBLEM 

The objective of this paper is to propose and implement an intuitive and simple-to-use 
measure of asset-market integration. What does asset-market integration mean? We adopt 
the view that financial markets are integrated when assets are priced by the same stochastic 
discount rate. More precisely, we define security markets to be integrated if all assets priced 
on those markets satisfy the pricing condition: 
 

 )( 11
j

ttt
j

t xmEp ++=  (1) 
 

where: j
tp  is the price at time t of asset j, Et() is the expectations operator conditional on 

information available at t, 1+tm  is the intertemporal marginal rate of substitution (MRS), for 
income accruing in period t+1 (also interchangeably known as the discount rate, stochastic 
discount factor, marginal utility growth, pricing kernel, and zero-beta return), and j

tx 1+  is 
income received at t+1 by owners of asset j at time t (the future value of the asset plus any 
dividends or coupons).  
 
Our object of interest in this study is 1+ttmE , the time t expectation of the marginal rate of 
substitution. Agents behaving according to equation (1) use the entire perceived distribution 
of 1tm+  to price assets at t. Nevertheless, we concentrate on its first moment for two reasons. 
First, 1+ttmE  is simple to measure. Second, cross-market differences in estimated values of 

1+ttmE  turn out in practice to be highly illuminating. In particular, they allow us to use 
standard risk pricing models to discriminate for differences in market integration. 

 
We emphasize at the outset that our test investigates a necessary but not sufficient condition 
for market integration. In other words if two portfolios are well integrated they will pass our 
test, but passing the test does not imply the portfolios to be well integrated. In contrast, if two 
portfolios fail the test, the portfolios are not well integrated. 
 
 

II.   METHODOLOGY 

We use a standard decomposition of equation (1): 
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where COVt() denotes the conditional covariance operator. It is useful to rewrite this as 
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where j
t 1+ε  ≡ )( 11

j
tt

j
t xEx ++ − , a prediction error, and )(/1 1+≡ ttt mEδ . The latter is the 

parameter of interest to us. In an integrated market, it is identical for all assets. Our work 
below is essentially concerned with exploiting and testing this restriction. 
 

A.   The Traditional (Asset Return) Approach 

It is typical in Finance to make equation (3) stationary by dividing the equation by ,j tp , 
resulting in: 
 1 1 1 1/ (1 ( , / ))j j j j j

t t t t t t t tx p COV m x pδ ε+ + + += − + , (4) 
 
where 1

j
tε + is redefined appropriately. Dividing through by ,j tp  also converts equation (3) 

into an asset-pricing equation—an equation relating one-period asset returns, 1 /j j
t tx p+ , to the 

market )(/1 1+≡ ttt mEδ , and to the asset-specific period risk premium.  
 
Equation (4) is then given economic content by adding two assumptions: 
 
(1) Rational Expectations: j

t 1+ε  is assumed to be uncorrelated with information 
available at time t, and 
(2) Covariance Model: 1 1( , / )j j

t t t tCOV m x p+ +  = ti
j

ii
j f ,0 ββ Σ+ , for the relevant sample, 

 
where: j

0β  is an asset-specific intercept, j
iβ  is a set of I asset-specific factor coefficients and 

tif ,  a vector of time-varying factors. 
 
Both assumptions are common in the literature; Campbell, Lo, and MacKinlay (1997), and 
Cochrane (2001) provide excellent discussions. 
 
With these two assumptions, equation (4) becomes a panel estimating equation. We use time-
series variation to estimate the asset-specific factor loadings }{β , coefficients that are 
constant across time. We exploit cross-sectional variation to estimate }{δ , the coefficients of 
interest that represent the risk-free return and are time varying but common to all assets. 
 
It is evident that this approach does not allow us to identify both the j

0β  and the ( )tδ —that 
would be an excessive number of constants and perfect multicollinearity. Empirical asset 
pricing models solve the problem either by setting ( ) 1 ( )t i tδ = + , where ( )i t  is an appropriate 
short-term riskless interest rate, or by setting 0 0jβ =  for all j. 
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In the empirical work reported below, we follow this standard approach and estimate the 
( )tδ  by setting 0 0jβ =  for all j. Anticipating the results, the factor loadings are estimated 

sharply; the ( )tδ  however, which should be just greater than unity are estimated implausibly 
and imprecisely. Our primary approach to estimating ( )tδ  thus takes a different tack. 
 

B.   A Different Approach 

When we normalize equation (3) by j
tp  we detach it from ( )tδ  and lose an information- 

laden regressor that helps to identify and estimate ( )tδ .  
 
Since our primary interest is ( )tδ , we choose to normalize equation (3) by dividing the data 
by something other than j

tp . In this paper we use 1
j

tp −  , but other normalizations, e.g., a 
market-wide price index, would do just as well. The equations we estimate in our new 
approach stem from: 
 
 1 1 1 1 1 1 1/ (( / ) ( , / ))j j j j j j j

t t t t t t t t t tx p p p COV m x pδ ε+ − − + + − += − +  (5) 
 
The important point is to choose something that stabilizes the data (i.e., induces stationarity) 
and preserves the information in j

tp , while still delivering moments in the COVt(  ) term that 
can be modeled as stable functions of a few aggregate sources of risk. This critical point is 
discussed further below.  
 
Equation (5) is then given empirical content by adding the same two assumptions of the first 
approach, namely:  (1) rational expectations, and (2) a relevant linear covariance model. To 
be clear, what we mean by the latter is: 
 
(2’) Covariance Model: 1 1 1( , / )j j

t t t tCOV m x p+ + −  = ti
j

ii
j f ,0 ββ Σ+ , for the relevant 

sample. 
 
We emphasis that equation (5), along with its empirical assumptions, is not a traditional 
asset-pricing regression of the type widely investigated in Finance. It is not designed to give 
information about period-to-period asset returns. Instead, it is designed to deliver information 
about ( )tδ , and it does so primarily through the volatile regressor 1/j j

t tp p − . 
 
Our test for integration is simple. Estimating, say, (5) for a set of assets j=1,…,J0 and then 
repeating the analysis for the same period of time with a different set of assets j=1,…,J1 gives 
us two sets of estimates of }{δ , a time-series sequence of estimated discount rates. These can 
be compared directly, using conventional statistical techniques, either one by one, or jointly.  
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Under the null hypothesis of market integration, the two sets of }{δ coefficients are equal. If 
the two diverge, the hypothesis of market integration between the assets is rejected (jointly  
with the other two assumptions, of course). One can estimate }{δ  via either equation (4), the 
traditional returns approach, or from our equation (5), our new approach. In our empirical 
analysis below we use both approaches, and they deliver the same message. 
 

C.   Discussion 

Choosing between the two approaches outlined above involves tradeoffs. The returns 
approach has been used widely in Finance to deliver empirical asset-pricing equations; see, 
e.g., Cochrane (2001). This approach was not, however, designed to deliver sharp and 
sensible estimates of δt. Our new approach seems to deliver good ( )tδ  estimates, but there is 
clearly much less knowledge about the model’s ability to produce stable covariance estimates 
through a factor model. 

 
The factor model is potentially important in our new approach because getting it wrong 
might lead to inconsistent ( )tδ  estimates. Recall that 1tm +  is asserted to depend only on 
market-wide aggregates, which suggests that both 1 1( , / )j j

t t t tCOV m x p+ +  (used in the 
traditional returns approach) and 1 1 1( , / )j j

t t t tCOV m x p+ + −  (used in our new approach) also 
depend only on aggregates. If the covariance factor model is misspecified, the modeling error 
spills into the estimation error term, and could be correlated with 1/j j

t tp p − , producing 
inconsistent ( )tδ  estimates. 
 
Accordingly, we take precautions. First, in implementing our new approach, we use the same 
well-known aggregate factors used by Fama and French (1996) to model returns in the 
traditional approach, and we do robustness checks. Second, we require our factor model to 
hold with constant coefficients only over relatively short periods—generally two months of 
daily data. Third, we check our results against those generated in the same data set by the 
well-known Fama-French returns model, i.e., the analogues implied by the first approach.2 
 
The measurements we produce are discriminating for market integration, yet they are robust, 
and confirm our prior beliefs and previous research (e.g., Chen and Knez, 1995). In the 
examples below, our measure never rejects internal market integration for portfolios of 
Standard and Poor’s stocks priced in the New York Stock Exchange and seldom rejects for 
portfolios priced on the NASDAQ, but rejects integration strongly—by an order of 
magnitude—between NYSE and NASDAQ portfolios. 

                                                 
2 That said, we again stress that the factor model we use in our new approach has not been 
designed to model the covariance term of interest, nor has it been discussed by the literature 
as has the traditional returns approach. 
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III.   RELATIONSHIP TO THE LITERATURE 

Asset-market integration is a classic problem with a large associated literature, one which has 
grown along two branches. The first branch, based on parametric asset-pricing models, has 
been surveyed by Adams et al., (2002), Cochrane (2001), and Campbell, Lo, and MacKinlay 
(1997). Karolyi and Stulz (2002) provide a survey of open-economy asset-market integration 
concepts and results. Along this branch, a parametric discount-rate model is used to price 
asset portfolios. Pricing errors are compared across portfolios. If the portfolios are integrated, 
the pricing errors should not be systematically identifiable with the portfolios in which they 
originate. Roll and Ross (1980) tested market integration this way using an (APT) arbitrage 
pricing theory model, and a large literature has followed, see e.g., Bekaert and Harvey 
(1995), hereafter “BH”. 
 
The second branch of literature grows from the work of Hansen and Jagannathan (1991) and 
is represented by Chen and Knez (1995) and Chabot (2000). Along this branch, data from 
each supposed market is used to characterize the set of stochastic discount factors (SDF) that 
could have produced the observed data. Testing for cross market integration involves 
measuring the distance between admissible MRS sets, and asking if, and by how much, they 
overlap. If a common SDF exists the markets are integrated. If not, measures are available to 
judge the distance between the market-specific SDF sets.  
 
Our work rests on the first branch, since we use parametric models to condition our 
estimation. It differs from previous work in three ways. 
 
First, we do not measure integration by the full-blown cross-sectional pricing errors produced 
by a particular model. BH, working along the first branch used the definition “Markets are 
completely integrated if assets with the same risk have identical expected returns irrespective 
of the market.” Our market integration measure is based on a subset of the cross-market 
conditions demanded by BH. Instead of comparing all aspects of a fully parameterized SDF 
models, we measure integration by the implied first moment of the SDF. The condition we 
study, therefore, a necessary condition for integration. It is a subset of the conditions 
demanded by BH, and also Chen and Knez. Studying it will be valuable, therefore, only if it 
is simple to produce but still discriminating. 
 
Second, parametric pricing models are often estimated with long data spans and are thus 
sensitive to parameter instability in time series long enough for precise estimation (e.g., Fama 
and French (1996); discussion is provided by Cochrane, 2001). We minimize (but do not 
avoid completely) the instability problem by concentrating attention on a parameter that is 
conditionally invariant to time-series instability. The measure we use is a free parameter, 
constant across assets but unconstrained across time. Our measure—borrowed from Roll and 
Ross—is therefore basically cross-sectional. We can estimate the measure precisely using a 
(very) short time-series dimension. 
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Finally, we do not assume that the bond market is integrated with other asset markets. When 
applied to a bond without nominal risk (e.g., a treasury bill), equation (1) implies  

 
 ))1((1 1 ttt imE += +  or )1()(/1 1 tttt imE +=≡ +δ    
     (1’) 
where: ti  is a risk-free nominal interest rate, and 1+tm  is a nominal MRS. One tradition, 
common in Economics and Finance, is to assume that the SDF pricing bonds is the same for 
all bonds, and identical to that pricing all stocks (and other assets). We do not impose this 
assumption; instead we test it (and reject) it. 
 
 

IV.   EMPIRICAL IMPLEMENTATION 

We begin by estimating our model (5’) with asset-specific intercepts and the three time-
varying factors used by Fama and French (1996). That is, we estimate: 
 

j
tt

j
t

j
t

jjj
t

j
tt

j
t

j
t fffpppx 1,33,22,110111 ))/((/ +−−+ +++++= εββββδ    (6) 

 
for assets j=1,…,J, periods t=1,…,T. We allow }{ tδ  to vary period by period, while we use a 
“three-factor” model and allow }{ jβ  to vary asset by asset. The three Fama-French factors 
are: (i) the overall stock market return, less the treasury-bill rate, (ii) the performance of 
small stocks relative to big stocks, and (iii) the performance of “value” stocks relative to 
“growth” stocks. Further details and the data set itself are available at French’s website.3 We 
also examine two other covariance models below. 
 
Equation (6) can be estimated directly with non-linear least squares. The degree of non-
linearity is not particularly high; conditional on }{ tδ  the problem is linear in }{ jβ  and vice 
versa. We employ robust (heteroskedasticity and autocorrelation consistent “Newey West”) 
covariance estimators. 
 
We use a moderately high frequency approach. In particular, we use two-month spans of 
daily data. Using daily data allows us to estimate the coefficients of interest }{ tδ  without 
assuming that firm-specific coefficients }{ jβ are constant for implausibly long periods of 
time. 

                                                 
3 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Our empirical illustration examines the integration of American equity markets. Large 
American stocks are traded on liquid markets, which we consider a priori to be integrated. 
We begin by examining daily data over a quiet two-month period, April-May 1999 (about a 
year before the end of the Clinton bull market).4 Two months gives us a span of over forty 
business day observations; this does not appear to stretch our reliance on a factor model of 
asset covariances excessively, while still allowing us to test financial market integration for 
an interesting span of data. We see no reason why higher- and/or lower-frequency data 
cannot be used.5 
 
Our data set is drawn from the “US Pricing” database provided by Thomson Analytics. We 
collected closing rates for the first (in terms of ticker symbol) one hundred firms from the 
S&P 500 that did not go ex-dividend during the months in question. The absence of dividend 
payments allows us to set j

t
j

t px 11 ++ =  (and does not bias our results in any other obvious 
way). 
 
We group our hundred firms into twenty portfolios of five firms each, arranged simply by 
ticker symbol. We use portfolios rather than individual stocks for the standard reasons of the 
Finance literature. In particular, as Cochrane (2001) points out, portfolios betas are measured 
with less error than individual betas because of lower residual variance. They also vary less 
over time (as size, leverage, and business risk change less for a portfolio of equities than any 
individual component). Portfolio variances are lower than those of individual securities, 
enabling more precise covariance relationships to be estimated. And of course portfolios are 
what investors tend to use (especially those informed by finance theory!). 
 
Our first sample period consists of 41 days. Since we lose the first and last observations 
because of lags )( 1

j
tp −  and leads )( 1

j
tx + , we are left with a total of 780 observations in our 

panel data set (20 portfolios x 39 days). Our data has been checked for transcription errors, 
both visually and with random crosschecking. 
 
There is no reason that one cannot use more data (longer spans at different frequencies, for 
larger number of firms and/or portfolios grouped non-randomly). We choose this sample 
(only two months of daily price data for one hundred firms grouped randomly into twenty 
portfolios) deliberately to illustrate the power of our methodology and its undemanding data 
requirements. However, we also check for sensitivity with respect to the sample below. 
 

                                                 
4 We choose these months to avoid January (and its effect), February (a short month), and 
March (a quarter-ending month), but test for sample sensitivity extensively below. 

5 For instance, we could use data at five-minute intervals for a day, making our assumption of 
constant asset-specific effects even more plausible; but the question of whether financial 
markets are integrated over hours (not weeks) is less interesting to us. 
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V.   RESULTS 

We start by splitting our 20 portfolios into two sets of 10 portfolios each (simply by ticker 
symbol) to estimate discount rates (i.e., estimates of )](/1[ 1+≡ ttt mEδ ). We provide time-
series plots of the estimated deltas from the first 10 portfolios along with a plus/minus two 
standard error confidence interval in Figure 1. We also include the point estimates of delta 
from the second 10 portfolios, estimated in precisely the same way but using data from the 
last set of 10 portfolios. 
 
 

Figure 1. Estimates of Marginal Rate of Substitution from two sets of (10) Standard and 
Poor’s Portfolios, April and May 1999 
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There are two striking features of the graph. First, the time-series variation in delta is high, 
consistent with the spirit of Hansen and Jagannathan (1991). As shown in Table 1, the log 
likelihood of our equation estimated on the first 10 S&P portfolios is 1160. In April–May 
1999, the US 3-month Treasury bill rate averaged 4.4 percent, a daily return of 1.00017 (with 
little time-series variation). The log likelihood for the default equation estimated with 
1.00017 substituted in place of }{ tδ  is only 1059. Under the null hypothesis of deltas that are 
constant and equal to the T-bill interest rate, 2*(1160–1059) is distributed as a chi-square 
with 39 degrees of freedom, grossly inconsistent with the null at any reasonable confidence 
level. (When we use all 20 portfolios, the analogue is 2*(2309–2136), again grossly 
inconsistent with the null.) That is, the hypothesis that the MRS is equal to the short t-bill 
rate is wildly inconsistent with the data. The MRS seems much more volatile than short-term 
interest rates. 
 
 
Table 1. Integration Inside the Standard and Poor’s (S&P) 500, Fama-French-Factor Model 

 
Log Likelihoods April–May 1999 July–Aug. 1999 Oct.–Nov. 1999 
First 10 portfolios 1,160. 1,302. 1,157. 
Second 10 portfolios 1,166. 1,299. 1,172. 
All 20 portfolios 2,309. 2,574. 2,303. 
Test (bootstrap P-value) 36 (0.90) 54 0(.37) 51 (0.43) 
 April–May 2002 July–Aug. 2002 Oct.–Nov. 2002 
First 10 portfolios 1,438. 1,255. 1,247. 
Second 10 portfolios 1,405. 1,302. 1,227. 
All 20 portfolios 2,805. 2,525. 2,456. 
Test (bootstrap P-value) 75 (0.06) 62 (0.24) 37 (0.90) 
Source: authors’ calculations 
 
Second, the estimates of delta from the two different sets of portfolios are similar; the deltas 
from the second set of portfolios almost always lie within the +/- 2 standard error confidence 
interval of the first estimate of delta. That is, the two different sets of delta are usually 
statistically indistinguishable on any given day, consistent with the null hypothesis of 
integration within the S&P. 
 
What about the two sets of delta examined jointly? The ocular evidence leads one to believe 
that the two sets of deltas are broadly equal. The statistical analogue is contained in the cells 
at the top left of Table 1. The log-likelihood of (5’) estimated from the first set of 
10 portfolios is 1160; that from the second set of 10 portfolios is 1166. When (6) is estimated 
from all 20 portfolios simultaneously so that only a single set of }{ tδ  is extracted, the log-
likelihood is 2309. Under the hypothesis of integration (i.e., the same }{ tδ  for both sets of 
assets) and normally distributed errors, minus twice the difference in the log-likelihoods is  
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distributed as a chi-square with 39 degrees of freedom; a likelihood ratio (LR) test. The test 
statistic is 36, consistent with the hypothesis of integration and normal residuals at the .61 
confidence level. 
 
It is well known that asset prices are not in fact normally distributed; Campbell, Lo, and 
MacKinlay (1997). Rather, there is strong evidence of fat tails or leptokurtosis, and this 
certainly characterizes our data.6 Accordingly, we use a bootstrap procedure to estimate the 
probability values for our likelihood ratio tests.7 The bootstrapped p-value for the test of 
integration is even more consistent with the null hypothesis of integration at the .90 level. 
 
To check for sample sensitivity, we also consider five other sample periods: July–August 
1999, October–November 1999, and the same three two-month samples for the bear market 
of 2002. Results from these other sample periods are also included in Table 1 and are also 
consistent with the hypothesis of integration inside the S&P 500 at standard confidence 
levels. 
 
What about the NASDAQ market for smaller stocks? We follow exactly the same 
procedures, but using data drawn from the NASDAQ market. We group (again on the basis 
of ticker symbol) data from 100 NASDAQ firms into 20 portfolios of 10 firms each, and test 
for equality of deltas (between the two different sets of deltas, estimated from the two sets of 
ten NASDAQ portfolios) using likelihood ratio tests with bootstrapped p-values. The results 
are presented in Table 2, and are generally consistent with the null hypothesis of integration 
inside the NASDAQ. However, one of our samples (April–May 2002) is inconsistent with 
integration at the .03 confidence level (this is marked with an asterisk), while integration is 
overwhelmingly rejected for October–November 1999 (two asterisks), shortly before the 
collapse of the NASDAQ. We think of these as intuitive, reasonable results, possibly 
consistent with the existence of “irrational exuberance” manifest in the NASDAQ just around 
the height of the internet bubble. 

                                                 
6 Jarque-Bera tests are inconsistent with the null hypothesis for {ε} at all reasonable 
confidence levels. 

7 Our bootstrap procedure is as follows. We estimate the deltas from (say) all 20 portfolios 
under the null hypothesis of integration. This gives us an estimate of {ε}. We then draw with 
randomly with replacement from this vector to create an artificial vector of {ε} which we use 
to construct an artificial regressand variable {x}. Using this artificial data we then generate a 
likelihood ratio test by estimating the model from the first set of 10 portfolios, the second set 
of 10 portfolios, and the combined set of 20. We then repeat this procedure a large number of 
times to generate a distribution for the LR test statistic. 
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Table 2. Integration Inside the NASDAQ, Fama-French-Factor Model 

 
Log Likelihoods April–May 1999 July–Aug. 1999 Oct.–Nov. 1999 
First 10 portfolios 881. 1,066. 757. 
Second 10 portfolios 816. 990. 945. 
All 20 portfolios 1,677. 2,023. 1,625. 
Test (bootstrap P-value) 42 (0.83) 65 (0.20) 153** (0.00) 
 April–May 2002 July–Aug. 2002 Oct.–Nov. 2002 
First 10 portfolios 1,052. 1,061. 991. 
Second 10 portfolios 1,174. 1,003. 962. 
All 20 portfolios 2,185. 2,035. 1,919. 
Test (bootstrap P-value) 82* (0.03) 58 (0.45) 69 (0.08) 
Source: authors’ calculations 
 
 
Still, the most interesting question to us is: Is the market for large (S&P 500) stocks 
integrated with the NASDAQ? It is easy to ask the question by comparing }{ tδ  estimates 
when (6) is estimated with: a) the twenty S&P portfolios; b) the twenty NASDAQ portfolios; 
and c) all forty portfolios pooled together (which is most efficient if the two markets are 
integrated). Our LR tests (with bootstrapped p-values) for this hypothesis are presented in 
Table 3 and are grossly inconsistent with the null hypothesis of market integration.  
The LR test statistics are an order of magnitude bigger than those of Tables 1 and 2. That is, 
while the S&P always seems integrated and the NASDAQ is generally integrated, the S&P is 
never integrated with the NASDAQ. This result is similar to that of Chen and Knez (1995). 
 
 
 

Table 3. Integration between S&P 500 and NASDAQ, Fama-French-Factor Model 
 
Log Likelihoods April–May 1999 July–Aug. 1999 Oct.–Nov. 1999 
20 S&P Portfolios 2,309. 2,574. 2,303. 
20 NASDAQ Portfolios 1677. 2,023. 1,625. 
Combined 3,706. 4,396. 3,633. 
Test (bootstrap P-value) 559** (0.00) 403** (0.00) 590** (0.00) 
 April–May 2002 July–Aug. 2002 Oct.–Nov. 2002 
20 S&P Portfolios 2,805. 2,525. 2,456. 
20 NASDAQ Portfolios 2,185. 2,035. 1,919. 
Combined 4,735. 4,352. 4,170. 
Test (bootstrap P-value) 511** 0(.00) 416** (0.00) 410** (0.00) 
Source: authors’ calculations 
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Time-series plots of }{ tδ  estimated from all (twenty) S&P and NASDAQ portfolios are 
provided in Figure 2 for all six sample periods, along with confidence intervals. Figure 3 
provides scatterplots of S&P deltas against NASDAQ deltas. All these graphs indicate that 
there is no single obvious characteristic difference between the S&P and NASDAQ deltas. 
 
 

Figure 2. Estimates of Marginal Rate of Substitution from Sets of (20) Portfolios 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: authors’ calculations 
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Figure 3. Estimates of Marginal Rate of Substitution from Sets of (20) Portfolios 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VI.   SENSITIVITY ANALYSIS 

Thus far we have relied on the Fama-French model of asset covariances. That is, the 
covariance of each asset’s return with the MRS is characterized by four parameters: an 
intercept ( j

0β ) and factor loadings on the market return minus the T-bill rate ( j
1β ), the 

difference between small and large stock returns ( j
2β ), and the difference between returns of 

stocks with high and low book to market ratios ( j
3β ). Are our results sensitive to the number 

of factors used? It turns out that the answer is negative. 
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In Table 4 we provide test statistics (and bootstrapped p-values) to examine tests of 
integration within the S&P and NASDAQ and between the two markets, but using only the 
return on the market instead of the three Fama-French factors (while retaining the portfolio 
intercepts as well). The test statistics and conclusions are essentially unchanged.  
 
 

Table 4. Integration Within and Between S&P 500 and NASDAQ, One-Factor Model 
 

Test Statistics 
(bootstrap P-value) 

April–May 1999 July–Aug. 1999 Oct.–Nov. 1999 

Within S&P 36 (.93) 48 (.75) 30 (.99) 
Within NASDAQ 47 (.79) 65 (.27) 127** (.00) 
S&P vs. NASDAQ 548** (0.00) 388** (0.00) 594** (0.00) 
 April–May 2002 July–Aug. 2002 Oct.–Nov. 2002 
Within S&P 44 (.88) 55 (.61) 35 (.98) 
Within NASDAQ 80 (.09) 58 (.61) 72 (.13) 
S&P versus NASDAQ 497** (0.00) 432** 0(.00) 422** (0.00) 
Sources: authors’ calculations 
 
 
Table 5 goes even further and drops the market factor from our covariance model, leaving 
only portfolios-specific intercepts ( j

0β ). Thus the conditional covariance model is modeled 
as time-invariant for the months under consideration. Again, the results are essentially 
unchanged.  
 

Table 5. Integration Within and Between S&P 500 and NASDAQ, Only Asset Intercepts 
 
Test Statistics 
(bootstrap P-value) 

April–May 1999 July–Aug. 1999 Oct.–Nov. 1999 

Within S&P 33 (0.97) 46 (0.71) 34 (0.94) 
Within NASDAQ 42 (0.80) 62 (0.28) 114** (0.00) 
S&P vs. NASDAQ 534** 0(.00) 378** (0.00) 591** (0.00) 
 April–May 2002 July–Aug. 2002 Oct.–Nov. 2002 
Within S&P 46 (0.76) 47 (0.77) 36 0(.95) 
Within NASDAQ 86* (0.03) 52 (0.63) 68 (0.12) 
S&P versus NASDAQ 506** (0.00) 416** (0.00) 419** (0.00) 
Sources: authors’ calculations 
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Finally we change the normalization of the data from lagged prices to contemporary prices. 
In so doing, we return to the traditional returns approach which has been widely investigated 
in Finance, stemming from equation (4). Thus the set of “nuisance” factor terms picks up the 
effects of )/,( 11

j
t

j
ttt pxmCOV ++  rather than )/,( 111

j
t

j
ttt pxmCOV −++ . This is precisely the 

covariance model that Fama and French had in mind when they developed their three-factor 
model, an advantage. On the other hand, we are forced to drop the factor-specific intercepts, 
i.e., }{ 0

jβ , since these are jointly perfectly collinear with the unity variable. That is, we 
estimate: 
 
 j

tt
j

t
j

t
j

t
j

t
j

t fffpx 1,33,22,111 )1(/ ++ ++++= εβββδ  (6) 
 
The integration test results are displayed in Table 6. Yet again, the results are similar to those 
which used different covariance models of Tables 3 through 5; integration within the S&P is 
never rejected, the NASDAQ has the same two episodes where integration can be marginally 
integrated, and the S&P is never close to being integrated with the NASDAQ.8 This 
robustness is encouraging since it demonstrates the insensitivity of our methodology to 
reasonable perturbations in the exact factor model employed. 
 
 
 

Table 6. Integration Within and Between S&P 500 and NASDAQ, Current Price 
Normalization (No Asset Intercepts) 

 
 

Test Statistics 
(bootstrap P-value) 

April–May 1999 July–Aug. 1999 Oct.–Nov. 1999 

Within S&P 29 (0.93) 72 (0.13) 33 (0.93) 
Within NASDAQ 37 (0.87) 65 (0.31) 114** (0.01) 
S&P vs. NASDAQ 520** (0.00) 372** (0.00) 550** (0.00) 
 April–May 2002 July–Aug. 2002 Oct.–Nov. 2002 
Within S&P 59 (0.33) 40 (0.70) 22 (0.98) 
Within NASDAQ 103* (0.02) 51 (0.60) 62 (0.22) 
S&P vs. NASDAQ 540** (0.00) 411** (0.00) 501** (0.00) 
 
 
 

                                                 
8 The point estimates of the expected MRS are much more noisy and volatile than those 
estimated with the lagged price normalization. 
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VII.   SUMMARY AND CONCLUSIONS 

This paper has developed a simple method to test for asset integration and then applied it 
within and between U.S. equity markets. It relies on estimating and comparing the expected 
riskless returns implied by different sets of assets. Our technique has a number of advantages 
over those in the literature and relies on just two assumptions: (1) rational  
expectations in financial markets; and (2) covariances between discount rates and normalized 
returns that can be modeled with a small number of factors for a short period of time. 
 
We illustrated this technique with an application to stocks drawn from the NYSE and the 
NASDAQ, and found that (a) the time-series variation in the expected marginal rate of 
substitution is high; (b) the NYSE always seems to be integrated; (c) the NASDAQ is usually 
(but not always) integrated; and (d) the NYSE and NASDAQ do not seem close to being 
integrated. Our results seem reasonably insensitive to the exact sample and conditioning 
model used.  
 
If our finding of integration within but not across stock markets holds up under further 
scrutiny, the interesting question is not whether financial markets with few apparent frictions 
are poorly integrated but why? We leave that important question for future research. 
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