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I. Introduction

The study of socioeconomic phenomena may be plagued by inconsistent empir-
ical estimates and model uncertainty. The case of inconsistent empirical estimates
typically arises with omitted country-specific effects that, if not uncorrelated with
other regressors, lead to a misspecification of the underlying dynamic structure, or
with endogenous variables that may be incorrectly treated as exogenous. A panel
data estimator that simultaneously addresses the issues of endogeneity and omitted
variable bias is the systems Generalized Method of Moments Estimator (GMM) pro-
posed by Hansen (1982). GMM estimators hold the potential for both consistency and
efficiency gains by exploiting additional moment restrictions. The systems GMM in-
volves the estimation of two equations, one in levels and the other in differences. The
estimates from the difference equation, constructed by taking first differences of the
levels equation eliminates the country-specific effect. For both equations, potentially
endogenous explanatory variables are instrumented with their own lagged values, a
factor that deals with the issue of endogeneity. Estimating the equations as a system,
the procedure constrains similar coefficients to be constant across equations.2

The case of model uncertainty arises because the lack of clear theoretical guidance
on the choice of regressors results in a wide set of possible specifications and, often,
contradictory conclusions. Remedially, the analyst has three options: (i) arbitrar-
ily select one model as the true model generating the data; (ii) present the results
based on all plausible models without selecting between different specifications; and
(iii) explicitly account for model uncertainty. While preferable, option (iii) presents
enormous challenges at the level of both concept and statistical theory. Option (ii),
although unsystematic, is preferable over option (i), but poses substantial logistical
challenges. In practice, researchers tend to focus on one “channel” and choose op-
tion (i), ignoring model uncertainty altogether and risking overconfident inferences.3

In theory, accounting for model uncertainty requires some version of a “robustness
check,” essentially an attempt to account for all possible combinations of predictors.
A conceptually attractive solution to the problem of model uncertainty is provided by
Bayesian Model Averaging (BMA) although difficulties at the implementation stage
sometimes render it impractical.4 In particular, with a large number of regressors, k∗,
the procedure may be infeasible due to the large number of models to be estimated,
2k
∗
. In addition, the researcher is required to specify the prior distributions of all

relevant parameters. In practice, most applications of BMA utilize an arbitrary set of
priors, without examining the impact of this choice. Standard Bayesian Model Aver-
aging techniques have been used in the context of investigating growth determinants

2To the extent that the lagged values of the regressors are valid instruments, this GMM estimator
addresses consistently and efficiently both sources of bias.

3See Leamer (1978) and Raftery (1988), and (1996) for a discussion.
4Madigan and Raftery (1994) show that BMA provides optimal predictive ability. Hoeting and

others (1999) summarize recent work using BMA. Brock and Durlauf (2000) provide an accessible
explanation of criticisms levied at growth empirics and the contribution of Bayesian analysis in
dealing with model uncertainty.
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by Brock and Durlauf (2001), Doppelhofer, Miller, and Sala-i-Martin (2000) in their
Bayesian Averaging of Classical Estimates (BACE) approach, and Fernandez, Ley,
and Steel (2001).

Taking into consideration the concerns over model uncertainty, this essay devel-
ops the theory of a new Limited Information Bayesian Model Averaging estimator
(LIBMA). The proposed estimator incorporates a dynamic panel estimator in the
context of GMM, and a Bayesian robustness check to explicitly account for model
uncertainty in evaluating the results of a universe of models generated by a set of
possible regressors. The LIBMA approach provides certain advantages over the ex-
isting literature by relaxing the otherwise restrictive underlying assumptions in two
ways. First, while standard Bayesian Model Averaging is a full information technique
where a complete stochastic specification is assumed, LIBMA is a limited informa-
tion approach that relies on GMM, a limited information technique based on moment
restrictions rather than a complete stochastic specification. Second, while previous lit-
erature implicitly assumes exogenous regressors, LIBMA can control for endogeneity
through the use of GMM.

The remainder of the paper is organized as follows. Section II introduces some
preliminary ideas about the GMM. Section III constructs the GMM estimator in
the Bayesian framework and the limited information likelihood. Section IV discusses
the concepts of hypothesis testing and model selection in the Bayesian framework,
presents the Limited Information Bayesian Information Criterion used in the context
of GMM, and completes the derivation of the LIBMA. Section V presents all the cal-
culated quantities and summary statistics on which the robustness analysis is based.
The final section concludes.

II. Preliminaries on GMM

The GMM was developed by Hansen (1982) and White (1982) as an extension to
the classical method of moments estimator. The basic idea of the GMM is to choose
parameters of the model so as to match the moments of the model to those of the
data as closely as possible. A weighing matrix determines the relative importance of
matching each moment. Most common estimation procedures are contained in the
GMM framework, including ordinary least squares, instrumental variables estimators,
and in some cases, maximum likelihood estimators.

A key advantage to GMM over other estimation procedures is that there is no
need to specify a likelihood function. The method of moments (and by extension,
GMM) does not require the complete specification of distributions. Given that eco-
nomic models do not specify joint distributions of economic variables, the method
of moments (as well as other limited information inference methods) becomes very
appealing in empirical studies. Of course, nothing comes for free. The cost is a loss
of efficiency over methods such as Maximum Likelihood (MLE). The MLE can be
viewed as a limiting case of GMM where under MLE the distribution of errors is
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specified (so in a sense all of the moments are incorporated). The trouble with MLE
is often that the errors may not follow a known distribution (such as the normal
which is almost the universal standard in MLE).5 Thus, GMM offers a compromise
between the efficiency of MLE and robustness to deviations from normality (or other
distributional forms).

This section follows the presentation in Kim (2000) and (2002) to introduce the
GMM concepts. Let xt be an n× 1 vector of stochastic processes defined on a proba-
bility space (Ω,F , P ). Denote by xT (ω) = (x1(ω), ..., xT (ω)), for ω ∈ Ω, a T−segment
of a particular realization of {xt}. Let θ be a q×1 vector of parameters from Θ ⊂ Rq.
Let G be the Borel σ−algebra of Θ, where (Θ,G) is a measurable space.6 In this paper
Θ is a “grand” parameter space on which all the likelihoods, priors and posteriors
under consideration are defined.

Let h(xt, θ) be an r×1 vector valued function, h : (Rn×Rq) −→ Rr. The function
h(xt, θ) characterizes an econometric relation h(xt, θ0) = wt for a θ0 ∈ Θ, where wt is
an r-vector stochastic disturbance process satisfying the standard conditions in GMM
of Hansen (1982).

Assumption (A1)

{wt,−∞ < t <∞} is stationary and ergodic.
Assumption (A2)

(a) EP [wtw
0
t] exists and is finite, and

(b) EP [wt+s|wt, wt−1, ...] converges in mean square to zero.

Assumptions (A1) and (A2) imply a broad class of models as shown in Hansen (1982).
Using iterated expectations, Assumption (A2) implies the r × 1 moment conditions

EP [h(xt, θ0)] = 0 (1)

Assumption (A3)7

(a) h(x, .) is continuously differentiable in Θ for each x ∈ Rn.

(b) h(., θ) and ∂h(., θ)/∂θ are Borel measurable for each θ ∈ Θ.

Let gT (xT , θ) be the sample average of h(xt, θ) where gT (xT , θ) ≡ 1
T

PT
t=1 h(xt, θ)

5In such a case, one may use quasi-Maximum Likelihood estimation which does not sacrifice
consistency. However, consistency may be an issue for nonlinear models estimated with Maximum
Likelihood.

6The measurable space (Θ,G) is required to define the posterior density in the Bayesian frame-
work, and it is discussed here for completeness.

7Assumption (A3) is described here for completeness although it is used later for Lemma 1 as
well as the derivation of the asymptotic normality of the posterior.
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Definition 1 The GMM estimator
nbθG,T (ω) : T ≥ 1o for some ω ∈ Ω is the value

of θ that minimizes the objective function

gT (xT , θ)
0WG

T gT (xT , θ), (2)

where
©
WG

T

ª∞
t=1

is a sequence of (r× r) positive definite weighting matrices which are
functions of the data xT.

Assuming an interior optimum, the GMM estimate bθG is then the solution to the
system of nonlinear equations:½

∂gT (xT , θ)

∂θ
|θ=bθ

¾0
×WG

T × [gT (xT ,bθ)] = 0. (3)

Let Rw(s) = Ep[ws+1w
0
1]. Using Assumptions (A1) and (A2), it is ensured that

S =
P∞

s=−∞Rw(s) is well defined and finite. The matrix S above is sometimes
interpreted as a long-run variance of wt = h(xt, θ0) and can be alternatively written
as

S ≡
∞X

ν=−∞
EP [h(xt, θ0)h(xt−ν, θ0)0]. (4)

Conditions (1) and (4) form conditions on the first and second moments of wt =
h(xt, θ0) implied by the probability measure P. The matrix S is the asymptotic vari-
ance of

√
TgT (xT , θ0)

S = lim
T%∞

EP [TgT (x, θ0)gT (x, θ0)
0]. (5)

In order to see how the weighing matrix in (2) works, consider first the situa-
tion where there are as many moment conditions as parameters (referred to as the
“just-identified” case). The moments will all be perfectly matched and the objective
function in (2) will have a value of zero. In the “over-identified” case where there
are more moment conditions than parameters, not all of the moment restrictions will
be satisfied, so the weighting matrix WG

T determines the relative importance of the
various moment conditions.

Hansen (1982) points out that setting WG
T = S−1, the inverse of an asymptotic

covariance matrix, is optimal in the sense that it yields parameter estimates with
the smallest asymptotic variance. (Intuitively, more weight is given to the moment
conditions with less uncertainty. S is also known as the spectral density matrix
evaluated at frequency zero.) There are many approaches for estimating (consistent
estimators of) S which can account for various forms of heteroskedasticity and/or
serial correlation, including White (1980), the Bartlett kernel used by Newey and
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West (1987), the truncated kernel of Hansen (1982), and the automatic bandwidth
selection from Andrews and Monahan (1992).

Let bST be a consistent estimator of S based on a sample of size T . An optimal
GMM estimator is obtained with WG

T = bS−1T in (2)

gT (xT , θ)
0 bS−1T gT (xT , θ), (6)

where S is approximated by bSTbST = TgT (x, θ0)gT (x, θ0)
0. (7)

III. GMM in the Bayesian Framework

In contrast to the classical approach, Bayesian estimation requires the specifica-
tion of likelihood functions or the data generating mechanism. Because of this rea-
son, one may conclude that the Bayesian method cannot be applied to the moment
problem. However, recent developments in the Bayesian and classical econometrics
have made it possible to consider a likelihood interpretation of some non-likelihood
problems.8 Innovative work in this area was done by Zellner (1996 and 1997) who de-
veloped a finite sample Bayesian Method of Moments (BMOM) based on the principle
of maximum entropy.9 One of the distinguishing features of the BMOM approach is
that it yields post-data densities for models’ parameters without use of an assumed
likelihood function. Inoue (2001) proposes a semi-parametric Bayesian method of
moments approach (which differs from the maximum entropy approach) that enables
direct Bayesian inference in the method of moments framework. It turns out that
the posterior distribution of strongly identified parameters is asymptotically normal
even in the presence of weakly identified parameters. Finally, Kim (2000) and (2002)
develops a limited information procedure in the Bayesian framework that does not
require the knowledge of the likelihood function. His procedure is the Bayesian coun-
terpart of the classical GMM but has certain advantages over the classical GMM for
practical applications, and it is the approach we closely follow in this essay.

A. The Bayes Estimator and GMM

We now begin the construction of the GMM in the Bayesian framework. In the
classical framework, GMM is a limited information procedure. The GMM estimate

8Inoue (2001), and Kim (2000) and (2001) provide a good literature review.
9As Golan, Judge, and Miller (1996) show, in the entropy approach, estimators are chosen to

maximize entropy or minimize some distance metric between the true probability measure and
artificial probability measures for which the moment condition in question is satisfied. Hence, this
approach does not require knowledge of the functional form of the likelihood. Using the Bayesian
counterpart of this approach, one can obtain finite-sample post-data moments and distribution of
the parameters and conduct post-data inference (e.g. see Zellner 1996 and 1997). Many traditional
estimators are special cases of entropy.
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in Definition (1) is based on the moment condition (1), a set of limited information
on the data generating process. The goal is to build a Bayesian counterpart of the
classical GMM by constructing a Bayesian limited information procedure based on a
set of moments.

Following Kim (2000) and (2002), we begin with some of the basic elements. A
Bayesian framework is identified by a posterior density defined in the measurable
space (Θ,G). Let πT (θ|xT (ω)) be the “true” posterior of θ that may be unknown.10
Assume that the posterior πT (.|xT (.)) is jointly measurable G × F . Define

P π
T (G,ω) =

Z
G

πT (θ|xT (ω))dθ

for any G ∈ G and ω ∈ Ω, where P π
T (., ω) is a probability measure on Θ for every

ω ∈ Ω.

Let (θ, δ) be the loss function that penalizes for the choice of δ when θ is the real
parameter value. The Bayes’ estimator is an estimator that minimizes the expected
posterior loss bθB = δ∗(xT ) = argmin

δ
Eπ[ (θ, δ)], (8)

where
Eπ[ (θ, δ)] =

Z
Θ

(θ, δ)πT (θ|xT )dθ. (9)

We are interested in a loss function that yields an estimator equivalent to the GMM
estimator. Since the objective is to study a Bayesian counterpart of the classical GMM,
it is natural to adopt a loss function with this property. Consider the following loss
function that is quadratic in gT :

(θ, δ) = L(gT (θ), gT (δ)) = [gT (θ)− gT (δ)]
0WT [gT (θ)− gT (δ)], (10)

where
©
WG

T

ª∞
t=1
is a sequence of positive definite weighing matrices. The loss function

in (10) can be transformed to a loss function quadratic in θ :

(θ, δ) = [θ − δ]0gWT [θ − δ], (11)

wheregWT = {∂g(eθ)∂θ
}0WT{∂g(eθ)∂θ

}, and eθ ∈ (θ, δ).
The loss functions in (10) and (11) are such that under some conditions (discussed

in Lemma 1 below) yield an estimator that is the same as the GMM. As discussed
in Kim (2000), the choice of the loss functions (10) and (11) does not cause loss of
generality. The main results of this essay do not change so far as the chosen loss
function can be transformed into a function that is quadratic in θ.

10It is the “true” posterior in the sense that it is obtained from the true likelihood of θ, or it is a
posterior of θ that contains a richer set of information than that in the limited information posterior
discussed in this paper.
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From the minimization problem (8) using the loss function in (10) the first order
condition is

Eπ

·½
∂gT (θ)

∂θ
|θ=bθ

¾0
WTgT (θ)

¸
=

½
∂gT (θ)

∂θ
|θ=bθ

¾0
WTgT (bθ). (12)

This implies a moment condition

Eπ[ΞTgT (θ)] = ΞTgT (bθ),
where the right hand side is a constant conditional on xT and

ΞT =

½
∂gT (θ)

∂θ
|θ=bθ

¾0
×WT .

Interpreting the GMM estimator as a Bayes’ estimator, the right hand side of (12) is
equal to zero. So we have the moment condition:

Eπ[ΞTgT (θ)] = 0.

LEMMA 1:

Assume the second order conditions hold for the minimization in the GMM estimate
in (2) and in the Bayes’ estimate in (8) with the loss function described in (10). Then,
under Assumption (A3), the GMM estimator bθGMM is equal to the Bayes’ estimatorbθB if and only if and only if

Eπ[ΞTgT (θ)] = 0,

where

ΞT =

½
∂gT (θ)

∂θ
|θ=bθ

¾0
×WT

and {WT} =
©
WG

T

ª
.11

B. Limited Information Likelihood and GMM

In this section we follow the discussion in Section 3 of Kim (2002) to establish a
semi-parametric limited information likelihood based on the moment conditions which
form a set of limited information on the data generating mechanism. (This limited
information likelihood is then used to derive a limited information posterior in Kim
(2002).) The approach to get this limited information likelihood function is based on
the principle of maximum entropy where the idea is to get a likelihood that is closest
to the unknown true likelihood in an information distance.
11The proof of this lemma is found in Kim (2001).
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From the moment condition (1) we have

EP [gT (xT , θ0)] = 0, (13)

and from (4) and (6) we have the second moment condition on gT

S = lim
T%∞

EP [TgT (xT , θ0)gT (xT , θ0)
0], (14)

where S is the long-run variance of wt = h(xt, θ0) described in (4). Under Assumptions
(A1) and (A2) it can be shown12 that

lim
T%∞

EP [TgT (xT , θ0)
0S−1T gT (xT , θ0)

0] = r. (15)

Given the true probability measure P with the properties in the moment conditions
(13) and (14), we are interested in the probability measure Q that implies the same
moment conditions. Let Q be a family of probability measures that is absolutely
continuous with respect to P such that for θ ∈ Θ

Q(θ) = {Q : EQ[gT (xT , θ) = 0} ∩ {Q : lim
T%∞

EQ[TgT (xT , θ)gT (xT , θ)
0] = S} (16)

which (as shown in Kim 2002) reduces to

Q(θ) = {Q : lim
T%∞

EQ[TgT (xT , θ)
0S−1T gT (xT , θ)] = r}. (17)

Usually such a Q is not unique. For Q ∈ Q we are interested in the one that
it is the closest to the true probability measure P in the entropy distance or the
Kullback-Leibler information distance (White 1982) or the I−divergence distance
(Csiszar 1975). The optimization problem yields such a solution Q∗

Q∗(θ) = argmin
Q∈Q

I(Q||P ) ≡
Z
ln(dQ/dP )dQ, (18)

where dQ/dP is the Radon-Nikodym derivative (or density) of Q with respect to P .
So, Q∗ is the solution of the constrained minimization where the constraint is given
with respect to the moments implied in the measure P. As in Csiszar (1975), Q∗ is
defined to be the I−projection of P on Q. Further, denote by q∗P (θ) = dQ∗(θ)/dP
the Radon-Nikodym derivative of Q∗(θ) with respect to P. Kim (2002) calls q∗P (θ) a
limited information density or the I−projection density (following Csiszar (1975)).

The solution of (18) q∗P (θ) is uniform in θ ∈ Θ that satisfies the moment in (16)
or (17), and therefore, q∗P (θ) can be interpreted as the likelihood of θ. Thus, we call
q∗P (θ) a Limited Information Likelihood (LIL) or the I−projection likelihood.

Under the conditions on Q

12The proof is discussed in Kim (2002).
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q∗P (θ) = K exp{ lim
T%∞

κTgT (xT , θ)
0S−1T gT (xT , θ)}, (19)

where κ is a constant and K is a normalizing constant. As shown in Kim (2002),
κ = −1/2 is a desirable choice. Finally, Theorem 1 of Kim (2002) establishes that
q∗P,T (xT , θ) is a finite sample analogue of q

∗
P (θ). Therefore, the sample LIL is

qP,T (xT , θ) = K exp{κTgT (xT , θ)0S−1T gT (xT , θ)}. (20)

When S is not known it is replaced by a consistent estimator bST .
IV. Model Uncertainty and BMA

Standard statistical practice ignores model uncertainty. The classical apporach
conditions on a single model and thus leads to underestimation of uncertainty when
making inferences about quantities of interest. A complete Bayesian solution to the
problem of model uncertainty is the BMA approach which involves averaging over
all possible combinations of predictors when making inferences about the quantities
of interest.13 The Bayesian approach avoids conditioning on a single model. No
model is assumed to be the “true” model, instead, all possible models are assigned
different probabilities based on the researcher’s prior beliefs using the posterior model
probabilities as weights. As noted by Hoeting and others (1994), this is reasonable
as it allows for propagation of model uncertainty into the posterior distribution and
leads to more sensible uncertainty bands.

The following sections draw from Raftery (1994), Kass and Raftery (1995), and
Kim (2000) and (2002). First, we introduce Bayesian hypothesis testing and Bayes fac-
tors to test competing models. Then, we derive a limited information model selection
criterion, in order to calculate the Bayes factors in the case of a limited information
procedure. Finally, we incorporate the derived criterion in the context of BMA to
derive the posterior distributions of the parameters of interest.

A. Bayesian Hypothesis Testing

We begin with the general setup for a model selection problem. Let M be a
family of candidate models for xT . A model Mk ∈M is associated with a parameter
space Θk of dimension qk for k ∈ I where I = {1, ..., I} and characterized by a relation
of the form h(xt, θ) = wt (as described in Section 1) with wt a stochastic process
satisfying Assumptions (A1) an (A2). For everyMk ∈M a set of moment conditions
is defined as in (1) and a likelihood qkT (xT , θk) is defined (as in (20)).

13Madigan and Raftery (1994) note that the BMA approach provides the optimal predictive ability.
Hoeting and others (1999) summarize recent work using BMA.
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Suppose that we want to use data xT to test competing hypotheses presented
by two models M1 and M2 with parameter vectors θ1 and θ2. Let p(M1|xT ) be the
posterior probability that M1 is the correct model,

p(M1|xT ) = qT (xT |M1)p(M1)

qT (xT |M1)p(M1) + qT (xT |M2)p(M2)
, (21)

where (for k = 1, 2) qT (xT |Mk) is the marginal probability of the data given Mk, and
p(Mk) is the prior probability of model Mk.

14

In general, the term qT (xT |Mk) in (21) is obtained by integrating over the para-
meter space

qT (xT |Mk) =

Z
Θi

qT (xT |θk,Mk)φ(θk|Mk)dθk, (22)

where qT (xT |θk,Mk) = qkT (xT , θk), the likelihood of θk under modelMk (the marginal
likelihood), and φ(θk|Mk) is the prior density associated with model Mk.

The posterior odds ratio for M2 against M1 (i.e. the ratio of their posterior
probabilities p(M2|xT )

p(M1|xT )) can be used to measure the extent to which the data support
M2 over M1. Using (21) the posterior odds ratio is

p(M2|xT )
p(M1|xT ) =

qT (xT |M2)

qT (xT |M1)
× p(M2)

p(M1)
, (23)

where the first term on the right-hand side of (23) is the Bayes factor for M2 against
M1, denoted by B21, and the second term is the prior odds ratio. Sometimes the prior
odds ratio is set to 1, representing the lack of prior preference for either model, in
which case the posterior odds ratio is equal to the Bayes factor. When the posterior
odds ratio is greater (less) than 1, the data favor M2 over M1 (M1 over M2).

Evaluating the Bayes factor in (23) for hypothesis testing requires calculating
the marginal likelihood qT (xT |Mk). This can be a high-dimensional and intractable
integral. Various analytic and numerical approximations have been proposed which
are reviewed in Kass and Raftery (1995). The Bayesian Information Criterion (BIC) is
a simple and accurate method to estimate Bayes factors when the likelihood function
is known. This is discussed first in the next section. Then we extend the discussion
to the case where only the limited information likelihood is available to derive the
Limited Information Bayesian Information Criterion (LIBIC).

B. The Information Criteria: BIC and LIBIC

Following the approach of Raftery (1994), we focus on approximating the marginal
likelihood for a single model, that is, the right hand side of (22). We will avoid

14Similar to (21), p(M2|xT ) = p(xT |M2)p(M2)
p(xT |M1)p(M1)+p(xT |M2)p(M2)

, and p(M1|xT ) + p(M2|xT ) = 1.
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indexing for a specific model, so a general form of (22) can be written as qT (xT |M) =R
qT (xT |θ,M)φ(θ|M)dθ.
Let f(θ) = log[qT (xT |θ,M)φ(θ|M)], and consider a Taylor series expansion of f(θ)

about eθ, the value of θ that maximizes f(θ) or the posterior mode. The expansion
gives

f(θ) = f(eθ) + (θ − eθ)0f 0(eθ) + 1
2
(θ − eθ)0f 00(eθ)(θ − eθ) + o(k θ − eθ k)2 (24)

where f 0(θ) = (∂f(θ)
∂θ1

, ..., ∂f(θ)
∂θd

) is the vector of first partial derivatives of f(θ), and
f 00(θ) is the Hessian matrix of second partial derivatives of f(θ) whose (i, j) element
is ∂2f(θ)

∂θi∂θj
. Since f(θ) is maximized at eθ, f 0(eθ) = 0, so (24) becomes

f(θ) ≈ f(eθ) + 1
2
(θ − eθ)0f 00(eθ)(θ − eθ). (25)

From the definition of f(θ) and (22) it follows that qT (xT |M) =
R
exp[f(θ)]dθ , and

using (25):

qT (xT |M) ≈ exp[f(eθ)]× Z exp[
1

2
(θ − eθ)0f 00(eθ)(θ − eθ)]dθ. (26)

Recognizing that the integrand in (26) as proportional to a multivariate normal den-
sity gives

qT (xT |M) ≈ exp[f(eθ)](2π) d2 |A|− 1
2 , (27)

where d is the number of parameters in the model and A = −f 00(eθ). This is the
Laplace approximation method.15 Using

log qT (xT |M) = log qT (xT |eθ,M)+logφ(eθ|M)+(d
2
) log(2π)− 1

2
log |A|+O(n−1). (28)

In large samples, eθ = bθ, where bθ is the Maximum Likelihood Estimator, and A ≈ ni
where i is the expected Fisher information matrix for one observation. This is a (d×d)
matrix whose (i, j) element is −E[∂2 log p(y1|θ)

∂θi∂θj
|θ=bθ ],with the expectation being taken

over values of y1 with θ held fixed. Thus, |A| ≈ nd|i|. With these approximations
and an added O(n−

1
2 ) error, (28) becomes

log qT (xT |M) = log qT (xT |bθ,M)+log φ(bθ|M)+(d
2
) log(2π)−(d

2
) log n−1

2
log |i|+O(n− 1

2 ).

(29)
15Tierney and Kadane (1986) show that the error in (27) is O(n−1) so that nO(n−1)→ constant

as n→∞.
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Removing the terms of order O(1) or less, gives16

log qT (xT |M) = log qT (xT |bθ,M)− (d
2
) logn+O(1). (30)

Equation (30) is the approximation on which the BIC is based and was first derived
by Schwarz (1978). As suggested by Raftery (1994), although the O(1) term suggests
that the error does not vanish with an infinite amount of data, the error will tend
towards zero as a proportion of log qT (xT |M), which ensures that the error will not
affect the conclusion reached given enough data. For a particular choice of prior, the
error term is of much smaller magnitude. Suppose that the prior is a multivariate
normal with mean bθ and variance matrix i−1. Under that choice of a prior, we have

logφ(bθ|M) = −(d
2
) log(2π) +

1

2
log |i|. (31)

Substituting (31) in (29), we get an expression for log qT (xT |M) where the error term
vanishes as n→∞

log qT (xT |M) = log qT (xT |bθ,M)− (d
2
) logn+O(n−

1
2 ). (32)

Using the approximation in (32) we can derive the Bayes factor B21 =
p(xT |M2)
p(xT |M1)

in
(23), such that:

logB21 = log qT (xT |bθ2,M2)− log qT (xT |bθ1,M1)− (d2 − d1)

2
logn+O(n−

1
2 ). (33)

As discussed in Kass and Raftery (1995), the expression in (33) is the Schwarz criterion
(S) and as n → ∞, S−logB21

logB21
→ 0. (Based on this result, (33) can be viewed as an

approximation to the Bayes factor B21.) Twice the Schwarz criterion is the BIC or

BIC = 2 logB21 = 2[log qT (xT |bθ2,M2)− log qT (xT |bθ1,M1)]− (d2−d1) logn+O(n−
1
2 ).
(34)

Exact calculation of equation (34) requires the knowledge of the likelihood func-
tion for each of the models. If M1 is nested within M2 (34) reduces to 2 logB21 ≈
χ221 − df21 log n, where χ221 is the standard likelihood ratio test for testing M1 against
M2 and df21 = d2 − d1 is the number of degrees of freedom.

The full-information likelihood function is not available in the context of GMM.
Therefore, in order to calculate the BIC in (34) we need to rely on the LIL developed
by Kim (2002) and discussed in Section 3. Using the LIL in (30) we can replace

16Note that in (29) the terms log p(bθ|M), (d2 ) log(2π),−12 log |i|,and O(n−
1
2 ) are all of order O(1)

or less.
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the likelihood functions on the right hand side of (34) to get a Limited Informa-
tion Bayesian Information Criterion (LIBIC). First, using (20) (with S replaced by a
consistent estimator bST ) to substitute for the log-likelihood in (34) we have

log qP,T (xT |bθ,M) = logK+ κTgT (xT , θ)
0 bS−1T gT (xT , θ), (35)

and substituting in (34) eliminating the O(n−
1
2 ) term we have the expression for the

LIBIC:

LIBIC = 2[log qP,T (xT |bθ2,M2)− log qP,T (xT |bθ1,M1)]− (d2 − d1) logn, (36)

which reduces to

LIBIC = 2[κTgT (xT , θ2)
0 bS−1T gT (xT , θ2)−κTgT (xT , θ1)0 bS−1T gT (xT , θ1)]−(d2−d1) logn.

(37)
The LIBIC expression in (37) can be calculated from the estimated output and will
be used to estimate the Bayes factors required for the hypothesis testing.

C. BMA under Limited Information

Suppose we can divide the parameter space into K regions (models), so we have
the space of all possible models M = {Mj : j = 1, ..., K}. Let ∆ be the quantity
of interest (such as a parameter, in our case). Then Bayesian inference about ∆ is
constructed given the data D, based on the law of total probability:

p(∆|D) =
KX
k=1

p(∆|D,Mk)p(Mk|D), (38)

where p(∆|D), the posterior distribution of the quantity of interest ∆ is a mixture
of the posterior distributions of that quantity under each of the models with mixing
probabilities given by the posterior model probabilities and using the posterior model
probabilities as weights. Thus, the full posterior distribution of ∆ is a weighted aver-
age of the posterior distributions under each model (M1, ...,MK), where the weights
are the posterior model probabilities p(Mk|D). This procedure is what is typically
referred to as BMA, and it is in fact the standard Bayesian solution under model
uncertainty, since it follows from direct application of Bayes’ theorem.

Denoting the data by xT , (38) becomes p(∆|xT ) =
PK

k=1 p(∆|xT ,Mk)p(Mk|xT ).
Using Bayes’ theorem, the posterior model probabilities are obtained using (21) ex-
tended for the case of K models, such that:

p(Mk|xT ) = qT (xT |Mk)p(Mk)PK
j=1 qT (xT |Mj)p(Mj)

. (39)
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Although this fully Bayesian approach is a feasible and a very attractive solution
to the problem of accounting for model uncertainty, there are certain difficulties in
the implementation of the BMA, making it (in some cases) a rather unpopular and
less practical proposition. First, when the number of regressors k∗ is very large, the
number of models is 2k

∗
and, as a result, calculations may be rendered infeasible.17

Second, the BMA requires specification of the prior distributions of all relevant para-
meters so for k∗ possible regressors, 2k

∗
priors are needed. In most BMA cases, the

choice of priors has essentially been arbitrary and the impact of this choice on the
estimated parameters has not been examined. In the context of growth Brock and
Durlauf (2001), Doppelhofer, Miller, and Sala-i-Martin (2000), and Fernandez, Ley,
and Steel (2001) are all applications of BMA techniques to investigate robustness of
growth determinants in light of model uncertainty.18

Each of the K models is compared in turn with a baseline model M0 (which
could be the null model with no independent variables), yielding Bayes factors B10,
B20, ..., BK0. The value of BIC for model Mk denoted BICk, is the approximation to
2 logB0k given by (34), where B0k is the Bayes factor for model Mk against M0.

19

It is possible to write (21) and (39) in terms of the BIC. To see this, rewrite the

Bayes factor B12 =
p(D|M1)
p(D|M2)

as B12 =
p(D|M1)
p(D|M2)

× p(D|M0)
p(D|M0)

=
p(D|M1)
p(D|M0)

p(D|M2)
p(D|M0)

= B10
B20

= B02
B01

. Using

(34), this implies that 2 logB12 = 2(logB02 − logB01) = BIC2 −BIC1. Substituting
the Bayes factor B12 in (21), we get p(M1|xT ) = B12qT (xT |M2)p(M1)

B12qT (xT |M2)p(M1)+qT (xT |M2)p(M2)
=

B10
B20

p(M1)

B10
B20

p(M1)+
B20
B20

p(M2)
= B10p(M1)

B10p(M1)+B20p(M2)
. Since 2 logB10 = BIC0−BIC1 = −BIC1, then

B10 = exp(−12BIC1), the expression then becomes p(M1|xT ) = exp(− 1
2
BIC1)p(M1)P2

j=1 exp(− 1
2
BICj)p(Mj)

.

Extending from 2 models to K models, p(xT |Mk) ∝ exp(−1
2
BICk) and (39)

becomes

p(Mk|xT ) =
exp(−1

2
BICk)p(Mk)PK

j=1 exp(−12BICj)p(Mj)
. (40)

The expression in (40) uses the “full information” BIC derived in (34). In the frame-
work of our GMM analysis, and following the discussion in Section 3.2 we modify (40)

17For example, the summation and implicit integrations in (39) below may be difficult to compute.
Proposed solutions to this problem are novel Markov Chain Monte Carlo techniques such as the
MC3 sampler first used by Madigan and York (1995) or averaging over a subset of models that are
supported by the data such as the Occam’s window method of Madigan and Raftery (1994).
18In the last section we will address how our proposed methodology addresses some of the weak-

nesses of the BMA, and how it compares to the approaches of Brock and Durlauf (2001) and Dopel-
hoffer, Miller, and Sala-i-Martin (2000).
19Note that B00 = 1 and BIC0 = 0.
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to incorporate the “limited information” LIBIC defined in (37)

p(Mk|xT ) =
exp(−1

2
LIBICk)p(Mk)PK

j=1 exp(−12LIBICj)p(Mj)
. (41)

Equation (41) defines the LIBMA estimator, an extension of the BMA in the case of a
limited information likelihood. The LIBMA incorporates a dynamic panel estimator
in the context of GMM and a Bayesian robustness check to explicitly account for
model uncertainty in evaluating the results of a universe of models generated by a set
of possible regressors.

V. Statistics for the Robustness Analysis

This section summarizes the computational aspects and introduces the statistics
on which we will base our robustness analysis.

Suppose we have n independent replications of a linear regression model with an
intercept α, and k∗ possible regressors grouped in a k∗−dimensional vector β. Denote
by Z the corresponding n × k∗ design matrix. We have K = 2k

∗
possible sampling

models, depending on whether we include or exclude each of the regressors, so we have
the space of all possible modelsM =

©
Mj : j = 1, ..., 2

k∗
ª
. In order to deal with with

model uncertainty in the Bayesian framework, we need to define a prior distribution

over the model spaceM, namely, p(Mj), where
P2

k∗

j=1 p(Mj) = 1.

A model Mj with 0 ≤ kj ≤ k∗ regressors is defined by y = α+ βjXj + ε, where y
is the vector of observations, Xj denotes the n× kj matrix of the regressors included,
and βj is the vector of the relevant coefficients.

From (23) the posterior odds ratio for two models Mj, Ml is Bjl =
p(Mj |xT )
p(Ml|xT ) =

qT (xT |Mj)

qT (xT |Ml)
× p(Mj)

p(Ml)
. The first term on the right hand side, qT (xT |Mj)

qT (xT |Ml)
is the Bayes factor

and can be approximated using (34). The second term, p(Mj)

p(Ml)
is the prior odds ratio.

In the case where there is no preference for a specific model, p(M1) = p(M2) =
... = p(MK) =

1
K
and the posterior odds ratio is equal to the Bayes factor. We do

not assume equal inclusion probability for each model. Instead, following Doppelhofer,
Miller, and Sala-i-Martin (2000) we represent a modelMj as a length k∗ binary vector
in which a one indicates that a variable in included in the model and a zero indicates
that it is not. In addition, following Doppelhofer, Miller, and Sala-i-Martin (2000),
we do not require the choice of (arbitrary) priors for all the parameters — instead,
only one hyper-parameter is specified, the expected model size, k.

Assuming that each variable has an equal inclusion probability, the prior proba-
bility for model Mj is

p(Mj) = (
k

k∗
)kj(1− k

k∗
)1−kj , (42)
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and the prior odds ratio is

p(Mj)

p(Ml)
= (

k

k∗
)kj−kl(1− k

k∗
)kj−kl, (43)

where k∗ is the total number of regressors, k is the researcher’s prior about the number
of regressors with non-zero coefficients, kj is the number of included variables in model
Mj, and k

k∗ is the prior inclusion probability for each variable. Since k is the only
prior that arbitrarily specified in the simulations, robustness checks of the results can
be ran by changing the value of this parameter.

If the set of possible regressions is small enough to allow exhaustive calculation,
we can substitute (42) into (44) to calculate the posterior model probabilities (where
the weights for different models are assigned based on posterior probabilities of each
model—essentially normalizing the weight of any model by the sum of the weights of
all possible K = 2k

∗
models) so that:

p(Mj|xT ) =
exp(−1

2
LIBICj)p(Mj)P2k∗

l=1 exp(−12LIBICl)p(Ml)
. (44)

Next, we can use (44) to estimate the posterior mean and posterior variance as
follows:

E(θk|xT ) =
2k
∗X

j=1

p(Mj|xT )E(θk|xT ,Mj), (45)

and

V ar(θk|xT ) = E[V ar(θk|xT ,Mj)|xT ] + V ar[E(θk|xT ,Mj)|xT ] (46)

=
2k
∗X

j=1

p(Mj|xT )
©
V ar(θk|xT ,Mj) +E(θk|xT ,Mj)

2
ª−E(θk|xT )2.

Other statistics relevant to the study are the posterior mean and variance condi-
tional on inclusion. First we calculate the posterior inclusion probability, which is the
sum of all posterior probabilities of all the regressions including the specific variable
(regressor). The posterior inclusion probability is a ranking measure to see how much
the data favors the inclusion of a variable in the regression, and is calculated as

posterior inclusion probability = p(θk 6= 0|xT ) =
X
θk 6=0

p(Mj|xT ). (47)



- 19 -

If p(θk 6= 0|xT ) > p(θk 6= 0) = k
k∗ then the variable has a high marginal contribution

to the goodness of fit of the regression model. Then, the posterior mean and variance
conditional on inclusion are the ratios of the posterior mean and variance divided by
the posterior inclusion probability, E(θk|xT )P

θk 6=0 p(Mj |xT ) , and
V ar(θk|xT )P
θk 6=0 p(Mj |xT ) , respectively.

Finally, we compute the sign certainty probability. This measures the probability
that the coefficient is on the same side of zero as its mean (conditional on inclusion)
and is calculated as

sign certainty for θk = p[sgn(θk) = sgnE(θk|D)|D, θk 6= 0] (48)

=
2k
∗X

j=1

p(Mj|xT ) {p[sgn(θk) = sgnE(θk|xT )|Mj,xT ]} .

VI. Conclusion

This paper develops the theoretical background of the Limited Information Bayesian
Model Averaging (LIBMA) approach and the computational aspects of the robust-
ness analysis. The proposed methodology consists of a coherent Bayesian framework
that addresses the problems of model uncertainty and restrictive assumptions of cer-
tain estimation procedures. The LIBMA technique has many potential applications
including investigations of competing hypotheses, and parameter estimation that is
robust to model specification.

As is typical in many areas of economic research, empirical work on investigating
growth (and poverty) determinants is (i) prone to inconsistent estimates due to bias
from omitted country-specific effects and failing to account for endogenous regressors;
and (ii) particularly susceptible to model uncertainty arising from the combination
of a complex web of relationships and the lack of clear theoretical guidance on the
choice of regressors. The first practical application of the LIBMA by Ghura, Leite,
and Tsangarides (2002) is a contribution to the ongoing growth and poverty debate
that provides empirical evidence on the elasticity of the income of the poor with
respect to average income and on the set of macroeconomic policies that directly
influence poverty rates. Further, motivated by the existing empirical evidence on
poverty reduction (and more broadly on human development), which strongly sup-
ports the primacy of the role of economic growth, a second research project attempts
to explain the observed differences in standards of living across countries by identify-
ing robust patterns of cross-country growth behavior, and examine convergence using
the LIBMA approach.
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