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I. INTRODUCTION

Although per capita GDPs of developing countries have not converged much toward those of
advanced economies, life expectancy in developing countries has improved to a comparable
level, as shown in Figure 1.2 This challenges one of the biggest puzzles in the economic
growth literature, that is, the lack of convergence in world living standards. Indeed, Becker,
Phillipson, and Soares (2006, BPS hereafter) point out that the substantial convergence has
already occurred in the longevity-corrected income. However, they compute an increase in
the value of life based on one-generation, partial-equilibrium concept, using estimates in the
existing labor literature (e.g., Viscusi and Aldy, 2003). This concept is theoretically
inconsistent with the typical growth theory, upon which the non-convergence puzzle relies.

I introduce a coherent concept of welfare, the dynastic general equilibrium value of life, to
evaluate the welfare gains from increase in life expectancy in the context of economic growth
process. This value of life concept is different from the one a subliterature of labor
economics has been working on. In the existing literature, the value of life is based on a
partial equilibrium concept: a willingness to accept a higher wage for a marginal increase in
the fatality rate.3 This calculation does not take into account the general equilibrium effects
of possible economy-wide acceleration in accumulation of physical and human capital that
results from population-wide extension of longevity. Thus, the general equilibrium value
may well be larger than the partial equilibrium value.4 However, a dynastic consideration
may lower the value of life, since the existing literature does not take into account the
substitutability of descendants for the current generation from the dynastic point of view.5

Although it is impossible to discuss longevity with a standard assumption of infinitely lived
households in a neoclassical growth theory, Barro (1974) and Becker and Barro (1988)
provide a theoretical foundation for this commonly used assumption and I follow their
treatments: parents have altruism towards their children. To focus on the longevity issue, the
fertility choice is given and population is assumed to be stationary. As such, a dynastic model
with generational changes becomes equivalent to a model with infinitely lived households.

In the next section, after I set up the model, I prove first that the dynastic general equilibrium
value of life is zero under a canonical neoclassical growth theory, which is based on the

2Life expectancy of the middle-income countries has increased about 24 years (about 46 to 70) over the
1960-2004 period, but only about 10 years (69 to 79) for the advanced economies. Partly due to the AIDS
epidemic, low-income countries experience less convergence, but still they achieved about 16 years’ (43 to 59)
increase in life expectancy. See Deaton (2006) for detailed analysis and a literature review.

3Specifically, it is the coefficient on the fatality rate in a regression of wages of various occupations after
controlling for key characteristics of workers and jobs such as age, gender, and so forth (e.g., wage difference
between miners versus waiters at fast food restaurants).

4There are several other general equilibrium effects (for example, effects on population dynamics) that
determine availability of per capita physical capital. I will revisit these issues later.

5Rosen (1988) points out this as a potential problem for his calculation of the value of life essentially based on
an one-generation model.
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Barro-Becker assumption on altruism and the standard laws of motion of physical and human
capital. This result should not be surprising, since the Barro-Becker assumption makes the
future generation’s utility a perfect substitute for the current generation’s.

Second, I prove that, with a slightly more realistic assumption, the dynastic general
equilibrium value of life is positive and sizable, much larger than, for example, typical
welfare gains from eliminating business cycle. Here, although I am not unaware of debates
about altruism, I keep the Barro-Becker assumption (perfect altruism) and focus rather on
human capital accumulation. Specifically, I assume that the depreciation of human capital
over generations is much larger than within the same person. In this formulation, unlike in
the existing literature, the value of life stems not from extra utilities obtained in additional
years, but from the economization of depreciation by less frequent changes of generations
over time within a dynasty.6

In Section III, I report quantitative assessment. I compute the dynastic general equilibrium
value of life with key parameter values calibrated to actual economic growth and life
insurance coverage. Then, I construct the full income, corrected for increase in the dynastic
general equilibrium value of life, for 96 countries for 1990 and 2000. The dynastic general
equilibrium value of life turns out sizable and makes the full income show convergence better
than the GDP per capita. However, the gains in convergence are small, less than half of those
BPS report, implying that the GDP-based measure is a good approximation of the true nature
of the world income inequality.

In Section IV, I prove that a more general model with imperfect altruism does not alter any of
the results based on perfect altruism. This is because a slight change in discount rates over
generations does not affect the main economic mechanism, that is, the current generation
optimizes the consumption sequence over the descendants given life expectancy. Section V
concludes.

II. MODEL AND QUALITATIVE RESULTS

A. Technology and Preference

There is a continuum of dynasty with measure one. In any period, a dynasty consists of only
one individual. In other words, there is no overlap of generations within a dynasty.7 Death is

6Of course, there are many other reasons to live longer and I will discuss potential alternative models
throughout the paper. However, I try to keep the model as simple as possible to focus on presenting the concept
of the dynastic general equilibrium value of life, as well as computing the value to compare with the existing,
partial equilibrium value.

7An alternative interpretation is that children do overlap with adults but when children become adults, their
parents die, and only adults’ utilities matter for a dynasty. In this interpretation, I still need to assume the same
length of overlapping periods. Although this assumption might not be realistic, it captures the real world trend:
As the life expectancy becomes longer, the mother’s age at having the first child becomes older. The optimal
length of overlapping period could be analyzed in terms of trade-off between the utility gains through spending



5

modeled here as deterministic for the sake of simplicity, but the case with stochastic death
can be analyzed in the same way and discussed extensively.

The production function is Cobb-Douglas with physical capitalkt ∈ R+ and human capital
ht ∈ R+:

yt = f(kt, ht) = Akα
t h1−α

t , (1)

whereα ∈ (0, 1) denotes the capital share.

Physical capitalkt evolves as
kt+1 = (1 − δk)kt + ikt, (2)

whereδk ∈ (0, 1) is the depreciation rate andikt ∈ R is the investment.8 When a parent dies,
her child inherits the physical capital with the same depreciationδk.

Human capitalht follows a similar law of motion, but depreciation over generations, denoted
by δo ∈ (0, 1), may be larger than depreciation within a single person, denoted by
δw ∈ (0, 1). In sum, the law of motion of human capital is

ht+1 = (1 − δw)ht + iht, for t 6= nT and;

= (1 − δo)ht + iht, for t = nT ,
(3)

wheren is a positive integer representing the n-th generation of a dynasty andiht ∈ R+ is the
investment in human capital.

I assume a perfect life insurance market in which an individual pays a premiumπtbt, with
πt ∈ R+ for bt ∈ R benefits for her child in case she dies.9 The budget constraint is thus,

ct + ikt + iht = rtkt + wtht − πtbt, for t 6= nT and;

ct + ikt + iht = rtkt + wtht + bt, for t = nT .
(4)

wherert ∈ R+ is a rental rate of physical capital andwt ∈ R+ is the wage rate.

The life expectancy is denoted byT . A person discounts her own future utility byβ and has
per annum altruismγ towards her descendants. Given the budget constraint (4), a household

time with children and the cost of sharing the same income and time with children. However, this extended
model would not be likely to affect the main findings of this paper.

8For the sake of technical simplicity, I assume that physical capital can be transformed back to consumption
goods freely and used to invest in the human capital. Later, I will prove that there is an optimal
human-to-physical-capital ratio, and this assumption makes it possible for the optimal ratio to be always
achieved.

9Typically, benefits are positive, but in the case with little altruism, they may be negative. This can happen
when the parent generation consumes more than their lifetime income, for example, by issuing government
bonds. In this sense, this paper is a natural extension of the Barro (1974) paper on the analysis of government
bonds and creation of wealth.
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maximizes the following dynastic utility:

max
{ct}t=∞

t=1

u(c1) + βu(c2) + · · ·+ βT u(cT ) + γT+1u(cT+1) + γT+1βu(cT+2) + · · · , (5)

whereu : R+ → R+ is the period utility function with standard properties,u′ > 0, u′′ < 0,
limc→0 u′(c) = ∞, andlimc→∞ u′(c) = 0.

The dynastic general equilibrium value of life can be measured only when there is a change
in life expectancy. The increase in the dynastical general equilibrium value of life is defined
as the difference between the dynasty’s utility (5) under a specific life expectancyT and its
utility under an improved life expectancy. Moreover, I will define it in a parametric form later
with more detailed discussions.

B. Representative Agent

To be consistent with a standard growth model, I assume that an individual’s subjective
discount rate is the same as her altruism parameter. This assumption follows Barro (1974)
and an exogenous fertility case of Becker and Barro (1988).

Assumption 1. [Barro-Becker, Perfect Altruism]

γ = β.

Assumption 1 states that a person cares for her descendants’ utility as much as her own future
utility. Obviously, under this assumption, a household maximizes the following dynastic
utility:

max
{ct}t=∞

t=1

∞
∑

t=1

βt−1u(ct). (6)

The only possible drop of income within a dynasty occurs when a parent dies and human
capital depreciates at rateδo, larger than the usual rateδw. Using a life insurance scheme, it is
easy to smooth out the human capital evolution without affecting the budget constraints.
Specifically, the benefit, net of the premium, should be set to compensate the extra
depreciation resulting from the death of a parent,

bt = (δo − δw)ht − πtbt. (7)

The competitive market of this life insurance makes the premium actuarially fair. Let
ρt ∈ [0, 1] represent the replacement ratio of the population, the portion of dynasties that
change generations. Then the actuarially fair condition can be derived to equate the expected
benefits and the expected premiums,

ρtbt = (1 − ρt)πtbt, (8)
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or equivalently,

πt =
ρt

1 − ρt
. (9)

By combining these two equations (7) and (9), the benefits can be expressed solely in terms
of exogenous parameter values and the state variables,

bt = (1 − ρt)(δo − δw)ht, (10)

and
πtbt = ρt(δo − δw)ht. (11)

With this life insurance scheme, the inter-generational human capital transmission becomes
the same as the intra-generational human capital formation, enabling a dynasty to keep the
same levels of consumption and human and physical capital investment in any period. The
economy can then be regarded as a representative agent economy. In aggregate, the insurance
premium and benefits are canceled out each other in the representative agent’s budget
constraint. The aggregate human capital evolves simply as

Ht+1 = (1 − (1 − ρt)δw − ρtδo)Ht + Iht, (12)

where aggregate variables are denoted by capital letters.

In general,ρt is a function of size distribution of age groups as well as potentially different
life expectancy for each age group. However, for the sake of simplicity, I assume a stationary
environment in which longevity is the same for any age cohort, the initial physical and
human capital are equal across all households, and the initial population within each age
cohort is identical. Thus, the replacement ratio is always the same,ρt = 1/T .

Note that the stochastic death can be modeled in the same manner and I use stochastic
interpretation interchangeably. Here, to be equivalent with deterministic death case, I assume
a stochastically stationary environment. Specifically, I assume thatρt is the same death
probability for everyone who is alive in periodt; that the younger generation automatically
replaces the older upon its death; and that the size of each age cohort is the same in the initial
period. These assumptions imply that the same distribution over age groups is preserved for
all periods.

C. Neutrality of Longevity under Neoclassical Assumptions

I would like to point out first that the dynastic general equilibrium value of life in a standard
neoclassical growth model is zero. In this regard, from the viewpoint of a standard growth
theory, it appears unwise to correct the GDP numbers by adjusting for any value from the
increase in life expectancy. This, of course, does not imply that, in a different growth model,
which I will explore later, it makes sense to take into account the increase in life expectancy
in evaluating living standards. The point here is that the value of life in the context of
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economic growth should be analyzed in a manner consistent with an underlying growth
model.

By a standard growth theory, I mean two assumptions: Assumption 1 (perfect altruism) and

Assumption 2. [Smooth Human Capital Transmission]

δo = δw.

Assumption 2 states that a human capital transfer between a parent and a child is the same as
the law of motion within the same person.

Theorem 1. [Neutrality of Longevity] Under the standard neoclassical growth assumptions
1 and 2, the dynastic general equilibrium value of life is zero.

Proof. Under Assumption 1, a parent’s utility is perfectly substitutable by a child’s utility.
Under Assumption 2, there is no loss in having frequent replacement of generations within a
dynasty. For example, consider one economy in which all dynasties replace generations
every 30 years and another in which all dynasties replace generations every 60 years. In both
economies, given the same initial physical and human capital, the dynastic value is the
same. Q.E.D.

Note that, because the proof runs exactly the same, this proposition is valid with any other
typical production functions, for example, a Cobb-Douglas production function with
decreasing returns to scale and a more general production function with a constant elasticity
of substitution between physical and human capital.

D. Positive Value of Life with Costly Human Capital Transfer

Now, I would like to consider a model that is a little more realistic than the standard growth
theory, but I will keep the model as simple as possible to introduce a new concept of value of
life. Specifically, I question the validity of Assumption 2, the same depreciation rates of
human capital within the same person and across generations. In reality, human capital
transmission from a parent to a child is more costly than a memory loss within the same
person.10 I am also not unaware of the debate on Assumption 1, the degree of parental
altruism (see, for example, Altonji, Hayashi, and Kotlikoff, 1997), but I will keep the

10For the sake of simplicity, I assume here that the new adult’s human capital is a linear function of the parents’.
The best way to model this deeper would be that everyone is assumed to be endowed with the same basic
human capital. Then, education investment in childhood determines the general human capital for a new adult,
who then continues to acquire more specialized human capital in college and on the job. However, the
children’s human capital level would have a positive association with the parents’, as long as the education costs
must be covered, at least partially, by parents’ income, which depends on their human capital levels. As such,
implication of my model would not differ much from a more sophisticated model in terms of the growth process
and the welfare implication.
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Barro-Becker assumption (perfect altruism) for now, as it serves as a foundation for many
growth models with infinite lived households.11 In sum, I alter only the assumption on human
capital depreciation as follows.

Assumption 3. [Costly Human Capital Transfer] δo > δw.

Proposition 1 (Non-Neutrality of Longevity). Under Assumptions 1 and 3, the dynastic
general equilibrium value of life is strictly positive.

Proof. In any period when generation changes, human capital depreciates larger than usual.
This makes insurance premiums higher and human capital accumulation becomes slower, as
easily seen in equation (12). Q.E.D.

This proposition also holds with any typical production functions, as is the case with
Theorem 1. More importantly, I would like to point out that the whole source of the value of
life in this paper stems from economizing depreciation cost when transferring human capital
over generations, in contrast with a conventional direct effect of longevity on the value of life
by extra consumption in extended years of living (Rosen, 1988). This is because utility of the
current generation is substitutable with utility of the future generation in a model with
dynastic altruism. Still, the dynastic general equilibrium value of life can be large, as the
extended longevity could bring faster accumulation of physical and human capital.

III. QUANTITATIVE ASSESSMENT

A. Computable Form

While Proposition 1 assures a positive value of life qualitatively, I will show here a
quantitative assessment. Before doing so, I will rewrite the model in a computable form.

Let δh denote the composite depreciation rate, that is,

δh ≡ (1 − ρt)δw + ρtδo. (13)

Obviously, lower longevity (i.e., higher replacement of generations) implies higher
depreciation. Using this, the law of motion of human capital for a representative agent is
expressed as

Ht+1 = (1 − δh)Ht + Iht. (14)

Note that the law of motion of physical capital is the same as for the individual level (2), that
is, for the representative agent,

Kt+1 = (1 − δk)Kt + Ikt. (15)

11The case with imperfect altruism will be discussed later, in Section IV.



10

Under the Barro-Becker assumption, the representative consumer’s maximization problem
can be rewritten as a dynamic programming problem using the value function,
W : R

2
+ → R+, omitting the time subscripts but with superscript+ to denote the value of the

next period:
W (K, H) = max

Ik,Ih,c,K+,H+
u(c) + βW (K+, H+), (16)

subject to the resource constraint,

c + Ik + Ih = AKαH1−α, (17)

and the law of motion of physical capital, equation (15), and that of human capital, equation
(14).

The optimal human-to-physical-capital ratioH/K is uniquely determined by equating the
marginal returns of human and physical capital net of depreciation (see Appendix I. A for the
derivation):

(1 − α)A

(

H

K

)−α

− δh = αA

(

H

K

)1−α

− δk (18)

or equivalently,

(1 − α)A − αA
H

K
= (δh − δk)

(

H

K

)α

. (19)

The right-hand side of this equation is linearly decreasing with the human-to-physical-capital
ratio,H/K, from the positive intercept(1 − αA), while the left-hand side is monotonically
increasing with the ratioH/K from 0. It is easy to see that the equilibrium
human-to-physical-capital ratio, which I denote byx, is decreasing withδh (i.e.,
∂x/∂δh < 0), that is, increasing with longevity (i.e.,∂x/∂T > 0). At the limit, if δh → δk,
thenx → (1 − α)/α, which is a widely known ratio.

For the sake of simplicity, I assume that the economy always achieves this optimal
human-to-physical-capital ratiox. Indeed, as long as the adjustment does not require the
reduction of capital more than depreciation, households make this adjustment instantly and
achieve the optimal ratio (see, for example, McGrattan, 1998). GivenH = xK, I can rewrite
the system of equations as a one-capital model, which is easier to analyze.

In each period, a specific amount of human capital should be invested for one unit of physical
capital to keep the same optimal ratiox. Specifically,Ih must satisfy

xK+ = (1 − δh)xK + Ih. (20)

Using the law of motion of physical capital (15), the optimal human capital investment is
identified as

Ih = xIk + x(δh − δk)K. (21)

Thus, the feasibility constraint that keeps the optimal human-to-physical-capital ratio is
expressed as

c + (1 + x)Ik + x(δh − δk)K = Ax1−αK. (22)
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A representative household now solves the one-dimensional value function,V : R+ → R+,

V (K) = max
Ik,c,K+

u(c) + βV (K+), (23)

subject to the budget constraint (22) and the law of motion of physical capital (15).

Using a constant relative risk aversion (CRRA) utility function,c1−σ/(1 − σ), with risk
aversion parameterσ ∈ R++, the optimal consumption growth can be represented as the
following Euler equation (see Appendix I. B for the derivation):

(u−)′

u′
=

( c

c−

)σ

= β

(

A
x1−α

1 + x
−

x

1 + x
(δh − δk) + (1 − δk)

)

= βG(x, δh). (24)

For the sake of simplicity, I assume that the ranges of parameter values ensure the perpetual
consumption growth,βG(x, δh) > 1. Also, to keep the value from exploding to∞, I restrict
my attention to the parameter values that satisfyβ(βG(x, δh))

1/σ < 1.12

B. Benchmark Parameter Values

Quantitative assessment is shown under specific benchmark parameter values, which are
summarized in Table 1. Many are standard parameters in the business cycle literature and I
use typical values for them. Namely, the discount rateβ = 0.96, the relative risk aversion
σ = 1.2, the capital shareα = 1/3, and the physical capital depreciation rateδ = 0.05.

Other parameters are specific to this paper. Namely, the total factor productivityA = 0.25,
the human capital depreciation rate of a single personδw = 0.02, and that between parents
and childrenδo = 0.7. I pick those values by calibrating the model to match the reasonable
range of consumption growth with the historical value for the long-run U.S. growth
experience, which is about 2 percent. As shown in the third row of Table 2, the growth rates
are about this target level.

At the same time, the benchmark parameter values are also taken to be consistent with the
life insurance coverage per annual income in the U.S. data, which is about 6 on average in the
U.S., according to Hong and Rı́os-Rull (2006).13 In the model of this paper, the life insurance
benefitsbt per incomeyt depend on the probability of deathρt. As Ht = xKt = xαYt/A, the
premium can be rewritten from equation (10) to the following:

bt

Yt
= (1 − ρt)(δo − δw)

xα
t

A
. (25)

12These are standard assumptions in the growth literature. See, for example, Townsend and Ueda (2007).

13Based on 1990 data from Stanford Research Institute and 1992 data from the Survey of Consumer Finances,
they estimate the face value of life insurance at about 4 to 8 for ages between 30 to 60. It is hump-shaped with
the peak in early 40s.
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In this formula, only the optimal human-to-physical-capital ratio,x, varies over time and
across countries, but it is always about12 under the benchmark parameter values (see the
fourth row of Table 2). Thus, the benchmark parameter values provide for life insurance
coverage about 6 times higher than the annual income for any country and year (see the
second row of Table 2).14

C. Dynastic General Equilibrium Value of Life

Quantitatively, I define the dynastic general equilibrium value of life as the wealth transfer
that compensates for a possible welfare increase resulting from a change in longevity at the
steady state. Specifically, letVξ(K) denote the value of the value function (i.e., the
discounted sum of period utilities over time for a dynasty) with the state variableK under life
expectancyT = ξ. Suppose some policies can increase the longevity fromT = ξ to T = ξ̃.
Then, the percentage increase in the dynastic general equilibrium value of lifeτ is defined as

Vξ(K(1 + τ)) = Vξ̃(K). (26)

Since the Euler equation (24) implies the linear savings function and the constant growth in
consumption, as well as in physical and human capital, the value function can be expressed
almost analytically, given a constant value of the optimal human-to-physical-capital ratio,x,
which can be obtained numerically. Lets denote the equilibrium constant savings rate andg
denote the equilibrium constant growth rate. Then the value function can be expressed as

V (K) = u(c) + βu(gc) + β2u(g2c) + · · ·

= u(c) + βg1−σu(c) + β2g2(1−σ)u(c) + · · ·

=
1

1 − βg1−σ

c1−σ

1 − σ

=
((1 − s)Ax1−α)1−σ

(1 − βg1−σ)(1 − σ)
K1−σ.

(27)

Note that the multiplier onK1−σ is constant, regardless of the level of capital. I letΨ denote
it:

V (K) = ΨK1−σ. (28)

After numerically obtaining the coefficientΨξ for the specific longevityT = ξ andΨξ̃ for

T = ξ̃, I can calculate the ratio of the latter to the former, denoted by1 + △. Then, the
increase in the dynastic general equilibrium value of lifeτ can be obtained as follows:

Ψξ̃K
1−σ = (Ψξ(1 + △))K1−σ = Ψξ(K(1 + △)

1

1−σ )1−σ. (29)

14Table 2 shows in the second and the fourth rows that the optimal human-to-physical-capital ratiox and life
insurance benefitsb depend on life expectancy but also that variations inx andb are almost negligible. For life
expectancy 60,x = 11.51 andρ = 1/60, and thus the equilibrium life insurance benefit, as a ratio to income, is
6.04 = (1 − 1/60)(0.7− 0.02)(11.511/3)/0.25.
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That is,
1 + τ = (1 + △)

1

1−σ (30)

This wealth transferτ is equivalent to the increase in annual output and thus permanent
consumption, typically used as the measure of welfare gains in the business cycle literature,
as initiated by Lucas (1987). This is because the model exhibits the endogenous linear
growth by the assumptiong = βG(x, δh) > 1. With the constant growth rate, one-time
transfer of wealth ofτ percent always createsτ percent higher levels of wealth, income, and
consumption thereafter.

The welfare gains from increase in life expectancy turn out to be sizable. The first row in
Table 2 reports the wealth transferτ , as the implied increase in dynastic general equilibrium
value of life after 40. For example, if the representative agent’s life expectancy increased
from 40 to 60, it is equivalent to a 12.2 percent increase in permanent consumption.
Apparently, the longer the life expectancy, the higher the welfare gain. However, the
marginal gain becomes smaller as the life expectancy rises, which I discuss further later.
Note that a mere 0.5 percent increase in permanent consumption is considered large in the
business cycle literature as well as in a policy evaluation for economic development (e.g.,
Townsend and Ueda, 2007).

D. Sensitivity Analysis

To check sensitivity of the results, I compute the dynastic general equilibrium value of life
with various parameter values (Table 3). A higher discount rate,β = 0.99, gives a higher
value of life, because the future gains from infrequent changes of generations are valued
more. But the consumption growth is too high, about 4.5 to 5.0 percent. Using similar
reasoning, a lower intertemporal elasticity of substitution,σ = 2, gives a lower value of life.
However, the consumption growth is now too low, about 1 to 1.5 percent. A higher
depreciation rate within a generation,δw = 0.04, brings a higher value of life by producing a
consumption growth more sensitive to the increase in life expectancy. Again, the
consumption growth is too low, less than 1 percent. A higher depreciation rate over
generations,δo = 0.9, gives a similar result, albeit with less impact. With this change, the
consumption growth is within the reasonable range, but now the equilibrium life insurance
benefits rise to about 7.5–8.0 times more than the annual income, not in line with the
empirical estimates.

In summary, the choice of parameter values should be limited in the vicinity of the
benchmark values, on which I focus below. The sensitivity analysis reveals that the dynastic
general equilibrium value of life varies with key parameter values. But at the same time,
slight changes in parameter values lead to substantial alterations in consumption growth and
equilibrium life insurance, to which the model is calibrated.
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E. Income Convergence

The first row of Table 2 reports the increase in the dynastic general equilibrium value of life
under the benchmark parameter values but with marginal improvements decreasing. For a
low-income country, in which the life expectancy increased from about 40 in 1960 to 60 in
2005 (triangles in Figure 1), the implied increase in value of life is as much as 12.2 percent of
consumption level each year. For a high-income country, in which the life expectancy
increased from about 70 in 1960 to 80 in 2005 (circles in Figure 1), the implied increase in
the value of life is 2.5 percent (i.e.,1.1875/1.1591).

The difference in the marginal increase in the value of life contributes to reduction of full
income variation among countries, once the increase in the value of life is taken into account.
This convergence effect varies substantially with parameter values. However, as noted above,
the choice of parameter values is limited to the vicinity of the benchmark parameter values,
to generate the growth rates at about 2 percent and the equilibrium life insurance benefits to
income ratio at about 6.

I apply the benchmark case to the actual data for each country and compare the results with
BPS. Sample countries (96 countries, comprising more than 82 percent of the world
population) and methodology are the same as in BPS. Income per capita is from Penn World
Table 6.1, namely, real GDP per capita in 1996 international prices, adjusted for terms of
trade. Population is also from Penn World Table 6.1. Life expectancy at birth is from the
World Development Indicators (WDI), World Bank. As for the inequality and convergence
measures, I calculate standard measures following BPS. Namely, they are the relative mean
deviation, the coefficient of variation, the standard deviation of log values, the Gini
coefficient, and the regression to the mean. The regression to the mean is the coefficient of a
regression of the change in the natural log of income over the period on the initial 1960 level.
I calculate all the convergence measures in tables, except for those undermemorandum
(BPS), which are replicated from BPS as a reference. Full income measures incorporate gains
in life expectancy with 1960 as the base year.15

Note that in some of the tables not replicated here, BPS show nonlinear convergence effects
depending on the initial levels and changes in life expectancy and income. This comes from
the fact that the benefit of increase in longevity is essentially the direct gain in the form of the
additional utility that results from extension of life. Based on a one-generation model, the
calibration requires an appropriate choice of the absolute level of utility (Rosen, 1988). In
contrast, the dynastic general equilibrium value of life proposed here is free from the affine
transformation, as the benefit from the increase in longevity stems from a decline in the
aggregate human capital depreciation rate.16

15The convergence results using the real GDP per capita are slightly different between BPS and my calculation,
although both BPS and I use the same data source and codeainequal in Stata. This is because the WDI,
ainequal code, and Stata program I use are as of August 2007, updated since the publication of BPS—I owe
Rodorigo Soares for this clarification.

16Indeed,log(log(1 + τ)) is almost linear. The wealth compensation transfer for increase in life expectancy
from 30 is approximated by−2.0719 + 0.5960 ∗ LifeExpectancy using 5-year-interval ages between 30 and
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Finally, I compute the overall effects on income convergence by accounting for changes in
life expectancy based on the dynastic general equilibrium value of life introduced in this
paper as well as those based on the partial equilibrium value reported in BPS. The overall
effects are reported in columns under Improvements in Table 4. The specific formula is as
follows:

1 −
measure using full income per capita

measure using GDP per capita
, (31)

except for the regression-to-the-mean measure, for which the denominator and numerator are
flipped to account for the fact that, unlike other measures, a higher absolute value means a
better convergence.

Increase in life expectancy does not appear to substantially change the view of inequality in
world living standards based on GDP per capita only. Improvements in convergence in full
income is small when corrected for the increase in the dynastic general equilibrium value of
life. Compared with the partial equilibrium correction by BPS, improvements in income
convergence is less than half in most measures.

IV. CASE WITH IMPERFECT ALTRUISM

Now I consider a more general case in which altruism is imperfect. When people care about
descendants less than about themselves, the dynastic general equilibrium value of life might
be higher than the perfect altruism case. However, this is not the case, at least in the
framework of this paper. Indeed, I will show below that all the main results hold for this case,
although some technical difficulties emerge.

Suppose current generations care more about themselves than about their descendants. The
altruistic parameterγ is now,

Assumption 4. 0 < γ < β.

Proposition 2. Under Assumption 4:
(i) The consumption growth rate within a generation is g, the same as in the case with perfect
altruism;
(ii) The consumption growth rate over a generation is φg, that is, φ ≡ (γ/β)1/σ times lower
than within a generation;
(iii) All households keep the same optimal ratio of human to physical capital x as in the case
with perfect altruism;
(iv) Human and physical capitals grow at the same rate g, as consumption.

See the proof in Appendix III. More importantly, there is no need to calibrate this case, as
shown in the next proposition.

80 (i.e.,30, 35, 40, · · · , 80) as regressors. The fitted values are used to calculate the full income for all the
sample countries. The errors predicting transfer are minimal: 1.5 percent at the lowest end, 30, and within 0.6
percent range for all other approximation nodes (i.e.,35, 40, 45, · · · , 80).
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Because survivors’ growth rate is different from that of the newly born, there will be
nondegenerated distribution of capital, income, and consumption in any period. However,
Proposition 2 shows that consumption growth for survivors isg for any level of capital
holdings and it isφg for the newly born, again, at any level of capital holdings. As such, I can
still write a representative agent problem using the aggregate consumption and capital to
solve for the equilibrium sequence of aggregate consumption, income, and human and
physical capital. Then, based on the beginning-of-period capital allocation and the age status,
the individual allocation can be distributed according to a linear function of the aggregate
values. The allocation based on this social planner’s problem is easily proven to coincide
with the competitive equilibrium allocation. (See, for example, Eichenbaum and Hansen,
1990, for discussion on a more general linear expenditure system and the representative agent
model.)

Each individual maximizes her dynasty’s utility, given the equilibrium evolution of price
system, namely the returns on physical capitalRk = αA(H/K)1−α and on human capital
Rh = (1 − α)A(H/K)α. Using the optimal human-to-physical-capital ratio, the value
function can be again expressed in terms of physical capital only, similar toV (K) in the
perfect altruism case. For the imperfect altruism case, the individualk can be different from
averageK and thus a value function can be expressed asv(k, K).

v(k, K) = max
b,c,ĉ,ik ,̂ik,k+,k̂+

(1 − ρ)β(u(c) + v(k+, K+)) + ργ(u(ĉ) + v(k̂+, K+)), (32)

subject to twoex post budget constraints: for survivors,

c + (1 + x)ik + x(δw − δk)k = (Rk(K) + xRh(K))k − πb; (33)

and for the newly born,

ĉ + (1 + x)̂ik + x(δo − δk)k = (Rk(K) + xRh(K))k + b, (34)

where∧-bearing variables represent the variables for the newly born. Note that the timing is
slightly different from the representative agent value function with perfect altruism. The
value here (32) is measured just before an individual decides on the insurance purchase.

Given the price system, which is determined by the aggregate variables, the individual value
function is homogeneous in the individual capital levelk.17 Thus, I can write
v(k̂+, K+) = v(φk+, K+) = ζv(k+, K+). Note that, since the consumption of the newly
born isφ times less than the others, her physical capital and thereby human capital are alsoφ
times less in the equilibrium:̂k+ = φk+ andu(ĉ) = u(φc) = φ1−σu(c). Using these,v(k, K)
can be expressed as

v(k, K) = max
b,c,,k+

(1 − ρ)β(u(c) + v(k+, K+)) + ργφ1−σu(c) + ργζv(k+, K+) (35)

17The optimal decisions on consumption and investments relative to the size ofk are unchanged when
multiplying k by any scaler.
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or equivalently,

v(k, K) = max
b,c,,k+

((1 − ρ)β + ργφ1−σ)u(c) + ((1 − ρ)β + ργζ)v(k+, K+). (36)

Let
β̃ ≡ (1 − ρ)β + ργφ1−σ

and

γ̃ ≡
(1 − ρ)β + ργζ

(1 − ρ)β + ργφ1−σ
.

Substitute these notations in the above and obtain

v(k, K) = max
b,c,,k+

β̃u(c) + β̃γ̃v(k+, K+). (37)

I can take a household with mean wealthk = K as a representative agent. Then, I can rewrite
the value function as if it is a value for a representative agent, usingṼ (K) = v(K, K) with
K =

∫

kΩ(dk) whereΩ(k) is the distribution of physical capitalk. I maintain the
stationarity assumption for the deterministic death case. Specifically, I assume the same as in
the perfect altruism case: The relative sizes of human and physical capital are different but
depend only on age, and the distribution of the age group is uniform and time-invariant. As
for the stochastic death case, technically, the economy is never stationary. When a death
shock hits one dynasty, it is optimal for the dynasty to choose to deplete some physical and
human capital with incomplete life insurance. This dynasty still faces the same probability of
deathρ in the next period as other dynasties do. Because the growth rate is linear for
consumption and human and physical capital, its process is not mean reverting and thus its
cross-section distributions diverge with time. However, we can still use a representative agent
model and solve for aggregate (mean) allocation of consumption and investments over time,
and then allocate those aggregate quantities to each dynasty as linear functions of their
physical capital holding at the beginning of each period. Again, this is the competitive
equilibrium path (Eichenbaum and Hansen, 1990).

Proposition 3. Increase in the dynastic general equilibrium value of life is independent of
the degree of altruism.

This is formally proven in Appendix III. The value functioñV (K) takes the form ofκV (k)
for a constantκ and thus the wealth transferτ , defined in (30) to equate the values under the
different life expectancies, does not vary withκ. Intuitively, even if households do not care as
much about descendants as in the perfect altruism case, they optimize consumption plans
over generations so that they behave almost as if they live forever, with a slightly different
discount rate. Although the different discount rate changes the value of capital for a given life
expectancy, it does not affect the current wealth transfer to compensate a possible lower life
expectancy. Note also that Appendix III provesζ = φ1−σ andγ̃ = 1 as a corollary.

Even if the increase in dynastic general equilibrium value of life is the same, life insurance
coverage may well be different if parents do not care about children much. This is
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qualitatively true, but the sensitivity analysis of calibration study has shown that the
parameter values cannot be so different from the benchmark values. As for the altruism
parameter, it cannot be so imperfect. Indeedγ ≥ 0.9β is a plausible parameter value. Under
this near perfect altruism, the life insurance coverage is still about 6 under otherwise
benchmark parameter values. Also, the growth rate is almost the same as in the perfect
altruism case.

More specifically, the growth rate (the common growth rate for consumption, human capital,
and physical capital over generations) isφ times lower than the rate within a generation
(Proposition 2). Given the sameh andk, the newly born consumeŝc = φc and have the
next-period human capitalĥ = φh and the next-period physical capitalk̂ = φk. The budget
constraint for the newly born can be transformed from (34) into

φc + φk+ − (1 − δk)k + φh+ − (1 − δo)h = Rkk + Rhh + b. (38)

Subtracting both sides of the budget constraint (38) from the budget constraint for survivors
(33), the life insurance benefits are determined by

(1 + π)b = (δo − δw)h − (1 − φ)(c + h+ + k+), (39)

or equivalently, lettings denote the savings rate andg the growth rate under the perfect
altruism case,

bt

Yt

= (1 − ρt)

(

(δo − δw) − (1 − φ)

(

s + g

x
+ g

))

xα
t

A
. (40)

It is easy to calibrate the population average growth rate to about 2 percent by slightly
adjustingβ. However, compared to the perfect altruism case (25), the equation (40) shows
that the life insurance benefit has an additional term,

−(1 − φ)

(

s + g

x
+ g

)

.

Note that when the altruism parameterγ approachesβ, the perfect altruism case, thenφ
approaches 1 and the additional term vanishes, making the formula equal to the one under the
perfect altruism case (25). If the absolute value of the additional term is positive but small,
say, within 0.1, then the life-insurance-benefits-to-income ratio also remains about 6. This is
a plausible case in which the altruism parameter is more than 90 percent of the value under
perfect altruism (i.e.,γ ≥ 0.9β), given other parameters set at the benchmark values.

Finally, I would like to discuss the wage premium observed for a risky job. This is a premium
that a person demands for an early death, given the exogenously given life expectancy for
everyone else, including her descendants. An early death of a person with measure zero does
not affect the aggregate dynamics. For her descendants, the consumption sequence is the
same as those of the other dynasties—perfect smoothing under the perfect altruism case and
imperfect smoothing but optimized sequence under the imperfect altruism case—under the
specific economy-wide life expectancy. As such, sudden early death does not bring any loss
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for her descendants. Even for herself, early death does not bring any loss in the case of
perfect altruism, as the children are perfect substitutes. Therefore, there must be no wage
premium under the perfect altruism assumption.

In the case with imperfect altruism, however, the wage premium exists, because a person
cares for herself more than her descendants. To see this, take a derivative ofv(k, K) (35)
with respect toρ, ignoring all the effects of economy-wide life expectancy and substitutingζ
by φ1−σ:

∂v(k, K)

∂ρ
=(γφ1−σ − β)(u(c) + v(k+, K+))

=
γφ1−σ − β

β̃
v(k, K).

(41)

This wage premium for the representative agent is expressed when evaluatingv(k, K) at
k = K. It is positive if the level ofṼ (K) is positive. AsṼ (K) increases inK, the observed
wage premium in U.S. dollars is easily obtained under any parameter values by adjusting the
“exchange rate” between the model unitK and U.S. dollars. Note that this adjustment or
fitting is similar to what is proposed by Rosen (1988) and widely used in the literature—in
the partial equilibrium setting, it is the intercept term in the (period) utility function that is set
freely to obtain the observed wage premium without changing any qualitative results and
most of quantitative results. Note again, however, that this partial-equilibrium value of life is
not an adequate measure of the true welfare gains from an economy-wide increase in life
expectancy.

V. CONCLUDING REMARKS

I introduced a new concept of value of life, the dynastic general equilibrium concept, and
showed how to compute it. This concept is consistent with the standard neoclassical growth
theory. As such, it can serve as a reference measure for evaluating the increase in the life
expectancy in the growth experience of the world. Theoretically, the value is shown to be
positive in a realistic model. It is different from the partial-equilibrium, one-generation
calculation of the value of life upon which the existing literature relies.

The calibration study shows that the welfare gains from increase in life expectancy are
sizable, much larger than typical estimates of welfare gains from eliminating the business
cycle in the U.S. However, improvements in world income inequality by accounting for the
increase in the dynastic general equilibrium value of life are small. Under the calibrated set
of parameter values, the effect on convergence in the world living standards corrected for the
dynastic general equilibrium value of life is less than half the existing,
partial-equilibrium-based estimates. Overall, a GDP-based measure of world income
convergence appears to be a good approximation for convergence in living standards even
when adjusted for differences in life expectancy.
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Interpretation of the two concepts of value of life is quite different. On the one hand, the
dynastic general equilibrium value of life should be used to evaluate the value of new
medicine in advanced economies, or the value of new sanitation system in developing
countries, which reduce the fatality rate almost exogenously to individual decisions. On the
other hand, the traditional concept, the partial-equilibrium, one -generation value of life
should be used to evaluate the value of life of a person who takes risky jobs, pays fitness gym
fees, and cares about better nutrition, given the economy-wide life expectancy. Note that
Acemoglu and Johnson (2006) and Deaton (2006) argue that most of the changes in life
expectancy in the world stem from sources exogenous to each individual, that is,
improvements of environments in which people live, technological advancement of medicine,
and epidemics of diseases (e.g., AIDS).

There are several caveats, since I intentionally keep the model simple and look at only the
steady state. In particular, when constructing a more realistic model in the future, it will be
important to take into account life cycle effects, stochastic death, and endogenous choices on
fertility and longevity. In addition, any transitional dynamics created by changes in longevity
would potentially generate implications different from those obtained under the steady
state.18 Especially, the life cycle and population dynamics are important: in reality, age itself
affects productivity and changes in age distribution affect physical to human capital in
efficiency terms.19

The model generates somewhat unsuccessful predictions in terms of consumption growth and
human-to-physical capital ratio. Contrary to an empirical finding by Acemoglu and Johnson
(2006), the model predicts that a longer life expectancy brings a higher growth rate and
higher human-to-physical capital ratio as Table 2 reports. However, these effects in the model
are very small and can be easily offset by other forces. The findings by Acemoglu and
Johnson (2006) are likely to be combined results of life cycle effects, endogenous fertility
choice, and transitional population dynamics (see also Grossman, 1972, Ehrlich and Lui,
1991, and Young, 2005). With unexpected fall of mortality rate, population increased more
than the optimal and per capita income dropped at least for the short term. This mechanism
can more than offset the positive effect described here: The longer life expectancy of a
generation brings a lower human capital depreciation rate in aggregate, so that a dynasty
member has more incentive to save, in particular in the form of human capital investment.
Obviously, a future work is warranted to develop a model to trace the actual data better.

Too much emphasis on value of life creates a cynicism that life is much more important than
material happiness, and thus convergence in life expectancy is sufficient for convergence in
the living standards in the world. On the other hand, ignoring value of life in the economic
growth process is an obvious mistake, since life expectancy is one of commonly used,

18Moreover, I omit within-country heterogeneity in income inequality following BPS. However, considering it
would not change the conclusion much. Although Deaton (2005) has a different view, Sala-i-Martin (2006)
notes that, for 1970 to 2000, the reduction in across-country inequality is the major source of the reduction in
overall world income distribution, more than offsetting the increase in the within-country inequality.

19In the empirical studies, the age effect is shown to be important. Murphy and Topel (2006) shows that the value
of life-year converges to zero for the old, as the income becomes zero. Also see Kniesner and Viscusi (2005).
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valuable measures of living standards. To resolve the philosophical dilemma, evaluation of
an increase in life expectancy must be scientific, based on a rigorous theory with support of
actual data. In this regard, there remains much to be done, but I hope this paper serves as an
important step toward understanding the evolution of living standards in the world.
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Figure 1. Evolution of Life Expectancy
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Note: The data is from the WDI online edition as of March, 2007. Categories of countries are also
defined in the WDI. Not all the data points are available, depending on country categories.
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Table 1. Parameter Values

Benchmark Higherβ Higherσ Higherδw Higherδo

β 0.96 0.99
σ 1.2 2.0
α 1/3
δk 0.05
δw 0.02 0.04
δo 0.7 0.9
A 0.25

Table 2. Benchmark Quantitative Assessment

Life Expectancy 40 50 60 70 80 ∞

Implied Increase in Dynastic
G.E. Value of Life from 40 N/A 7.18 12.20 15.91 18.75 40.33
(% increase in annual income)

Life Insurance Benefits 5.96 6.00 6.04 6.06 6.07 N/A
(ratio to annual income)

Consumption Growth (%) 1.80 2.03 2.19 2.30 2.38 2.97

Optimal H/K Ratio 11.35 11.44 11.51 11.55 11.58 11.82
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Table 3. Sensitivity Analysis

Life Expectancy 40 50 60 70 80 ∞

Higher β

Implied Increase in Dynastic
G.E. Value of Life from 40 N/A 15.15 26.26 34.71 41.35 95.70
(% increase in annual income)

Life Insurance Benefits 5.96 6.00 6.04 6.06 6.07 N/A
(ratio to annual income)

Consumption Growth (%) 4.44 4.68 4.84 4.95 5.04 5.64

Optimal H/K Ratio 11.35 11.44 11.51 11.55 11.58 11.82
Higher σ

Implied Increase in Dynastic
G.E. Value of Life from 40 N/A 5.34 8.95 11.55 13.51 27.52
(% increase in annual income)

Life Insurance Benefits 5.96 6.00 6.04 6.06 6.07 N/A
(ratio to annual income)

Consumption Growth (%) 1.07 1.21 1.31 1.37 1.42 1.77

Optimal H/K Ratio 11.35 11.44 11.51 11.55 11.58 11.82
Higher δw

Implied Increase in Dynastic
G.E. Value of Life from 40 N/A 33.78 40.31 45.13 48.84 77.06
(% increase in annual income)

Life Insurance Benefits 5.69 5.73 5.76 5.79 5.80 N/A
(ratio to annual income)

Consumption Growth (%) 0.47 0.69 0.84 0.95 1.03 1.59

Optimal H/K Ratio 10.83 10.91 10.97 11.02 11.05 11.27
Higher δo

Implied Increase in Dynastic
G.E. Value of Life from 40 N/A 9.55 16.32 21.37 25.28 55.64
(% increase in annual income)

Life Insurance Benefits 7.68 7.75 7.79 7.83 7.85 N/A
(ratio to annual income)

Consumption Growth (%) 1.46 1.76 1.96 2.10 2.21 2.97

Optimal H/K Ratio 11.21 11.33 11.41 11.47 11.51 11.82
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Table 4. Convergence of Income and Full Income
GDP per capita Full Income Improvements (%)

1960 1990 2000 1990 2000 1990 2000

Relative mean dev. 0.48 0.48 0.44 0.47 0.42 3.2 4.6
Coeff. of variation 1.24 1.31 1.23 1.26 1.18 3.4 4.5
Std. dev. of logs 1.03 1.01 0.97 0.98 0.95 3.2 1.8
Gini coeff. 0.57 0.57 0.54 0.56 0.52 2.7 3.4
Regression to the -0.01 -0.13 -0.05 -0.18 82.1 24.5
mean over 1960 (0.82) (0.03) (0.22) (0.01)

(memorandum: BPS)
Relative mean dev. 0.48 0.47 0.42 0.44 0.38 7.1 10.8
Coeff. of variation 1.23 1.25 1.17 1.17 1.05 6.9 10.3
Std. dev. of logs 1.02 1.03 0.96 0.98 0.95 5.3 1.5
Gini coeff. 0.51 0.52 0.49 0.49 0.46 4.9 6.4
Regression to the -0.01 -0.13 -0.10 -0.26 93.1 49.3
mean over 1960 (0.86) (0.01) (0.02) (0.00)

Notes: Parenthesis in the rows of regression to the mean showsp-value. Income per capita is real GDP per capita

in 1996 international prices, adjusted for terms of trade (Penn World Table 6.1). Full income is calculated by

the author with 1960 as base year, incorporating gains in the dynastic general equilibrium value of life based on

increase in life expectancy at birth (World Development Indicators, World Bank, On-line version as of August

2007). Inequality measures are weighted by country population (Penn World Table 6.1), generated byainequal

code withaweight option in Stata 9.2. Sample includes 96 countries, comprising more than 82 percent of the

world population. Regression to the mean is the coefficient of a regression of the change in the natural log of

income over the period on the 1960 level based on weighted regressions (regression code withaweight option

in Stata 9.2). The numbers in parenthesis show the p-values. The figures undermemorandum (BPS) show the

numbers reported by BPS, except for the columns under Improvements, which I calculated.
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APPENDIX I. SOLUTIONS

A. Optimal H/K Ratio

I assign Lagrange multipliers,µb, µh, andµk to three constraints (17), (14), and (15),
respectively.

The first order condition with respect toc is

u′(c) = µb, (A1)

the condition with respect toIk is
µb = µk, (A2)

the condition with respect toIh is
µb = µh, (A3)

the condition with respect toK+ is
βW+

1 = µk, (A4)

and the condition with respect toH+ is

βW+
2 = µh. (A5)

From those first order conditions, it is clear that the marginal value of physical and human
capitals are the same, that is,

W+
1

W+
2

=
µk

µh
= 1. (A6)

Moreover, the envelop theorem with respect toK provides

µbαAKα−1H1−α + µk(1 − δk) = W1, (A7)

and with respect toH,

µb(1 − α)AKαH−α + µh(1 − δh) = W2. (A8)

Given the marginal-rate-of-transformation equation (A6), the left-hand sides of two
equations (A7) and (A8) must be equal. Moreover, (A2) and (A3) imply that all Lagrange
multipliers have equivalent values and I can simplify the combined condition of (A7) and
(A8) to obtain equation (18).
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B. Euler Equation

UsingµV b andµV k as the Lagrange multipliers associated with two constraints, (22) and
(15), respectively, we have first order conditions as below:

u′(c) = µV b, (A9)

µV b(1 + x) = µV k, (A10)

and
β(V +)′ = µV k. (A11)

The envelop theorem provides an additional condition,

µV b(Ax1−α − x(δh − δk)) + µV k(1 − δk) = V ′. (A12)

Combining those conditions, we get

µV b(Ax1−α − x(δh − δk)) + µV b(1 + x)(1 − δk) =
µ−

V b(1 + x)

β
, (A13)

where superscript− denotes the value of the previous period. Substituting the shadow price
of the budget constraintµV b by the marginal utilityu′ using (A9), I obtain the Euler equation
(24).

APPENDIX II. IMPERFECT ALTRUISM CASE

A. Proof of Proposition 2

Since the current generation is replaced with probabilityρ, individual decisions are made
given the aggregate state variables, that is, physical capitalK and human capitalH, and
associated gross returns on physical capitalRk(K, H) and on human capitalRh(K, H). Both
depend only on aggregate capital levels—hereafter, I writeRk andRh without (K, H) as
long as it causes no confusion. Individuals also take insurance premiumπ as given.

With potentially different consumption levels among the newly born and survivors, it is
necessary to consider the value function right before an individual knows whether she will
live or die, but after all decisions for (contingent) consumption and investments are made.
Let w denote this value function:

w(k, h, K, H) = max
b,c,ĉ,k+,k̂+,h,ĥ+

(1 − ρ)β
(

u(c) + w(k+, h+, K+, H+)
)

+ ργ
(

u(ĉ) + w(k̂+, ĥ+, K+, H+)
)

,
(A1)
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subject to two budget constraints: for survivors,

c + k+ − (1 − δk)k + h+ − (1 − δw)h = Rkk + Rhh − πb; (A2)

and for the newly born,

ĉ + k̂+ − (1 − δk)k + ĥ+ − (1 − δo)h = Rkk + Rhh + b. (A3)

Let λ andλ̂ denote the Lagrange multipliers associated with the budget constraints (A2) and
(A3), respectively. The first order condition with respect to the insurance benefitb is
expressed as

πλ = λ̂. (A4)

Because consumption and investment decisions are made contingent on survival or death, the
first-order conditions for consumption and investments need to be derived for each case. The
first-order condition for consumption of a survivor is

(1 − ρ)βu′(c) = λ (A5)

and for the newly born,
ργu′(ĉ) = λ̂. (A6)

The condition for physical capital for survivors

(1 − ρ)βw+
1 = λ (A7)

and for the newly born,
ργŵ+

1 = λ̂, (A8)

where subscript1 of the value functionw denotes the partial derivative with respect to the
first element (i.e., physical capital), superscript+ denotes the value functionw with the
values in the next period, and∧-bearing value function denotes the value function with
variableŝc, k̂, andĥ for the newly born. Similarly, for human capital, the first-order
conditions are

(1 − ρ)βw+
2 = λ (A9)

and
ργŵ+

2 = λ̂, (A10)

for survivors and the newly born, respectively.

The envelope condition with respect to current physical capital is

w1 = λ(Rk + 1 − δk) + λ̂(Rk + 1 − δk), (A11)
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and with respect to human capital,

w2 = λ(Rh + 1 − δw) + λ̂(Rh + 1 − δo). (A12)

Using the first-order conditions for consumption (A5) and (A6),w1 or w2 can be substituted
by u′ and theex ante Euler equation can be obtained as follows:

u′(c) = (Rk + 1 − δk)
(

(1 − ρ)βu′(c+) + ργu′(ĉ+
)

. (A13)

When the altruism is perfect (i.e.,γ = β), this Euler equation becomes equivalent to the one
in the benchmark case and consumption growth rate is the same for both survivors and the
newly born.

Because altruism is not perfect in this section and insufficient wealth is inherited over
generations to smooth out consumption, survivors and the newly born consume different
amount of goods even when those dynasties had the same consumption level in the previous
period. To see this, note that the actuarially fair condition (9) should still hold, in addition to
the first-order condition (A4). Then, the equilibrium premium is expressed as

π =
λ̂

λ
=

ρ

1 − ρ
. (A14)

Based on this relationship, the envelope condition for physical capital (A11) can be rewritten
as

w1 = λ(1 + π)(Rk + 1 − δk), (A15)

or

w1 = λ̂

(

1

π
+ 1

)

(Rk + 1 − δk). (A16)

Using the first order conditions (A5) and (A8), theex post Euler equation for survivors and
the newly born can be expressed as

u′(c−)

u′(c)
=

( c

c−

)σ

= β(Rk + 1 − δk), (A17)

and for the newly born,

u′(c−)

u′(ĉ)
=

(

ĉ

c−

)σ

= γ(Rk + 1 − δk). (A18)

These Euler equations are the proofs for the claims (i) and (ii) of Proposition 4. The
consumption growth rate within a generation (A17) is the same as in the perfect altruism case
(24). By comparing (A18) with (A17), it is easy to see that the consumption growth rate over
generations isφ ≡ (γ/β)1/σ times lower than the rate within a generation.
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Now, I prove the claim (iii): The optimal human-to-physical-capital ratio is the same as in the
benchmark case. Subtract both sides of the envelope condition for human capital (A12) from
those for physical capital (A11) and obtain

0 = λ(Rk − Rh + δw − δk) + λ̂(Rk − Rh + δo − δk), (A19)

or equivalently,

Rh − Rk =
λ

λ + λ̂
δw +

λ̂

λ + λ̂
δo − δk. (A20)

Substitute the equilibrium premium (A14) into (A20) and obtain,

Rh − Rk =
1

1 + π
δw +

1
1
π

+ 1
δo − δk

= (1 − ρ)δw + ρδo − δk.

(A21)

In the general equilibrium, the return to human capitalRh is equal to the marginal product of
human capital,Rh(K, H) = (1 − α)A(H/K)α, and the return to physical capitalRk is equal
to the marginal product of physical capital,Rk(K, H) = αA(H/K)1−α. Therefore, the
condition for the optimal human-to-physical capital ratio in aggregate with imperfect
altruism (A21) is the same as (18), the condition for the case with perfect altruism—recall
thatδh in (18) is defined as(1 − ρ)δw + ρδo. Hence, the aggregate human-to-physical-capital
ratio is the same as in the perfect altruism case,H/K = x.

Now I consider the optimal human-to-physical capital ratio at the individual level. First, I
would like to point out that the growth rate of physical capital of a survivor is different from
that of a newly born,k+/k 6= k̂+/k, in the case in which they had the samek. I prove this by
contradiction. Suppose the physical capital growth rate is the same for both type of people.
Then, human capital growth must be much less for a newly born,h+/h > ĥ+/h, because the
consumption growth is less for a newly born as proven above. However, based on the
equilibrium premium (A14), I obtain

w1(k
+, h+, K+, H+) = w1(k̂

+, ĥ+, K+, H+). (A22)

But this cannot be the case withk+ = k̂+ andh+ > ĥ+, becausew is strictly concave in the
first two elements,w12 < 0, due to a characteristic of the production function.20 This is a
contradiction. Therefore, the growth rate of physical capital of a survivor must be different
from that of a newly born. Similarly, if twow functions with different degrees of altruismγ
are compared, it is easy to show that the physical capital growth rates vary across two types
of people.

20Note thatw-function is the same for the both types and it is easy to show the monotonicity,w1 > 0 and
w2 > 0, decreasing marginal returns,w11 < 0 andw22 < 0, and strict concavity,w12 < 0.
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Second, consider the implication of the aggregate human-to-physical capital ratio.

x =
H+

K+
=

(1 − ρ)h+ + ρĥ+

(1 − ρ)k+ + ρk̂+
. (A23)

Suppose the individual level optimal ratios are different and are denoted as follows:
h+/k+ = xs andĥ+/k̂+ = xn. Then, the aggregate condition (A23) can be expressed as

x((1 − ρ)k+ + ρk̂+) = (1 − ρ)xsk
+ + ρxnk̂+. (A24)

The equation (A23) implies that the degree of altruismγ does not affect the aggregate
human-to-physical capital ratio. However, as I proved above,k̂+ 6= k+ andk̂+ in equation
(A24) varies with the altruism parameterγ that affectxs andxn. Since the equation (A24)
must be satisfied for any degree of altruismγ, it must be the case thatxs = xn = x. That is,
the individually optimal human-to-physical capital ratio is equal to the aggregate one
regardless of individual status, a newly born or a survivor.

Finally, properties (i)–(iii) in Proposition 2 imply (iv).

B. Proof of Proposition 3

Recall thatk+ = gk for survivors and̂k+ = φgk for the newly born (Proposition 2) and
henceK+ = g̃K, whereg̃ = (1 − ρ + ρφ)g, for the aggregate capital. AssumeṼ (K) takes a
form similar toV (K), that isṼ (K) = Ψ̃K1−σ. Then, the value function can be expressed as,
based on (37),

Ṽ (K) = β̃u(c) + β̃γ̃Ṽ (K+),

= β̃u(c) + β̃γ̃g̃1−σṼ (K).
(A25)

Rearranging terms and using the savings rates for survivors, the value function can be
written as

Ṽ (K) =
1

1
β̃
− γ̃g̃1−σ

u(c)

=
((1 − s)Ax1−α)1−σ

(

1
β̃
− γ̃g̃1−σ

)

(1 − σ)
K1−σ.

(A26)

This proves the guess on the form ofṼ (K) is correct, that is,̃V (K) = Ψ̃K1−σ.

Moreover, I can pin downζ andγ̂. Consider the representative agent withk = K. Her value
is v(K, K) = Ṽ (K). Then by definition ofζ , ζ = φ1−σ and thus̃γ = 1.
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Furthermore, substitute these values forζ andγ̃ into (A26) and obtain

Ṽ (K) = Ψ̃K1−σ

=
β̃((1 − s)Ax1−α)1−σ

(1 − β̃g1−σ)(1 − σ)
K1−σ.

(A27)

Take

κ ≡ β̃
1 − βg1−σ

1 − β̃g̃1−σ
, (A28)

then
Ψ̃ = κΨ. (A29)

Note that because the timing of the value functionṼ is just before deciding the insurance
purchase,̃β appears in front of the ratio of(1 − βg1−σ) to (1 − β̃g̃1−σ) in κ.




