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I.   INTRODUCTION 

The term structure of interest rates in the United States has received considerable attention in 
recent years, particularly in the context of the global financial crisis that began in 2007. Even 
slight changes in the term structure have generated significant interest in light of their 
implications for financial asset prices, issuance of debt instruments, extension of credit, 
consumption, and investment. The efforts of the Federal Reserve to influence the term structure 
to address the financial crisis, including through the purchase of medium- and long-term fixed 
income instruments, have also helped keep changes in the term structure in the limelight. 
 
Financial economists have developed a myriad of term structure models. Nawalha, Believa, and 
Soto (2007) provide a taxonomy of these models. They note that these models fit into either 
fundamental models or preference-free models. The fundamental models share a time-
homogeneous short-rate process and an explicit specification of the market price of risk. These 
models value default-free zero coupon bonds using information related to investors’ risk 
aversion and expected movements in interest rates. Such models include the well known 
Vasicek and Cox, Ingersoll, and Ross (CIR) models developed in 1977 and 1985, respectively, 
and the multifactor models in the affine class models, including the by now classic model 
developed by Dai and Singleton (2000) and quadratic class models. The preference-free models 
do not require explicit specifications of the market price of risk for valuing bonds. In other 
words, these models do not require knowledge of market participants’ risk preferences. These 
models include the Nelson-Siegel family of models, including the Svensson model, and the 
preference-free version of the CIR model.   
 
This paper assesses estimations of some term structure models. As Nawalha, Believa, and Soto 
(2007) note, many papers have undertaken assessments of estimations of term structure models. 
This paper focuses on an assessment of the estimations of some models within the Nelson-
Siegel and Cox, Ingersoll, and Ross family of models―a three-factor Nelson-Siegel Model 
(NSM), a four-factor Svensson model, and a preference-free, two-factor CIR model― for the 
United States from January 1972 to June 2011. It estimates these models using the IMF’s term 
structure software described in Gasha et al. (2010) that provides a common platform to assess 
these models. In carrying out this assessment, the paper tries to answer the question: How well 
do the estimates of these models capture the dynamics of the observed term structure of interest 
rates of the United States? 
 
The paper is divided as follows. Section II provides a description of the mathematics underlying 
the Nelson-Siegel family of models, including the four-factor Svensson model, and the 
estimation methodology of these models. Section III offers a summary of the mathematics 
underlying the one- and two-factor CIR models and the estimation methodology of these 
models. Section IV presents an assessment of the estimates of a three-factor NSM, a four-factor 
Svensson model, and a preference-free, two-factor CIR model using data for the United States 
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from 1972 to mid 2011. This section also offers a comparison of these estimations. Section V 
presents a conclusion. 

II.   NELSON-SIEGEL MODELS  

As is well known, the term structure depicts a set of yields on U.S. Treasury securities of 
different maturities. The set of yields suggest the presence of a relationship among short-, 
medium- and long-term yields. This relationship does not appear stable over time, particularly 
because the term structure exhibits different shapes at different moments. Nevertheless, as 
Diebold and Li (2006) note, changes in the term structure follow certain patterns. They note that 
the Nelson-Siegel family of models captures these patterns, while reproducing the historical 
average shape of the term structure. These models also account for the existence of 
unobservable, or latent, factors and their associated factor loadings and key macroeconomic 
variables that underlie U.S. Treasury security yields.  

A.   Yield-Only Nelson-Siegel Model 2 

As Gasha et al. (2010) note, the NSM successfully fits the term structure of U.S. Treasury 
security yields, while capturing the dynamics of the term structure. The NSM provides a 
tractable framework to fit the term structure by approximating the forward rate curve by a 
constant plus a polynomial times an exponential decay term given by3  

(II.1)   ௧݂ ሺ߬ሻ ൌ ଵ௧ߚ ൅ ଶ௧݁ିఒ೟ఛߚ ൅   ௧݁ିఒ೟ఛߣଷ௧ߚ

where ௧݂ ሺ߬ሻ is the instantaneous forward rate. This yields a corresponding term structure 

(II.2)  ݕ௧ ሺ߬ሻ ൌ ଵ௧ߚ ൅ ଶ௧ߚ ቀ
ଵି௘షഊ೟ഓ

ఒ೟ఛ
ቁ ൅ ଷ௧ߚ ቀ

ଵି௘షഊ೟ഓ

ఒ೟ఛ
െ ݁ିఒ೟ఛቁ 

where ߚଵ௧, ,ଶ௧ߚ ௧ are parameters and 1, ቀଵି௘ߣ ଷ௧ andߚ
షഊ೟ഓ

ఒ೟ఛ
ቁ and ቀଵି௘

షഊ೟ഓ

ఒ೟ఛ
െ ݁ିఒ೟ఛቁ are their 

loadings. The parameter ߣ௧ controls both the exponential decay rate and the maturity at which 
the loading on ߚଷ௧ reaches its maximum. Even though the NSM appears to be static, Diebold 
and Li (2006) interpret the parameters ߚଵ௧,  ଷ௧ as dynamic latent factors. They show thatߚ ଶ௧ andߚ
these parameters could represent the level, slope, and curvature factors, respectively, 

                                                 
2 This subsection and subsection B follow closely Medeiros and Rodriguez (2011). 

3A forward rate ௧݂ ሺ߬,  on an investment that is initiated τ ,ݐ ሻ is the interest rate of a forward contract, set at timeכ߬
periods into the future and that matures τ* periods beyond the start date of the contract. The instantaneous forward 
rate ௧݂ ሺ߬ሻ is obtained by letting the maturity of the contract go to zero. 
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particularly because their loadings are a constant, a decreasing function of ߬, and a concave 
function of ߬.4 

As Gasha et al. (2010) stress, this framework:  

 provides a parsimonious approximation of the term structure, since the three loadings 

ቂ1, ቀଵି௘
షഊ೟ഓ

ఒ೟ఛ
ቁ  and  ቀଵି௘

షഊ೟ഓ

ఒ೟ఛ
െ ݁ିఒ೟ఛቁቃ give the model sufficient flexibility to reproduce a 

range of shapes of observed yield curves; 

 generates a forward curve and term structure that start at the instantaneous rate ߚଵ௧ ൅
 ଵ௧, which is constant;5ߚ ଶ௧ and then level off at the finite infinite-maturity value ofߚ 

 makes it possible to interpret the three factors ߚଵ௧,  ଷ௧  as long-, short- andߚ ଶ௧ andߚ

medium-factors, respectively, in light of its three loadings ቂ1, ቀଵି௘
షഊ೟ഓ

ఒ೟ఛ
ቁ  and  ቀଵି௘

షഊ೟ഓ

ఒ೟ఛ
െ

݁ିఒ೟ఛቁቃ;6 and 

 establishes that the time-series statistical properties of the three factors ߚଵ௧,  ଷ௧ߚ ଶ௧ andߚ
underlie the dynamic patterns of the term structure. 

Diebold, Rudebusch, and Aruoba (2006) argue that the state-space representation provides 
a framework for analysis and estimation of dynamic models. As Gasha et al. (2010) explain, 
this representation provides a way of specifying a dynamic system, while making it possible 
to handle a wide range of time series models. It facilitates estimation, the extraction of latent 
term structure factors, and the testing of hypotheses about the dynamic interactions 
between the term structure and macroeconomic factors. The state-space representation is  

                                                 
4A heuristic interpretation of the factors along these lines is the following: (i) since yields at all maturities load 
identically on ߚଵ௧, an increase in ߚଵ௧ increases all yields equally, changing the level of the yield curve; (ii) since 
short rates load more heavily on ߚଶ௧, an increase in ߚଶ௧ raises short yields more than long yields, thereby changing 
the slope of the yield curve; and (iii)  since short rates and long rates load minimally on ߚଷ௧, an increase in ߚଷ௧will 
increase medium-term yields, which load more heavily on it, increasing the yield curve curvature. An additional 
implication of the NS model is that ݕ௧ ሺ0ሻ ൌ ଵ௧ߚ ൅  ଶ௧, i.e., the instantaneous yield depends on both the level andߚ
the slope factors.   
5These values are obtained by taking the limits of ݕ௧ ሺ߬ሻ as ߬ goes to zero and to infinity, respectively. 
6To appreciate this interpretation, notice that the loading on ߚଵ௧ is 1, which does not decay to zero in the limit; the 

loading on ߚଶ௧ is ቀ
ଵି௘షഊ೟ഓ

ఒ೟ఛ
ቁ, which starts at 1 but decays quickly and monotonically to 0; the loading on ߚଷ௧ is 

ቀ
ଵି௘షഊ೟ഓ

ఒ೟ఛ
െ ݁ିఒ೟ఛቁ, which starts at 0, increases, and then decays to 0. This coincides with the Diebold and Li (2006) 

interpretation of the three factors as level, slope and curvature. 



  6  

 

(II.3)   ሺܨ௧  െ ሻߤ ൌ  ௧ିଵܨሺܣ െ ሻߤ ൅  ௧ߟ

(II.4)        or                  ܨ௧ ൌ ߤ ൅  ௧ିଵܨܣ ൅  ௧ߟ

(II.5)        ݕ௧  ൌ Λܨ௧  ൅  ௧ߝ

 

Alternatively, it is possible to express equations (II.4) and (II.5) in matrix form as  

(II.6)         ൥
ଵ௧ߚ
ଶ௧ߚ
ଷ௧ߚ

൩ ൌ ൥
ଵߤ
ଶߤ
ଷߤ
൩ ൅ ൥

ܽଵଵ ܽଵଶ ܽଵଷ
ܽଶଵ ܽଶଶ ܽଶଷ
ܽଷଵ ܽଶଷ ܽଷଷ

൩ ቎
ଵ,௧ିଵߚ
ଶ,௧ିଵߚ
ଷ,௧ିଵߚ

቏ ൅ ൥
ଵ௧ߟ
ଶ௧ߟ
ଷ௧ߟ

൩ 

(II.7) ൥
௧ሺ߬ଵሻݕ
ڮ

௧ሺ߬ேሻݕ
൩ ൌ

ۏ
ێ
ێ
ۍ 1

ଵି௘షഊ೟ഓభ

ఒ೟ఛభ

ଵି௘షഊ೟ഓభ

ఒ೟ఛభ
െ ݁ିఒ೟ఛభ

ڮ ڮ ڮ

1 ଵି௘షഊ೟ഓಿ

ఒ೟ఛಿ

ଵି௘షഊ೟ഓಿ

ఒ೟ఛಿ
െ ݁ିఒ೟ఛಿے

ۑ
ۑ
ې
൥
ଵ௧ߚ
ଶ௧ߚ
ଷ௧ߚ

൩ ൅ ൥
߳ଵ௧
ڮ
߳ே௧

൩ 

Equation (II.6), or the transition equation, specifies the dynamics of the state vector, which, for 
the three-factor NSM, is given by the unobservable vector ܨ௧ ൌ ሺߚଵ௧  ߚଶ௧  ߚଷ௧ሻ′. As in Diebold 
and Li (2006), it is assumed that these time-varying factors follow a vector autoregressive 
process of first order, VAR (1), where the mean state vector ߤ is a 3x1 vector of coefficients, 
the transition matrix A is a 3x3 matrix of coefficients, and ߟ௧ is a white noise transition 
disturbance with a 3x3 non-diagonal covariance matrix Q.7 Equation (II.7), or the measurement 
equation, is the specification of the term structure itself, and relates ܰ observable yields to the 
three unobservable factors. The vector of yields ௧ܻ contains ܰ different maturities ௧ܻ ൌ
ሾݕ௧ሺ߬ଵሻ ڮ  ௧ሺ߬ேሻሿ′. The measurement matrix Λ is an ܰx3 matrix whose columns are theݕ
loadings associated with the respective factors, and ߝ௧ is a white noise measurement disturbance 
with an ܰxܰ diagonal covariance matrix H. It is assumed, mainly to facilitate computations, 
that both disturbances are orthogonal to each other and to the initial state, ܨ଴ . Formally, 

(II.8)   ቀ
௧ߟ
௧ߝ
 ቁ ׾    ܹܰ ቂቀ0

0
ቁ , ቀܳ 0

0 ܪ
ቁቃ 

where   ॱሺܨ଴ ߟ௧ᇱሻ ൌ 0 

      ॱሺܨ଴ ߝ௧ᇱሻ ൌ 0. 

 

In addition to facilitating computational tractability, these assumptions are essential to estimate 
both equations. 

                                                 
7The VAR is expressed in terms of deviations from the mean since ܨ௧ is a covariance-stationary vector process. 
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B.   Yield-Macro Nelson-Siegel Model 

As Diebold, Rudebusch, and Auroba (2006) note, recent latent factor models of the term 
structure make explicit use of macroeconomic factors.8 These models use a state-space 
representation to incorporate macroeconomic factors in a latent factor model of the term 
structure to facilitate the analysis of the potential bidirectional feedback between the term 
structure and the economy. They enhance the state vector to include some key macroeconomic 
variables associated with economic activity, monetary stance, and inflation, specifically 
manufacturing capacity utilization ሺܥ ௧ܷ ሻ, the federal funds rate ሺܴܨܨ௧ ሻ, and annual price 
inflationሺܮܨܰܫ௧ ሻ. In so doing, they offer an insight into the underlying economic forces that 
drive the evolution of interest rates.  

In this light, the state-space representation takes on the form 

(II.9)   ܨ௧ ൌ ߤ ൅  ௧ିଵܨܣ ൅  ௧ߟ

(II.10)   ௧ܻ  ൌ Λܨ௧  ൅  ௧ߝ

where ܨ௧  ൌ ሺߚଵ௧  ߚଶ௧  ߚଷ௧  ܥ ௧ܷ  ܴܨܨ௧  ܮܨܰܫ௧ ሻᇱ, and the dimensions of ߤ, A, and  ߟ௧ are increased 
accordingly, to 6x1, 6x6 and 6x1, respectively. The matrix Λ now contains six columns, of 
which the three leftmost include the loadings on the three yield factors, and the three rightmost 
contain only zeroes, indicating that the yields still load only on the yield curve factors. The 
transition disturbance covariance matrix Q, with increased dimension to 6x6, and the 
measurement disturbance covariance matrix H are non-diagonal and diagonal matrices, 
respectively,9 

 

 (II.11)   

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵ௧ߚ
ଶ௧ߚ
ଷ௧ߚ
ܥ ௧ܷ
௧ܴܨܨ
ے௧ܮܨܰܫ

ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵߤ
ଶߤ
ଷߤ
ସߤ
ହߤ
ے଺ߤ
ۑ
ۑ
ۑ
ۑ
ې

൅ ൥
ܽଵଵ ڮ ܽଵ଺
ڭ ڰ ڭ
ܽ଺ଵ ڮ ܽ଺଺

൩

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵ,௧ିଵߚ
ଶ,௧ିଵߚ
ଷ,௧ିଵߚ
ܥ ௧ܷିଵ
௧ିଵܴܨܨ
ے௧ିଵܮܨܰܫ

ۑ
ۑ
ۑ
ۑ
ې

൅

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵ௧ߟ
ଶ௧ߟ
ଷ௧ߟ
ସ௧ߟ
ହ௧ߟ
ے଺௧ߟ

ۑ
ۑ
ۑ
ۑ
ې

 

 

                                                 
8 Diebold, Piazzesi, and Rudebusch (2005) discuss the importance of a joint macro-finance modeling strategy to 
better understand the term structure of interest rates. 

9Diebold, Rudebusch, and Aruoba (2006) stress that these macroeconomic variables represent the minimum set of 
fundamentals required to capture basic macroeconomic dynamics.  
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(II.12)    ൥
௧ሺ߬ଵሻݕ
ڮ

௧ሺ߬ேሻݕ
൩ ൌ

ۏ
ێ
ێ
ۍ 1

ଵି௘షഊ೟ഓభ

ఒ೟ఛభ

ଵି௘షഊ೟ഓభ

ఒ೟ఛభ
െ ݁ିఒ೟ఛభ 0 0 0

ڮ ڮ ڮ

1 ଵି௘షഊ೟ഓಿ

ఒ೟ఛಿ

ଵି௘షഊ೟ഓಿ

ఒ೟ఛಿ
െ ݁ିఒ೟ఛಿ 0 0 ے0

ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵ௧ߚ
ଶ௧ߚ
ଷ௧ߚ
ܥ ௧ܷ
௧ܴܨܨ
ے௧ܮܨܰܫ

ۑ
ۑ
ۑ
ۑ
ې

൅ ൥
߳ଵ௧
ڮ
߳ே௧

൩ 

 
The estimations for yield-only and yield-macro NSMs are similar. In particular, they involve 
estimating the latent factors ߚ௜, the coefficients in the transition matrix A, the mean state vector 
μ, the measurement coefficient matrix Λ, the transition disturbance covariance matrix Q, and 
the measurement disturbance covariance matrix H. 
 
The estimation of the decay parameter   is key in this regard. The estimation of the decay 
parameter depends on an optimization algorithm that either minimizes the Root Mean Square 
Error (RMSE) of the measurement equation or maximizes the likelihood function estimated by 
the Kalman filter, which sequentially updates the linear projection of a state-space 
representation (Hamilton, 1994). This involves an iterative process of estimating and updating 
the measurement and transition equations until finding the optimal point. As a first step, for a 
given decay factor, it is necessary to determine the measurement coefficient matrix, and then 
run an OLS regression for each time t to obtain the latent factors ߚ௧  and the measurement 
errors ߝ௧. The resulting matrix of measurement errors serves to calculate the measurement 
disturbance covariance matrix H. In a second step, the latent factors are treated as dependent 
variables in a VAR(1), which makes it possible to estimate the transition matrix A, the mean 
state vector μ, and the transition errors ݒ௧. These transition errors in turn open the way to 
compute the transition disturbance covariance matrix Q. In the case of the maximization of the 
likelihood function estimated by the Kalman filter, the well known Powell algorithm makes it 
possible to select the new values of the parameters associated with this process (see Gasha et al., 
2010).  
 

C.   Four-Factor Svensson Model 

Svensson (1994) extends the Nelson-Siegel yield-only model. In particular, he adds a fourth 

term, a second curvature or hump-shape, or ߚସ௧ ቀ
ଵି௘షഊమഓ

ఒమఛ
െ ݁ିఒమఛቁ.  

 

(II.13) 

௧ ሺ߬ሻݕ  ൌ ଵ௧ߚ ൅ ଶ௧ߚ ቀ
ଵି௘షഊభഓ

ఒభఛ
ቁ ൅ ଷ௧ߚ ቀ

ଵି௘షഊభഓ

ఒభఛ
െ ݁ିఒభఛቁ ൅ ସ௧ߚ ቀ

ଵି௘షഊమഓ

ఒమఛ
െ ݁ିఒమఛቁ 

This fourth term has two additional parameters, namely ߚସ௧ and ߣଶ߬ (the latter should be 
positive). Svensson argues that the addition of the fourth term increases the flexibility and fit of 
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the Nelson-Siegel model. He further notes that the Nelson-Siegel model yields a satisfactory fit 
in most cases. However, he suggests that, when the term structure is complex, the extended 
model improves the fit considerably. 

Svensson notes that the four-factor model could suffer from multicollinearity when the decay 
paremters―ߣଵ߬ and ߣଶ߬―have similar values. To overcome this difficulty, he suggests a slight 
adjustment to the second curvature factor as follows 

 

(II.14) 

௧ ሺ߬ሻݕ  ൌ ଵ௧ߚ ൅ ଶ௧ߚ ቀ
ଵି௘షഊభഓ

ఒభఛ
ቁ ൅ ଷ௧ߚ ቀ

ଵି௘షഊభഓ

ఒభఛ
െ ݁ିఒభఛቁ ൅ ସ௧ߚ ቀ

ଵି௘షഊమഓ

ఒమఛ
െ ݁ିଶఒమఛቁ 

 

III.   COX, INGERSOLL AND ROSS MODELS 

The Cox, Ingersoll, and Ross (CIR) models are among the better known term structure models.10 
These models include one or more factors. In the context of the taxonomy of Nawalkha, 
Believa, and Soto (2007), such models could be either fundamental models or preference-free 
models. In this section, we derive a one-factor, fundamental CIR model. The difference between 
this model and a preference-free model is simply the knowledge of market risk. In this section, 
we summarize the description of Baz and Chacko (2004) of a single-factor model and a one-
factor CIR model, explain briefly the difference between a one-factor CIR and a two-factor CIR 
models, and describe the estimation procedures of these models.  

A.   Single-Factor Model 

As Baz and Chacko (2004) note, the short interest rate r follows an Itô process defined as 
 
 
(III.1)     dWrdrdr  ,,         

  
where   ,r  is the drift term,   ,r  is the diffusion term, r is the short time, and τ is time. A 

bond price P is a function of this short rate, time, and maturity, T 
 
(III.2)   TrPP ,,           

                                                 
10 See, for instance, Campbell, Low, and MacKinlay (1997) and Nawalkha, Believa, and Soto (2007). 
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Using Itô’s lemma, it is possible to determine the bond return, and identify the drift α and the 
volatility b of this return 
 

(III.3)       dWrbdra
d





,,,,        

  
where a and b are 
 

(III.4)     
   




















,

2

1
,

,,

2
2

2

r
r

r
rra      

  
and 
 
 

(III.5)    
 









,

,,
r

rrb         

  
The duration of D of a bond in a single-factor model is 
 

(III.6)   
r

D






1
         

  
 
and the volatility of a bond is equal to (minus) the duration multiplied by the volatility of the 
short rate 
 
(III.7)      DrTrb  ,,,          

  
where b is negative for most bonds. 
 
In this light, it is possible to consider two bonds―bond 1 and bond 2―priced at 1  and 2 , 

maturing at 1  and 2 , with drifts 1a  and 2a  and volatilities 1b  and 2b . A self-financing 

portfolio consists of 
 

 bonds 1 worth 1V ; 

 
 bonds 2 worth 2V ; 
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 an amount  21 VV   borrowed at the riskless short rate r; 

with no restriction on the sign of 1V  and 2V . This is a portfolio,  , with instantaneous change 

defined as 
 

(III.8)  
 

     dWbVbVdraVdraV

rdVV
V

dV
V

V

dV
Vd

22112211

21
2

2
2

1

1
1








     

 
If the portfolio consists of 
 

(III.9)   
1

2
21 b

b
VV            

then the stochastic term dW disappears, and d  is deterministic. Since the portfolio is riskless 
and self-financed, it can only earn an instantaneous rate of zero. Equation (III.8) becomes 
 

(III.10)       0221
1

22   draVdra
b

bV
                 

or 
 

(III.11)  
2

2

1

1

b

ra

b

ra 



                   

 
Equation (III.11) shows that the expected bond return in excess of the risk-free rate per unit of 
volatility is the same for all interest-rate-sensitive securities, or  . Since  is the same for 
bonds of all maturities, it does not depend on  . However, it is possible to re-write this 
equation as 
 

(III.12)     ,r
b

ra

i

i 


                 

where i  and ib  are the expected return and volatility of any bond i, respectively, and  tr,  is 

the market price of the risk attached to bonds. As ib  is generally negative, a negative  means 

that the market risk on a long bond is greater than market risk on a short bond and, therefore, 
the expected return on a long bond is greater than that on a short bond. 

It is now possible to combine equation (III.12) with equations (III.4) and (III.5) to obtain a 
partial differential equation (PDE) that defines the pricing for any interest-rate-sensitive security 



  12  

 

(III.13)            











rr
r

rrr
r




 ,
2

1
,,, 2

2

2

            

 
It is important to note that the payoff for a security described by this equation also depends on a 
boundary condition, which for a zero-coupon bond with a face value of 1 is 
 
(III.14)     1,,  r                    

 
The solution of (III.13) subject to boundary condition (III.14) is 
 

(III.15)            












  


dssrsdWsrdssrE ,

2

1
,exp

~
, 2

                     

 
 

B.   The Cox, Ingersoll, and Ross Model 

As Baz and Chacko (2004) note, the CIR model defines a stochastic process for the short rate as 
 

(III.16)     dWrdrdr   0                 

 
where K is the speed of mean-reversion  0K , 0  is the long-term target for r, 

   rr  0, , and   rr  , . The CIR model uses a market price of risk defined as 

 

(III.17)    

 r

r ,                   

 
This makes it possible to re-write equation (III.13) as  
 

(III.18)      











r
r

rrr
r 2

2
2

2

1
0 


              

 
subject to    ,,r  1 for a zero-coupon bond paying 1 at maturity. As is common with term 

structure models, the solution for the price of a zero-coupon bond involves a guess in the form 
of  
 
(III.19)         rr   exp,,  
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This equation opens the way to solve the PDE in equation III.18 using two separable ordinary 
differential equations11 
 
 

(III.20)  
  




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

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

















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












 


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2

2
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and 
 

(III.21)  
 

   








 




1exp
2

1exp
              

 
with  
 

 222    

 
and 
 

2

02


 
  

 
In this context, the zero-coupon rate is 
 

(III.22)        


 


rA
R

log
,                 

 
As T goes to infinity, Baz and Chacko (2004) show that 
 

(III.23)   








02
,R                  

 

                                                 
11 Nawalkha, Believa, and Soto (2007) show a solution the PDE in equation using the Itô-Doblein formula and a 
Riccati equation.  
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The term structure of zero-coupon rates is upward sloping when   ,Rr , has a hump when 

 







0

, rR , and is downward sloping when 





0
r . 

 
As Shreve (2004) argues, an extension of the one-factor CIR model is important to capture 
better the dynamics of the term structure of interest rates. While the one-factor model tends to 
capture shifts in the term structure, it does not explain changes in the slope or the curvature of 
the term structure. A two-factor CIR model addresses at least in part this shortcoming. As 
Gasha at al. (2010) show, it is straightforward to extend the one-factor CIR model to a two-
factor CIR model. A two-factor CIR is simply the sum of two state variables given as 
 
(III.24)    )()( 21 tttr       

 
where )(1 t  and )(2 t are the state variables. The one-factor CIR model depends on the 

stochastic process of the short interest rate, or r, described by the stochastic differential equation 
(III.16) to obtain a general solution, but, as Gasha et al. (2010), Nawalkha, Believa, and Soto 
(2007) and Shreve (2004) show, the two-factor CIR depends on two stochastic differential 
equations. 
  
A general state-space representation allows us to solve the CIR model. This state-space 
representation is virtually identical to the state-space representation of the Nelson-Siegel family 
of models. Using a slightly different nomenclature than the one presented above, the state-space 
representation for the CIR model is given as  
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(III.26)  

1
1(1 )

(1 )

t

K t

K

K
K

e

e






 

 

 
  




  

  

 
 

(III.27)  

1 t

k t

K

K

e

e

 

 

 
    
  

  

 
 



  15  

 

(III.28)  

1

1 1

1

( )ln

ln ( )

K
k

k

K
k

k

N

N

A

A













 
 

 
 
 
 
  






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and t represents the length of the time interval in the discrete sample. The equations for the 

state variables follow directly from a Chi, or 2 ’ distribution. The variances of the state or 

transition errors and observation (i.e., measurement) errors are tQ  and H , where tQ  is a 

diagonal matrix with conditional expectation given by zero and conditional variance of the state 
variable with diagonals given by 
 
 
(III.30) 
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IV.   ESTIMATIONS OF THE TERM STRUCTURE MODELS 

After briefly summarizing the data used in this paper, this section presents estimations of the 
term structure of U.S. Treasury security yields using the Nelson-Siegel family of models and the 
CIR model.  

A.   Data 

This paper uses yields of U.S. Treasury securities and macroeconomic variables. The yields are 
annualized zero-coupon bond nominal yields continuously compounded. The yields, obtained 
from Bloomberg, are monthly observations of U.S. Treasury securities of 9 maturities―3, 6, 12, 
24, 36, 48, 60, 84 and 120 months―for the period of 1972:1 to 2011:6. The macroeconomic 
variables include (i) the inflation variable, or the annual percentage change in the monthly price 
deflator for personal consumption expenditures; (ii) the real economic activity relative to 
potential, or manufacturing capacity utilization; and (iii) the monetary policy instrument, or the 
monthly average federal funds rate. 

B.   Nelson-Siegel Models 

As Gasha et al. (2010) note, the term structure, including during the global financial crisis, 
exhibits the following characteristics: 

 The term structure is on average upward sloping and concave. 

 The term structure takes on a variety of shapes through time, including upward sloping, 
downward sloping, humped, and inverted humped.  

 The term structure has shifted downward noticeably in the context of the Federal 
Reserve policy to lower the fed funds rate to nearly zero in recent years.  

 The level of the term structure is more persistent that the slope and the curvature, as 
evidenced by the smaller variation of the level relative to its mean than the variation of 
the slope and curvature relative to their means. The slope in turn is more persistent than 
the curvature. 

The estimate of the three-factor, yield-only NSM using the state-space representation explains 
well the term structure of U.S. Treasury security yields for the period 1972:1–2011:6. This is 
consistent with previous findings of estimates of the term structure of interest rates for the 
United States (Medeiros and Rodriguez, 2011). Figure 1 shows the estimate of the term 
structure of U.S. Treasury security yields, and the estimation residuals, or the difference 
between the estimated and observed term structures. The estimation residuals tend to be small, 
and, for long periods of time, are close to zero. The goodness-of-fit test, measured by the Chi-
square test statistic, attests how well the estimated term structure fits the observed term structure 



  17  

 

(Table 1).12 Also, reflecting the goodness of this fit, Figure 3 shows that the estimated term 
structure of the yields on the one-year and five-year U.S. Treasury securities and observed 
yields on these U.S. Treasury securities nearly overlap. These results hold for the other seven 
maturities as well. As further evidence of the goodness of fit, Figure 4 shows the close fit of the 
estimated term structure curve with respect to particular yields on the observed term structure. 
Figure 5 displays the estimated three factors for the period under analysis.13 Table 2 summarizes 
the goodness-of-fit results of the also promising estimates of the yield-macro NSM.14 

Impulse response functions and the variance decomposition provide additional metrics to assess 
the term structure. The impulse response functions based on the yield-only NSM show that 
shocks of the level and slope have a statistically significant impact on the level of the term 
structure (Figure 6). Shocks to the slope also have a statistically significant impact on the slope 
of the term structure. The variance decomposition shows that innovations or shocks to the three 
factors impact the variance of U.S Treasury security yields for a 60-month period (Table 3). The 
variance decomposition shows that shocks to the slope account for the largest proportion of the 
variance of U.S. Treasury security yields. However, shocks to the slope account for a declining 
proportion of the variance as the maturity of the U.S. Treasury securities increases. Shocks to 
the level account for a smallest proportion of the variance of the yields of U.S. Treasury 
securities with maturity of one year or less, but explain an increasing proportion of the variance 
of yields of U.S. Treasury securities with maturity beyond one year. Shocks to the curvature 
explain only a small proportion of the variance of the yields of U.S. Treasury security across all 
maturities. 

A Monte Carlo simulation further complements the analysis of the term structure. This 
simulation makes it possible to obtain a distribution of future yields that are consistent with the 
historical dynamics of the term structure. This requires first using one-step-ahead factors in the 
transition equation (equation II.6), and then utilizing these results to determine the term 
structure using the measurement equation (equation II.7). Specifically, to determine the one-
step-ahead factors, we generate a K number of standard normal random variables that are 
independent and identically distributed, and derive the transition disturbance random errors, 
with a covariance matrix Q, by multiplying the vector of standard normal variables with the 
Cholesky decomposition of Q.15 For fixed initial values of the factors, we first use these errors 
to calculate new values for the factors using the transition equation, and then utilize these new 

                                                 
12The Chi-square statistic is defined as the square of the difference between the observed term structure and the 
estimated term structure divided by the variance of the observed yields. The null hypothesis states that the observed 
term structure is the same as the estimated term structure.  

13Note that the slope of the term structure is actually -ߚଶ௧, i.e., the program estimates it as the negative of the slope.   

14 Medeiros and Rodriguez (2011) explain the estimates of the yield-macro NSM for the United States. 

15 K refers to the number of latent term structure factors. 
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values to determine the term structure using the measurement equation. The process to 
determine the multiple-step-ahead factors depends on the number of time steps or periods, S, 
which yields a final simulated value for the term structure at the end of these periods. We repeat 
this process a number of times, or m, to obtain model statistics, or implied distribution, of future 
yields. By way of illustration, Figure 7 shows some five-year paths of the Monte Carlo 
simulation for the one-year and five-year U.S. Treasury securities repeated 1000 times. This 
simulation yields some statistics of the estimated term structure, including mean, variance, 
skewness and kurtosis (Table 5). 

The estimation of the four-factor Svensson model also explains well the term structure of 
interest rates of the United States over 1972:1–2011:6. In particular, the four factors of the 
Svensson model―level, slope, and two curvatures―capture well the many changes in the shape 
of the term structure. As in the case of the three-factor, yield-only NSM, the estimation 
residuals are generally small (Figure 2). The Chi-square test statistic confirms that the 
estimation of the term structure using the Svensson model fits well the observed term structure 
(Table 2). This test also shows that the estimation of the four-factor Svensson model appears to 
fit somewhat better the observed term structure of the United States than the estimation of the 
three-factor NSM. However, given that the estimation of the four-factor Svensson model is only 
marginally better than the estimation of the three-factor NSM, it may well be appropriate to rely 
on one model. The estimations of the term structure using the four-factor Svensson model for 
one-year and five-year U.S. Treasury securities essentially lie on the observed term structure for 
these maturities (Figure 3). These results hold not only for these two maturities, but also for the 
other seven maturities used in this paper. Figure 4 shows the good fit of the estimated term 
structure curve with respect to particular points in the observed term structure, and Figure 5 
displays the estimates of the four factors over the estimation period. 

As noted above, the variance decomposition provides an additional metric to assess the term 
structure. The variance decomposition shows how shocks to the four factors of the Svensson 
model impact the variance of U.S Treasury security yields for a 60-month period (Table 4). As 
in the case of the three-factor NSM, shocks to the slope represent the largest proportion of the 
variance of U.S. Treasury security yields. However, shocks to the slope account for a declining 
proportion of the variance of these yields as the maturity of the U.S. Treasury securities 
increases. Shocks in the level account for a small proportion of the variance of U.S. Treasury 
security yields, particularly in the case of U.S. Treasury securities with maturity of one year or 
less. Shocks of the level account for an increasing share of the variance of U.S. Treasury 
security yields as the maturity of these instruments increases. Shocks to the curvature factors 
account for a small proportion of the variance of U.S. Treasury security yields, even less so as 
the maturity of the U.S. Treasury securities increase. 

  



  19  

 

Figure 1. Estimated Term Structure and Estimation Residual 
 

 
 

 
    Source: Fund staff estimates. 
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Figure 2. Estimation Residuals 
 

 
 

 
    Source: Fund staff estimates. 
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Figure 3. Performance Evaluation of Models 
 

 
 

 
 

 
     Source: Fund staff estimates.   
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Figure 3. Performance Evaluation of Models (Continued) 

 

 
 

 
 

 
  Source: Fund staff estimates.  
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Figure 4. Observed and Estimated Average Yield Curve 

 
 

 
 

 
  Source: Fund staff estimates.  

0

1

2

3

4

5

6

7

8

3
m

6
m

1y 2y 3y 4y 5y 7y 10
y

Y
ie

ld

Maturity

Average Term Structure Fitting, 1972.1–2011.6, Three-Factor NSM

Observed Yield

Estimated Yield

0

1

2

3

4

5

6

7

8

3
m

6
m

1y 2y 3y 4y 5y 7y 10
y

Y
ie

ld

Maturity

Average Term Structure Fitting, 1972.1–2011.6, Four-Factor Svensson Model

Observed Yield

Estimated Yield

0

1

2

3

4

5

6

7

8

3
m

6
m

1y 2y 3y 4y 5y 7y 10
y

Y
ie

ld

Maturity

Average Term Structure Fitting, 1972.1–2011.6, Two-Factor CIR Model

Observed Yield

Estimated Yield



  24  

 

Figure 5. Estimation Factors 
 

 
 

 
 

 
  Source: Fund staff estimates.   
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Table 1. Goodness of Fit 

Chi-square Test of Fit, Three-Factor NSM, 1972.1–2011.6 

Value 
SSE 34.2018 
Chi-square 6.9892 
DF 4263 

Chi-square Test of Fit, Four-Factor Svensson Model, 1972.1–
2011.6 

Value 
SSE 9.2137 
Chi-square 2.0924 
DF 4262       

Chi-square Test of Fit, Two-Factor CIR Model, 1972.1–2011.6 
     
 Value    

  
  

SSE 184.9339    
Chi-square 49.3508    
DF 4264     

                 Source: Fund staff estimates. 

 
 
 

Table 2. Goodness of Fit of the Yield- Macro NSM 

Chi-square Test of Fit, Three-Factor NSM, 1972.1–2011.6 

Value 
SSE 34.2669 
Chi-square 6.4113 
DF 4260 
Source: Fund staff estimates. 
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Table 3. Variance Decomposition, Three-Factor NSM 

Level Slope Curvature 
3 Month 0.1067 0.7463 0.1471 
6 Month 0.1225 0.7232 0.1543 
1 Year 0.1522 0.6810 0.1669 
2 Year 0.2039 0.6166 0.1795 
3 Year 0.2477 0.5737 0.1787 
4 Year 0.2854 0.5440 0.1706 
5 Year 0.3179 0.5223 0.1598 
7 Year 0.3696 0.4919 0.1386 
10 Year 0.4213 0.4628 0.1159 

     Source: Fund staff estimates. 
 

 
 

Table 4. Variance Decomposition, Four-Factor Svensson Model 

Level Slope Curvature 1 Curvature 2 
3 Month 0.1167 0.6212 0.1395 0.1225 
6 Month 0.1317 0.5942 0.1438 0.1303 
1 Year 0.1587 0.5656 0.1527 0.1230 
2 Year 0.2049 0.5422 0.1667 0.0862 
3 Year 0.2420 0.5279 0.1697 0.0604 
4 Year 0.2721 0.5172 0.1649 0.0459 
5 Year 0.2966 0.5089 0.1570 0.0375 
7 Year 0.3331 0.4965 0.1411 0.0293 
10 Year 0.3671 0.4837 0.1245 0.0248 

   Source: Fund staff estimates. 
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Figure 6. Impulse Functions Based on Yield-Only NSM 
 

 
 
  Source: Fund staff estimates.  
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Figure 7. Simulated Yields Based on Yield-Only NSM 

 

 

   Source: Fund staff estimates.  
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Table 5. Simulation Statistics 

1 Year 5 Year 
Mean 2.5390 3.1707 

Median 2.0113 2.9964 
Std Deviation 2.0150 2.1031 

Skewness 0.9250 0.4552 
Kurtosis 0.0286 -0.5214 

Min 0.0820 0.0015 
Max 8.5674 9.1877 

  Source: Fund staff estimates. 
 
 
 

C.   Cox, Ingersoll and Ross (CIR) Models 

The estimation of the preference-free, two-factor CIR model using a state-space 
representation explains well the term structure of U.S. Treasury security yields.16 This 
estimation captures the many and significant changes in the shape of the observed term 
structure over 1972:1–2011:6. The estimation residuals are small (Figure 2), and the 
goodness-of-fit test measured by the Chi-square confirms that the estimated term structure 
fits well the observed term structure (Table 2). The time series fit of the two-factor CIR 
model also accounts well for the observed time series for the yields of the one-year and five-
year U.S. Treasury securities (Figure 3). This result holds for the other maturities of the U.S. 
Treasury securities included in this paper as well. 

Even though the estimation of the preference-free, two-factor CIR model does not appear to 
be as good as the estimates of the three-factor NSM and four-factor Svensson models, a 
comparison of these estimates requires caution. As Figures 1 and 2 show, the dispersion of 
the estimation residuals of the CIR model are larger than the dispersion of the estimation 
residuals of the three-factor NSM and four-factor Svensson models. As the Chi-square test 
statistics show, the goodness-of-fit of the estimation of the CIR model is not as good as the 
goodness-of fit of the estimations of the three-factor NSM and four-factor Svensson models. 
However, the differences in the estimation of these models reflect the fact the three models 
have a different number of factors, and a comparison is not that straightforward.  

  

                                                 
16 The estimation of the preference-free, one-factor CIR model yields a poor result, and is not reported in this 
paper.  
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V.   CONCLUSIONS 

This paper assesses estimates of term structure models for the United States. In this context, 
it first describes the mathematics underlying both the Nelson-Siegel and Cox, Ingersoll and 
Ross family of models and estimation methodologies. It then presents estimations of some of 
these models within these families of models―a three-factor, yield-only Nelson-Siegel 
model, a four-factor Svensson model, and a preference-free, two-factor CIR model―for the 
United States from 1972 to mid 2011. It subsequently assesses these estimations. 

The paper finds that the estimations of the term structure models presented in this paper 
capture well the dynamics of the term structure in the United States. The estimations of the 
three-factor NSM, four-factor Svensson model, and preference-free, two-factor CIR model 
capture well the dynamics of the term structure over 1972:1-2011:6. These estimations 
encapsulate the changes in expectations of short-term future interest rates, while confirming 
that the yield-factors of the term structure of interest rates―level, slope and 
curvatures―provide a good representation of the term structure. Such estimations provide 
support for the notion that these latent factors help explain the dynamics of the term 
structure. 
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