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I.   INTRODUCTION 

The 2007-2009 financial crisis has spurred renewed efforts in systemic risk modeling. Bisias 
et al. (2012) provide an extensive survey of the models currently available to measure and 
track indicators of systemic financial risk. However, three limitations of current modeling 
emerge from this survey. First, almost all proposed measures focus on (segments of) the 
financial sector, with developments in the real economy either absent, or just part of the 
conditioning variables embedded in financial risk measures. Second, there is yet no 
systematic assessment of the out-of-sample forecasting power of the measures proposed, 
which makes it difficult to gauge their usefulness as early warning tools.  Third, stress testing 
procedures are in most cases sensitivity analyses, with no structural identification of the 
assumed shocks.  

Building on our previous effort (De Nicolò and Lucchetta, 2011), this paper contributes to 
overcome these limitations by developing a novel tractable model that can be used as a real-
time systemic risks’ monitoring system. Our model combines dynamic factor VARs and 
quantile regressions techniques to construct forecasts of systemic risk indicators based on 
density forecasts, and employs stress testing as the measurement of the sensitivity of 
responses of systemic risk indicators to configurations of structural shocks.  

This model can be viewed as a complementary tool to applications of DSGE models for risk 
monitoring analysis. As detailed in Schorfheide (2010), work on DSGE modeling is 
advancing significantly, but several challenges to the use of these models for risk monitoring 
purposes remain. In this regard, the development of DSGE models is still in its infancy in at 
least two dimensions: the incorporation of financial intermediation and forecasting. In their 
insightful review of recent progress in developments of DSGE models with financial 
intermediation, Gertler and Kyotaki (2010) outline important research directions still 
unexplored, such as the linkages between disruptions of financial intermediation and real 
activity. Moreover, as noted in Herbst and Schorfheide (2010), there is still lack of 
conclusive evidence of the superiority of the forecasting performance of DSGE models 
relative to sophisticated data-driven models. In addition, these models do not typically focus 
on tail risks. Thus, available modeling technologies providing systemic risk monitoring tools 
based on explicit linkages between financial and real sectors are still underdeveloped. 
Contributing to fill in this void is a key objective of this paper.  

Three features characterize our model. First, we make a distinction between systemic real 
risk and systemic financial risk, based on the notion that real effects with potential adverse 
welfare consequences are what ultimately concerns policymakers, consistently with the 
definition of systemic risk introduced in Group of Ten (2001). Distinguishing systemic 
financial risk from systemic real risk also allow us to assess the extent to which a realization 
of a financial (real) shock is just amplifying a shock in the real (financial) sector, or 
originates in the financial (real) sector.  Second, the model produces real-time density 
forecasts of indicators of real activity and financial health, and uses them to construct 
forecasts of indicators of systemic real and financial risks. To obtain these forecasts, we use a 
dynamic factor model (DFM) with many predictors combined with quantile regression 
techniques. The choice of the DFM with many predictors is motivated by its superior 
forecasting performance over both univariate time series specifications and standard VAR-
type models (see Watson, 2006). Third, our design of stress tests can be flexibly linked to 
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selected implications of DSGE models and other theoretical constructs. Structural 
identification provides economic content of these tests, and imposes discipline in designing 
stress test scenarios. In essence, our model is designed to exploit, and make operational, the 
forecasting power of DFM models and structural identification based on explicit theoretical 
constructs, such as DSGE models.  

Our model delivers density forecasts of any set of time series. Thus, it is extremely flexible, 
as it can incorporate multiple measures of real or financial risk, both at aggregate and 
disaggregate levels, including many indicators reviewed in Bisias et al. (2012). In this paper 
we focus on two simple indicators of real and financial activity: real GDP growth, and an 
indicator of health of the financial system, called FS. Following Campbell, Lo and 
MacKinlay (1997), the FS indicator is given by the return of a portfolio of a set of 
systemically important financial firms less the return on the market. This indicator is 
germane to other indicators of systemic financial risk used in recent studies (see e.g. Acharya 
et al., 2010 or Brownlee and Engle, 2010).   

The joint dynamics of GDP growth and the FS indicator is modeled through a dynamic factor 
model, following the methodology detailed in Stock and Watson (2005).  Density forecasts 
of GDP growth and the FS indicator are obtained by estimating sets of quantile auto-
regressions, using forecasts of factors derived from the companion factor VAR as predictors. 
The use of quantile auto-regressions is advantageous, since it allows us to avoid making 
specific assumptions about the shape of the underlying distribution of GDP growth and the 
FS indicator. The blending of a dynamic factor model with quantile auto-regressions is a 
novel feature of our modeling framework. 

Our measurement of systemic risks follows a risk management approach.  We measure 
systemic real risk with GDP-Expected Shortfall (GDPES ), given by the expected loss in 
GDP growth conditional on a given level of GDP-at-Risk (GDPaR), with GDPaR being 
defined as the worst predicted realization of quarterly growth in real GDP at a given (low) 
probability. Systemic financial risk is measured by FS-Expected Shortfall (FSES), given by 
the expected loss in FS conditional on a given level of FS-at-Risk (FSaR), with  FSaR being 
defined as the worst predicted realization of the FS indicator at a given (low) probability 
level.  

Stress-tests of systemic risk indicators are implemented by gauging how impulse responses 
of systemic risk indicators vary through time in response to structural shocks. The 
identification of structural shocks is accomplished with an augmented version of the sign 
restriction methodology introduced by Canova and De Nicolò (2002), where aggregate 
shocks are extracted based on standard macroeconomic and banking theory. Our approach to 
stress testing differs markedly from, and we believe significantly improves on, most 
implementations of stress testing currently used in central banks and international 
organizations. In these implementations, shock scenarios are imposed on sets of observable 
variables, and their effects are traced through “behavioral” equations of certain variables of 
interest. Yet, the “shocked” observable variables are typically endogenous: thus, it is unclear 
whether we are shocking the symptoms and not the causes. As a result, it is difficult to assess 
both the qualitative and quantitative implications of the stress test results.  

We implement our model using a large set of quarterly time series of the G-7 economies 
during the 1980Q1-2010Q1 period, and obtain two main results. First, our model provides 
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significant evidence of out-of sample forecasting power for tail real and financial risk 
realizations for all countries. Second, stress tests based on this structural identification 
provide early warnings of vulnerabilities in the real and financial sectors.  

The remainder of the paper is composed of four sections and an Appendix. Section II outlines 
the model setup, estimation, forecasting, and stress testing. Section III describes the 
implementation of the modeling framework on data for the G-7 countries, focusing on 
estimation and forecasting. Section IV presents an example of a stress testing procedure. 
Section V concludes. The Appendix summarizes the banking model used for identification, a 
description of the data and supplementary Figures. 

 

II.   THE MODEL  

Following Stock and Watson (2005), the dynamics of N series itX , indexed by i N , with N 

large, is modeled with a Dynamic Factor Model (DFM) described by the following 
equations:   

                                                         1( ) ( )it i t i it itX L f L X v                               (1)        

                                                         1( )t t tf L f                                                  (2) 

Each series itX  is a function of a vector of dynamic factors tf , of its own lags and 

idiosyncratic errors itv , which are assumed to be uncorrelated at all leads and lags. Equation 

(2) describes the dynamics of these factors through a VAR. Under the assumption that 
dynamic factors have finite lags up to p , and defining the vector of static factors with 

1 1[ , ,....., ]t t t t pF f f f     , one obtains the static form representation of the DFM:  

                                                    1( )it i t i it itX F L X v                         (3)        

                                                    1( )t t tF L F G                                   (4) 

Matrix ( )L  includes ( )L  and 0’s, while G  is a matrix of coefficients of dimension r  q , 
where r is the number of static factors and q that of dynamic factors. In our application, we 
assume r q , which implies ( ) ( )L L    andG I . Thus, Equation (4) is equivalent to 
Equation (2).  As shown in Stock and Watson (2005), Equations (3)-(4) can be transformed 
in a (restricted) Factor-Augmented VAR (FAVAR) representation of the DFM akin to that 
adopted by Bernanke, Boivin, and Eliasz (2005). 

In this paper, we focus on predictions of two of the N series: real GDP growth, denoted 
by tGDPG , and the FS indicator, denoted by tFS : 

                                   1( )R R
t t R t tGDPG F L GDPG v 

           (5) 

                                    1( )F F
t t F t tFS F L FS v 

                      (6) 
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To construct density estimates of tGDPG and tFS , we first estimate quantile auto-regressions 

(Koenker, 2005) of the form (5) and (6), with estimates of the static factors t̂F  as 

conditioning variables. Denote with (0,1)   a particular quantile, and with a “hat” 
estimated quantile coefficients. Quantile estimates of (5) and (6) for each {1,2,.....,99}  are: 

                           1 1
ˆ ˆˆ ˆ( ) ( ) ( ) ( )( )R

t t R tGDPGQ F L GDPG      
         (7) 

                               2 1
ˆ ˆˆ ˆ( ) ( ) ( ) ( )( )F

t t F tFSQ F L FS      
                  (8) 

For low values of (0,1)  , the Value-at-Risk (VaR) measures GDPaR and FSaR are the 

fitted values of ( )tGDPGQ   and ( )tFSQ  . There are two well known limitations of VaR-

type measures: (a) they not take into account the size of tail losses; and (b) they lack 
“coherence” in the sense of Artzner et al. (1999), since they do not satisfy the sub-additivity 
property required for consistent risk ordering.  A measure overcoming these problems is 
given by the Expected Shortfall (ES). Given a random variable X, ES is defined as the 
expected downside loss at   percent probability associated with a fall in X below quantile   
(see, e.g. Acerbi and Tasche, 2002).  Denoting with t  the expectation operator conditional 

on information available at date t, for any given (0,1)  , our systemic risk indicators are 
defined as: 

                               ( ) ( | ( ))t t t t tGDPES GDPG GDPG GDPaR       (9) 

                              ( ) ( | ( ))t t t t tFSES FS FS FSaR                          (10) 

 

A.   Estimation and Forecasting 

 

Estimation and forecasting are accomplished in four steps. 

 

Step 1: Choice of number of factors and lags 

We compute static factors, and choose the number and lags of the factor VAR (Equation (4)), 
as follows. First, we use principal components to extract all factors with eigenvalues greater 
than 1, in number R . Second, we order factors according to their explanatory power of the 
variance of the data, and construct the set of factors 1 1 2{( ),...., ( , ,..., )}r r RF F F F F  . Lastly, 

as in Stock and Watson (2002), we choose the number of lags L  and the number of static 
factors r  that maximize the Bayesian Information Criterion (BIC) for Equations (5)-(6), 
estimated for each set of factors in F  and with one, two, three,  and four lags. Thus, the 
optimal number of lags *L  and the number of static factors *r  yield the maximum BIC 
criterion among 4xR  specifications of Equations (5)-(6).   
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Step 2: Quantile Estimation 

The *r  estimated factors with lags *L  are used as regressors of the quantile auto-regressions 
(7) and (8) for 1, 2....99  . Estimated quantile regressions may generally exhibit “crossings” 
of the conditional quantile functions. Such “crossing”, if and when it occurs, implies that the 
key assumption that distribution functions are monotonically increasing is violated. As 
stressed by Koenker (2005, Ch. 8), this problem is likely to be more severe for quantile auto-
regressions.  Crossing can be the result of a mis-specification of the model, which in turn can 
adversely affect its forecasting performance.  

We address the problem of potential “crossing” by adopting the rearrangement procedure 
introduced by Chernuzukhov et al. (2010). By rearranging original quantile estimates into 
monotone quantile estimates, Chernuzukhov et al. (2010) show that the resulting quantile 
curves are closer to the true quantile curves in finite samples. By construction, these 
rearranged quantile curves do not exhibit crossing. We implement this rearrangement 
procedure by re-ordering at each date the quantiles originally estimated via (7) and (8) 
whenever crossing occurs. These sorted quantiles are our final quantile estimates. .  

 
Step 3: Density Estimation and Construction of Systemic Risk Indicators 

The quantile estimates provide discrete density estimates at each date. To obtain continuous 
densities and compute expected shortfalls, we proceed as follows. Recall that given a 
continuous probability distribution F of a random variable X, the quantile corresponding to 
probability , denoted by ( )Q  , is also equal to ( ) ( )Q F  , where 

( ) inf( | ( ) )F x F x     is the generalized inverse of F. Then, the expected shortfall of X 
can be expressed as: 

                                     
0 0

1 1
( ) ( ) ( )ES F y dy Q y dy

 


 
          (11) 

To estimate ( )Q  as a continuous functions of (0,1]  , we regress the series of the 99 
discrete quantiles at each date on a polynomial function of order m—with m selected to 

maximize the 2R  of these regressions at each date—obtaining 
0

ˆ ˆ( )
m

i
t i

i

Q a 


 , where “hats” 

denote estimated coefficients.  Therefore, expected shortfall estimates are given by: 

         
2 1

0 1 20 0
0

1 1ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ... )
2 3

mm
i

t t i m
i

ES Q y dy a y dy a a a a
m

    
 





               (12) 

This procedure is similar to several methods aimed at estimating tails of distributions based 
on extreme value theory (EVT). These methods are typically based on estimates of Hill 
indicators obtained employing subsets of observations of the data relatively close to the tail 
of interest. The underlying assumption is that unconditional densities are generated by a wide 
family of distributions with supports that are unbounded below. 2 Our estimation procedure 
                                                 
2 In reviewing tail estimates based on EVT, Le Baron (2009) advocates the use of the Hill estimators introduced 
by Huisman et al (2001) based on subsets of observations. 
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differs from these methods: we do not impose distributional assumptions on our real and 
financial indicators, which have supports that are bounded below, and use information on the 
entire distribution of interest through the full range of discrete quantile estimates.    

 

Step 4: Multi-step Forecasts of Systemic Risk Indicators 

In this last step, we construct k quarters-ahead forecasts of systemic risk indicators. As 
quantile estimates are linear in factors and lagged variables, we follow Stock and Watson 
(2002) by using k quarters-ahead quantile projections. Using (7) and (8) (with estimated 
factors denoted with a “hat”) these k quarters-ahead quantile projections are: 

                        1 1
ˆ ˆˆ ˆ( ) ( ) ( ) ( )( )k R k

t k k t R tGDPGQ F L GDPG      
         (13) 

                          2 1
ˆ ˆˆ ˆ( ) ( ) ( ) ( )( )k F k

t k k t F tFSQ F L FS      
                  (14) 

Finally, applying the procedure described in Step 3, we obtain k quarters-ahead forecasts of 
expected shortfalls of GDP growth and the FS indicator, denoted by ( )t kGDPES  and 

( )t kFSES  respectively.  

B.   Stress Testing 

We define stress testing as the measurement of the sensitivity of responses of systemic risk 
indicators to configurations of structural shocks. These responses are obtained as impulse 
responses and variance decompositions of our systemic risk indicators to identified structural 
shocks. In this paper we present a version of this stress testing procedure, based on a 
particular identification procedure, and simple metrics of changes in the sensitivity of 
impulse responses and variance decompositions of systemic risk indicators to different 
configurations of structural shocks. However, we should stress that our stress testing 
procedure is fairly general, since it can be implemented using different identification 
schemes and metrics of sensitivities of responses of systemic risk indicators to shocks.  

Our identification strategy is based on an augmented version of a sign restriction 
methodology used by Canova and De Nicolò (2002). As detailed in Canova (Ch. 4, 2007), 
identification through sign restrictions can be carried out through a variety of linearized 
DGSE models that have a VAR representation, and are also implementable in the context of 
Bayesian VARs (see Del Negro and Schorfheide, 2010). In our case, a theoretical model will 
impose sign restrictions on the responses of certain sets of observable variables in equation 
(3) to (orthogonalized) shocks to factors. Our procedure differs from that of Canova and De 
Nicolò (2002) in two respects: orthogonal innovations are extracted from the factor VAR 
rather than from a low dimensional VAR, and sign restrictions are derived from both 
aggregate dynamic macroeconomic theory and a simple banking model.3   

Canova and De Nicolò (2002) show that the following sign restrictions can be derived from a 
wide class of general equilibrium monetary macroeconomic models with different micro-

                                                 
3 An application of a version of the sign restriction methodology  in the context of FAVAR models which 
focuses on monetary shocks  is in Ahmadi and Uhlig (2009) 
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foundations. If a positive temporary orthogonal innovation represents a positive transitory 
aggregate supply shock, then it should generate transitory weakly positive output responses 
and weakly negative transitory responses in inflation. On the other hand, if it is a real 
aggregate demand shock, it should generate weakly positive transitory responses in output 
and inflation.  

To identify demand and supply shocks to bank credit, we use the simple partial equilibrium 
model by Boyd, De Nicolò and Loukoianova (2010)—briefly summarized in the Appendix—
where sign restrictions of interest are obtained using measures of bank credit growth and 
changes in loan rates. The restrictions implied by this banking model are as follows.  If there 
is a positive transitory shock to the demand for bank credit (e.g. because of a positive 
technology shock to firms generating an increase in demand for investment, or an increase in 
the quality of investment prospects), then we should observe a transitory increase in bank 
credit growth and an increase in loan rates. We call a shock generating these responses a 
positive credit demand shock. Conversely, if there is a positive transitory shock to the supply 
of bank credit (e.g. banks expand their assets through an increase in bank debt and/or 
capital), then we should observe a transitory increase in bank credit growth coupled with a 
decline in loan rates. We call a shock generating these responses a positive credit supply 
shock. Of course, negative shocks have the signs of these responses all reversed.  

Note that real aggregate demand or supply shocks can affect the underlying drivers of the 
supply and demand for bank credit simultaneously. For example, a negative aggregate 
demand shock can induce firms and household to decrease their demand for bank credit. In a 
simple diagram of bank credit demand and supply, this would be represented by a leftward 
shift of the demand for bank credit, which would result in a decline in loan rates ceteris 
paribus. At the same time, the adverse wealth effects of a negative aggregate demand shock 
may induce investors to reduce their supply of funds to banks, or banks could reduce their 
supply of credit as they may become increasingly capital-constrained or risk averse: this 
would result in a leftward shift in the supply of credit ceteris paribus. Which effect 
dominates on net will be reflected in movements in loan rates and bank credit growth. If 
negative credit demand shocks dominate, then loan rates and bank credit growth should 
decline, while the converse would hold if negative credit supply shocks dominate.  

Table A below summarizes the responses of GDP growth, inflation, bank lending growth, 
and changes in loan rates in response to positive structural shocks implied by standard 
aggregate macroeconomic models and a partial equilibrium banking model. 

Table A.   Signs of theoretical responses of key variables to positive shock combinations 

Shocks 

GDP growth Inflation Bank Credit 
Growth 

Change in 
Lending Rates

Aggregate Supply + 
Bank Credit Demand ＋  －  ＋  ＋ 
Aggregate Supply + 
Bank Credit Supply ＋  －  ＋  － 
Aggregate Demand + 
Bank Credit Demand ＋  ＋  ＋  ＋ 
Aggregate Demand + 
Bank Credit Supply ＋  ＋  ＋  － 
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Thus, identification of structural shocks is conducted by checking whether orthogonal 
innovations of the factor VAR produce responses of the four variables considered that match 
the signs of the responses implied by a class of aggregate macroeconomic models and a 
banking model. 

 

III.        IMPLEMENTATION: ESTIMATION AND FORECASTING 

We implemented our modeling procedure using quarterly time series of the G-7 economies 
for the period 1980Q1-2010Q1. All series are taken from Datastream. For each country, the 
vector of quarterly series tX  in equation (1) includes between 50 and 80 series detailed in the 

Appendix. These series are classified into three groups. The first group comprises equity 
markets data, including prices, price/earnings ratios and dividend yields for the entire market 
and by sector. The second group includes financial, monetary and banking variables related 
to credit conditions, namely: interest rates for different maturities, monetary policy rates, 
bank prime rates and interbank rates, bank lending, and monetary aggregates. The third group 
includes price and quantity indicators of real activity. This set of variables includes capacity 
utilization, the unemployment rate, industrial production, a consumer price index, and house 
prices.  

A.   Estimation 

Following the steps outlined previously, we estimated static factors of each variable by 
principal components according to the procedures described in Stock and Watson (2005). 
Our factor and lag selection criteria resulted in between 4 and 7 static factors depending on a 
country dataset, leading us to choose five factors for each country.4, and one lag in each 
country.  Estimated factors were used as independent variables of quantile regressions 
specified with one lag. Quantile crossing occurred in only about one percent of dates in each 
country. Lastly, m=4 was the best value of the polynomial approximation to obtain 
continuous densities, with the  2R  associated with the relevant regressions at each date and 
country not lower than 0.96.   

Figure 1 reports the time series of in-sample estimates of GDPES and FSES series at 20 and 
5 percent probability levels, and the relevant eight-step forecasts as of 2010Q1 for the U.S., 
These systemic risk fan charts compactly summarize the range of expected tail real and 
financial prospects for a given probability range. 

 

                                                 
4 As a cross-check, we also estimated the number of factors using the Bai and Ng (2002) criterions as applied to 
equation (2), obtaining a similar number of static factors for each country dataset.  
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Figure 1. United States: Systemic Risk Fan Charts 
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Note that spikes in GDPES correspond to every recession episode, but their magnitude 
differs across episodes, with the spike in 2008Q4-2009Q1 being the largest experienced since 
the 1980s. Interestingly, spikes in FSES do not necessarily match spikes in GDPES, 
suggesting that the co-movements in the left tails of real activity and financial health are 
time-varying. Note that the difference between ES indicators at 5 percent and 20 percent 
probability track changes in the expected shortfalls associated with changes of the size (or 
fatness) of the left tail.  Indeed, the size of the left tail increases at each spike, and the extent 
to which that occurs indicates that expected shortfalls differ markedly for real activity and 
financial stress.  These observations apply as well to the systemic risk fan charts of the other 
six countries reported in Appendix Figure Set 1.      

Figure 2 depicts one-step density forecasts of GDP growth and the FS indicator for 2010Q3, 
compared to those estimated in the quarter including Lehman’s collapse (2008Q3).  This 
figure provides a rather striking illustration of the importance of changes in the tails due to 
systemic events. Although, as expected, the densities in the crisis period (2008Q3) are to the 
left of the post-crisis period (2010Q3), the most relevant differences of the two densities for 
both indicators are in the left tails.  

Figure 2. United States: Density Forecasts 
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B.   Forecasting Accuracy 

We evaluate the accuracy of density forecasts both in-sample and out-of-sample applying 
standard tests proposed in the literature.  By implication, this evaluation is a test of the 
forecasting performance of our systemic risk indicators.  

Assessing the accuracy of density forecasts amounts to test whether the estimated density is 
“close” to the true unobserved density. 5 As shown in Diebold, Gunther and Rey (1998), a 
series of estimated quantiles  accurately captures the actual distribution of a variable tX  if 

the series of Probability Integral Transforms (PIT) tz , defined as the series of quantiles of the 

probability distribution that correspond to each observation in tX , satisfies two properties: a) 

the series tz  is identically and independently distributed (independence),  and b) the series tz  
is distributed uniformly over the unit interval (uniformity).  

To test these properties, we constructed PITs for both our real activity and FS indicators for 
each of the seven countries. To check independence, we tested whether autocorrelations of 
these series up to eight lags were significantly different from 0 for each of the seven 
countries. We found that for all countries and both indicators these autocorrelations are not 
significantly different from 0 at standard confidence levels, suggesting that our model 
generates PITs consistent with the independence property. To check uniformity, we followed 
Diebold, Gunther and Rey’s (1998) suggestion to compare graphically our density estimates 
to a uniform density on the unit interval, and compute confidence intervals under the null of 
i.i.d. uniform distribution, decile by decile.  For all countries, uniformity is satisfied for most 
deciles, with few exceptions either for some right tails or middle deciles. Overall, these 
preliminary tests suggest that density estimates appear satisfactory in both dimensions, 
although there is room for improvements especially in the uniformity dimension.  

We conducted formal tests assessing the accuracy of one-step density forecasts in-sample and 
out-of sample. This latter test is clearly the most important, as it ultimately gauges the 
usefulness of our model as a risk monitoring tool. Given the relatively low number of 
observations in our application, we resorted to non-parametric methods. Specifically, we 
used standard “goodness-of-fit” test for categorical data based on the Pearson’s Q statistics. 
For small samples, the Pearson’s Q statistics is approximately distributed as a chi-square with 
k-1 degrees of freedom, where k is the number of categories or partitions of the data.6 

 

In-sample one-step forecasting accuracy 

To assess in-sample fit, we partitioned the unit interval in regions delimited by two specific 
quantile ranges, where we used (in-sample) quantile estimates.  The first partition includes 4 
regions delimited by the estimated quantiles:  [<Q5,Q5-Q10,Q10-Q20,>Q20]. This partition 
                                                 
5 For a survey of tests of accuracy of density forecasts, see Corradi and Swanson, 2006). 

6 For details on these tests, see for example De Groot and Schervish (2002). For a review of applications in 
financial risk management, see Campbell (2005).  
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is designed to test whether the fraction of actual realizations of GDPG and FS are close to the 
left-tail of the actual (unobserved) distribution. A perfect matching of the estimated and the 
actual distribution would result in 5 percent of observations falling in the first region (<Q5), 
5 percent in the second region (Q5-Q10), 10 percent in the third region (Q10-Q20), and 20 
percent in the fourth region. In this case, a Q statistics not greater than the .95 percentile of 
the chi-square distribution with 3 degrees of freedom (equal to 7.815) would lead to not 
reject (or to accept) the null that the fit is good. The second partition includes 6 regions 
delimited by the estimated quantiles:  [<Q10,Q10-Q25,Q25-Q50,Q50-Q75,Q75-Q90,>Q90]. 
This partition is designed to test whether the fraction of actual realizations of GDPG and FS 
are close to the entire actual (unobserved) distribution.  A perfect matching of the estimated 
and the actual distribution would result in 10 percent of observations falling in the first 
region (<Q10) and the last region (>Q90), 15 percent in regions Q10-Q25 and Q75-Q90, and 
25 percent in regions Q25-Q50 and Q50-Q75. In this case, a Q statistics not greater than the 
.95 percentile of the chi-square distribution with 5 degrees of freedom (equal to 11.07) would 
lead to accept the null that the fit is good. As shown in Table 1, the tests of in-sample 
goodness of fit show that for all countries, for both real and financial indicators, and for both 
tests for the tail and the entire distribution, the model delivers (in-sample) density estimates 
with a good fit.  

 

Out-of-sample one-step forecasting accuracy 

To assess out-of sample fit, we focused on out-of-sample goodness of fit on the left-tail, 
partitioning the unit interval into two regions: [<Q20,>Q20]. We considered four forecasting 
horizons, from one quarter to four quarters ahead. Recursive forecasts of quantiles were 
computed in “simulated” real-time, starting in 1999Q1. In each forecasting quarter, up to 
quarter 2008Q4, we re-estimated the entire model using only observations up to that quarter, 
but kept the selection of the number of factors and lags fixed. In this case, a Q statistics not 
greater than the .95 percentile of the chi-square distribution with one degree of freedom 
(equal to 3.84) would lead to accept the null that the prediction is accurate. As shown in 
Table 2, out-of sample predictions are generally satisfactory. For two countries, the U.S. and 
the U.K., predictions are good for both variables and all forecasting horizons. For GDPG, 
there is only one rejection at some horizon for Canada, Japan and France, and two for Italy. 
By contrast, there is only one rejection for FS (Germany). Overall, these results support the 
potential ability of our model to forecast future developments in systemic real and financial 
risks. Yet, is this forecasting accuracy useful to issue reliable early warnings? We tackle this 
issue next. 

 

Out-of sample multi-step forecasting accuracy: the case of the 2007-2008 financial crisis 

Here we report perhaps the most demanding evaluation of the model’s ability to serve as a 
risk monitoring tool: we assess if the model signals increased systemic risks prior to 
historical declines in real activity and increased financial stress during 2008.  

Figure 3 reports forecasts of systemic real risk (GDPES5) and financial risk (FSES5) at five 
percent probability using data up to 2007Q4, for k=1,2, 3 and 4 (i.e. 2008Q1, 2008Q2, 
2008Q3 and 2008Q4). As of 2007Q4, the forecasts for the US and Canada indicated a sharp 
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predicted increase of both systemic real and financial risks in 2008. Forecasts of systemic 
real risk indicators for the other countries indicated values close to those recorded at the 
forecasting date, while systemic financial risk were forecast higher in Japan and France. 
Overall, these forecasts indicate an ability of the model to deliver warning signals about 
impending risks, since these risks later materialized. 

    

Figure 3.  Out-of Sample Multi-Step Forecasts 
       (Forecasting quarter: 2007Q4)  
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A further indication of the ability of the model to generate informative early warnings signals 
is illustrated as follows. After a surge experienced in March 2008, during the entire second 
quarter of 2008  most financial risk indicators in advanced economies (such as CDS spreads) 
returned to levels witnessed on the onset of the crisis in the summer of 2007 (see BIS, 2008, 
pp.1-2). On the real side, global growth was projected to slow down moderately (see IMF 
World Economic Outlook, 2008.  In sum, as of the end of the second quarter of 2008, the 
substantial ease in risk indicators in the financial sector suggested a decline in systemic 
financial risk, whereas growth prospects, although revised downward, were not generally 
judged as implying imminent systemic real risk.  

However, a very different picture would have emerged from the forecasts of our model. 
Using only data available as of end of the second quarter of 2008, Figure 4 illustrates 
forecasts of GES5 and FSES5 for the U.S four quarters ahead. Systemic real risk is forecast 
to jump up considerably in 2008Q3 and remains elevated for all other subsequent quarters. 
Systemic financial risk forecasts essentially follow the same patterns, although the changes 
do not appear as dramatic as those for systemic real risk. 
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Figure 4. Out-of Sample Multi-Step Forecasts for the United States 
       (Forecasting quarter: 2008Q2)  
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Thus, the model would have given strong early warnings of increasing systemic real and 
financial risks also in 2008Q2, when such warnings could not be inferred by looking simply 
at market developments and real data releases. As it is well known, what happened in 
2008Q3-Q4 confirmed the prediction of heightened systemic real and financial risks. This is 
further evidence of the ability of our model to serve as a useful risk monitoring tool.  

 

IV.        IMPLEMENTATION:  A STRESS TESTING EXAMPLE 

A.   Identification 

The identification procedure outlined previously was implemented following three steps. 
First, we selected an orthogonal decomposition of the Factor VAR. Second, for each country, 
we computed impulse responses of GDP Growth, Inflation, Bank Lending Growth and first 
differences in Loan Rates using Equations (3). Lastly, we checked whether the joint signs of 
the responses of these variables conformed to the signs predicted for different shocks by the 
basic macroeconomic and banking models summarized in Table A.  

As a benchmark orthogonalization, we chose a Choleski decomposition with factors ordered 
according to their explanatory power of the common variations in the data, with factor 1 
ordered first, factor 2 second, and so on. The simple assumption underlying this choice is that 
the casual ordering implied by this decomposition reflects the relative importance of factors 
in explaining variations in the data, and each idiosyncratic component of the observable 
variables does not affect any of the factors at impact. 7 

                                                 
7 We examined alternative decompositions with inverted ordering of the variables, obtaining similar signs of the 
responses of each of the observable variables to shock to orthogonalized innovations. We also examined the 
covariance matrix of innovations of the VAR of each country, and such matrices appeared approximately 
diagonal in all cases: this indicates that the ordering of variables in the VAR is not likely to change results under 
the casual ordering selected, and also suggests that our results are robust to other orthogonal decompositions— 

(continued…) 



 16 

Appendix-Figure Set 2 reports impulse responses of GDP growth, Inflation, Bank Lending 
Growth and changes in Lending Rates for each of the G-7 countries.  Strikingly, the response 
of all variables to all shocks at impact or for at least up to two quarters after impact is either 
strictly positive (in most cases) or non negative (in few cases).8 Hence, according to Table A, 
all orthogonalized shocks in these economies can be identified as combinations of aggregate 
demand shocks and bank credit demand shocks.  

The finding of aggregate demand shock as the predominant drivers of real cycles in the G-7 
economies is consistent with the findings by Canova and De Nicolò (2003), who used a small 
dimension VAR for the G-7 countries, but implemented a full search for shocks interpretable 
according to aggregate macroeconomic theory in the entire space of non-recursive 
orthogonalizations of the VAR of each country. Our results are also consistent with recent 
work by Arouba and Diebold (2010), who find shocks interpretable as demand shocks as the 
dominant source of aggregate fluctuations in the U.S. The finding that aggregate bank credit 
demand shocks are the predominant drivers of cycles in bank credit growth supports the 
conjecture that slowdowns in aggregate bank credit growth are primarily, although not 
exclusively, driven by downturns in real activity. Recent U.S. evidence by Berrospide and 
Edge (2010) is also consistent with our results.   

Notably, the five identified aggregate demand and bank credit demand shocks are not all the 
same, as they have a differential impact on GDP growth, inflation, bank lending growth and 
changes in loan rates within as well as between countries. This suggests that the sectors of 
the economy where they originate are different. Indeed, as shown in Table 2, the variance 
decompositions of the four variables VAR in each country indicate that the variance 
explained by each shock varies across both variables and countries, with most shocks 
resulting relevant in each country. 

B.   A Simple Stress Test 

Changes across time in the impulse response function and variance decompositions of our 
systemic risk indicators can give a measure of changes in the resilience of the real and 
financial sides of the economy, and the interdependences between systemic real and financial 
risks.  

To preview, Figure 5 reports of the impulse responses of GDPES and FSES measures to 
negative identified shocks. As it may be expected, all these shocks have a negative impact on 
the measures of systemic real and financial risk, generating positive co-movements between 
the systemic risk indicators.9  The behavior of the impulse responses of GDPES and FSES is 
qualitatively very similar in each country, although magnitude and persistence of these 

                                                                                                                                                       
not necessarily recursive—that can be extracted applying the systematic statistical search implemented by 
Canova and De Nicolò (2002).  
 
8 The only exception is the shock associated with the third factor for Canada, whose responses do not satisfy 
any of the sign restrictions in Table A, and thus results unidentified.  
9 Note that the third shock implies a negative response of FSES at impact, but its response jumps up to positive 
territory immediately after from the first quarter on. .   
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shocks differ. As shown in Table 5, the relevant variance decompositions indicate that these 
are significant in magnitude for each shock, and there are significant cross country variations.  

 

Figure 5. Impulse Responses of GDPES5 and FSES5 for the United States 

                             GDPES5                                                                        FSES5 

Our stress-testing procedure aims at gauging weather our stress tests signal lower resilience 
to structural shocks in the G-7 economies prior to the 2007Q3, which is the quarter during 
which the 2007-2008 crisis began. 

Figure 6 shows the difference of the cumulative impact of the impulse response functions up 
to eight quarters of GDPES and FSES to one-standard deviation shock estimated for the 
whole sample period before the crisis (1980Q1-2007Q2), and since the mid 1990s (1993Q2-
2007Q2). Estimation of the factors were accomplished separately for the two samples, Since 
the standard deviation of all five shocks in the second estimation period is not larger than that 
for the whole period, a positive difference indicates a larger cumulative adverse impact in the 
last period compared to the whole sample.  
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Figure 6: Difference of Cumulative Impulse Response to Shocks 
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Figure 6 contains two results that could have been useful for policymakers prior to the 
financial crisis.  First, the sensitivity of GDPES to most shocks has decreased in the last 
decade relative to the whole sample period in all countries except in the U.S., and to some 
extent Japan and the U.K. This is particularly remarkable, given the reduction in real growth 
volatility during the “Great Moderation” period in the U.S. Second, the sensitivity of FSES to 
most shocks in the last decade decreased in most cases except again the U.S., and in part in 
the U.K. Despite the decline in financial markets volatility during this period, the stress test 
signals increased systemic financial risk primarily in the U.S. In sum, the U.S. economy is 
the main country that exhibits a positive difference in the cumulative impact of impulse 
responses for both GDPES and FSES indicators: contrary to common perceptions, the U.S. 
economy had increased its vulnerability to shocks both on the real and financial sides—in 
absolute terms as well as relative to the other G-7 economies—in the years preceding the 
2007-2009 financial crisis.  

V.   CONCLUSION 

This paper has presented a modeling framework that can be used as a tool for positive 
analysis as well as a systemic risk monitoring system. Our empirical implementation of the 
model using G-7 country data shows that it delivers useful early warning signals about  
developments in systemic real and financial risk owing to its significant out-of-sample 
forecasting ability, and allows us to conduct informative stress tests.  
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One important advantage of our modeling framework is its flexibility: the model can embed 
in a unified framework different and/or multiple measures of systemic risk, different 
identification procedures, and different stress testing designs. Another important advantage 
of our model is its amenability to be further developed in important directions while keeping 
its basic structure unchanged. Two such developments are already part of our research 
agenda. The first is an extension of our framework to the simultaneous modeling of countries 
and regions of the world. This would allow us to expand the set of positive questions that the 
model can address, and provide risk monitoring tools of systemic risk interdependencies 
across countries. The second development would include the use of more disaggregated data, 
together with a richer set of theoretical constructs as identification tools in order to design 
more detailed stress tests. 
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Table 1.  In–Sample Goodness-of-Fit 
___________________________________________________________________________ 

Each column reports the fraction of observations falling in the region delimited by each 
estimated quantile. Significance of the Q- statistics at a 5 percent confidence level is reported 
in boldface.  
   Left-Tail     

GDPG <Q5 Q5-Q10 Q10-Q20 >Q20 Qstat   
United States 2.24 2.99 11.94 72.39 4.61   
Canada 3.73 4.48 8.21 72.39 1.90   
Japan 2.24 5.22 9.70 73.88 2.70   
U.K. 2.99 5.22 10.45 72.38 2.09   
France 2.99 4.48 10.45 73.13 1.96   
Germany 2.98 4.48 11.19 73.13 2.14   
Italy 2.99 5.97 7.46 71.64 3.37   
        

FS        
United States 3.73 4.48 8.21 73.88 1.56   
Canada 3.73 5.22 8.96 72.39 1.56   
Japan 2.23 5.97 7.46 72.39 4.13   
U.K. 3.73 3.73 10.45 71.64 2.06   
France 3.73 3.73 10.45 71.64 2.06   
Germany 3.73 3.73 9.70 73.13 1.66   
Italy 5.22 4.48 9.70 69.40 1.98   
        

   Distribution     
GDPG <Q10 Q10-Q25 Q25-Q50 Q50-Q75 Q75-Q90 >Q90 Qstat 

United States 5.22 17.16 18.66 22.39 11.94 14.18 8.39 
Canada 8.21 14.93 19.40 20.15 13.43 12.69 4.23 
Japan 7.46 15.67 18.67 20.15 15.67 13.43 5.41 
U.K. 8.21 14.18 17.91 22.39 14.93 13.43 4.60 
France 7.46 14.93 17.16 23.13 13.43 14.18 6.12 
Germany 7.46 15.67 21.64 20.15 12.69 12.69 3.89 
Italy 8.96 12.69 18.66 20.90 14.93 11.19 3.81 
        

FS        
United States 8.21 14.18 17.91 22.39 14.18 12.69 4.25 
Canada 8.96 13.43 20.90 20.15 14.93 11.94 2.87 
Japan 8.21 13.43 23.13 19.40 13.43 11.94 3.07 
U.K. 7.46 15.67 20.15 21.64 13.43 11.19 3.12 
France 7.46 14.18 22.39 20.15 14.18 11.19 2.74 
Germany 7.46 15.67 21.64 20.15 11.19 11.94 4.40 
Italy 9.70 16.42 18.66 19.40 14.93 10.45 4.05 

 
___________________________________________________________________________ 
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Table 2. Out-of–Sample Goodness of Fit 

 
Each column reports the Q statistics corresponding to the forecast horizon k (in quarters). 
Significance of the Q- statistics at a 5 percent confidence level is reported in boldface.  

 
  GDPG     FS   
          
 k=1 k=2 k=3 k=4  k=1 k=2 k=3 k=4 
          
U.S.  0.03 2.19 1.14 3.57  0.43 2.19 2.19 0.43 
Canada 2.19 2.19 2.19 7.36  2.19 0.33 0.33 0.03 
Japan 5.30 1.14 1.14 1.14  1.14 1.14 0.43 0.43 
France 2.19 3.57 5.30 1.14  0.06 0.06 0.03 0.03 
Germany 2.19 1.14 1.14 1.14  7.36 2.19 0.43 0.43 
Italy 1.14 1.14 5.30 7.36  0.97 0.97 1.95 1.95 
U.K. 2.19 0.03 0.06 1.14  2.19 0.43 0.43 0.43 

 
___________________________________________________________________________ 
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Table 3.  Variance Decomposition of GDP Growth, Inflation, 
Bank Lending Growth and Changes in Loan Rates  

___________________________________________________________________________ 
 

Shock 1 Shock2 Shock 3 Shock 4 Shock 5 Shock Sum Idiosyncratic

United States GDP Growth 0.17 0.18 0.19 0.03 0.01 0.58 0.42

Inflation 0.03 0.24 0.14 0.02 0.05 0.48 0.52
Bank Credit Growth 0.05 0.11 0.20 0.06 0.02 0.44 0.56
Loan Rate 0.02 0.58 0.01 0.14 0.00 0.75 0.25

Canada GDP Growth 0.12 0.09 0.09 0.30 0.01 0.61 0.39

Inflation 0.01 0.08 0.00 0.03 0.02 0.14 0.86
Bank Credit Growth 0.01 0.21 0.06 0.13 0.05 0.46 0.54
Loan Rate 0.07 0.10 0.02 0.22 0.03 0.44 0.56

Japan GDP Growth 0.10 0.03 0.01 0.09 0.11 0.34 0.66
Inflation 0.03 0.02 0.04 0.15 0.23 0.47 0.53
Bank Credit Growth 0.02 0.01 0.05 0.17 0.29 0.54 0.46
Loan Rate 0.02 0.14 0.08 0.10 0.01 0.35 0.65

U.K GDP Growth 0.09 0.14 0.42 0.02 0.00 0.67 0.33
Inflation 0.01 0.14 0.22 0.00 0.01 0.38 0.62
Bank Credit Growth 0.02 0.08 0.44 0.02 0.03 0.59 0.41
Loan Rate 0.02 0.53 0.08 0.01 0.10 0.74 0.26

France GDP Growth 0.15 0.07 0.25 0.06 0.20 0.73 0.27

Inflation 0.01 0.04 0.05 0.04 0.05 0.19 0.81
Bank Credit Growth 0.11 0.17 0.10 0.02 0.08 0.48 0.52
Loan Rate 0.00 0.03 0.04 0.00 0.01 0.08 0.92

Germany GDP Growth 0.15 0.33 0.20 0.03 0.03 0.74 0.26

Inflation 0.04 0.00 0.03 0.00 0.00 0.07 0.93
Bank Credit Growth 0.02 0.00 0.15 0.08 0.00 0.25 0.75
Loan Rate 0.13 0.25 0.03 0.01 0.00 0.42 0.58

Italy GDP Growth 0.07 0.08 0.30 0.22 0.04 0.71 0.29

Inflation 0.05 0.02 0.29 0.07 0.01 0.44 0.56
Bank Credit Growth 0.07 0.14 0.17 0.33 0.03 0.74 0.26
Loan Rate 0.08 0.33 0.04 0.02 0.01 0.48 0.52  

 
 
N.B.: Boldfaced values denote estimates significantly different from 0 at 5 percent 
confidence levels. 
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Table 4.  Variance Decomposition of GDPES and FSES to Identified Shocks 

___________________________________________________________________________ 
Shock 1 Shock2 Shock 3 Shock 4 Shock 5 Shock Sum Idiosyncratic

United States GDPES 0.12 0.09 0.09 0.30 0.01 0.61 0.39

FFSES 0.06 0.20 0.12 0.22 0.07 0.67 0.33

Canada GDPES 0.15 0.02 0.08 0.17 0.06 0.48 0.52

FFSES 0.00 0.18 0.48 0.00 0.13 0.79 0.21

Japan GDPES 0.10 0.03 0.01 0.09 0.11 0.34 0.66

FFSES 0.05 0.22 0.14 0.24 0.13 0.78 0.22

U.K GDPES 0.09 0.14 0.42 0.02 0.00 0.67 0.33

FFSES 0.09 0.02 0.03 0.22 0.40 0.76 0.24

France GDPES 0.15 0.07 0.25 0.06 0.21 0.74 0.26

FFSES 0.13 0.04 0.05 0.45 0.01 0.68 0.32

Germany GDPES 0.15 0.33 0.2 0.03 0.03 0.74 0.26

FFSES 0.12 0.04 0.01 0.08 0.11 0.36 0.64

Italy GDPES 0.07 0.08 0.30 0.22 0.04 0.71 0.29

FFSES 0.00 0.22 0.13 0.02 0.01 0.38 0.62  
 

 
-
__________________________________________________________________________________________
_ 
 
N.B.:  Boldfaced values denote estimates significantly different from 0 at 5 percent 
confidence levels. 
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Appendix  
 

A Banking Model 

The banking model by Boyd, De Nicolo’ and Loukoianova (2010) used for the identification 
of demand and supply shocks to bank credit can be briefly summarized as follows. The 
economy is composed of a “government” and three classes of risk-neutral agents: 
entrepreneurs, depositors, and banks. The banks in the model raise insured deposits, make 
risky loans, and hold risk free government bonds.  The deposit insurer bails out the banks 
when they fail.  

Entrepreneurs have no initial resources but have access to identical risky projects that require 
a fixed amount of date t  investment, standardized to 1, and yield a random output at date 

1t  . At date t  the investment in a project yields Y  with probability 1 (0,1)tP  , and 0 

otherwise. Since the probability of success 1tP  is a random variable independent across 

entrepreneurs, and its realization is observed by them at date 1t  , entrepreneurs make their 
date t  decisions on the basis of their conditional expectations of 1tP , denoted by 1t tE P . 

Making assumptions about heterogeneity of entrepreneurs with respect to their opportunity 
costs, and denoting with LR  the loan interest rate, BDNL derive  the inverse loan demand 
function:  

                          1
1 1( , ) ( )L

t t t t t tR X E P Y E P X
          (A1) 

Depositors invest all their funds in a bank at date t  to receive interest plus principal at date 
1t  . Deposits are fully insured, so that the total supply of deposits does not depend on risk, 

and is represented by the upward sloping inverse supply curve 

                                           D
t t tR Z Z                   (A2) 

where tZ  denotes total deposits. The slope of this function is a random variable whose 

realization is observed at date t . 

Banks collect insured deposits, and pay a flat rate insurance premium standardized to zero. 
On the asset side, banks choose the total amount of lending and the amount of bonds.  One-
period bonds are supplied by the government in amounts specified below. For simplicity, we 
assume that only banks can invest in bonds. A bond purchased at date t  yields a gross 
interest rate tr  at date 1t  . In both loan and deposit markets banks are symmetric Cournot-

Nash competitors.  Banks are perfectly diversified in the sense that for any positive measure 
of entrepreneurs financed, 1 (0,1)tP  , is also the fraction of borrowers whose project turns 

out to be successful at date 1t  .  Banks observe the realization of 1tP  at date 1t  . Hence, 

as for the entrepreneurs, banks make their date t  decisions on the basis of their conditional 
expectations 1t tE P .  

The government supplies a fixed amount of bonds to the market, denoted by B . The 
government also guarantees deposits. Whenever bank deposits payments cannot be honored 
in part or in full, the government will pay depositors all the claims unsatisfied by banks, with 
the payments being financed by issuing additional bonds.  



 25 

Denoting 1t tp E P , an equilibrium is a total amount of loans,, bonds and deposits Z , bond 

interest rates, loan rates, deposit rates, and government interventions such that:  a) the 
banking industry is in a symmetric Nash equilibrium; b) the bond market is in equilibrium;  
and c) the government meets its commitment to deposit insurance. The following table 
summarizes changes in the equilibrium total lending and the loan rate in response to an 
adverse credit demand shock or an adverse credit supply shock, which is used in Table A.   

 

Adverse Shocks 
Bank Credit 
Growth 

Change in 
Lending Rates 

Credit Demand 

 ( p or Y decrease) － － 

Credit Supply 

 (  increases) － ＋ 
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Appendix Figure Set 1. Systemic Risk Fan Charts 
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Appendix Figure Set 2.  Impulse Responses of GDP Growth, Inflation, Bank Lending 
Growth and Change in Lending Rates to Shocks to Factors and Own Shock 
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Figure Set 2 (cont…) 
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 List of Variables 
 
All variables below are extracted for each country in the G-7 group during the 1980.Q1-2010Q1 
period. The frequency of all series is quarterly.  Data transformations are implemented to make all 
series stationary. Series transformations are indicated as follows:  ∆ln = log level difference; ∆levels 
= level difference. 
  

Equity Markets Transformations 
Equity indices, Price Earnings ratios and Dividend yields:  
  
Market                                                                                           ∆ln 
Oil & gas     ∆ln 
Chemicals     ∆ln 
Basic resources     ∆ln 
Construction & Materials     ∆ln 
Industrial goods and services     ∆ln 
Auto and Parts     ∆ln 
Food and Beverages     ∆ln 
Personal and Household goods     ∆ln 
Health Care     ∆ln 
Retail     ∆ln 
Media     ∆ln 
Travel and leisure     ∆ln 
Telecom     ∆ln 
Utilities     ∆ln 
Banks     ∆ln 
Insurance     ∆ln 
Financial services     ∆ln 
Technology     ∆ln 
  
Credit Conditions  
Policy rate ∆levels 
Treasury bonds:   
2 YR ∆levels 
3 YR ∆levels 
5 YR ∆levels 
7 YR ∆levels 
10 YR ∆levels 
30 YR ∆levels 
Money base ∆ln 
Money supply M1 ∆ln 
Interbank rate ∆levels 
Prime rate charged by banks (month AVG) ∆levels 
Bank Lending ∆ln 
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Real Sector Variables  
GDP ∆ln 
Unemployment rate ∆levels 
Industrial production-total index ∆ln 
CPI all items ∆ln 
Capacity utilization ∆levels 
Housing market index ∆levels 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 38 

REFERENCES 

Acerbi, Carlo, and Dirk Tasche, 2002, “On the Coherence of Expected Shortfall,” Journal of 
Banking and Finance, Vol. 26, pp. 1487-1503. 

 
Acharya, Viral, Lesse Pedersen, Thomas Philippon, and Matthew Richardson, 2010, 

Measuring Systemic Risk, Working Paper, NYU, Department of Finance, May.  
 
Ahmadi, Pooyan Amir, and Harald Uhlig, 2009, “Measuring the Dynamic Effects of 

Monetary Policy Shocks: A Bayesian FAVAR Approach with Sign Restrictions,” 
mimeo. 

 
Aruoba, S. Boragan, and Francis X. Diebold, 2010, “Real-Time Macroeconomic Monitoring: 

Real Activity, Inflation, and Interactions,” American Economic Review, Vol. 100, 
pp. 20–24. 

 
Bai, Jushan, and Serena Ng, 2002, “Determining the Number of Factors in Approximate 

Factor Models,” Econometrica, Vol.70, No. 1, pp. 191-221. 
 
Bernanke, Ben, Jean Boivin, and Piotr Eliasz, 2005, “Measuring the Effects of Monetary 

Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach,” Quarterly 
Journal of Economics, Vol. 120, pp. 387-422. 

 
Berrospide, Jose, and Rochelle Edge, 2010, “The Effects of Bank Capital on Lending: What 

Do We Know? What Does it Mean? International Journal of Central Banking, 
Vol. 6, no.4, pp. 5-54. 

 
Bisias, Dimitrios, Mark Flood, Andrew Lo and Stavros Valavanis, 2012, “A Survey of 

Systemic Risk Analytics, Office of Financial Research,” Working Paper #0001, 
January  

 
Brownlees, Christian, and Robert Engle, 2010, “Volatility, Correlation and Tails for 

Systemic Risk Measurement,” Working Paper, NYU, Department of Finance, May. 
 
Boyd, John, Gianni De Nicolò, and Elena Loukoianova, “2010, Banking Crises and Crisis 

Dating: Theory and Evidence,” CESifo Working Paper # 3134, July.  
 
Canova, Fabio, 2007, Methods for Applied Macroeconomic Research, Princeton University 

Press, Princeton, New Jersey. 
 
Canova, Fabio, and Gianni De Nicolò, 2002, “Monetary Disturbances Matter for Business 

Cycle Fluctuations in the G-7,” Journal of Monetary Economics, Vol. 49, 
pp. 1121-1159.  

 
–––––, 2003, “On the Sources of Business Cycles in the G-7,” Journal of International 

Economics, Vol. 59, pp. 77-100. 



 39 

Campbell, Sean, 2005, “A Review of Backtesting and Backtesting Procedures,” FEDS 
Working Paper 2005-21, Board of Governors of the Federal Reserve System. 

 
Chernozhukov, Victor, Ivan Fernandez-Val and Alfred Galichon, 2010, “Quantile and 

Probability Curves Without Crossing,” Econometrica, Vol. 78, 3, pp. 1093-1125. 
 
Corradi, Valentina, and Norman Swanson, 2006, Predictive Density Evaluation, Chapter 5 in 

Handbook of Economic Forecasting, Graham Elliott, Clive W.J. Granger and Allan 
Timmermann Eds., North Holland, Amsterdam, pp. 197-284. 

 
De Bandt, Olivier, and Phillipp Hartmann, 2000, “Systemic Risk: A Survey,” ECB Working 

Paper #35, November. 
 
De Groot, Morris, and Mark Shervish, 2002, Probability and Statistics, 3rd Edition, Addison 

Wesley. 
 
De Nicolò, Gianni, and Marcella Lucchetta, 2011, “Systemic Risks and the Macroeconomy,” 

NBER Working Paper #16998, forthcoming in Quantifying Systemic Risk, Joseph 
Haubrich and Andrew Lo, eds. (National Bureau of Economic Research, Cambridge, 
Massachusetts). 

 
De Nicolò, Gianni, and Myron Kwast, 2002, “Systemic Risk and Financial Consolidation: 

Are They Related?” Journal of Banking and Finance, Vol. 26, No. 5, pp. 861–80. 
 
Del Negro, Marco, and Frank Schorfheide, 2010, Bayesian Econometrics, in Handbook of 

Bayesian Econometrics, Van Dijk, Koop and Geweke, Eds, Oxford.  
 
Diebold F.X., Gunther T., and Tay A., 1998, “Evaluating Density Forecasts with Applications to 

Financial Risk Management,” International Economic Review, 39, pp.863-883.  
 
Drehmann, Mathias, 2008, “Stress Tests: Objective, Challenges and Modeling Choices,” 

Riskbank Economic Review, June, 60-92. 
 
Foerster, Andrew T., Pierre-Daniel G. Sarte, and Mark W. Watson, 2008, “Sectoral vs. 

Aggregate Shocks: A Structural Factor Analysis of Industrial Production,” NBER 
Working Paper No. 14389. 

 
Gertler, Mark, and Nobuhiro Kiyotaki, 2010, “Financial Intermediation and Credit Policy in 

Business Cycle Analysis,” forthcoming in the Handbook of  Monetary Economics, 
Elsevier, North Holland.. 

 
Group of Ten, 2001, Report on Consolidation in the Financial Sector (Basel: Bank for 
             International Settlements) http://www.bis.org/publ/gten05.pdf. 
 
Herbst, Edward, and Frank Schorfheide, 2011, “Evaluating DSGE Model Forecasts of 

Comovements,” University of Pennsylvania, Working Paper. 



 40 

 
Huisman, R., Koedijk, K. G., Kool, C. J. M. & Palm, F. 2001, “Tail-index Estimates in Small 

Samples,” Journal of Business and Economic Statistics, Vol. 19, pp. 208-216. 
 
LeBaron, Blake, 2009, “Robust Properties of Stock Returns Tails,” Brandeis University, 

Working Paper..  
 
Koenker, Roger, 2005, Quantile Regression, Cambridge University Press, Cambridge, U.K. 
 
Schorfheide, Frank, 2010, Estimation and Evaluation of DSGE Models: Progress and 

Challenges, manuscript, August. 
 
Stock, James, and Mark Watson, 2002, “Macroeconomic Forecasting Using Diffusion 

Indexes,” Journal of Business Economics and Statistics, April, pp. 147-62. 
 
Stock, James, and Mark Watson, 2005, “Implications of Dynamic Factor Models for VAR 

Analysis, NBER Working Paper No. 11467. 
 
Stock, James, and Mark Watson, 2006, Forecasting with Many Predictors, Chapter 10 in 

Handbook of Economic Forecasting, Graham Elliott, Clive W.J. Granger and Allan 
Timmermann eds., North Holland, Amsterdam, pp. 516-54. 

 
 
 
 
 
 
 


