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The recent international economic turmoil has forced to reconsider the effectiveness of
financial regulatory systems and has highlighted the importance of the enforcement of
regulation for financial stability. In this context, a prominent issue is how to design an
institutional framework that helps safeguard the integrity and stability of financial
markets. This paper takes a narrower focus and studies how the institutional
characteristics of the security industry– that have varied across time and regions– can
affect the enforcement of regulation and, in turn, investors’market participation and
welfare.

In the last few decades, the securities industry has experienced dramatic institutional and
technological changes that have spurred competition among stock exchanges and induced
the proliferation of new trading venues and platforms. While competition has probably
lowered transaction fees and costs, the evolution of market centers from mutually-owned
to profit-driven competitors1 has raised concerns that the conflict of interest between the
their regulatory function and their business operations could trigger a race to the bottom
in market surveillance in order to attract trading activity and minimize regulatory costs.2

These concerns are exacerbated by the increased fragmentation of the order flow across
multiple markets which makes more diffi cult to detect and deter frauds and generate
questions about the responsibility for trading activity across market centers. In the paper
we address this issue by analyzing the effects of competition among stock exchanges on
their enforcement policy and, in turn, on the functioning of securities markets as proxied
by overall investor participation in the market and the likelihood that brokers may be
induced in illicit conduct.3

To analyze the effect of competition on enforcement policy we extend and adapt the
framework of DeMarzo et al. (2005) to a competitive setting. Specifically, we consider a
model where two for-profit Self-Regulatory Organizations (SROs) compete to attract
trading volume by setting the transaction fees and enforcement policy.4 While trading
volume is ultimately related to investors’willingness to trade, transactions are actually
executed by brokers on the behalf of investors. Since investors do not observe the
transaction cash flow, however, the broker-investor relation is distorted by asymmetric

1Since the Stockholm Stock Exchange demutualized in 1993, changing its organizational form to a for-
profit publicly listed organization, a considerable number of stock exchanges have took similar steps. For
example, in the U.S. the Chicago Mercantile Exchange (CME) and Nasdaq went public in 2002, while NYSE
demutualized in 2006, approximately 214 years after its founding.

2These concerns are supported by some evidence. For example, the Securities and Exchange Commission
(SEC) imposed sanctions on a SRO that failed to pursue the wrongdoing by a member firm, alleging that
the failure to address the misconduct was maybe related to the firm been a critical component of the
SRO’s business model to generate revenue for the SRO (see Securities and Exchange Commission, Securities
Exchange Act of 1934, Release No. 34-51163, February 9, 2005).

3For example, in a recent article, by studying the differences across 42 exchanges worldwide, Cummings
et al. (2011) show market that having detailed rules can improve investors’confidence and trading activity.

4The term self regulation in securities markets may be used to refer to formal SROs (i.e., securities
exchanges with self-regulatory responsibilities), to common standards established by financial industry as-
sociations, and to the internal supervision and compliance functions within financial firms. This paper
primarily examines self regulation performed by organizations with the power to regulate and oversee the
activity of their members. The financial exchange industry around the world usually relies on SROs, such
as the New York Stock Exchange (NYSE) and the Financial Industry Regulatory Authority (FINRA), to
substantiate a regulatory system and guarantee its enforcement. In fact, SROs usually establish trading rules
and listing standards, conduct surveillance of market operations, and oversee the activity of their members,
i.e., broker-dealers.
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information.5 The SRO where the transaction is executed performs the investigation to
verify the accuracy of the broker’s report to the investor. A successful probability of
investigation is related to the amount of resources allocated by the SRO to the monitoring
activity. Hence, in our model the role of the SRO’s enforcement policy is to devote
monitoring resources to investigate brokers’conduct, charge penalties in case of
misconduct, and, thus, dissuade brokers from deceiving investors.6

We analyze the equilibrium under different hypotheses concerning investors’information
sets. In the first part of the paper we assume that investors can perfectly observe the
monitoring technology. When contracts are complete, SRO competition, compared to
monopoly, enhances welfare because it reduces both transaction fees and monitoring
resource, while still preserving maximum market participation and preventing brokers’
misconduct. In other words, a monopolist SRO wastes resources by over-monitoring
brokers to reduce their information rent to its own advantage.

The previous result is overturned when we relax the assumption of complete contracts.
Specifically, in the second part of the paper we postulate that whereas brokers and SROs
have perfect knowledge of the monitoring technology, investors are uncertain (i.e., hold
different beliefs) about the effectiveness of SRO monitoring in detecting a fraud. By
introducing non contractible uncertainty, we show that competition among exchanges
induces a reduction in total welfare, compared to monopoly. The result is driven by the
relaxation of enforcement policies and, consequently, by the increased number of frauds in
equilibrium. This has two effects: first, the higher probability of fraud reduces investors’
participation, and, by construction, total trading volume; second, there is a waste of
resources due to the higher number of investigations and to the legal and opportunity
costs associated with them.

Finally, we show that our results are robust to different assumptions on the investor
ability to influence the broker’s trading venue choice. While in the main setup we assume
that naive investors do not internalize the effect of their actions on the broker’s choice of
the trading venue, we extend the model to include sophisticated investors. They can be
thought of as institutional investors who might be in the position of inducing a broker to
trade in their preferred trading venue. In this case, fees are the means of competition used
by SROs to gain market share and attract trading volume. However, the reduction in the
SROs revenues due to lower fees forces SROs to relax their enforcement policies making
this equilibrium observationally equivalent to the one where SROs compete through
enforcement policies.

Our paper makes two main contributions to the literature. First, we contribute to the

5To give a few examples of conflicts between brokers and customers, brokers may engage in excessive
trading in a customer’s account in an attempt to generate commissions (churning); a brokerage firm or a
broker may fail to properly inform the investor or misrepresent facts regarding an investment (omission or
misrepresentation); also, if a broker fails to make recommendations that are appropriate and suitable to
his client’s circumstances, the broker may be liable to that client (unsuitability). According to the Dispute
Resolution Statistics compiled by FINRA, from 2006 to September 2011, 25% and 11% of the number of
controversies served by FINRA involved misrepresentation or omission of the broker and unsuitability cases,
respectively.

6As in De Marzo et al. (2005), enforcement is modeled in a two-tier framework. Technically, this is
considered a case of delegated auditing that falls into the broader category of hierarchical contracting (see
Faure-Grimaud et al. 1999, among others).
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debate about competition and effectiveness of self-regulation in the financial industry. In
particular, we show that when for-profit SROs compete for trading volume, the quality of
enforcement policy is penalized. In a paper closely related to ours, Santos and Scheinkman
(2001) conclude that competition does not necessarily imply a race to the bottom.7 In
their model, traders may default and may differ in their credit quality. They show that
when credit quality is observable, competitive intermediaries require the optimal amount
of guarantees, whereas a monopolist demands fewer. If there is private information about
credit quality, the result depends on the cost of default. Our analysis shows, on the
contrary, that competition is likely to produce a less rigorous enforcement, reduce market
participation, and increase the number of frauds, compared to a monopoly situation.

A standard result in the literature of self-regulating profession (Shacked and Sutton, 1981;
Gehrig and Jost, 1995; DeMarzo et al., 2005) is that the cost of self-regulation is
associated to some degree of monopoly power conferred to the members of the profession.
Our second contribution is to show that this result applies also to a setting where SROs
are independent for-profit competitors.8

The paper is organized as follows. In section 2, we present the model. In section 3, we
analyze how SRO competition drives down enforcement policies compared to the
monopoly case. In section 4 we introduce non-contractible uncertainty over SROs
enforcement ability to analyze the impact of competition on frauds and investor
participation. In section 5 we extend the model by considering the case of sophisticated
investors. Section 6 concludes. All proofs are in the appendix.

I. The Model

We consider an economy with three classes of agents: investors, brokers, and two
competitive and identical SROs. Each SRO owns and manages a trading venue where
brokers can execute transactions on behalf of the investors. As in De Marzo et al (2005),
we rely on the costly-state-verification framework of Townsend (1979) and Mookherjee
and Png (1989) to model the broker-investor relationship by assuming that brokers have
private information on the cash flow of the transaction and may misreport this
information to deceive investors.

A. Investors and Brokers

There is a continuum of risk-neutral brokers and investors, both of measure 1. After being
randomly matched with a broker, each investor offers a take-it-or-leave-it contract to the

7Other related papers are Foucault and Parlour (2004), who look at competition in listing fees, and
Chemmanur and Fulghieri (2007), who focus on listing standards as a tool in competing with other exchanges
for listings.

8DeMarzo et al (2005) prove that "the control of the enforcement policy governing contracts confers
substantial market power to a group of otherwise competitive agents (brokers)". However, Reiffen and Robe
(2008) show that this result is not robust to the ownership structure of the SRO (for-profit vs. mutual),
since a single for-profit SRO does not operate to the benefit of its member (see also Hart and Moore 1996
and Pirrong 2000 for a discussion on the governance of exchanges).
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broker to execute a trade that generates a random cash flow W (i.e., the value of the
transaction). The offer is actually extended only if the investor’s expected pay-off is at
least equal to the investor’s outside option α. Because we assume that the value of the
broker’s outside option is 0, the broker accepts any feasible contract.

The transaction’s cash flow, W , is a binary random variable that has support
Θ = {w,w} ⊂ R+ with w < α < w, and is independent of the SRO where the transaction
takes place.9 Its realization w is costlessly observable only by the broker and takes the
value w with probability π.

For any given contract, the broker optimally chooses whether to execute the transaction
on SRO i = 1 or i = 2– SROs are indexed by i ∈ {1, 2} or i? ∈ {1, 2} \ {y|y = i}. Ex post,
this choice is perfectly observable, thus, contractible, and captured by a binary random
variable χ with support {1, 2} and probability distribution {qi}2i=1. Technically, χ is a
trading venue indicator and the broker chooses the probability distribution of χ. Hence, in
equilibrium q1 represents the fraction of transactions executed on SRO 1, i.e., its market
share.

After the transaction takes place, the investor receives a report r(w) from the broker.
Since the support of W is common knowledge, it is reasonable to assume that r : Θ→ Θ.
In other words, any report r 6∈ Θ is trivially false.10

The menu of contracts available to the investor is represented by a class of functions Z,
where each function z(r, i) ∈ Z defines the contractual amount of cash that the investor
receives from the broker after the transaction is executed, contingent on the broker’s
report r(w) and the actual trading venue where the transaction took place. In other
words, z(r, i) is the investor’s state-contingent net trading profit.

Brokers may have an incentive to misreport the actual realization of W ; however, each
SRO devotes an amount m of resources to verify the veracity of the report and is able to
enforce a penalty x ≥ 0 to brokers, according to some pre-specified rules.

B. The SROs

Each SRO announces and commits to an enforcement policy (mi, xi) and a trading fee ti
before the investor and the broker negotiate the contract z. The probability of detecting a
fraud, p(mi), depends on the amount of resources spent in investigating brokers’reports,
mi ≥ 0. A convenient formulation for p(mi) is11

p(mi) = max{1− ψ/mi, 0},
9Prima facie, a positive W seems to suggest that investors are always on the sell side. However, this is

not the only interpretation: It is always possible to think of W as the investor’s cash equivalent of the value
of a buy-transaction.
10As it will be clear later on, in our framework the revelation principle does not necessarily hold, which

may rehabilitate some alternative reporting strategies. Our assumption rules out this possibility that, in
any case, does not seem appealing.
11This is different from De Marzo et al (2005) which assume that the probability of an investigation is

directly chosen by the SRO, while a fixed cost is paid by the SRO only in case of actual investigation. For
a similar formulation see Greenwood et al. (2010).
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where 1/ψ ≥ 0 represents the effi ciency level of the monitoring technology. The cost
function C(m) associated with monitoring is increasing in the amount of resources
devoted to monitoring, for simplicity we use the linear form

Ci(m) = cm,

where the constant c is the cost of a unit monitoring.

If a fraud is detected, the SRO i charges to the broker a monetary penalty, xi(r, w), which
is a function of the cash flow reported by the broker r(w) and the actually observed cash
flow w. The penalty is returned to the investor net of a fraction γ lost in legal and
opportunity costs.

Finally, contrary to De Marzo et al (2005), we assume that SROs are profit maximizing
entities that are owned by outside owners and compete with each other to attract trading
volume.

C. The Timing

The timing of events in the model can be summarized as follows:

1. Each SRO simultaneously chooses and commits to an enforcement policy (mi, xi)
and a trading fee ti.

2. Based on the announced enforcement policies and transaction fees (mi, xi, ti)i=1,2,
the investor can either offer a contract z to a broker or take the reservation utility α.

3. If the investor offers the contract and the broker rejects it, the investor gets α, while
the broker gets 0. If the contract is accepted, the broker chooses where to execute
the transaction (by choosing the probability qi).

4. The broker executes the transaction on the SRO i and privately observes the
realization of W . He chooses the cash flow to report, r, and returns to the investor
z(r, i).

5. Given the report r, the SRO where the trade took place devotes m(r) resources to
investigating it. A fraud has a probability p(m) of being detected. In case of
detection, the SRO collects the penalty x from the broker and returns it to the
investor net of a fraction γ lost in legal and opportunity costs.

D. The Broker-Investor Contract: General Results

As in DeMarzo et al. (2005), we initially introduce some general results for the contract
between the broker and the investor that will simplify the derivation of the equilibrium
conditions.
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The investor maximizes his expected payoff choosing a contract z ∈ Z, such that
z : Θ× {1, 2} → R. The function z(r, i) specifies the cash transfer from the broker to the
investor for each trading venue i and broker’s cash-flow report r. Implicitly, it defines the
compensation paid by the investor to the broker for his intermediation service.

Before choosing a reporting strategy, the broker observes the enforcement policies (mi, xi),
the realization of the trading venue indicator χ and cash flow W , and transfers the
transaction fee ti to SRO i.12

The broker’s feasibility constraint (BF) rules out the possibility of a strictly negative
broker’s payoff in any state of the world:

(BF ) : z(r, i) ≤ w − ti, ∀ w, r ∈ Θ, i ∈ {1, 2}. (1)

Since any feasible contract implies that the broker’s payoffW − t− z is a non-negative
random variable, the broker participation constraint (BIR) is always satisfied.

To simplify the notation we set zi ≡ z(w, i) and zi ≡ z(w, i), for i = 1, 2. In the rest of the
paper, we assume that the broker’s transfer to the investor is always higher in the high
cash-flow state than in the low cash-flow state, i.e., zi < zi.13 It follows that it is never
optimal for the broker to misreport the occurrence of the low cash flow– i.e., r(w) = w.
Hence, the broker’s feasibility constraint can be written as zi ≤ w − ti, i = 1, 2, when the
low cash flow occurs. We can now state the following lemma:

Lemma 1 Given α > w, for each investor-broker pair, the broker’s compensation for
trading on SRO i and reporting the low cash flow, w, is zero:

zi = w − ti.

Because both SROs anticipate that r = w is always a truthful report and investigation is
costly, they devote zero monitoring resources to investigate high cash-flow reports, m = 0
and p(r = w) = 0.

Given that zi > zi, the broker may have an incentive to report the low state when the
high cash flow occurs. In fact, if no fraud is detected, he obtains a strictly positive payoff
from misreporting: w − ti − zi = w − w > 0. However, there are two mechanisms that can
prevent the broker from misreporting: the “carrot”of a compensation and the “stick”of a
penalty. For instance, the investor can offer a positive compensation to the broker if the
high state is reported; at the same time, the SROs can impose a penalty for misreporting
and threaten to verify brokers’reports with some probability.14

12As we will see, the transaction fee is, ultimately, passed to the investor.
13This assumption is not strictly necessary and is made for tractability. Here we sketch the outline of a

possible proof. Since α > w and the broker cannot pay back the investor more than the realized cash flow,
in the case of a single SRO it must be that z > z. By the same logic, it would be easy to prove that it is
not possible to have zi ≤ zi ∀i ∈ {1, 2}. Finally, by contradiction, if ∃i ∈ {1, 2} such that zi ≤ zi the broker
would choose to trade on SRO i with probability one (we will see this later on), violating the investor’s
participation constraint in equilibrium.
14 Interestingly, contrary to standard CSV models (Townsend 1979 or Williamson 1987) those two actions

are no longer taken by the same agent.
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To formalize the argument of the carrot and the stick, we explicitly write the two relevant
broker’s incentive compatibility constraints:15

(BIC) : w − ti − zi ≥ pi(w) max{w − w − xi, 0}+ . . .

. . .+ [1− pi(w)](w − w), i = 1, 2. (2)

The LHS of equation (2) is the broker’s compensation when the high state realization is
reported truthfully (on SRO i)– which we denote by ρi ≡ w− ti − zi. The RHS represents
the expected return from misreporting: This is a weighted average of the payoff obtained
in case of detection, max{w − w − xi, 0}, and no detection of the fraud, (w − w).16

At the same time, to satisfy the investor’s participation constraint both SROs must
provide at least some minimal enforcement policy that prevents brokers from cheating.
For this purpose, SROs can increase either the penalty or the monitoring (see equation 2).
Unlike monitoring, however, increasing the penalty is costless. Hence, SROs always find
optimal to set the penalty as high as possible. The limited liability assumption implies
that the penalty xi cannot exceed what the broker owns, i.e., max{w − w − xi, 0} ≥ 0. It
is useful to write the following lemma:

Lemma 2 Given α > w, both SROs optimally set the penalty to its maximum:
xi = w − w.

Using the previously stated lemmas and noting that the probability of not detecting a
fraud is ψ/m, we can rewrite equation (2) as

(BIC) : υi(zi) ≡
w − zi − ti
w − w mi ≥ ψ (3)

The function υi characterizes the contract’s ability to induce a broker to truthfully report
a transaction that has taken place on SRO i. In other words, it captures the incentive
power of a contract. It is worth noting that υi is decreasing in z, increasing in the broker’s
compensation, and increasing in m. Finally, the knowledge of the monitoring technology,
ψ, is crucial for designing a contract that is incentive compatible.

II. The Race to the Bottom

In this section, we study how competition can induce SROs to relax enforcement policies
to attract trading volume in a basic setup with homogenous investors and complete
contracts. One implication of these hypotheses is that in equilibrium investors always
participate in the market and there is no fraud. The first result stems from the investor
homogeneity assumption,17 the second from the fact that the revelation principle holds
under the complete contracts hypothesis.18

15We do not allow negative penalties (prizes), and there is no penalty for truthful reports, i.e., xi(w,w) = 0.
16 In other words, if the BIC is satisfied, we have r(w) = w; otherwise, r(w) = w.
17Since investors are homogenous either all or none participate in the market. We will focus on the

equilibrium where there is participation.
18 In the basic setup we impose no restriction to the contract space (ψ is perfectly observable). Hence,

the revelation principle applies and it guarantees that it is never optimal to offer a contract that would
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A. The Investor Problem

Before offering a contract to the broker, the investor forms expectations about where the
transaction will be executed. We define q̃i to be the investor’s subjective probability that
χ = i, to distinguish it from the the objective probability qi defined in section A.. We
assume that the investor follows a simple rule that assigns probability 1 to the trade to be
executed on the SRO with the lowest monitoring resources. More precisely, q̃i = 1 for
mi < mi? and q̃i = 1/2 for mi = mi? . As shown in the next section, this rule is consistent
with the broker’s optimal choice and in equilibrium q̃i = qi.

Implicitly, we are assuming that the investor does not design the contract strategically to
induce brokers to trade on one of the two exchanges. In other words, an investor does not
internalize his ability to induce the broker to trade on the SRO with higher monitoring
resources.19 This simplifies the investor problem: Wherever the transaction takes place,
the investor minimizes the broker’s compensation subject to the broker’s incentive
compatibility constraint (see equation 3).20 The solution of the investor problem is
summarized by the following proposition.

Proposition 3 Given mi ≥ ψ, and q̃i = q̃(mi,mi?), the optimal contract is

zi = w − ρi − ti, i = 1, 2, (4)

where the high-state optimal broker compensation ρi is given by

ρi =
ψ

mi

(w − w), i = 1, 2. (5)

It is worth noting that, the transaction fee is ultimately paid by the investor, while the
broker compensation is inversely related to the effectiveness of the monitoring (1− ψ/mi),
i.e., the probability of detecting a fraud.

To derive the investor participation constraint we first introduce the investor’s expected
profit. This is a weighted average of four possible outcomes, i.e., low or high cash flow
executed on SRO 1 or 2, with the probabilities q̃ and π reflecting the expectations relative
to the trading venue χ and cash-flow realization, respectively:21∑

i=1,2

q̃i[π(w − ti) + (1− π)(w − ψ

mi

(w − w)− ti)].

induce a fraud, i.e., where υi < ψ (see Mookherjee and Png 1989 for the revelation principle with feasibility
constraints).
19 In the extension of the model (see section 6), we relax this assumption and analyze the case where

investors internalize the effect of their contracts on the broker’s choice of the trading venue. However, as we
will see, the main conclusions are unaltered.
20More precisely, for all q̃i > 0 the problem is isomorphic to maximize zi subject to the BIC constraint

(3), for i = 1, 2. If q̃i = 0 variables related to SRO i are irrelevant for the investor. However, without loss
of generality, we can still take the BIC constraint as binding υi(zi) = ψ.
21Notice that we use the results of lemma (1) and proposition (3) which stated that the low- and high-

cash-flow broker compensation is zero and ψ
mi

(w − w), respectively.
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On the one hand, the investor’s expected profit is increasing in mi because the more likely
the investigations the lower the broker’s compensation. On the other hand, because the
broker’s compensation is unaffected by transaction fees, the investor’s profit is decreasing
in ti. Hence, rearranging the previous equation, we can write the investor (customer)
individual rationality constraint (CIR) as

(CIR) : E[W ]−
∑
i=1,2

q̃i[ti + (1− π)(w − w)
ψ

mi

] ≥ α, (6)

where E[W ] = πw + (1− π)w is the expected value of the transaction.

B. The Broker Problem

To choose the trading venue, brokers compare the expected utility Ui from trading on one
SRO relative to the other. To derive Ui it is useful to analyze the high and low cash-flow
realization separately. When the low cash flow realizes (with a probability π), there is no
gain from misreporting and the broker pay-off is w − zi − ti. When the high cash flow
realizes, the broker may expect to profit from misreporting. However, an investigation is
successful with a probability p, in which case the broker’s payoff is
max{w − zi(r(w))− xi(r(w), w)− ti, 0}. With a probability 1− p the investigation is not
successful, which implies a payoff equal to w − zi(r(w))− ti. Hence, in its general form,
the broker’s expected utility derived from executing a trade on SRO i is

Ui ≡ π(w − zi − ti) + (1− π)[pi(max{w − zi(r(w))− xi(r(w), w)− ti, 0}) + . . .

. . .+ (1− pi)(w − zi(r(w))− ti)]. (7)

Because the revelation principle applies, we can replace r(w) with w in equation (7).
Furthermore, independently of the trading venue, the low cash-flow compensation is zero
while by assumption there are no prizes for reporting truthfully, i.e., xi(w,w) = 0, while
x(w,w) = w − w (see Lemmas 1 and 2). Hence, we can simplify the expression for Ui to

Ui = (1− π)(w − w)ψ/mi. (8)

We observe from equation (8) that a broker would strictly prefer to trade on SRO i if and
only if the monitoring resources invested by the SRO i are less than the ones of its
competitor. Hence, we can write the probability of executing a transaction on SRO i as (if
mi = mi? we set qi = 1/2)22

qi =


1 , mi < mi?

1/2 , mi = mi?

0 , mi > mi? .
(9)

The broker’s choice of the trading venue is only affected by the relative amount of
monitoring resources spent by each SRO to investigate his activity; in fact, the lower the
monitoring resources, the higher the compensation offered by investors to brokers.
Accordingly, an SRO with lax enforcement policies is preferred by the broker because it
allows her to best exploit the information rent.
22 If m1 = m2 the broker is indifferent about trading on one of the two SROs and any mixed strategy

would be optimal. By the law of large numbers we should still expect that the market share will be half.
Here, without loss of generality we have simply assumed that the best strategy is to pick q = 1/2.
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C. The SRO Problem and the Equilibrium

SRO i chooses an enforcement policy and a transaction fee (mi, xi, ti) anticipating
investors’and brokers’optimal behavior, while taking the choice of SRO i? (mi?, xi? , ti?)
as given. The objective of each SRO is to maximize total expected profits, which are given
by the profit per transaction multiplied by the trading volume– i.e., the fraction of
brokers trading on the SRO. The difference between the trading fee t and the expected
cost of monitoring, E[mc] = πmc, determines the profit per transaction.23

The SRO i problem can be cast in the following form (notice that q̃i = qi)

maxti,mi qi(mi;mi?)[ti − πmic]

s.t. (CIR) : q1t1 + q2t2 + (1− π)(w − w)ψ
( q1

m1

+
q2

m2

)
≤ α̃,

where α̃ ≡ E[W ]− α > 0 by construction, is the total expected investor’s surplus that
stems from having the transaction executed. In other words, investors will not participate
if the sum of the expected transaction costs and the compensation paid to the broker is
greater than α̃.

We can now determine the equilibrium described by the following proposition:

Proposition 4 Given α > w and α̃ > max{
√

(w − w)cψ, 2πcψ}, if a Nash equilibrium
where the SROs get zero profits and q̃i = qi exists, then it is a symmetric equilibrium– i.e.,
qi = 1/2, t1 = t2 = t and m1 = m2 = m– and it must satisfy:

t = πcm (10)

m =
α̃

2πc
−
√( α̃

2πc

)2 − (1− π)ψ

πc
(w − w). (11)

According to Proposition 4, competition for trading volume drives SROs’profits down to
zero. When the investor is naive, competition operates through monitoring resources,
which SROs reduce to gain or maintain their market share. The reduction in m increases
the brokers’compensation at the cost of investors’expected profits. However, trading
volume ultimately depends on investors’participation; hence, SROs must also reduce the
transaction fees to keep investors participating in the market.

1. The Monopolist Solution

To provide a benchmark for the solution with competitive SROs we consider the problem
of a monopolist SRO.24 The logic of the investor problem is identical to the competition
case. Instead, for a monopolist SRO the problem can be written as

23Recall that m = 0 and the revelation principles implies no misreports.
24 Interestingly, the broker’s compensation and the amount of monitoring resources found under monopoly

replicate the non-hierarchical case where a representative investor/auditor (the principal) offers a take-it-or-
leave-it contract to a representative broker (the agent).
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maxm,t t− πmc
s.t. (CIR) : t+ (1− π)(w − w)ψ/m ≤ α̃. (12)

The following proposition describes the enforcement policy and the transaction fee in
equilibrium:25

Proposition 5 Under monopoly, given ψc ≤ α̃2

4(1−π)π(w−w) , the optimal enforcement policy
and transaction fee chosen by the SRO are

m =

√
(w − w)

(1− π)ψ

πc
t = α̃− πcm. (13)

Panel A and B in Figure 1 compare the monopoly and competition cases in the (m, t) and
(p, t) space, respectively. In both panels, the region below the dark solid line satisfies the
CIR constraint, while the dotted lines represent SRO iso-profits– the lowest iso-profit line
is the zero profit locus. While the monopolist SRO maximizes its profits in M– where the
tangent iso-profit line represents the highest feasible profit– competition drives SROs
profits to zero. Hence, a symmetric equilibrium must lie at the intersection between the
zero-profit line and the CIR, represented by the points B and N . However, B is clearly
not a Nash equilibrium: SRO i can increase both unit profits and market share, by
reducing monitoring resources. This strategy is feasible and profitable because (in B) the
slope of the CIR is lower than the slope of iso-profits. Hence, competition pushes the
equilibrium toward the point N where monitoring resources and fees are at the lowest.
Once in N , there is no incentive to deviate by reducing the monitoring, because to induce
investor participation unit profits would become negative.

Since the broker’s compensation, represented by the solid grey line, is decreasing in the
detecting probability, the broker receives a higher compensation under competition than
under monopoly. In other words, because of competition the monopolist rent is
transferred to brokers rather than to investors.

A simple measure of welfare W is obtained by summing up the surpluses/profits of all
classes of agents (investors, brokers, and SROs). Using the equilibrium conditions, we
have that W = E[W ]− α− πmc in both competition and monopolist case. Since m is
relatively high in the monopolist case, the welfare measure is higher under competition
Wc −Wm = πc(mm −mc) > 0. This means that a monopolist SRO over-monitors brokers
reducing their information rent at its advantage. This result is quite intuitive, since in
equilibrium no frauds occur and full participation is obtained under both monopoly and
competition.

25The condition on parameters guarantees positive profits and a positive detecting probability.
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III. Fraud and Market Participation

In this section, we show how the introduction of (even small) non-contractible investor
uncertainty may induce broker frauds and reduce investors’participation, changing the
welfare ranking described in the previous section.

Specifically, we relax the assumption that investors can perfectly observe the monitoring
technology parameter, ψ, which is private information of SROs and brokers. Investor j,
instead, sees ψ as a random variable, denoted Ψ, with a probability distribution F (x; j).
The average unconditional expectation of Ψ across investors, however, is still unbiased:26∫ 1

0

∫ +∞

−∞
xf(x; j)dxdj = ψ.

As shown previously, a contract’s ability to satisfy the BIC constraint can be written as
ψ ≤ υi(zij) (see equation 3). Since under the new assumption ψ is no longer perfectly
observable, investor j expects to satisfy the BIC constraint only with some probability.
This probability is given by F (υ; j), which is the investor’s belief of getting a truthful
report for a given contract’s incentive power υ (see equation 3).

To simplify the notation, let’s denote with ψ̃j the expectation over Ψ of investor j, that is
ψ̃j ≡

∫ +∞
−∞ xF (x; j)dx. We sort investors such that investor 0 is the most “optimistic”

about the SROs monitoring effi ciency, while investor 1 is the most “pessimistic”, i.e.,
ψ̃j′ < ψ̃j′′ , ∀j′ < j′′ ∈ [0, 1]. Finally, we assume that the median investor is unbiased
ψ̃j=1/2 = ψ.

A convenient formulation for F (x; j) is a uniform distribution
Ψ ∼ U(ψ − 2a(1− j), ψ + 2aj), such that

F (y; j) =
y − ψ + 2a(1− j)

2a
, (14)

for y ∈ [ψ − 2a(1− j), ψ + 2aj] and ∀j ∈ [0, 1].

This formulation satisfies the conditions imposed on F and guarantees that the investor
j’s expected value of the (inverse of the) enforcement technology parameter,
ψ̃j = ψ + a(2j − 1), is increasing in j.

A. The Investor Problem

The uncertainty over ψ modifies the investor problem. In fact, for some investors it is now
too costly to offer a contract that is incentive compatible, but not costly enough to
prevent them from participating in the market.27 In other words, in the new setup there is
partial market participation and brokers may cheat investors in equilibrium.
26While brokers have no incentive in truthfully revealing ψ, SROs may have. In fact, the distributions

F (x; j) can be thought of as the posterior distribution derived by investors with uninformative priors that
receive a noisy signal over ψ sent by the SROs from some known distribution.
27Technically, the contract offered is only constrained optimal. The underlying assumption is that it is

too costly to overcome the informational friction through some contractual arrangements.
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The investor’s low cash-flow return is zero as in section 2.4. However, when the high cash
flow realizes, the expected return incorporates the possibility of W being reported as a low
cash flow. Conditional on the broker’s misreport, the investor j’s expected return (on
SRO i) is

[(1− γ)x+ zi]p̃ji + zi(1− p̃ji), i = 1, 2,

where p̃ji ≡ Ej
[

max{1−Ψ/mi, 0}|Ψ > υi(z)
]
is the probability of a fraud being detected

by SRO i conditional on investor j’s information set.28 The first term, [(1− γ)x+ zi], is
the payoff when the fraud is actually detected, where (1− γ) is the fraction of the penalty
returned to the investor, net of legal and opportunity costs. The second term is simply z.
The sum of the two terms simplifies to (1− γ)xp̃ji + zi.

The investor j’s problem reads as:

maxzi Fj(υi(zi))zi + [1− Fj(υi(zi))]{(1− γ)xp̃ji + zi} (15)

s.t. p̃ji = Ej
[

max{1−Ψ/mi, 0}|Ψ > υi(z)
]

υi(zi) =
w − zi − ti
w − w mi.

The two terms in the objective function capture the trade-off that the investor faces
between reducing the broker’s compensation (first term) and increasing the probability of
misreport (second term).

The following proposition summarizes the general solution to the investor problem.

Proposition 6 ∀γ ∈ (0, 1) and given mi ≥ ψ + 2a, the investor j’s optimal high-cash-flow
repayment is

zji = w − ρj(mi)− ti. (16)

The broker high cash-flow compensation from trading on SRO i is

ρji = (w − w) min
{ γ

1 + γ
+

ψ̃j − a
(1 + γ)mi

,
ψ̃j + a

mi

}
. (17)

As in the case of perfect knowledge of ψ, which is recovered when a→ 0, the broker’s
compensations is inversely related to monitoring resources.29 However, when the
uncertainty over ψ is suffi ciently high some investors find too costly to offer a contract
that satisfies the broker’s incentive compatibility constraint with probability 1, i.e.,
Fj(υi) < 1. These investors optimally choose to bear the risk of a fraud.30 On the other

28Conditional and unconditional probabilities over Ψ are not the same because the action chosen by the
broker may reveal some information on ψ to the investor. For example, the investor knows that the broker
misreports only when 1/ψ is lower than what he initially expected. Hence, conditional to a misreport, the
expectation over Ψ is higher than the unconditional expectation.
29 It is also worth noting that the presence of legal and opportunity costs, γ, increases the broker compen-

sation.
30All investors are willing to take some risk only if mi < ψ+ 2a/γ, ∀j ∈ [0, 1]. Hence, if γ = 0 no investor

will be sure of offering an incentive compatible contract.
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hand, overoptimistic investors (i.e., j < 1/2) underestimate the risk of a fraud and might
offer a contract that is actually not incentive compatible. In fact, the investor j’s belief of
offering an incentive compatible contract is decreasing with respect to j, while the
incentive power of the contract actually increases. This means that a more optimistic view
over Ψ makes the investor unawarely less cautious about the broker behavior and,
possibly, exposed to fraud.

The following corollary summarizes the discussion above.

Corollary 7 Under uncertainty over ψ, the broker compensation in the high cash-flow
state determined in Proposition 6 can be expressed as

ρji = (w − w)
[ γ

1 + γ
+

ψ̃j − a
(1 + γ)mi

]
; iff Fj(υi) < 1

ρji = (w − w)
ψ̃j + a

mi

; iff Fj(υi) = 1

The presence of various degrees of optimism over Ψ has implications also for the investor
participation constraint. Intuitively, the mass of participating investors is no longer 1 or 0,
as in the previous section, but it is increasing in the monitoring resources mi and
decreasing in the transaction fees ti, for i = 1, 2. In fact, as monitoring falls and/or
transaction fees rise, the most pessimistic investors no longer find optimal to participate in
the market. The next proposition formalizes the result.

Proposition 8 Under uncertainty over ψ, the mass of investors participating in the
market is given by

n = min{max{1/2 +
ψ̄
n − ψ
2a

, 0}, 1}. (18)

with ψ̄n = B −
√
B2 − C, while coeffi cients B and C are functions of mi and ti (see

appendix).

The variable ψ̄n is a cut-off value for the expectation over the monitoring effi ciency. When
ψ̃j > ψ̄

n the investor j is pessimistic enough to expect his profits to be below the outside
option α. This means that he will not offer a contract to the broker and will not
participate in the market.

B. The Broker’s misconduct

We now determine the mass of contracts that imply a fraud when the high cash flow
realizes. If F (υi; j) = 1, investors offer a contract that is incentive compatible by
construction.31 Hence, we can focus on those investors for which F (υi; j) < 1. Within this
group, the investors that are over-optimistic with respect to ψ may offer a compensation

31 Inspecting corollary 7, if F (υj) = 1 even investor 0 would offer a ρj = (w − w)ψ/m, which, as we have
seen, satisfies the BIC.
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to the broker that is actually not incentive compatible. The mass of those contracts is
given by:32

φi = min{max{1− γmi − ψ
2a

, 0}, n}, i = 1, 2. (19)

The variable φi is decreasing in monitoring resources and increasing in the uncertainty
investors face concerning the monitoring effi ciency.33

Figure 2 summarizes the discussion of the section above. Panel A shows the high cash-flow
trading profit for investor j’s repayment zj , while Panel B shows the corresponding
expected earnings as a decreasing function of the signal ψ̃. The cut-off investor that is
willing to participate in the market is determined by the intersection of the investor
expected earning line with the reservation utility α. Panel D shows the contracts that may
actually imply a misreport: A contract is incentive compatible only if the solid line, which
represents υj , is higher than ψ– i.e., when the broker’s return from not misreporting is
higher than the expected return from misreporting. Hence, the light and dark thick solid
lines on the x-axis represent the mass of contracts that may and will not imply a fraud,
respectively. On the same x-axis, the dark thick dashed line represents the mass of
investors that do not participate in the market.

C. The SRO Problem and Equilibrium

Compared to the SRO problem in section C., the objective function of each SRO is now
modified by the fact that full participation is not guaranteed and some contracts may
actually imply a misreport with the consequence of increasing total investigation costs. In
fact, in the equilibrium without frauds the mass of investigations is equal to the low
cash-flow probability, π. However, if some high cash-flow state are reported as low the
total mass of investigation will increase. By contrast, since brokers can perfectly observe ψ
and their compensation is not a function of transaction fees, the brokers’choice of the
trading venue has the same form as in equation (9). This choice is independent of the
cash-flow realization and, thus, of the broker’s reporting strategy.34

The SRO i problem reads (symmetrically for SRO i?) as

max
mi,ti

q[n(ti − πcmi)− (1− π)φicmi], (20)

where it is understood that q, n, and φi are functions of mi and ti, and parameterized
with respect mi? and ti? (see equations 9 and 18-19). The following proposition describes
the equilibrium.
32Using the result of corollary 7 to substitute for ρi in equation (3), a contract does not satisfies the BIC

constraint when υji =
γmi+ψ̃j−a

1+γ
> ψ. Integrating with respect to j gives equation (19).

33With full participation, there is a simple relation between the average investor’s probability of offering
a compatible contract and the actual mass of non-compatible contracts, φ, which is φ = 1 − F + γ(1/2 −
F ). Legal costs disconnect the average investor’s belief and the actual broker’s behavior by skewing the z
distribution.
34Comparing the broker’s compensation from trading on SRO i, we easily see that ρj1 > ρj2 iffm1 < m2.

Hence, whenever the optimal report is truth-telling, the broker chooses the SRO with lower monitoring.
In case of misreporting, the broker’s expected return is ψ(w − w)/m1 > ρj1 > ρj2 iff m1 < m2. Hence,
regardless of the reporting decision, it is always optimal for the broker to choose the SRO with the lowest
monitoring.
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Proposition 9 Given γ ∈ (0, 1), if a Nash equilibrium where n < 1, φi < n, and φi > 0
exists, then it is a symmetric equilibrium– i.e., qi = 1/2, t1 = t2 = t and
m1 = m2 = m– and it must satisfy

n(t− πcm) = (1− π)φcm

with φ = 1− γm−ψ2a and n = −nt(t− πcm), where

nt = − 1 + γ

(1− π)(w − w)γ2
√
B2 − C

m

B = m+ a(2γ−2 − 1)

C = m2 +
4a

γ2

[
1− γ2/2 + (1− γ)

w − α− t
(1− π)(w − w)

]
m+ a2.

Proposition 9 shows that SROs still earn zero profit in equilibrium, however, differently
from section C., each SRO incur in higher costs because of frauds. The term (1− π)φcm
represents the expected investigation costs associated with frauds. Moreover, investor
participation is below 1, which implies a reduction in total market volume and revenues.
Finally, we also notice that since overoptimistic investors are the last investors to prefer
the outside option, as market participation falls the mass of fraud φi is not affected until
n = φi (once n = φi no contract is incentive compatible). Hence, a reduction in investor
participation never reduces the ratio of frauds over total transactions.

1. The Monopolist Solution under Incomplete Contracts

We compare the previous result with the monopolist case. A monopolist SRO solves the
same problem as in (20), however, the market share is fixed, while frauds and
participation, φ and n, depend only on choices of m and t. The solution of the monopolist
problem is described by the following proposition:

Proposition 10 Given α̃2

1−π > 4(w − w) (ψ+3)2

ψ+2a πc and γ >
2a

−2a−ψ+
√

(1−π)(w−w)ψ+2a
πc

, for a

monopolist SRO, the equilibrium is characterized by the following system of equations

m =

√
(1− π)(w − w)

ψ + 2a

πc
t = α̃− πcm

zj = w −
ψ̃j + a

m
(w − w)− t,

which implies n = 1 and φ = 0.

The monopolist SRO fully internalizes the effect of its enforcement policy and transaction
fee on investor participation. Moreover, the market share no longer plays a role in this
case. Hence, under the conditions imposed on the parameters in proposition 10,
transaction fees and monitoring resources are set such that the last investor (i.e., the most
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pessimistic) is still participating in the market. Greater uncertainty over ψ (i.e., a higher
a), increases m and negatively affects SRO’s profits. In fact, a higher a has a negative
effect on investor expected profits that the SRO offsets by toughening enforcement policies
and reducing transaction fees to preserve the full investor participation in the market.
Finally, since fraud generates extra investigation costs, a monopolist SRO optimally
chooses monitoring resources to guarantee that the most optimistic investor offers an
incentive compatible contract.35

Table 1. Monopoly vs. Competition

Description Monopoly Competition Ratio %
Detecting Probability 0.82 0.75 - 8.5
Transaction Fee over E[W ] 0.55% 0.41% -25.5
Total Volume (n) 1 0.955 - 4.5
Total Frauds 0 0.059 —
SROs’Profits 0.124 0 —
SRO 1 Market Share — 50% —
Brokers’Average Profits 0.152 0.524 24.5*10
Investors’Actual Average surplus 0.287 0.047 -16.4
Investors’Expected Average surplus 0.287 0.046 -16.4
Total Monitoring Costs 0.438 0.421 - 3.9
Total Welfare 0.563 0.545 - 3.2

Columns 1 and 2 show the results of the calibrated example under monopoly and competition, respectively.

The average investor’s surplus is defined as the difference between the average investor’s expected (actual)

profits and the reservation profit. The last column is the ratio of column 2 over 1 in percent.

Table 1 presents a calibrated numerical example to compare results under competition
and monopoly when ψ is not perfectly observable.36 Under competition the probability of
detecting a fraud drops by about 9% from 0.82 to 0.75, relatively to monopoly, reflecting
the lower resources spent in monitoring. This is coupled with a 25% reduction in
transaction fees. However, the benefits of lower fees are not enjoyed by investors which
sees their profits to drop dramatically, by almost 85% (from 0.287 to 0.047),37 while
brokers increase their average profits more than 3 folds. Because from the investor point
of view the reduction in enforcement policies outweighs the benefits of lower transaction
fees, some of them will not participate in the market entailing a reduction in the total
transaction volume (by about 5%). At the same time, under competition about 6% of

35When a is suffi ciently high, the conditions of proposition 10 do not hold anymore. This implies that
even in the monopolistic case, we may have a participation lower than 1 and frauds. In any case, the effect
of competition would be to further reduce participation and increase frauds, leaving the qualitative results
unchanged. We focus on the full participation case.
36 In the numerical example we take the spread between high and low cash flow to be w/w−1 = 2.5%, the

reservation utility to be 1% higher than the low state α/w − 1 = 1%, and the low state probability π equal
to 20%. We cannot identify c and ψ separately, hence we fix ψ = 10 and set the cost parameter c such that
the unit monitoring cost cm is 0.8% of the average value of a transaction, when the detecting probability is
50%. This implies c = 0.04. The legal costs are set at 6% of the penalty, and the noise a/ψ is set equal to
10%. Total transaction surplus is α̃ = 1.
37The sign of the difference between actual and expected investor profits is determined by the shape of

the distribution of zj over investors.
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total transactions involves a fraud and, given a 0.75 detecting probability, only about 4.4%
of frauds will be actually detected.

The first best social welfare is simply given by the expected surplus α̃ derived from all of
the transactions. Under monopoly the social welfare is equal to α̃ minus total monitoring
costs. In the previous section we showed that the over-monitoring of the monopolist would
lead to a lower social welfare. However, with incomplete contracts, competition among
SROs reduces total monitoring costs only slightly, about 4% from 0.44 to 0.42. This is
because the reduction in resources spent per investigation is offset by the increase in the
number of investigations due to the presence of frauds.38 The small reduction in
monitoring resources does not compensate for the lower investor participation, n = .95,
that by definition reduces the total expected surplus. This implies a reduction of social
welfare under competition by about 3.2% relatively to monopoly, Wm = 0.56 >Wc = 0.55.

IV. Extension: Sophisticated Investor

In this section, we extend the previous setup to show that it is robust to the assumption
that investors are suffi ciently small to internalize the effect of their contract on the
broker’s trading venue choice. In particular, we study the equilibrium under the
assumption that investors are sophisticated, that is, they anticipate the broker’s strategic
choice of the trading venue. In other words, investors maximize their expected payoff
strategically inducing the broker to trade on the exchange where transaction fees are the
lowest. Consequently, SROs reduce transaction fees to attract trading volume. This
generalization is useful because it shows that the results of the previous sections do not
depend on whether SRO competition operates through transaction fees or enforcement
policies. In fact, because monitoring is costly, a race to the bottom for transaction fees
forces SROs to devote less resources to investigating potentially illicit conducts, which, in
turn, leads to higher broker profits.

A. Homogenous Sophisticated investors

The assumption of sophisticated investors does not alter two important results obtained in
the previous setting. First, the broker has no incentive to report a high cash-flow when a
low cash-flow is realized, given that zi > zi; hence, because investigating is costly, pi = 0,
i.e., mi = 0. Second, the low state contract is still pinned down by the BF constraint,
zi = w − ti.

As in the case of naive investors, the probability of the transaction being executed on
SRO i, qi, depends on the broker’s utility derived from trading in the two SROs, as
described in equation (7). However, differently from before, qi is no longer taken as given
by the investor.

38Without frauds, only low cash-flow reports are investigated. Under competition, the existence of mis-
reports implies that some high cash flows are reported as low, increasing the number low-cash flow reports
and, thus, investigations.
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For convenience, we formulate the investor’s decision problem as a function of the broker’s
compensation, ρ:

max
ρi,q

= E[W ]− q1[(1− π)ρ1 + t1]− (1− q1)[(1− π)ρ2 + t2] (21)

qiρi ≥ qiρ̂i

q1 =


1, ρ1 ≥ max{ρ2, ρ̂2}
1/2, ρ1 = ρ2

0, ρ2 ≥ max{ρ1, ρ̂1},

where ρ̂i ≡ (w − w) ψ
mi
is the broker’s expected return from misreporting on the SRO i.39

We can now state the following proposition that describes the investor optimal contract.

Proposition 11 The optimal contract for a sophisticated investor with no uncertainty
regarding the SRO’s monitoring technology, a = 0, is

[
ρ1, ρ2

]
=


[
(w − w) maxi{ ψmi }, 0

]
, t1 < t2[

(w − w) maxi{ ψmi }, (w − w) maxi{ ψmi }
]
, t1 = t2[

0, (w − w) maxi{ ψmi }
]
, 0, t1 > t2

(22)

and

q1 =


1, t1 < t2
1/2, t1 = t2
0, t1 > t2

(23)

The intuition for Proposition 11 is that sophisticated investors can affect the broker’s
trading choice by differentiating the compensation offered to the broker to trade on one
SRO relatively to the other. In particular, to induce the broker to trade on the exchange
with the highest monitoring, the sophisticated investor needs to offer a contract whose
compensation is no lower than the maximum profit the broker could obtain by
misreporting on each SRO. Hence, the lower bound for the broker’s compensation is set
equal to the compensation he expects by choosing the SRO with the lowest enforcement.

On the other hand, transaction fees are ultimately paid by the investors and thus affect
their expected return. Consequently, it is optimal for the investor to induce the broker to
trade on the SRO with the lowest transaction fees. In fact, by comparing how trading
volume is determined in presence of sophisticated investors (proposition 11) with naive
investors (see equation 9), we note that in proposition 11 q is a function of the transaction
fees instead of the monitoring resources.

The investor’s participation constraint depends on the SRO in which the trade takes
place. We can write it as:

(CIR) : ti + (1− π) max
i
{ρ̂i} ≤ α̃, ti < ti? . (24)

39 In writing q1, we have assumed that for the same expected utility the broker prefers a truthful report.
For convenience, we remind that the unconditional expected cash-flow is E[W ] = πw + (1 − π)w. Finally,
the investor objective function already includes the result zi = w − ti.
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In addition, each SRO’s problem is to maximize its profits taking the enforcement policy
and transaction fee of the competitor as given. Hence, SRO 1 maximizes q1(t1 − πcm1),
given q1 as described in proposition 11 and the CIR (equation 24). The next proposition
describes the symmetric equilibrium.

Proposition 12 In presence of sophisticated investors, there exists a unique symmetric
equilibrium with q = 1/2, t1 = t2 = t, and m1 = m2 = m, where m and t must satisfy

πcm+ (1− π)(w − w)
ψ

m
= α̃

t = πcm.

We have obtained the same equilibrium values as in the basic model with naive investors.
The intuition is that competition, through monitoring or transaction fees, drives SROs’
profits to zero. Moreover, it is never optimal for an SRO to leave slackness in the investors’
participation constraint (CIR), i.e., SROs minimizes monitoring resources, thus, boosting
brokers’compensation and reducing investors’surplus. The two condition, CIR binding
and zero profits, are the same in the case of both sophisticated and the naive investors.

Introducing uncertainty over ψ leads to results very similar to the one described in Table
1. The intuition is the same as the one just given: the means of competition is irrelevant.
However, since there is no closed-form solution to the investor problem we have relegated
the description and numerical solution of this further extension to Appendix B..

V. Conclusions

We have modified extended the hierarchical costly state verification framework used by De
Marzo et al. (2005) to analyze the effect of competition among Self Regulatory
Organizations (SROs) such as stock exchanges. Competition among for-profit SROs
implies a reduction in both transaction fees and resources devoted to monitor and
investigate brokers’trading activity. While lower fees benefit investors, reduced
monitoring resources advantage brokers by increasing their information rent. In this
framework competition is welfare enhancing, compared to monopoly, because a for-profit
monopolist SRO would waste resources by over-monitoring brokers to reduce their
information rent to its own advantage. When we relax the assumption of complete
contracts, however, we demonstrate that competition among exchanges reduces total
welfare relatively to monopoly. The result is driven by the reduction in enforcement policy
and, consequently, by the presence of brokers’fraud in equilibrium: first, this causes an
overall decline in investors’participation, and by definition in total trading volume;
second, due to the higher number of misreports, there is a waste of resources due to the
increased number of investigations and the associated legal and opportunity costs.

Finally, results are robust to different assumptions on the investor’s ability to influence the
broker’s trading venue choice. In the main setup we assume that investors are naive, in
the sense they do not internalize the effect of their actions on the broker’s choice of the
trading venue. When we extend the model to include sophisticated investors, fees are the
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means of competition used by SROs to gain market share and attract trading volume.
However, the reduction in the SROs revenues due to lower fees forces SROs to relax their
enforcement policies making this equilibrium observationally equivalent to the one where
SROs compete through enforcement policies.
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Appendices

A. Appendix 1

Here we present the proofs of the lemmas and propositions stated in the text.

Proof of Lemma 1. First of all we show that r(w) = w. Given zi ≥ zi if r(w) = w, BF
constraints would imply that zi ≤ w − ti which cannot be an equilibrium when α > w.
Given r(w) = w, by the same argument, it must be that, in equilibrium, zi > zi, for some
i (no pooling).

When r(w) = w, the low cash-flow BF constraint implies zi(w) ≤ w− ti; ∀qi > 0, investors’
expected returns are strictly increasing in zi(w), hence, zi(w) = w − ti must be the unique
solution of the investor’s problem. When qi = 0, zi(w) = w− ti is clearly still a solution.

Proof of Lemma 2. By contradiction assume (m1, x1, t1) is such that x1 < xmax1 , for
some given (m2, x2, t2). Take a new triple (m′1, x

′
1, t
′
1) such that x1 < x′1 ≤ xmax1 and

m1 < m1. It is clearly true that t
′
1 = t1 is feasible for SRO 1. We want to show that we

can find some x and m such that q′ = q. To show this is suffi cient to demonstrate that the
(BIC)’is equivalent to the previous (BIC). From equation (2) we realize that this is easily
accomplished by setting m′1 such that (1− ψ/m1)x1 = (1− ψ/m′1)x′1. This guarantees
that the investor is solving the same problem. Hence, given that q′ = q, t′1 = t1 is generally
feasible, and m′1 < m1, it must be that (m1, x1, t1) does not maximize SRO 1 profits.

Proof of Proposition 3. Given that the revelation principle holds, the BIC constraint
has to be satisfied. Since the broker’s compensation for trading on either SROs are
independent, the BIC constraint will hold with equality for q̃i ∈ (0, 1) for both SROs. This
uniquely determines zi when q̃i > 0. When q̃i = 0 the choice of zi becomes irrelevant,
however, we can still determine zi using the BIC constraint.

Proof of Proposition 4. The CIR is always binding. Say q ≥ 1/2 and the CIR is not
binding. Given SRO 2 actions ∃ t′1 > t1 and m′1 = m1 such that the CIR is still satisfied,
q′ = q, and SRO 1 enjoys higher revenues and the same costs.

SROs’profits must be zero. Say SRO 1 enjoys strictly positive profits and q = 1/2 (we
only prove the most interesting case).40 We must have m1 = m2, as a matter of exposition
let us choose t1 > t2– i.e., SRO 1 makes more profits. By continuity, ∃ neighborhood I of
(m, t) such that unit profits are strictly positive; hence, ∃ some m′2 < m1 and t

′
1 ≤ t1 such

that the CIR is still satisfied and (m′2, t
′
2) ∈ I.

The symmetric equilibrium is unique.41 The CIR, combined with the zero profit
condition, implies πcm− α̃m+ (1− π)(w − w)ψ = 0. There are two candidate solutions,
m(1) and m(2). Say m(1) < m(2) then m(2) is not a solution. It would be optimal to reduce
both the monitoring and the transaction fee (see monopolist case and figure 1).

Proof of Proposition 5. The proof of proposition (5) is simple and thus omitted.
40The case qi = 1 is straightforward. SRO i′ would be better off choosing (mi′ , ti′) = (mi, t2) and getting

half the profits of SRO 1.
41 It is always possible to have an equilibrium in which q = 1 or q = 0, the CIR is satisfied and there are

zero profits.
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Proof of proposition 6. We focus on the case where mi ≥ ψ + 2a i = 1, 2, this
guarantees that

Ej
[

max{1−Ψ/mi, 0}|Ψ > υi(z)
]

= 1− Ej [Ψ|Ψ > υi(z)]/mi.

We will use the general result that E[x|x > a] =
∫∞
a uf(u)du/(1− F (a)). We first find the

interior solution, 0 < F < 1, by applying the calculus of variations. We can cast the
investor j problem as (we drop subscripts i and j)

max
z
F (υ(z))z + [1− F (υ(z))][(1− γ)x+ z]− (1− γ)x[G(b)−G(υ(z))]/m

where b = ψ + 2aj. We have defined g(u) ≡ uf(u) to have
∫ b
υ uf(u)du = G(b)−G(υ).

Finally, taking derivatives with respect z and recalling that υ′ = −m/x, F ′ = υ′f and
G′ = υ′υf , we find the necessary optimality condition for an interior solution satisfies
γ(m− υ)f(υ) = F (υ). Substituting the functional forms of the uniform distribution we
have

ρ = (w − w)
[ γ

1 + γ
+

ψ̃j − a
(1 + γ)m

]
For the boundary cases, note that ρ = (ψ + 2aj)/m is the solution obtained imposing
F = 1, while imposing F = 0 makes the investor’s return independent of z.

Proof of Proposition 8. Using proposition 6, we can write investor j’s expected profit,
given by (15), as a function of the SRO’s announced enforcement policies and transaction
fees, and the expectation over Ψ. Because investors area ranked according to ψ̃j , it is

convenient to express the expected profit as a function of ψ̃j : Aψ̃
2
j − 2BAψ̃j + CA, where

A, B, and C are functions of mi and ti: A = (1− π)(1/m2 + 1/m1)γ2/a/k/(1 + γ)/8;
B = 2m1m2/(m1 +m2) + a(2γ−2 − 1); C = 8a(k/(1− π)/γ2(wγ + w − (1 + γ)(α+ t1/2 +
t2/2))− 0.5− π/(1− π)/γ2)m1m2/(m1 +m2) +m1m2 + a2; where k = 1/(w − w).

The investor participation constraint requires that Aψ̃
2
j − 2BAψ̃j + CA− α ≥ 0. Hence,

equating this last object to zero determines a cut-off value, ψ̄n, above which no investor
participates. The cut-off value is the solution of the quadratic equation in ψ̃; i.e.,
ψ̄
n

= B −
√
B2 − C. Because investors with ψ̃j > ψ̄

n do not participate, we can determine
total participation by integrating over j up to the cut-off investor gives
n = min{max{1/2 + ψ̄

n−ψ
2a , 0}, 1}.

Proof of proposition 9. The interior solution of the constrained maximization of (20)
subject to equations (9), (18) and (19) parameterized with respect m2 and t2 delivers the
stated proposition.

Proof of Proposition 10. The optimal investor contract is given by zj = w − ρj − t,
where the broker’s compensation has been defined as

ρj = (w − w) min{ γ

1 + γ
+

ψ̃j − a
(1 + γ)m

,
ψ̃j + a

m
}.

The incentive power of the contract is given by

υj = mρj(w − w)−1 = min{γm+ψ̃j−a
1+γ , ψ̃j + a}
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Assume that m > ψ + 2a/γ, then we have ρj =
ψ̃j+a

m (w − w) and υj = ψ̃j + a, ∀j ∈ [0, 1].
This also implies that s̃j = 1 and φ = 0 (no frauds). Integrating over investors, we find the
participation n = α̃−t

w−w
(w−w)m

2a(1−π)−ψ/2a . The SRO’s problem reduces to maximize n(t− πcm),
with 0 ≤ n ≤ 1. When n = 1 we have the result of the proposition. Notice that for
n ∈ [0, 1] optimality implies t = α̃− πcm. We can rewrite the problem as a one-variable

maximization problem and the condition α̃2

1−π > 4(w − w) (ψ+3)2

ψ+2a πc is determined by
requiring the Lagrange multiplier on n ≤ 1 to be strictly positive.

Proof of proposition 11. Set q = 1. It must be ρ1 ≥ max{ρ2, ρ̂2}. Conditioned on
q = 1, the BIC implies ρ1 ≥ ρ̂1. Because the investor wants to minimize the broker’s
compensation, it is optimal to choose ρ2 < ρ1, say ρ2 = 0, and ρ1 = max{ρ̂1, ρ̂2}.
Disregarding the common constant term, the investor’s profits are
Eq=1 = −t1 − (1− π) max{ρ̂1, ρ̂2}. The case for q = 0 is symmetric and the investor’s
profits are Eq=0 = −t2 − (1− π) max{ρ̂1, ρ̂2}. If q = 1/2, it must be that ρ1 = ρ2, hence
ρi = max{ρ̂1, ρ̂2} and investor’s profits are Eq=1/2 = −(t1 + t2)/2− (1− π) max{ρ̂1, ρ̂2}. A
simple comparison of the profits for the three cases, q = {1, 0, 1/2} delivers the result of
the proposition.

Proof of proposition 12. The CIR is always binding. Define the SRO’s profit as F ,
say q ≥ 1/2, and assume that the CIR is not binding. SRO 1 can choose a strategy
(t′1,m

′
1) where m′1 < m1 and t

′
1 = t1 such that q′ = q and F ′1 > F1. (The same logic holds

for q ≤ 1/2.)

Fi > 0 is not an equilibrium. Say q ≥ 1 and F1 > 0 is an equilibrium. SRO 2 can choose
t′2 = t1 − ε, with ε > 0 arbitrarily small, such that q = 0. By continuity of Fi with respect
to t and m, ∃ m′2 < m1 such that F2 > 0 and the CIR is still satisfied.

B. Appendix 2

In this appendix we consider the case of imperfect knowledge of the monitoring
technology, i.e., a > 0, when investors are sophisticated.

In this case, it is also possible to show that the optimal low-cash flow contract is the same
as in the other cases, zi = w − ti, and that the penalty is set at the maximum; however,
the investor’s objective function cannot be written in a closed form. In fact, given the
investor j information set Ωj , the expected trading choice E(q|Ωj) depends on the investor
j probability distribution over Ψ, as well; in particular, it may well be that
Cov(q,Ψ|ψ ≤ υj ,Ωj) 6= 0, which makes it hard to obtain a simple expression for the
investor expected return. Hence, we cast the investor j’s problem in a very general form
as maximizing E(z|Ωj), subject to the broker’s optimal reporting strategy and trading
choice, and given the announced enforcement policies and transaction fees.
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1. The SROs’Problem

Even if we have no closed form solution for the investors’problem, the SROs’best
response problem is analogous to the one described in section A..

The unit (per transaction) profits are the difference between the transaction fee t and the
expected monitoring cost in case the high state is reported, Emc.

SRO i chooses an enforcement policy and transaction fee (pi, xi, ti), anticipating the
customer’s and broker’s response and taking the actions of SRO i?, (mi? , xi? , ti?) as given.
Total profits are equal to unit profits times the SRO’s trading volume.

It is useful to define the set of broker-investor pairs for which a contract is actually signed,
given an enforcement policy and a transaction fee (mi, ti,mi? , ti?), as:

N = {j : Ej(mi, ti,mi? , ti?) ≥ α} ⊆ [0, 1].

where Ej is the investor j expected profit. The variable N summarizes the investors’
participation constraint (CIR) and is affected by the enforcement policy and transaction
fees chosen by the two SROs.

We define the set of contracts that are not incentive compatible

Φi = {j : υj(z) ≥ ψ} ⊆ [0, 1].

Let IS be the characteristic (indicator) function of a generic set S and Ωo represents the
SRO information set. The problem of the SRO i with a linear monitoring cost function
C(m) = cm can be written as

maxm,t E
[ ∫ 1

0
qji (mi, ti;mi? , ti?)[t− (1 + IΦi(j))cm]IN (j)dj|Ωo

]
(25)

Because the problem does not have a closed form solution, we only report the result of the
simulation exercise. Table 2 compares the result obtained for sophisticated investors with
the ones obtained for naive investors. In our parameterized exercise, results are
qualitatively the same. This suggests that, even when heterogenous investor beliefs are
introduced, the means of competition, either monitoring or transaction fees, is not
relevant for the equilibrium determination– as we have shown in the previous section for
homogenous investors.42

In Table 2 we compare the results for sophisticated heterogenous investors with the ones
obtained for naive investors in Table 1. Most of the differences are due to approximation
errors of the algorithm used for solving the sophisticated investor equilibrium.

42The numerical algorithm is computationally demanding. The two-dimension best response functions are
approximated by Chebyshev polynomials of 12th order. A fixed point is searched in a neighborhood of the
naive solution.
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Table 2. Naive vs Sophisticated

Description Sophisticated Naive
Detecting Probability 0.75 0.75
Transaction Fee over Average Transaction Value 0.39% 0.41%
Total Volume (n) .960 0.955
Total Frauds 0.055 0.059
SROs’Profits 0 0
SRO 1 Market Share 50% 50%
Brokers’Average Profits 0.523 0.524
Investors’Actual Average surplus n.a. 0.047
Investors’Expected Average surplus 0.048 0.046
Total Monitoring Costs 0.424 0.421
Welfare 0.548 0.545

The average investor surplus is defined as the difference between average investor expected (actual) profits

and the reservation profit. Parameters are such that w/w − 1 = 2.5%, α/w − 1 = 1%, π = 20%, ψ = 10,

c = 0.04, γ = 6%, and a/ψ = 10%.



29

Figure 1: Competitive versus Monopolistic Equilibrium
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Figure 2: Investor Contracts
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