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1 Introduction

Uncertainty is inherent to economic decision-making; in many situations choices
need to be made in the absence of complete information about their
consequences. A classical example is the permanent income model where
uncertainty about future incomes gives rise to precautionary savings.1 The
decision of how much to save and when does not pertain only to the individual
or the household. Governments of resource-rich countries face a similar, if not a
more challenging problem of managing resource wealth given highly volatile and
unpredictable commodity prices (see IMF, 2015a). Uncertainty is a key factor in
the conduct of monetary and fiscal policy and in climate change economics,
among others.

This paper is concerned with the design of optimal policy in the presence of
general uncertainty. The proposed analytical framework is applied to a
small-scale model of fiscal adjustment but the method has considerable
generality and can be used to address any decision problem of similar nature.
The focus on adjustment is motivated by the prominent role that fiscal policy
has played in the response to the financial crisis and the growing attention fiscal
instruments have received in recent policy debates on stabilization and growth
(see IMF, 2015b).

With monetary policy constrained by the zero lower bound of interest rates,
many governments, especially in advanced countries, resorted to discretionary
fiscal policy to provide short-term support to aggregate demand during the
crisis. Stimulus packages included temporary tax cuts, increased spending on
unemployment and social benefits and investment in infrastructure (IMF, 2013).
In a number of cases, public interventions involved substantial support to the
financial sector in the form of capital injections, asset purchases or extension of
guarantees. Against the background of difficult economic conditions and
declining revenue, fiscal balances deteriorated sharply and public debt soared.
In advanced economies, the (simple) average debt-to-GDP ratio increased from
48 percent in 2007 to 75 percent in 2014.2 Debt has been on a rising path in
some emerging markets as well.

The expansion of fiscal deficits and rapid accumulation of government liabilities
has raised concerns about the sustainability of public finances. Unwinding of
the fiscal stimulus measures alone has not been sufficient to put debt on a
declining path. Large-scale fiscal adjustment is still needed in many advanced

1For instance, Mody et al. (2012), have attributed a significant part of the increase in
savings rates in the aftermath of the financial crisis to the precautionary motive. Their result
is explained with the heightened uncertainty about labor income and investment returns.

2October 2015 Fiscal Monitor data base.
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economies to ensure solvency and minimize the drag of debt on growth.3

Designing a fiscal consolidation program that minimizes the negative impact on
growth entails difficult choices. These include the targeted level of debt, the
timing and size of the primary balance improvement, as well as the composition
of adjustment (the mix of revenue and expenditure measures). Decision-making
becomes all the more challenging when the effects of fiscal policy on output and
debt are not known precisely due to parameters uncertainty, measurement
errors and various shocks that may affect the outcome.

Blanchard and Leigh (2013) provide a brief non-technical summary of the
arguments as to when it is better to adjust earlier rather than later and when
backloading of adjustment could pay off. To a large extent the debate about the
optimal pace of adjustment is organized around the size of fiscal multipliers –
the change in GDP resulting from a unit discretionary change in taxes or
government expenditure. Recent empirical evidence suggests that fiscal
multipliers are not constant over the business cycle and they are typically bigger
during downturns. Based on US data, Auerbach and Gorodnichenko (2012) find
that spending multipliers vary from 0 - 0.5 in expansions to 1-1.5 in recessions.
This implies that a reduction in government spending or an increase in taxes
would have a large negative impact on output during a downturn and hence,
postponing consolidation would be the more prudent approach. Additional
considerations in favor of a smaller initial adjustment in bad times are related
to possible non-linear and persistent effects on growth. For example, DeLong
and Summers (2012) argue that in a depressed economy cyclical output
shortfalls may affect future potential output. The presence of such hysteresis
effects has important implications for the conduct of fiscal policy.

In some cases, however, a front-loaded consolidation may be warranted. As
noted by Blanchard and Leigh (2013), if a country finds itself in a situation of
debt overhang, it would likely face rising interest rates which could render its
public debt unsustainable. Also, higher sovereign bond spreads could feed into
the spreads of private borrowers and contribute to a further slowdown of
growth. In such circumstances, a larger upfront adjustment that reduces the
level of debt and restores confidence of investors could prove beneficial. Indeed,
some studies suggest that fiscal adjustments can be associated with expansions
in private demand. Using cross-country data for OECD countries, Giavazzi and
Pagano (1995) find that changes in fiscal policy (both expansions and
contractions) can have significant non-Keynesian effects if they are sufficiently

3Some authors find a negative impact of high public debt on growth (e.g., Kumar and Woo,
2010). The effect becomes pronounced only after a certain threshold of the debt-to-GDP ratio
is reached. This threshold varies by country and depends on a number of factors, such as level
of development and investors base.
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large and persistent.

The foregoing discussion makes it clear that a ”one-size-fits-all” approach would
not be productive and the adjustment program in each case should reflect
country-specific circumstances. Analysts and policy makers would generally be
able to form views based on previous consolidation episodes and experience of
other countries with similar characteristics. Nonetheless, it may be useful to
complement the qualitative arguments with a quantitative measure of an
optimal fiscal response. The potential benefit from a formalized approach is
perhaps best illustrated by the example of a highly indebted economy facing low
or negative growth. In such circumstances, the debt overhang story and the
high multipliers story tend to work in opposite directions as regards the
appropriate fiscal action. Should a larger adjustment be undertaken initially to
reduce the fiscal deficit or should automatic stabilizers be allowed to operate? If
consolidation is postponed, for how long and at what cost? While these
questions do not admit simple answers, a model which incorporates the various
trade-offs and accounts for some of the uncertainties, could help to guide the
policy decisions.

Quantitative policy rules can be obtained as solutions to suitable optimization
problems involving minimization of a loss function (or maximization of a utility
function) subject to constraints. In the economic literature, loss functions are
typically assumed to be quadratic and constraints are linear. The quadratic
functional form is either specified ad hoc, based on considerations for stability,
or it is derived as a second order Taylor approximation of some ”true” objective
function. Benigno and Woodford (2012) argue that linear-quadratic (LQ)
problems can be employed as approximations to exact optimal policy problems
in a broad range of cases. Furthermore, under certain conditions the linear
decision rules that result from solving LQ models represent local linear
approximations to the actual optimal policy rule.

In economic applications, the preferred framework for tackling optimal decision
problems is stochastic LQ control; it has been extensively studied and its
properties are well known. One feature that makes it particularly attractive is
that when disturbances are normal, replacing the uncertain quantities with their
mathematical expectations yields the same solution as the corresponding
deterministic problem (the so called ”certainty equivalence” principle).4

While certainty equivalence is a convenient analytical property, it is not

4The concept of certainty equivalence was introduced by Simon (1956) in the one-dimensional
case and later generalized by Theil (1957). Most results related to certainty equivalence are
obtained for LQ problems with additive Gaussian disturbances. Deviations from this framework
may cause the principle to fail (see Chapter 10 in Chow(1986)).
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necessarily a good representation of how decisions are made in practice. In
many real world situations uncertainty is explicitly taken into account in
decision-making, and actions are chosen such as to yield acceptable outcomes in
a range of circumstances. Thus, when policy makers decide about specific
measures, they would consider not just the most likely scenario, but also
alternative, perhaps less likely, but still plausible scenarios. An approach
entirely based on expected values would fail to capture this feature. Moreover,
sometimes it is not practical, or even feasible, to assign probabilities to the
various possible outcomes, which essentially precludes the use of stochastic
methods. This point has been made on various occasions at meetings of the
Federal Open Market Committee, as the following quotes attest:5

A. Santomero: ”At this point, it might be useful for us to recognize
again the difference between risk and uncertainty. With risk, as we
know, one can assign probabilities to the list of outcomes and act
appropriately given the distribution. With uncertainty, it is difficult
to assign probabilities to outcomes...Today we are operating in a
world of increased uncertainty.”6

D. Kohn: ”I don’t feel as though I know enough to say that the risks
are balanced. I don’t know. The range of outcomes is just too wide,
and there’s very little central tendency in it. So I’d be very
uncomfortable with a statement saying that I kind of thought the
risks were balanced. I am much more comfortable with a statement
that says there is a lot of uncertainty out there and that’s
uncertainty around the economic outlook.”7

As noted earlier, the goal of this paper is to present a framework that allows for
the derivation of optimal policy in the presence of general uncertainty. Unlike
the stochastic set-up where model disturbances are random variables with given
probability distributions, here they are only assumed to belong to some
compact set. This set-membership approach to modeling uncertainty is
relatively well established in the engineering literature and can be traced back
to the works of Witsenhausen (1966), Bertsekas (1971) and Bertsekas and
Rhodes (1973), among others.

In economics, similar ideas have been pioneered by Hansen and Sargent (2008)
who take the view of robust control to address issues with model specification.

5For more examples, see Nelson and Katzenstein (2014).
6FOMC (2003), p.45
7FOMC (2007), p.110
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In Hansen and Sargent (2008) and in other contributions, the decision maker
expresses a preference for robustness through the inclusion of a penalty term in
his loss function (the multiplier problem). An alternative formulation is to
constrain the sum of the squared future disturbances (the constraint problem).
Under certain conditions, the solution of the two problems coincide and in the
LQ case optimal feedback rules can be derived explicitly.

The approach adopted in this paper is in the spirit of robust control in the sense
that no specific structure is imposed on the model disturbances, except that
they are bounded. The way the bounds are specified, however, is different from
the standard robust control literature. Rather than postulating a single
constraint on the squared sum of disturbances as in the constraint problem, we
consider the case where the bounds for the uncertain quantities are provided
separately in each period (instantaneous constraints). We take these bounds to
be given by ellipsoids in Rn.

The instantaneous constraints formulation allows for a more flexible
specification of uncertainties and is of greater practical relevance. However, the
increased flexibility comes at the cost of higher technical complexity. Even with
ellipsoidal constraints for disturbances, it does not seem feasible to obtain a
closed form solution as it is the case with LQ robust control. The dynamic
programming algorithm provided by Bertsekas (1971) is applicable but its
implementation is cumbersome and the calculation of optimal controls is not
straightforward. Instead, we obtain a solution using a minimax maximum
principle. The resulting boundary value problem is solved numerically with a
shooting method. The shooting method takes advantage of the finite horizon of
the problem, a feature which, along with the possibility for time-varying
coefficients, distinguishes our model from most of the literature. In the
particular case of fiscal adjustment, the focus on finite horizons is natural;
governments aim to bring debt to desirable levels within a given time frame.
Often the credibility of the consolidation plan will depend on the clear
specification of this time frame.

From the point of view of policy making, the applied aspects of the proposed
approach are of interest. To give a flavor of how the model can be used to assess
the pace of fiscal consolidation of a particular country, we take the example of
Portugal in 2011. We perform several experiments assuming different fiscal
multipliers and weights in the loss function and examine how the optimal
response, measured by the change in the primary balance, reacts to the model
assumptions. Overall, the results confirm the intuition that when multipliers are
high and growth is low, the adjustment should be smaller. The value of the
analysis is that it provides a numerical estimate of the optimal primary balance
at each point in time. As a side tool, we show how external ellipsoidal
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approximations of the reachable sets of a dynamical system can be used to infer
where debt and the output gap may end up under the influence of disturbances.
The reachable set technique can be considered as the analogue of fan charts in
the case when no probabilistic assumptions are made about the shocks.

The paper is organized as follows. Section 2 provides a brief overview of the
literature on decision-making under uncertainty; Section 3 develops the model
and discusses its solution in the general case; Section 4 reports the results from
the policy experiments for Portugal, and finally, Section 5 offers some
conclusions and directions for further work.

2 Decision-making under uncertainty:

literature review

The problem of selecting the best course of action in the face of uncertainty is a
problem of decision theory. A typical decision problem comprises several
elements: (i) an unknown quantity – usually interpreted as the state of nature;
(ii) a set of possible actions; and (iii) a criterion (e.g. utility or loss function) to
evaluate the outcome. When uncertainty can be plausibly described in
probabilistic terms, the tools of statistical decision theory can be employed.

There are two main branches of statistical decision theory – Bayesian and
frequentist, which mainly differ in how information is treated, in particular prior
information. A Bayesian decision maker would minimize the expected loss,
where the expectation is taken with respect to a prior probability distribution.
A frequentist would minimize a risk function that is consistent with the worst
possible outcome if a certain decision rule is applied.

While the Bayesian approach seems to have gained dominant position in
modern decision theory, there are situations in which the (frequentist) minimax
criterion would be more appropriate.8 One such situation is when the state of
nature is determined by an intelligent opponent. In problems of this kind, the
minimax approach is justified on the grounds of preference for conservative
behavior. For example, in deciding whether to invest in a risky or in a safe
bond, the safe bond could be chosen even though it has lower expected return
(Berger, 2010). The minimax approach is perhaps most useful when no prior
information is available. A closely related notion is that of Knightian
uncertainty which refers to a form of uncertainty ”not susceptible to

8Influenced by game theory, the minimax criterion has been part of decision theory since its
very early days (see Wald (1950), also Savage (1951) for an intuitive, non-technical explanation).
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measurement and hence to elimination”,9 unlike ”measurable uncertainty” or
”risk” which can be represented by numerical probabilities.

Ellsberg (1961) in his influential paper highlights the distinction between the
two types of uncertainty. He considered the willingness to take bets as revealing
the degree of belief for events for which no statistical information is available
and designed experiments showing that some decisions are incompatible with
the axioms of rational behavior. This occurs in situations of information
ambiguity. According to Ellsberg, minimax decision rules are consistent with
complete lack of information about probabilities, whereas the Bayesian
approach is undoubtedly preferable when one has a definite view on a particular
distribution. The difficulty arises in the intermediate cases when uncertainty
can neither be characterised as ignorance, nor as risk.

Arrow and Hurwicz (1972) proposed a modification to the minimax model to
tackle problems where no a priori information is available.10 They showed that
a rational criterion of choice under complete ignorance would take into account
only the worst and the best outcome among all possible outcomes. A decision
rule that formalizes this framework is a weighted average of the two, with the
weight representing the degree of pessimism of the decision maker. Thus, under
the Arrow-Hurwicz approach, a conservative decision maker would likely adopt
a criterion closer to the minimax.

Recent developments in decision theory that offer solutions to the ambiguity
problem include the Choquet expected utility (Schmeidler, 1989) and prospect
theory (Kahneman and Tversky, 1979). A comprehensive survey of the
advances in the field can be found in Etner et al. (2012). We shall only briefly
refer to the work of Gilboa and Scheimdler (1989) which can be related to the
application of robust control to economic problems (see below). Gilboa and
Schmeidler (1989) recall Ellsberg’s experiment and confirm that no probability
measure could support the empirically observed preferences through expected
utility maximization. They provide an explanation to the paradox based on the
observation that the decision maker has too little information to form a prior
and therefore, he or she considers a set of priors. ”Being uncertainty averse
(s)he takes into account the minimal expected utility (over all priors in the set)
while evaluating a bet.”11 Gilboa and Schmeidler establish an axiomatic
foundation of the minimax expected utility theory which covers Wald’s minimax
criterion. A further generalization is obtained by Maccheroni et al. (2006)

9Knight (1964), p.232.
10The approach of Arrow and Hurwicz (1972) is in spirit closer to the non-probabilistic frame-

work proposed by Shackle than the decision theory based on subjective probability developed
by Savage (see Zappia (2014) for an extensive account of Shackles work.)

11Gilboa and Schmeidler (1989), p. 142.
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through the introduction of variational preferences which include multiple prior
and multiplier preferences as special cases.

While decision theory was initially developed in a static framework, its
usefulness for dynamic problems was quickly appreciated. Witsenhausen (1966)
is an example of systematic application of decision theory to a discrete time
optimal control problem and is also a good source of references to earlier work.12

In a dynamic setup, the decision problem is often associated with the need to
achieve robust performance of a perturbed control system. The concept of
robust control originated in the engineering literature in recognition of the fact
that classical control techniques did not deliver the desired outcomes (e.g.
stability) under small perturbations of the system dynamics. Theory evolved
over time and stochastic control methods that prevailed in the 1960s and 1970s
gave way to alternative approaches. An example is the so-called H∞ control
which was initially developed in the frequency domain but as the link with
dynamic games became known, efforts were directed to obtaining solutions in
the time domain (see Basar and Bernhard (1995) for more details).

In economics, robust control methods have been actively promoted by Hansen
and Sargent (2008). In their framework, the main justification of robustness
comes from the need to address the issue of model misspecification. The essence
of Hansen and Sargent’s approach is that the decision maker has a model that is
only an approximation of the true model that generates the data. This model is
surrounded by a set of alternative models, such that their relative entropy is
bounded by some number. Relative entropy is used as a measure of the distance
between alternative probability distributions. Thus, the decision maker deals
with misspecification by seeking a rule that will perform well across all models
that satisfy the relative entropy constraint. Relating this idea to the previous
discussion, the formulation of the decision problem in terms of multiple priors
naturally leads to the Gilboa-Schmeidler paradigm and the minimax solution
concept. Consequently, the problem can be formalized as a two-player dynamic
game where a malevolent agent chooses a disturbance that minimizes the utility
function which the decision maker attempts to maximize (see Hansen and
Sargent, 2011).

The dynamic game approach to controlling uncertain systems has been applied
to non-linear problems as well. Baras and Patel (1998), for example, obtained
results for non-linear systems represented by difference inclusions, where the

12It is interesting to note that two decades before Gilboa and Schmeidler, Witsenhausen
discussed the expected minimax utility criterion. He argued that the minimax decision rule,
or ”guaranteed performance evaluator” in his terminology, is a special case of an ”expected
guaranteed performance evaluator” which essentially combines expectations with the minimax.
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decision maker is concerned with the rejection of bounded disturbances on a
regulated output. The problem gives rise to a dynamic game where the
controller plays against the set-valued system. The authors offer a specific
example involving both parametric uncertainty and additive disturbances.

More recently, Moitie et al. (2002) considered a rather general discrete-time
optimal control problem with uncertainty both in the dynamics and the
measurement of the system’s state, as well as imperfect measurement of the
initial condition. They derived an optimal output-feedback solution in the
minimax sense and applied it to a pursuit-evasion game with incomplete
information of the current state of the evader.

Robust control methods have also been used in relation to econometrically
estimated models. Onatski and Williams (2003), for instance, take a small
estimated macroeconomic model and derive Taylor-type monetary policy rules
that are robust to various forms of uncertainty. One important conclusion from
their analysis is that policy rules designed to perform well under one type of
uncertainty may fail and lead to instability if the uncertainty is of different
nature. Onatski and Williams (2003) implement both parametric and
non-parametric approaches to modeling model errors. The parametric
specification results in a probabilistic description of uncertainty and use of the
Bayesian decision criterion. The non-parametric specification imposes less
structure (only empirically simulated bounds on the uncertainty) and the
relevant criterion is minimax. They find that for many specifications the
Bayesian and minimax criteria produce similar results.

As discussed above, the decision criterion used in this paper is minimax but the
instantaneous constraints on the uncertain variables differentiate our model
from the standard (constraint) robust control problem. Therefore, it is not
obvious if an equivalent multiplier problem can be devised that would fit into
the decision-theoretic framework of Maccheroni et al. (2006), for example.
While establishing an axiomatic foundation for our model is of interest on its
own, this task goes beyond the scope of the paper. Yet, we mention one possible
interpretation which is due to Witsenhausen (1966). He considered a criterion
of the form infd∈D supa∈AEµa(n)L(d, n), where A is a set of probability measures
on a common σ-algebra on the set of states of nature N (n ∈ N), µa(n) is the
probability measure for a ∈ A, D is the action space or the set of possible
decisions (d ∈ D) and L(d, n) is a loss function. In this setting, expected
performance corresponds to the case when A consists of a single element and
guaranteed or minimax performance is associated with the case when the
σ-algebra is the set of all subsets of N and A = N with µn the atomic measure
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at point n.13

3 A simple model of fiscal adjustment

We consider a model where the decision maker (government) is interested in the
paths of output and public debt. With no discretionary fiscal policy and no
uncertainty, output and debt would evolve according to the following equations:

Yt+1 = (1 + gt+1)Yt

Dt+1 = (1 + rt+1)Dt + Pt+1,

where Yt denotes nominal GDP at time t, gt+1 is the nominal GDP growth rate
in t+ 1, Dt stands for the nominal stock of debt, rt+1 is the nominal interest
rate paid on debt and Pt+1 is the primary deficit. A fiscal action, defined here
as a change in the primary deficit ∆P̃t+1, influences the dynamics of both
output and debt.14 The effect on output would depend on the size of the fiscal
multiplier αt, so GDP would change relative to the baseline by
∆Yt+1 = αt∆P̃t+1. Assuming that αt is positive (Keynesian effect), an increase
in the primary deficit would result in a higher GDP but would also increase
government debt by the amount of the stimulus. Thus, with discretionary fiscal
policy the above equations become:

Yt+1 = (1 + gt+1)Yt + αt∆P̃t+1 (1)

Dt+1 = (1 + rt+1)Dt + Pt+1 +∆P̃t+1. (2)

System (1)-(2) describes the dynamics of output and debt in nominal terms. It
is often more convenient to use scaled variables, e.g. obtained by dividing both
sides of the above equations by potential output in period t+1, denoted by Y p

t+1

and assumed to grow at a rate gpt+1 that is not affected by fiscal policy. The
latter assumption is an important one as it rules out possible hysteresis effects as
discussed in DeLong and Summers (2012).15 Since we are primarily concerned
with medium-term dynamics, this assumption does not seem overly restrictive.

13See Witsenhausen (1966), p. 12.
14In practice, the primary balance may not be fully controllable given its endogeneity to

growth and implementation lags. Since we are primarily concerned with annual observations,
we can assume that most of the effects of fiscal measures will take place within the year.

15Admitting the possibility that fiscal policy can influence g
p

t+1 will make the problem non-
linear which precludes the use of the solution methods discussed below.
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Setting yt := Yt/Y
p
t , dt := Dt/Y

p
t , pt := Pt+1/Y

p
t+1, ut := ∆P̃t+1/Y

p
t+1, and using

that Y p
t+1 = Y p

t (1 + gpt+1), we can rewrite the equations as:

yt+1 =
(1 + gt+1)

(1 + gpt+1)
yt + αtut

dt+1 =
(1 + rt+1)

(1 + gpt+1)
dt + pt + ut

In the absence of uncertainty, for given parameters and initial values of the
output gap ȳ0 and debt to potential GDP ratio d̄0, one could calculate explicitly
the state trajectories for any sequence of policy actions since the system is
linear in both the state and control variables. The deterministic setting,
however, is a simplifying assumption which will fail to hold in most practical
applications. In this particular example, key parameters of the model are not
known with certainty, namely the fiscal multiplier αt, the interest and growth
rates. Furthermore, there are various shocks that could affect the behavior of
the system at any point in time. Finally, direct measurements of potential GDP,
and hence the output gap, are not available and this variable can only be
estimated with some error. Explicit modeling of each of these types of
uncertainty is, of course, preferable but it entails significant technical
complications. We leave this for future work. Here the focus is on the case when
model uncertainty can be reasonably represented by additive disturbance terms
to the system dynamics. This assumption gives rise to the following system of
first-order difference equations:

yt+1 =
(1 + gt+1)

(1 + gpt+1)
yt + αtut + w1,t (3)

dt+1 =
(1 + rt+1)

(1 + gpt+1)
dt + pt + ut + w2,t (4)

y0 = ȳ0, d0 = d̄0.

As indicated earlier, of interest is the case when the unknown shocks (w1,t, w2,t)
are only assumed to belong to some compact set, without imposing any
structure on them. For concreteness, we take this set to be the ellipsoid

Wt = {wt : (wt − w̄t)
′W−1

t (wt − w̄t) ≤ 1}, (5)

where the matrices W−1
t are positive-definite.

The choice of ellipsoids as a class of sets where model disturbances lie is partly
driven by technical convenience since an ellipsoid is fully specified by only two
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parameters – its center and shape matrix. This allows for analytical derivations
of first-order optimality conditions with respect to the disturbance vector. An
additional advantage of the ellipsoidal sets is their potential link to statistical
inference.16

To simplify notation it is convenient to set xt = (yt, dt)
′, et = (0, pt)

′. Thus, the
output and debt dynamics can be written in a compact form as

xt+1 = Atxt +Btut + et +Gtwt (6)

x0 = x̄0 (given). (7)

where the time-varying matrices At and Bt can be inferred from equations
(3)-(4). Note that the formulation in (6) is slightly more general than in (3)-(4)
as it allows both components of the disturbance vector to influence both
variables if the matrix Gt is not diagonal (e.g. a shock on debt also affects
growth). Further, since often in practice factors other than the primary deficit
influence the debt dynamics, such stock-flow adjustments, when known, should
be reflected in the free term et. Finally, we highlight that obtaining a solution
based on the general system (6)-(7) enhances the applicability of the method; it
can be applied to an arbitrary problem characterized with linear dynamics,
including to estimated models, for example.17

It is worth noting that while in equation (6) the additive nature of disturbances
wt is specified ad hoc, an equivalent representation can be obtained by
linearizing a non-linear model. Consider, for instance, the following general
model:

xt+1 = ft(xt, ut),

where xt ∈ Rn, ut ∈ Rm and the vector-valued function f(·, ·) is smooth, with
f(0, 0) = 0. The above non-linear system can be expressed as a sum of a linear
and a non-linear term around the origin:

xt+1 = Atxt +Btut +Rt(xt, ut),

16Suppose we are given a model with Gaussian errors where the variables of interest have been
estimated statistically and are known to be distributed normally with mean µ and covariance
matrix Σ. The level sets of the normal distribution, or the surfaces of constant probability
density, are the sets of points x such that (x − µ)′Σ−1(x − µ) = c2. If c2 = χ2

p(a), the
probability that the random vector is inside the the ellipsoid (x − µ)′Σ−1(x − µ) ≤ χ2

p(a) is
1− a. This is the (1− a) confidence region for x – the multivariate analogue of the confidence
interval.

17One possible extension of the fiscal consolidation model is to consider two control variables
– taxes and expenditure– to calculate both the optimal pace and composition of adjustment.
However, if the revenue and spending multipliers differ significantly, it may be necessary to
modify the solution so as to constrain the controls. Otherwise, the model might suggest unre-
alistically large swings in the tax and expenditure ratios.
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where At and Bt are the derivatives of f with respect to the first and the second
argument, respectively, and the vector-valued function
Rt = (R1,t(xt, ut), R2,t(xt, ut)) summarizes all non-linear terms. Setting
wt = (w1,t, w2,t) = (R1,t(xt, ut), R2,t(xt, ut)) leads to a linear system as in (6).

We next turn to the objective of the decision maker. The decision maker chooses
a sequence of controls ut (fiscal actions) that minimize a loss function under the
assumption of maximum disturbances (within the given bounds), i.e. he solves

inf
ut

sup
wt∈Wt

J(u, w) (8)

subject to constraints (5) -(7), where

J(u, w) =

T−1
∑

t=0

βt

2
[(xt − x̄t)

′Qt(xt − x̄t) + (ut − ūt)
′Rt(ut − ūt)]

+
βT

2
(xT − x̄T )

′QT (xT − x̄T )

is a quadratic loss function which depends on the state x and the control u, and
involves some reference values for these variables x̄ and ū; β < 1 is a discount
factor, and Qt and Rt are positive definite weight matrices. The reference values
for the state variable x are exogenous to the model. While it would be natural
to select the value of 1 as a benchmark for the ratio of actual to potential
output (zero output gap), the choice of target debt ratio is less obvious. For
some countries the decision may be guided by the existence of formal fiscal
rules, such as the Maastricht debt criterion for EU member states, for example.
However, strict adherence to such rules may not always be a prudent choice,
especially if the initial debt is far off the reference value and the adjustment
period is relatively short.

More generally, setting too ambitious goals could result in unrealistic
adjustment paths. The presence of the quadratic term (ut − ūt)

2 in the
objective function would attenuate this effect to some extent since it punishes
large deviations from the baseline. However, if the unconstrained solution still
points to significant changes in the primary balance, a formal constraint could
be imposed on the control variable, i.e. ut ∈ Ut = [ut, ut]. The rationale is that
too large an adjustment may not be politically feasible (or too much stimulus
could trigger debt sustainability concerns).

In control theory problem (5)-(8) is known as the ”linear-quadratic tracking
problem” and it has been widely used in engineering applications. One
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difference from the engineering literature is the presence of the discount factor β
in the loss function (8). Adding a discount factor does not lead to any
significant complication in terms of solving the model but is important from an
economic point of view; for longer planning horizons when adjustment needs are
high, it would counteract very large upfront debt reductions that lead to
excessive output gaps in the initial periods.

The formulation of the tracking problem in this paper is fairly general and
allows for the consideration of various alternatives. For instance, the goal of the
policy maker could be to steer the system as close as possible to a desired end
state x̄T with no reference to intermediate states. This is a special case of the
above model where the running cost function is set equal to zero and only the
final term remains. Also, the time-varying coefficients provide significant
flexibility in terms of assumptions that can be incorporated in the model, e.g.
the user can specify different fiscal multipliers in different periods of time.

It is customary to solve problems like (5)-(8) by applying the dynamic
programming method (DP). For a model with linear dynamics and more general
loss function and disturbance sets, Bertsekas (1971) provides a solution method
by dynamic programming. The implementation of the DP algorithm for this
particular problem, however, leads to technical difficulties related to the need to
solve a complex equation for the Lagrange multiplier associated with the
ellipsoidal constraint (see Appendix A.2). An alternative is to employ some
form of a minimax principle along the lines of the maximum principle for
discrete-time problems. Such minimax principle has been established by
Bertsekas (1971) but its applicability is relatively limited since it rests on rather
strong assumptions. It turns out, however, that these assumptions are satisfied
for our model and we can use the result to calculate the optimal controls and
trajectories. The following set of necessary conditions obtains:

w∗

t = w̄t +
1

2λt
WtG

′

tpt+1

u∗t = ūt − βR−1
t B′

tpt+1

pt = A′

tpt+1 + βtQt(x
∗

t − x̄t)

pT = βTQT (x
∗

T − x̄T )

x∗t+1 = Atx
∗

t +Btu
∗

t + et +Gtw
∗

t

x0 = x̄0.

where pt is the adjoint variable and λt is the Lagrange multiplier associated
with the ellipsoidal constraint.
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Thus, application of the minimax principle leads to a boundary value problem
with an initial value for the state x and a transversality condition at the right
end for p. Since the model is in finite time, we can use the so-called shooting
method to find the solution. The method comprises guessing the initial value of
the adjoint vector, solving the system with this initial value and after
comparing the end value with the one obtained from the transversality
condition, updating the initial guess. Appendix A.3 gives the necessary details
of the procedure and explains how a multivariate secant method can be used to
numerically solve the problem.

4 Application: the case of Portugal

As an illustration of how the model developed in the previous section can be
applied to assess a specific fiscal adjustment program, we consider the case of
Portugal at the time of the country’s request for IMF assistance. The purpose
of the exercise is to compare the paths of the primary balance, output gap and
debt under the program with those implied by the model and examine how the
key variables respond to changes in assumptions. Although the illustrative
simulations refer to an advanced economy, the data requirements of the method
are relatively modest and it can be used for emerging and low-income countries
as well.18

After becoming part of the Euro area, Portugal enjoyed a period of low interest
rates which contributed to a significant fiscal expansion prior to the global
financial crisis. The increase in current expenditure (mostly social benefits and
health care) outpaced the decline in the interest bill and public debt rose from
48 percent in 2000 to 93 percent in 2010 (IMF, 2011). At the same time, real
exchange rate appreciation and unaddressed long-standing structural problems
lead to loss of competitiveness and dimmed the country’s growth prospects.
Facing sharply worsening financing conditions with sovereign spreads at record
high levels, in May 2011, the Portuguese authorities requested a three-year
arrangement under the IMF’s Extended Fund Facility (EFF).

One of the objectives of the program was restoring market confidence through
bold fiscal reforms, while mitigating the impact of consolidation on economic
activity. The authorities were committed to reaching a deficit of 3 percent of
GDP and stabilizing debt by 2013. To ensure credibility of the consolidation
plan, the adjustment was front-loaded with discretionary measures in 2011

18In fact, one could argue that the proposed approach is more appealing for countries with
poor data availability or a track record of erratic fiscal behavior, given that in such cases the
probabilistic framework would be difficult to apply.
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amounting to 5.7 percent of GDP and another 5 percent in 2012-13 (IMF,
2011). Both revenue-enhancing measures and expenditure cuts were envisaged
with a view to minimizing the drag on growth and protect vulnerable groups.

Table 1 presents a set of indicators pertaining to output and fiscal sector
developments in the base year (2010) and IMF staff’s projections under the
baseline scenario.19

Table 1: Portugal: Selected indicators

2010 2011 2012 2013 2014 2015 2016

in billions of euro

Nominal GDP 172.5 170.6 169.8 174.0 180.7 187.2 193.5
Potential nominal GDP 173.6 175.5 178.7 183.0 188.3 193.8 199.5
Primary deficit 10.6 2.9 -0.5 -3.6 -5.1 -5.9 -6.4
Public debt 160.5 181.5 190.5 200.7 207.8 211.4 214.8
Sock-flow adjustments 4.8 11.0 1.4 5.0 2.8 0.0 0.0

in percent

Nominal GDP growth 2.3 -1.1 -0.5 2.5 3.8 3.6 3.4
Potential GDP growth 0.4 1.1 1.8 2.4 2.9 2.9 3.0
Effective interest rate 3.7 4.4 4.5 4.6 4.6 4.6 4.7

Source: IMF (2011)

The information in the table is used to construct the matrices At and the initial
values for the output gap and debt to potential GDP ratio. In the model, the
baseline primary deficit is captured in the term et and there we also include the
stock-flow adjustments that are implicit in IMF staff’s projections. These
liabilities, mainly incurred in relation to provision of government support to the
financial sector, are quite significant in the initial years and constitute an
important driver of public debt. To pin down the rest of the model parameters,
the following assumptions are made:

(i) The fiscal multiplier α is set equal to 0.5, a value that is consistent with the
findings for advanced economies in Mineshima et al. (2014).20 For simplicity, it
is kept constant throughout the projection period. (In one of the simulations a

19Potential nominal GDP is calculated based on the output gap shown in Table 1 of IMF
(2011). Stock-flow adjustments are obtained as the difference between actual debt in the current
period and the sum of the debt in the previous period, interest payments and the primary deficit.
It is important to note that the actual fiscal adjustment path (as well as growth and debt) were
different from the ones envisaged in 2011.

20The authors find that the average first-year spending multiplier is about 0.75 and the
revenue multiplier is about 0.25.
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fiscal multiplier of 1.5 is assumed to explore the sensitivity of the optimal deficit
path to the multiplier value.)

(ii) The weighting matrices Qt and Rt are assumed constant and equal to the
identity matrix; for Qt this implies that equal weights are assigned to debt
reduction and closing of the output gap. This is equivalent to minimizing the
Euclidean distance between the actual state vector and the target vector. Other
choices can be accommodated easily and the results would generally be sensitive
to the weights, as demonstrated below.

(iii) The matrix Gt is also set equal to the identity matrix, implying that the
first equation is affected only by the first disturbance w1 and the second
equation is perturbed only by w2.

Figure 1: Disturbance ellipsoids (left panel for t=0,1,2, right panel for t=3,4,5)
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(iv) For illustrative purposes the disturbance ellipsoid is centered at the point
(−1, 1) in the first three years of the projection horizon to reflect concerns for
possible negative shocks to the output gap and positive (debt-increasing) shocks
to debt. For the remainder of the period, the anticipated shocks are neutral, so
the disturbance ellipsoids are centered at the origin. (Note that this does not
eliminate the uncertainty.) The shape matrix Wt is a constant diagonal matrix
for all t = 0, ...T − 1 with entries of 1.96 and 5.76 in the main diagonal (a
diagonal shape matrix relates to the case of uncorrelated shocks in a stochastic
setting). This approximately corresponds to an uncertainty region between −2.4
and 0.4 for the output gap shock and between −1.4 and 3.4 for the debt shock
in each period for t = 0, 1, 2.21 The choice of parameters for the shape matrix is

21As discussed in Appendix A.4, an ellipsoid in R2 with a diagonal shape matrix is contained
in a rectangle with sides equal to two times the square root of the main diagonal entries. In
this case, this is a rectangle centered at (-1,1) with sides 2

√
1.96 and 2

√
5.76.
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largely driven by past data. Using different vintages of the World Economic
Outlook (WEO) database, we compared the one-year ahead forecasts for the
output gap and debt ratio in the period 2001-2010 (information available at the
time of the EFF request). The median absolute forecast errors are estimated at
1.4 percentage points for the output gap and 2.4 percentage points for the debt
to potential GDP ratio, respectively.22 The diagonal elements of the shape
matrix are the squares of these two numbers. Figure 1 plots the respective
disturbance sets for t = 0, 1, 2 (left panel) and t = 3, 4, 5 (right panel).
Uncertainty is higher for the debt ratio which explains the shape of the
ellipsoids. It is important to emphasize that potential GDP used to calculate
the output gap in simulations is based on Table 1 and reflects available
information as of the projections date. Output gaps are notoriously difficult to
estimate, especially in financial booms and busts, and potential outputs for
many countries affected by the financial crisis, including Portugal, have been
revised downwards subsequently. In principle, uncertainties regarding the future
path of potential GDP should be taken into account when determining the
uncertainty bounds.

(v) Finally, it is assumed that the government targets a debt to potential GDP
ratio of 107.7 percent (the same as in IMF (2011)) and zero output gap at the
end of the planning period.

As an initial step of the scenario analysis we calculate the optimal fiscal path
without uncertainty. It would be useful to compare the IMF baseline, which
presumably is the most likely scenario, with the solution of a deterministic
version of our model where all disturbances are set equal to zero. As shown in
Appendix A.1, the deterministic model admits an explicit solution – a type of
fiscal Taylor rule where the primary balance responds to the output gap and the
debt level.

Figure 2 shows the optimal fiscal path implied by the deterministic model,
along with the baseline IMF staff projections. The figure suggests that while
the overall size of the required adjustment for the period is similar, the time
profile of the optimal primary balance is different. In particular, the model
implies a smaller adjustment in the initial period by about 2 percent of
potential GDP and a larger adjustment in the third and forth periods. Looking
at the output gap and debt to potential GDP trajectories, they diverge slightly
after the first period but come close together toward the end of the projection
horizon. It should be stressed that these results are conditional on the model

22The disturbance ellipsoids were calibrated based on past data just for illustrative purposes
and the median absolute deviation was chosen as a robust measure of variability. Of course, if
more detailed and forward-looking information is available to the decision maker, it would be
natural to incorporate it and possibly specify different ellipsoidal bounds for each period.
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Figure 2: Primary balance, output gap and public debt in the deterministic case
(fiscal multiplier of 0.5; equal weights)
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assumptions. If, for instance, a different target for the debt ratio is set, the two
paths will likely end up being farther apart.

Adding uncertainty to the model changes the analysis in important ways; the
trajectory of the state vector is no longer a sequence of points in R2 as in the
deterministic case. Instead, the evolution of the output gap and the debt ratio
is represented by a sequence of sets. Each of these sets comprises all possible
states that can be reached at a particular point in time starting from the initial
condition and taking into account all possible realizations of the disturbance
vector. The exact calculation of the reachable sets is a demanding task even for
simple problems (if at all feasible), so it is a common practice to use
approximations. Although not central to the analysis, obtaining reachable sets
approximations and their visualization can provide useful information about
where the system may end up if no discretionary action is taken. In a way, this
technique can be thought of as the set-membership analogue of the fan chart in
the stochastic setup, except that no probabilities are assigned to the different
states.

In most applications, first a specific class of sets is chosen and the best
approximations (external and internal) of the reachable sets are sought in the
respective class. Here we use external ellipsoidal approximations which
guarantees that the actual state lies within the approximating ellipsoid (see
Appendix A.4 for technical details ). Figure 3 shows the evolution of the
reachable set approximations over the planning horizon (left panel), as well as
approximation of the reachable set in the last period (right panel).23

23The plots are generated using the Matlab Ellipsoidal Toolbox by Alex Kurzhanskiy.
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Figure 3: Reach tube (left panel) and reachable set in final period
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Based on the reachable set analysis, if no action is taken, the debt ratio could
reach as high as 125 percent of potential GDP at the end of the planning
horizon. By increasing or reducing the baseline primary balance, the policy
maker can avoid such an undesirable outcome. Decisions about the amount and
timing of the primary balance change can be guided by the model solution when
discretionary policy is pursued.

The primary balance and state trajectories in an active policy scenario are
shown in Figure 4. Public debt is higher and the output gap is larger in
comparison with both the deterministic case and the IMF baseline, but this is
to be expected given the pessimistic assumptions about disturbances and the
relatively wide range of uncertainty. However, relative to the possible
realizations under a ”do nothing” strategy, the active policy scenario can bring
some improvement. The optimal reaction of the primary balance according to
the model, is to adjust slightly less in the first period, compared to the baseline,
but much more aggressively thereafter. The model-based cumulative
adjustment, as measured by the sum of primary balances throughout the
projection period, is close to 15 percent of potential GDP, compared to about
10 percent under the IMF baseline and the deterministic scenarios. This is not
surprising in view of the bounds for the debt shock; recall that under the worst
case scenario shocks can add up to 3.4 percentage points to the debt ratio in
each period during the first three years and up to 2.4 percentage points per year
in the last three years.

Various experiments can be run within this framework. For example, one can
examine how the optimal primary balance and the associated debt and output
gap would change if the fiscal multiplier is larger, say 1.5 instead of 0.5. The
dynamics of the variables in Figure 5 confirm the intuition that less adjustment
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Figure 4: Primary balance, output gap and public debt under uncertainty (fiscal
multiplier of 0.5; equal weights)
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should be done when the fiscal multiplier is high, especially in periods when
growth is low. Thus, the model suggests relaxation the primary balance in the
first period by about 1 percentage point of potential GDP relative to the
baseline and tightening after the third period when growth picks up, with a
cumulative adjustment of about 10.5 percentage points over the six-year horizon.
Under this scenario, however, debt remains on a rising path and approaches 125
percent of potential GDP in the final period. Such debt dynamics may not be
acceptable, including due to concerns about financing. Therefore, the policy
maker may attach a high value to quickly reducing debt and regaining markets’
confidence. In the model, this preference for faster debt reduction can be
accomodated by increasing the relative weight of debt in the objective function.
An experiment where the weighting matrix Q has entries 1/3 and 2/3 in the
main diagonal, yields the outcome shown in Figure 6. Not surprisingly, the
recommended adjustment is larger and more front-loaded but this comes at the
cost of widening the output gap relative to the case of equal weights.

To sum up, the simulation results presented above are in agreement with the
conventional wisdom laid out in the introduction: when multipliers are high, a
smaller and less front-loaded adjustment is warranted; however, if financing
conditions are tight, more needs to be done in terms of reducing the deficit
initially. What makes the formalized approach valuable in our view is its
capability to produce a quantitative response which is optimal with respect to
the given criterion. In the deterministic case, this is a relatively simple feedback
rule and when uncertainty is involved the optimal reaction function can be
computed numerically. Finally, we note that the above framework has the
flexibility of accommodating a wide range of assumptions, including multipliers
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Figure 5: Primary balance, output gap and public debt under uncertainty (fiscal
multiplier of 1.5; equal weights)
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that vary with the business cycle, time-varying and correlated shocks,
time-varying targets and weights, etc. The scenarios discussed above are purely
illustrative and the user can experiment with different specifications that reflect
more accurately the available information and his or her beliefs.

5 Conclusion and possible extensions

The paper provides an implementable solution to a linear-quadratic decision
problem under general description of uncertainty when system disturbances are
contained in ellipsoids. It applies the analytical framework to assess the fiscal
consolidation program of Portugal for the period 2011-2016 based on
uncertainty bounds derived from past data. Results suggest that if reducing
debt and closing the output gap are given equal weights in the government’s
loss function, the optimal time profile of the primary balance implies a smaller
adjustment in the initial year, when growth was negative, and larger
adjustments thereafter. This is particularly the case when fiscal multipliers are
big. A primary balance in the first period that is consistent with the baseline
program would be optimal if, for example, the government attaches twice as
much weight to reducing debt than to keeping actual GDP close to potential.

One natural extension of the analysis in this paper would be to incorporate
non-linear dynamics in the model. For instance, the interest rate which the
government pays on its new debt is not independent of the level of
indebtedness. Indeed, the higher the stock of public debt, the larger the
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Figure 6: Primary balance, output gap and public debt under uncertainty (fiscal
multiplier of 1.5; weight on debt=2/3, weight on output gap=1/3)
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premium that markets will require to continue to finance the borrower.24 In the
deterministic case, the solution of the corresponding non-linear model can be
obtained using dynamic programming or a maximum principle for discrete time
problems. Extending the non-linear model to incorporate uncertainty, however,
poses considerable difficulties. One possible approach is to seek a more general
form of the minimax principle which can be applied to a broader class of
functions.25 Alternatively, one can treat the control problem under uncertainty
as a dynamic game, where the decision maker plays against an adversary
(Nature) who tries to maximize the loss function. In order to be able to pursue
this approach, an appropriate equilibrium concept needs to be specified. It
would appear that a Stackelberg game, where Nature is the leader and the
decision maker is the follower, would be the proper setup; however, obtaining
feedback Stackelberg solutions is generally difficult.

Another direction for future work is to deal specifically with parametric
uncertainty and uncertainty about the initial condition. In the model considered
above, uncertainty is represented by additive terms which can be interpreted as
shocks to the system state. However, from a practical point of view it is
preferable to be able to model explicitly uncertainty in the coefficients– in this
case bounds for the fiscal multipliers, interest rates and growth rates of actual
and potential GDP. A related issue of interest pertains to imperfect

24Empirical evidence, based on a model where the feedback of debt introduces non-linearity,
can be found in Cherif and Hasanov (2012).

25Boltyanskii and Cebotaru (1974) have proved such a maximum principle for both discrete
and continuous time problems but in their set-up the uncertainty features in the criterion, not
in the dynamics.
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measurement. Potential GDP is not observable and can only be estimated with
an error. Ideally, this feature should be incorporated in the analysis as well but
again, it will make the problem technically much more challenging.

Finally, the setup in the paper is in finite time. This seems appropriate in view
of the specific goal of bringing the debt ratio down over the medium term to
some level deemed prudent. Assuming that the medium-term target is achieved,
the question remains open as to what policies should be pursued in the long run
to ensure that debt remains sustainable under small petrubations, i.e. the
analysis needs to be extended to include stability considerations (infinite-time
behavior).

Addressing these questions will make the model more realistic and will provide
decision makers with a richer tool for policy evaluation and design.
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Appendix A

A.1 Solution of the deterministic linear-quadratic

tracking problem

In the absence of uncertainty, the problem of minimizing the discounted
deviations of the state and control vectors from given target levels under linear
dynamic constraints is stated as follows:

T−1
∑

t=0

βt

2
[(xt − x̄t)

′Qt(xt − x̄t) + (ut − ūt)
′Rt(ut − ūt)]

+
βT

2
(xT − x̄T )

′QT (xT − x̄T ) → min (9)

s.t.
xt+1 = Atxt +Btut + et. (10)

x0 = x̄0, given .

Versions of this problem (known as the linear-quadratic tracking problem),
without the discount factor, have been extensively used in the engineering
literature. For this specific formulation, however, which involves discounting,
time-varying coefficients, a free term in the dynamics equation and non-zero
reference levels, the solution is not easy to find in the literature. For a variant of
the model with constant matrices a solution is provided in Engwerda (1990).
Chow (1986) considers a similar problem but without explicit controls. For
convenience, the solution of (9)-(10) is derived below.

Proposition 1 Let xt ∈ Rn, ut ∈ Rm and let the matrices Qt ∈ Rn×n and
Rt ∈ Rm×m be symmetric positive definite. Given sequences of vectors {x̄t}Tt=1,
{ūt}T−1

t=0 , {et}T−1
t=0 and real matrices {At}T−1

t=0 , and {Bt}T−1
t=0 of appropriate

dimensions, the solution to problem (9)-(10) is given by the pair of sequences
({u∗t}, {x∗t}) with

u∗t = Kt(β
tRtūt − B′

t(Pt+1Atx
∗

t + Pt+1et + ht+1)),

x∗t+1 = Atx
∗

t +Btu
∗

t + et , x0 = x̄0

where
Kt = (βtRt +B′

tPt+1Bt)
−1
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and the matrix Pt+1 and the vector ht+1 satisfy the following equations:

Pt = βtQt + A′

tPt+1At −A′

tPt+1BtKtB
′

tPt+1At

ht = A′

tPt+1BtKt(β
tRtūt −B′

t(Pt+1et + ht+1)) + A′

t(Pt+1et + ht+1)− βtQtx̄t

for t = 0, 1, ..., T − 1 and
PT = βTQT

hT = −βTQT x̄T .

Proof. There are different ways to prove the above proposition. This is a
convex finite-dimensional problem, so we can use the method of Lagrange. We
write the Lagrangian function as:

L =
T−1
∑

t=0

µ0
βt

2
[(xt − x̄t)

′Qt(xt − x̄t) + (ut − ūt)
′Rt(ut − ūt)]

+µ0
βT

2
(xT − x̄T )

′QT (xT − x̄T ) +
T−1
∑

t=0

λ′t+1(Atxt +Btut + et − xt+1).

Let ({u∗t}, {x∗t}) be the point that delivers the minimum of (9) subject to (10).
Then there exist numbers µ0, λ1, ..., λT , not all equal to zero, such that µ0 ≥ 0
and

µ0β
tRt(u

∗

t − ūt) +B′

tλt+1 = 0, t = 0, ..., T − 1 (11)

µ0β
tQt(x

∗

t − x̄t) + A′

tλt+1 − λt = 0, t = 0, ..., T − 1 (12)

µ0β
TQT (x

∗

T − x̄T )− λT = 0. (13)

(The above equations follow from setting the partial derivatives of the
Lagrangian equal to zero.) Clearly, µ0 6= 0 (otherwise it follows that λt=0 for all
t), so we can set µ0 = 1. Suppose that λt is of the form

λt = Ptx
∗

t + ht

for some matrix Pt ∈ Rn×n and vector ht ∈ Rn. Thus, from equation (11) we
obtain:

βtRt(u
∗

t − ūt) +B′

tλt+1 = βtRtu
∗

t − βtRtūt +B′

t(Pt+1x
∗

t+1 + ht+1) =

= βtRtu
∗

t − βtRtūt +B′

t(Pt+1(Atx
∗

t +Btu
∗

t + et) + ht+1)

or, after some algebra:

u∗t = (βtRt +B′

tPt+1Bt)
−1(βtRtūt − B′

t(Pt+1Atx
∗

t + Pt+1et + ht+1)).
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We set Kt = (βtRt +B′
tPt+1Bt)

−1, so

u∗t = Kt(β
tRtūt − B′

t(Pt+1Atx
∗

t + Pt+1ft + ht+1)).
26

From (12) we have
λt = βtQt(x

∗

t − x̄t) + A′

tλt+1

Ptx
∗

t + ht = βtQt(x
∗

t − x̄t) + A′

t(Pt+1x
∗

t+1 + ht+1)

Ptx
∗

t + ht = βtQt(x
∗

t − x̄t) + A′

t(Pt+1(Atx
∗

t +Btu
∗

t + et) + ht+1)

Ptx
∗

t + ht = βtQt(x
∗

t − x̄t) + A′

tPt+1Atx
∗

t + A′

tPt+1BtKt(β
tRtūt−

−B′

t(Pt+1Atx
∗

t + Pt+1et + ht+1))

+A′

tPt+1et + A′

tht+1.

By grouping the terms before x∗t we obtain the discrete-time Riccati equation
for this problem:

Pt = βtQt + A′

tPt+1At − A′

tPt+1BtKtB
′

tPt+1At.

Similarly, by grouping the free terms we get:

ht = A′

tPt+1BtKt(β
tRtūt −B′

t(Pt+1et + ht+1)) + A′

tPt+1et + A′

tht+1 − βtQtx̄t.

The above two equations hold for all t = 0, ..., T − 1 and allow us to recursively
compute the matrix Pt and the vector ht provided that we know their values at
the last point T . The right end conditions are obtained from (13):

PT = βTQT

hT = −βTQT x̄T .

This completes the proof. �

An example of a Matlab program that calculates the optimal controls and
trajectories for this problem is presented in Appendix B.1.1.

26The matrix βtRt + B′

tPt+1Bt is invertible since Rt is positive definite and Pt+1 is also
positive definite as can be seen from the recursive relationship below.
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A.2 Dynamic programming algorithm and a minimax

principle for uncertain systems

Considers the following linear discrete system:

xt+1 = Atxt +Btut +Gtwt (14)

where xt ∈ Rn, ut ∈ Rm, wt ∈ Wt ⊂ Rq, and At, Bt and Gt are real matrices of
appropriate dimensions. The goal is to find controls u∗t , such that the functional

J(u0, u1, ..., uT−1) = sup
wt∈Wt

T
∑

t=1

[ft(xt) + gt−1(ut−1)] (15)

is minimized subject to the constraint given by (14), where the functions ft, gt−1

are proper convex functions. Bertsekas (1971) proposes the following dynamic
programming (DP) algorithm:

JT (xT ) = fT (xT )

Et+1(x) = sup
wt∈Wt

Jt+1(x+Gtwt), t = 0, 1, ..., T − 1

Ht(xt) = inf
ut

[Et+1(Atxt +Btut) + gt(ut)], t = 0, 1, ..., T − 1

Jt(xt) = Ht(xt) + ft(xt), t = 1, 2, ..., T − 1

J0(x0) = H0(x0).

Below it is shown how this DP algorithm can be implemented to solve the
optimal fiscal adjustment problem considered in this note. Although in our case
the dynamical system is slightly different due to the free vector et, the
algorithm still works. The problem we need to solve is:

J = min
ut

max
wt∈Wt

{
T−1
∑

t=0

βt

2
[(xt − x̄t)

′Qt(xt − x̄t) + (ut − ūt)
′Rt(ut − ūt)]+

βT

2
(xT − x̄T )

′QT (xT − x̄T )}
(16)

subject to
xt+1 = Atxt +Btut +Gtwt + et (17)

x0 = x̄0, (18)
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where the set Wt is the ellipsoid Wt = {wt : (wt − w̄t)
′W−1

t (wt − w̄t) ≤ 1}. The
DP algorithm can be implemented as follows:

JT (xT ) =
βT

2
(xT − x̄T )

′QT (xT − x̄T )

Et+1(x) = sup
wt∈Wt

Jt+1(x+Gtwt), t = 0, 1, ..., T − 1

Ht(xt) = inf
ut

[Et+1(Atxt +Btut + et) +
βt

2
(ut − ūt)

′Rt(ut − ūt)], t = 0, 1, ..., T − 1

Jt(xt) = Ht(xt) +
βt

2
(xt − x̄t)

′Qt(xt − x̄t), t = 1, 2, ..., T − 1

J0(x0) = H0(x0).

It will be instructive to illustrate how the above DP algorithm works for a
simpler problem. For the purpose, suppose that x̄t = 0, w̄t = 0, ūt = 0, ēt = 0

Then, the first step of the algorithm is:

ET (x) = max
wT−1∈WT−1

JT (x+GT−1wT−1) =

= max
wT−1∈WT−1

βT

2
(x+GT−1wT−1)

′QT (x+GT−1wT−1)

which is equivalent to the following problem:

max
wT−1

βT

2
[(x+GT−1wT−1)

′QT (x+GT−1wT−1)]

s.t.
w′

T−1W
−1
T−1wT−1 ≤ 1.

We set a Lagrangian

L =
βT

2
[(x+GT−1wT−1)

′QT (x+GT−1wT−1)] + λT−1(1− w′

T−1W
−1
T−1wT−1)

and find that the necessary conditions for this problem are:

βTG′

T−1QT (GT−1w
∗

T−1 + x) = 2λT−1W
−1
T−1w

∗

T−1,

λT−1 ≥ 0, λT−1(1− w∗′

T−1W
−1
T−1w

∗

T−1) = 0.
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and therefore

w∗

T−1 =

(

2λT−1

βT
(G′

T−1QT )
−1W−1

T−1 −GT−1

)−1

x.

We can find λT−1 from the last necessary condition:

x′
(

(

2λT−1

βT (G′
T−1QT )

−1W−1
T−1 −GT−1

)−1
)′

W−1
T−1

(

2λT−1

βT (G′
T−1QT )

−1W−1
T−1 −GT−1

)−1

x = 1

(19)

This is for any admissible x. Note, that the above equation may have more than
one non-negative solution. We know introduce the auxiliary matrices ST and
MT−1 and set ST := QT and

MT−1 :=

(

2λT−1

βT
(G′

T−1ST )
−1W−1

T−1 −GT−1

)−1

.

Then,
w∗

T−1 =MT−1x

and

ET (x) =
βT

2
[((I +GT−1MT−1)x)

′QT (I +GT−1MT−1)x].

We set NT−1 = (I +GT−1MT−1)
′QT (I +GT−1MT−1), so

ET (x) =
βT

2
x′NT−1x.

Note that NT−1 is symmetric since QT is symmetric. For the next step, the DP
algorithm requires that x = AT−1xT−1 +BT−1uT−1. So, substituting in the
above we obtain

ET (AT−1xT−1+BT−1uT−1) =
βT

2
(AT−1xT−1+BT−1uT−1)

′NT−1(AT−1xT−1+BT−1uT−1).

To find u∗T−1 we need to minimize:

ET (AT−1xT−1 +BT−1uT−1) +
β

2
u′T−1RT−1uT−1 =
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βT

2
(AT−1xT−1 +BT−1uT−1)

′NT−1(AT−1xT−1 +BT−1uT−1) +
βT−1

2
u′T−1RT−1uT−1

The necessary (and sufficient) condition for a minimum is

βB′

T−1NT−1(AT−1xT−1 +BT−1u
∗

T−1) +RT−1u
∗

T−1 = 0.

u∗T−1 = −(βB′

T−1NT−1BT−1 +RT−1)
−1βB′

T−1NT−1AT−1xT−1

or
u∗T−1 = −KT−1xT−1

where we have set

KT−1 := (βB′

T−1NT−1BT−1 +RT−1)
−1βB′

T−1NT−1AT−1.

It will be convenient to introduce another auxiliary matrix:

PT−1 = (AT−1 − BT−1KT−1)
′NT−1(AT−1 − BT−1KT−1).

Then,

HT−1(xT−1) =
βT

2
x′T−1PT−1xT−1 +

βT−1

2
x′T−1K

′

T−1RT−1KT−1xT−1.

We now move to the next time period. We have

JT−1(xT−1) = HT−1(xT−1) +
βT−1

2
x′T−1QT−1xT−1 =

=
βT−1

2
x′T−1[βPT−1 +K ′

T−1RT−1KT−1 +QT−1]xT−1.

Let
ST−1 = βPT−1 +K ′

T−1RT−1KT−1 +QT−1.

Then,

JT−1(xT−1) =
βT−1

2
x′T−1ST−1xT−1.

and
ET−1(x) = max

wT−1∈WT−2

JT−1(x+GT−2wT−2) =
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= max
wT−2∈WT−2

βT−1

2
(x+GT−2wT−2)

′ST−1(x+GT−2wT−2).

The necessary conditions for this problem are:

βT−1G′

T−2ST−1(x+GT−2wT−2) = 2λT−2W
−1
T−2w

∗

T−2,

λT−2 ≥ 0, λT−2(1− w∗′

T−2W
−1
T−2w

∗

T−2) = 0.

The first condition can be rewritten as

w∗

T−2 =

(

2λT−2

βT−1
(G′

T−2ST−1)
−1W−1

T−2 −GT−2

)−1

x

=MT−2x,

where as before, we set

MT−2 =

(

2λT−2

βT−1
(G′

T−2ST−1)
−1W−1

T−2 −GT−2

)−1

.

With that,

ET−1(x) =
βT−1

2
x′(I +GT−2MT−2)

′ST−1(I +GT−2MT−2)x =

βT−1

2
x′NT−2x

where we have set

NT−2 := (I +GT−2MT−2)
′ST−1(I +GT−1MT−2).

We need to minimize with respect to uT−2:

ET−1(AT−2xT−2 +BT−2uT−2) +
βT−2

2
u′T−2RT−2uT−2 =

βT−1

2
(AT−2xT−2 +BT−2uT−2)

′NT−2(AT−2xT−2 +BT−2uT−2)+

βT−2

2
u′T−2RT−2uT−2.

The above is minimized when u∗T−2 satisfies:

βB′

T−2NT−2(AT−2xT−2 +BT−2u
∗

T−2) +RT−2u
∗

T−2 = 0.
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Hence

u∗T−2 = −[βB′

T−2NT−2BT−2 +RT−2]
−1βB′

T−2NT−2AT−2xT−2 =

= −KT−2xT−2,

where
KT−2 = [βB′

T−2NT−2BT−2 +RT−2]
−1βB′

T−2NT−2AT−2,

and so on.

To summarize, the implementation of the DP algorithm leads to a sequence of
controls and disturbances pairs (u∗t , w

∗
t ) computed as

u∗t = −Ktxt

w∗

t =Mt(Atxt +Btu
∗

t ),

where the matrices Mt and Kt and the auxiliary matrices Nt, Pt and St are
obtained as follows:

ST = QT

and for t = T − 1, T − 2, ..., 0

Mt =

(

2λt
βt+1

(G′

tSt+1)
−1W−1

t −Gt

)−1

Nt = (I +GtMt)
′St+1(I +GtMt)

Kt = (βB′

tNtBt +Rt)
−1βB′

tNtAt

Pt = (At −BtKt)
′Nt(At −BtKt)

St = βPt +K ′

tRtKt +Qt.

For a given λt, all the above matrices can be precomputed and this would allow
us to calculate u∗t and w∗

t starting from x0. However, the Lagrange multipliers
λt, associated with the ellipsoidal constraints, are not known in advance and
furthermore, they depend on x through equation (19). This makes it very
difficult in practice, if at all possible, to solve the problem based on the above
scheme. The DP algorithm, however, is still useful as it provides an explicit
characterization of the value function Jt(xt)– information that will be used later.

In view of the technical difficulties in implementing the DP algorithm, an
alternative approach is sought to solve the LQ minimax problem. In fact, for
the more general problem (14)-(15), Bertsekas (1971) provides a minimax
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maximum principle which holds under certain assumptions. Before stating the
main result, it would be useful to introduce some terminology.

A sequence of controls and disturbances {u∗0, w∗
0, ..., u

∗
T−1, w

∗
T−1} associated with

problem (14)-(15) will be called a minimax sequence and the associated
trajectory {x̄0, x∗1, ..., x∗T} will be called a minimax trajectory if:

Ht(x
∗

t ) = Et+1(Atx
∗

t +Btu
∗

t ) + gt(u
∗

t ) = inf
ut

[Et+1(Atx
∗

t +Btut) + gt(ut)]

Et+1(Atx
∗

t +Btu
∗

t ) + gt(u
∗

t ) = Jt+1(x
∗

t+1) = sup
wt∈Wt

Jt+1(Atx
∗

t +Btu
∗

t +Gtwt).

For a fixed t, t = 1, ..., T , a point x is called non-singular if for every vector w∗
t

for which the supremum of (15) is attained, we have
∂Et+1(x) = ∂Jt+1(x+Gtw

∗
t ), where the symbol ∂f(x) denotes the

subdifferential (in the sense of convex analysis) of the function f(x). Recall that
a vector ψ ∈ Rn is called a subgradient of the convex function f(x) at the point
x ∈ Rn if the inequality f(y)− f(x) ≥ 〈ψ, y− x〉 holds for all y ∈ Rn. The set of
all subgradients is called the subdifferential of f at x and it is a closed convex
set. If the function is differentiable, its subdifferential consists of a single
element – the gradient. For the minimax problem, however, we cannot hope in
general to be able to work with differentiable functions due to the maximization
condition in (15) which explains the use of ∂f(x). Finally, the initial point x0 is
called regular if ∂J0(x0) is non-empty.

Proposition 2 (Bertsekas (1971), p. 41) Let {u∗0, w∗
0, ..., u

∗
T−1, w

∗
T−1} be a

minimax sequence and let {x̄0, x∗1, ..., x∗T} be the corresponding minimax
trajectory. Assume that the initial state x̄0 is regular and that the points
(Atx

∗
t + Btu

∗
t ), t = 0, ..., T − 1 are non-singular. Then, there exist vectors

p1, p2, ..., pT and q1, q2, ..., qT−1 satisfying the adjoint equation

pt = A′

tpt+1 + qt

with
pT ∈ ∂fT (xT )

qt ∈ ∂ft(xt) , t = 1, ..., T − 1

and such that

〈pt+1, Btu
∗

t +Gtw
∗

t 〉+ gt(u
∗

t ) = min
ut

max
wt∈Wt

[〈pt+1, Btut +Gtwt〉+ gt(ut)] (20)

for t = 0, 1, ..., T − 1.
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The proof of the above proposition relies heavily on notions and results from
convex analysis and will not be presented here. It would be useful though, to
highlight the main ideas behind it as this would help clarify the conditions
under which the minimax principle is valid.

If w∗
t maximizes Jt+1(x+Gtwt), then for any vector p′t+1 ∈ ∂Jt+1, we have that

〈p′t+1, Gtw
∗
t 〉 = maxw〈p′t+1, Gtwt〉. Similarly, it can be shown that if u∗t delivers

the minimum of [Et+1 + gt(ut)], then for p
′′

t+1 ∈ ∂Ht, we have that
〈p′′

t+1, Btu
∗
t 〉+ gt(u

∗
t ) = minu[〈p

′′

t+1, Btut〉+ gt(ut)]. Thus, if there exists a vector
pt+1 ∈ ∂Ht(Atx

∗
t )
⋂

∂Jt+1(Atx
∗
t +Btu

∗
t +Gtw

∗
t ), then the minimax condition in

equation (20) will hold. In other words, for the validity of Proposition 2 it is
necessary that the intersection of the two subdifferentials is non-empty. Further,
the following inclusion and equality can be established:
∂Ht(Atx

∗
t ) ⊂ ∂Et+1(Atx

∗
t +Btu

∗
t ) and

∂Et+1(Atx
∗
t +Btu

∗
t ) = ∂Jt+1(Atx

∗
t +Btu

∗
t +Gtw

∗
t ). It follows that for every

point at which the function Et+1 is differentiable, the intersection condition will
be satisfied. Since we obtained explicit expressions for the functions Et+1 and
Ht as part of the DP algorithm and these functions are differentiable, we can
apply Proposition 2. This implies the existence of vectors pt and qt as above.

A.3 The shooting method

Application of the minimax principle to the optimal fiscal adjustment problem
leads to the following system of equations:

w∗

t = w̄t +
1

2λ
WtG

′

tpt+1

u∗t = ūt − βR−1
t B′

tpt+1

pt = A′

tpt+1 + βtQt(x
∗

t − x̄t)

pT = βTQT (x
∗

T − x̄T )

x∗t+1 = Atx
∗

t +Btu
∗

t + et +Gtw
∗

t

x0 = x̄0.

Substituting u∗t and w∗
t into the equation for x∗t+1 and then using the equation

for p results in the following system:

x∗t+1 = Atx
∗

t +Bt(ūt − βR−1
t B′

tpt+1) + et +Gt(w̄t +
1

2λ
WtG

′

tpt+1)

pt = A′

tpt+1 + βtQt(x
∗

t − x̄t)
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pT = βTQT (x
∗

T − x̄T )

x0 = x̄0.

where λ = 0.5((WtG
′
tpt+1)

′G′
tpt+1)

1/2. This is a boundary value problem with an
initial condition for the state x and a transversality condition at the right end
for the adjoint variable p.27 To obtain a solution to the boundary value problem
we can use the so-called ”shooting method”.

The essence of the shooting method is to guess an initial value for p and then
solve the system for t = 1, ..., T . Once xT is found, the transversality condition
is applied to obtain pT . This value is compared to the value of pT obtained by
solving the adjoint equation with the guess for p0. If the two are different, the
guess for p0 is updated. In out implementation of the shooting method, the
update is based on Broyden’s secant formula.

Broyden’s method is a quasi-Newton method which uses an approximation of
the Jacobian F ′(x∗) of the system of equations F (x) = 0 at the solution x∗. The
presentation below follows Kelly (1995).

If xc and Bc are the current approximations of the solution and the Jacobian,
respectively, then the next step of the algorithm is given by:

x+ = xc − B−1
c F (xc)

After x+ is computed, the matrix Bc is updated as follows:

B+ = Bc =
(y − Bcs)s

′

s′s

where y = F (x+)− F (xc) and s = x+ − xc. The matrix B can be initialized
with the identity matrix.

An example of a Matlab code that implements this procedure is given in
Appendix B.1.2.

A.4 Reachable sets and their ellipsoidal approximations

Below we show how to calculate ellipsoidal approximations of reachable sets of
discrete time dynamical systems. The presentation is based on Chernousko
(1988).

27The system of difference equation as stated above is implicit. In principle, it is possible to
solve the second equation for pt+1 to derive an explicit system.
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A.4.1 Ellipsoids

Ellipsoids are analogues of the ellipse in higher dimensions. An ellipsoid in Rn is
defined as

E(a,Q) = {x : (x− a)′Q−1(x− a) ≤ 1},

where the n-dimensional vector a is the center of the ellipsoid and the positive
definite matrix Q is its shape matrix. By rotating the coordinate system we can
make its axes coincide with the principal axes of the ellipsoid in which case the
matrix Q is diagonal. Then the defining inequality becomes:

n
∑

i=1

Q−1
ii (xi − ai)

2 =

n
∑

i=1

(xi − ai)
2

c2i
≤ 1.

In some cases ellipsoids can be degenerate, e.g. if in the diagonal form one of
the elements ci = 0 (e.g. a disk in R3).

In R2, the canonical equation of the ellipse centered at zero can be written as

x21
c21

+
x22
c22

≤ 1

The coordinates (x1, x2) of any point of the ellipse satisfy: |x1| ≤ c1 and
|x2| ≤ c2. These inequalities determine a rectangle with sides 2c1 and 2c2 and
the ellipse is fully contained in this rectangle. This is a useful property which
carries over to higher dimensions with the rectangle being replaced with a box.

Ellipsoids are invariant under affine transformations. Consider the mapping
y = Ax+ b, where x ∈ E(a,Q). Then, y ∈ E(Aa + b, AQA′), i.e. an ellipsoid
with center Aa+ b and shape matrix AQA′. The transformation can be chosen
such that the ellipsoid is aligned with the coordinate axes, which, as noted
above, implies that the matrix AQA′ is diagonal (Figure 7). In particular, the
ellipsoid E(a,Q) can be transformed into the unit ball centered at the origin by
selecting the matrix A and the vector b such that Aa + b = 0 and AQA′ = I.
These conditions will be satisfied if A = Q1/2 and b = −Q1/2a.

The volume of the unit ball in Rn is calculated according to the formula:

VB =
πn/2

Γ(n/2 + 1)

where Γ(·) is the gamma function. Since we can transform an arbitrary ellipsoid
into the unit ball, the volume of the original ellipsoid E(a,Q) can be found by
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Figure 7: Ellipsoids in R2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

multiplying the volume of the unit ball by the determinant of the
transformation matrix, i.e.

VE =
πn/2(detQ)1/2

Γ(n/2 + 1)
.

In general, any convex set D in Rn can be approximated internally and
externally by an ellipsoid, i.e. there are ellipsoids E(a,Q) and E(a, n2Q), such
that E(a,Q) ⊂ D ⊂ E(a, n2Q).28 For every bounded set D in Rn there exists a
unique ellipsoid E+ of minimum volume that contains D. Also, for every
compact convex set D in Rn there exists a unique ellipsoid E− of maximum
volume that is contained in D.

Finally, we note that the sum of two ellipsoids S = E1(a1, Q1) + E2(a2, Q2) is
defined as the set of all vectors x = x1 + x2, where x1 ∈ E1 and x2 ∈ E2. The
set S is a closed convex set but generally it is not an ellipsoid. However, it can
be approximated by an ellipsoid. For the external approximation E+(a+, Q+),
the following result is valid :

Theorem 1 (Chernousko, 1988) The parameters of the ellipsoid E+(a+, Q+) of
minimal volume that contains the sum S of the ellipsoids E1 and E2, one of
which may be degenerate (the matrix Q1 is positive semi-definite and Q2 is

28For convex sets, possessing the central symmetry property, the approximation can be im-
proved substantially: E(0, Q) ⊂ D ⊂ E(0, nQ).
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positive definite) are given by

a+ = a1 + a2

Q+ = (p−1 + 1)Q1 + (p+ 1)Q2,

where p > 0 is the only positive root of the algebraic equation

n
∑

j=1

1

p + λj
=

n

p(p+ 1)

and the numbers λj ≥ 0, j = 1, ..., n are the roots of the characteristic equation
det(Q1 − λQ2) = 0.

A.4.2 Reachable sets and their approximations

Consider the discrete dynamical system

x(ti+1) = F (x(ti), w(ti), ti)

t0 < t1, ... , i = 0, 1, ...

w(ti) ∈ W(x(ti), ti)

x(t0) ∈M.

The reachable set D(tk, t0,M) of the above system for all k ≥ 0 is the set of
points x(tk) that represent ends of all state trajectories x(·) of this system
satisfying the initial condition. Reachable sets possess the semi-group property

D(tk, t0,M) = D(tk, tj , D(tj, t0,M)) , 0 ≤ j ≤ k.

This means that the reachable set at moment tk can be obtained by extending
the ends of all trajectories taken at any moment tj , where 0 ≤ j ≤ k. In the
process of constructing approximations of reachable sets we will need the
notions of sub- and super-reachability. We shall call the family of sets D−(tk),
subreachable, if for all k the following inclusion is satisfied:
D−(tk+1) ⊂ D(tk+1, tk, D

−(tk)) and D
−(t0) ⊂M . Similarly, the family of sets

D+(tk), will be called superreachable if for all k: D+(tt+1) ⊃ D(tk+1, tk, D
+(tk))

and D+(s) ⊃M . These two types of sets give a two-sided approximation of the
reachable set:

D−(tk) ⊂ D(tk, t0,M) ⊂ D+(tk).
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Obtaining two-sided ellipsoidal approximations of the reachable set entails
finding the parameters of the ellipsoids:

D−(tk) = E(a−(tk), Q
−(tk))

D+(tk) = E(a+(tk), Q
+(tk)).

In this paper we are primarily concerned with external approximations, i.e. in
finding the ellipsoid D+ which contains the set of all states of the system that
can be reached at a given moment in time. Specifically, the following linear
system is of interest:

x(tk+1) = Akx(tk) +Gkw(tk) + ek

w(tk) ∈ E(0,Wk), , k = 0, 1, ...

Here Ak are non-degenerate matrices of dimension n× n, Gk are matrices with
dimension m× n, ek are n-dimensional vectors and Wk are symmetric positive
semi-definite matrices of dimension m×m. All of these are assumed given. The
fact that the center of the control ellipsoid is at the origin is not restrictive since
we can always change it by changing the vector ek. Let the initial set be given
by

x(t0) ∈M = E(a0, Q0).

For the linear system, the relation describing the evolution of the reachable set
has the following form:

D(tk+1, t0,M) = AkD(tk, t0,M) +GkE(0,Wk) + ek,

which is a sum of two ellipsoids. From the definition of superreachable sets:

E(a+(tk+1), Q
+(tk+1)) ⊃ AkE(a

+(tk), Q
+(tk)) +GkE(0,Wk) + ek.

The center and shape matrix of the approximating ellipsoid are found as follows
(see pp. 115-116 in Chernousko, 1988)

a+(tk+1) = Aka
+(tk) + ek

Q+(tk+1) = (p−1 + 1)Q1 + (p+ 1)Q+
2

where
Q1 = GkWkG

′

k

Q+
2 = AkQ

+(tk)A
′

k
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a(t0) = a0.

The ellipsoidal approximations of reachable sets above are discussed in the
context of a disturbed system to match the presentation in the main text; the
same arguments apply for a controlled system.
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Appendix B

B.1 Examples of Matlab programs

B.1.1 Deterministic LQ problem

function [ x u ] = lq( n, m, T, A, B, e, Q, R, x0 , ubar , xbar , bet )

%...................................................................

%This program solves the linear -quadratic optimal tracking problem :

% min_{u_t } \sum_{t=0}^{T-1} 0.5\beta^t[(x_t -\bar x_t )'Q_t (x_t -\bar x_t )+

%+(u_t - \bar u_t )'R_t (u_t -\bar u_t )]+0 .5\beta^T(x_T -\bar x_T )'Q_t

%(x_T -\bar x_T ), subject to x_{t+1}= A_tx_t +B_tu_t +e_t.

%Here A_t , B_t are arrays of matrices of size (n, n, T) and

%(n, m, T),respectively. Q_t and R_t are arrays of weight

%matrices of size (n, n, T) and (n, m, T), respectively; \bar u_t and

%\bar x_t are target values for the state and control , respectively.

%n is the size of the state vector , m is the size of the control vector

%and T is the number of periods. x_0 is the initial state (given ).

%.....................................................................

P=zeros(n,n,T);

P(:,:,T)=bet ^(T)*Q(:,:,T);

h=zeros(n,1,T);

h(:,:,T)=-bet ^(T)*Q(:,:,T)*xbar(:,:,T);

K=zeros(m,m,T-1);

%Solves the Ricatti equation and calculates various matrices and vectors

t=T-1;

while t>0

%Auxiliary matrix

K(:,:,t)=( bet ^(t -1)*R(:,:,t)+B(:,:,t) '*P(:,:,t+1)*B(:,:,t))^(-1);

%Ricatti equation

P(:,:,t)=bet ^(t-1)*Q(:,:,t)+A(:,:,t) '*P(:,:,t+1)*A(:,:,t)-A(:,:,t)'*...

P(:,:,t+1)*B(:,:,t)*K(:,:,t)*B(:,:,t) '*P(:,:,t+1)*A(:,:,t);

%Free term

h(:,:,t)=A(:,:,t) '*P(:,:,t+1)*B(:,:,t)*K(:,:,t)*(bet ^(t-1)*R(:,:,t)*...

ubar (:,:,t) - B(:,:,t) '*(P(:,:,t+1)*e(:,:,t)+h(:,:,t+1)))+A(:,:,t)'*...

(P(:,:,t+1)*e(:,:,t)+h(:,:,t+1))-bet ^(t-1) *Q(:,:,t)*xbar(:,:,t);

t=t-1;

end

%Calculate the optimal control and trajectory

u=zeros (1,T-1);

x=zeros (n,1,T);

x(:,:,1)=x0;

for j=1:T-1;

u(j)=-K(:,:,j)*B(:,:,j) '*P(:,:,j+1) *A(:,:,j)*x(:,j)+...

K(:,:,j)*(bet ^(j-1)*R(:,:,j)*ubar(:,:,j)-B(:,:,j) '*...

(P(:,:,j+1)*e(:,:,j)+h(:,:,j+1)));

x(:,:,j+1)=A(:,:,j)*x(:,j)+B(:,:,j)*u(j)+e(:,:,j);

j=j+1;

end

end
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B.1.2 Minimax LQ problem

function [ x w u it crt] = berts41 ( n,m, T, XT , x0, A0 , W, A,B, G, ...

e, Q, R, xbar , wbar , ubar , bet , tol , stop )

%.....................................................................

% This function computes the solution of the linear -quadratic minimax

% problem :

%\min_{u} \max_{w} \sum_{t=0}^{T -1} 0.5\beta^t[(x_t -\bar x_t )'

%Q_t (x_t -\bar x_t )+(u_t -\bar u_t )'R_t (u_t -\bar u_t ))

%+(x_T -\bar x_T ))'Q_T (x_T -\bar x_T )), s.t.

%x_{t+1}= A_tx_t +B_tu_t +G_tw_t +e_t , where the disturbance w_t is contained

%in the ellipsoid {\cal W}_t={w_t :(w_t -\bar w_t )'W_t ^{ -1}( w_t -\bar w_t )\le 1}.

%Here A_t , B_t are arrays of matrices of size (n, n, T) and (n, m, T),

%respectively. Q_t and R_t are arrays of weight matrices of size

%(n, n, T) and (n, m, T), respectively; \bar u_t and

%\bar x_t are target values for the state and control , respectively.

%n is the size of the state vector , m is the size of the control vector

%and T is the number of periods. x_0 is the initial state (given ).

%.......................................................................

%Initialize matrices

Xk=zeros(n,1,T);

pk=zeros(n,1,T);

Xk1=zeros(n,1,T);

pk1=zeros(n,1,T);

uk=zeros(m,1,T-1);

wk=zeros(n,1,T-1);

uk1=zeros(m,1,T-1);

wk1=zeros(n,1,T-1);

it =0; %counter -- set to zero

Ak=A0;

Xk(:,:,T)=XT; %End value for the state

pk(:,:,T)=(bet^T)*Q(:,:,T)*(Xk(:,:,T)-xbar (:,:,T)); %Transversality cond.

%The block below implements the shooting method based on Broyden 's secant

%algorithm

while stop >tol;

it=it+1; %Counts the number of iterations

%Calculate (x,p)

for t=T -1: -1:1;

lam =(1/2) *((W(:,:,t)*G(:,:,t) '*pk(:,:,t+1)) '*G(:,:,t) '*pk(:,:,t+1))^(1/2) ;

%Lagrange multiplier for the ellipsoidal constraint

wk(:,:,t)=wbar(:,t)+1/(2* lam)*W(:,:,t)*G(:,:,t) '*pk(:,:,t+1);

uk(:,:,t)=ubar(:,:,t) -(bet ^t*R(:,:,t))^(-1)*B(:,:,t) '*pk(:,:,t+1);

Xk(:,:,t)=A(:,:,t)^(-1) *(Xk(:,:,t+1) -B(:,:,t)*uk(:,:,t)-G(:,:,t)*...

wk(:,:,t)-e(:,:,t));

pk(:,:,t)=A(:,:,t) '*pk(:,:,t+1)+bet ^t*Q(:,:,t)*(Xk(:,:,t)-xbar(:,:,t));

t=t-1;

end

%Initial point error estimate

Fk=Xk(:,:,1) -x0;
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%Update end values for x and p

Sk=-Ak^(-1)*Fk;

XT=Xk(:,:,T)+Sk;

Xk1 (:,:,T)=XT;

pk1 (:,:,T)=(bet^T)*Q(:,:,T)*(Xk1 (:,:,T)-xbar(:,:,T));

%Calculate (x,p) using the updated end conditions

for t=T -1: -1:1;

lam1 =(1/2) *((W(:,:,t)*G(:,:,t)'*pk1 (:,:,t+1) ) '*G(:,:,t) '*...

pk1 (:,:,t+1))^(1/2) ;

wk1 (:,:,t)=wbar(:,t)+1/(2* lam1)*W(:,:,t)*G(:,:,t) '*pk1 (:,:,t+1);

uk1 (:,:,t)=ubar(:,:,t) -(bet^t*R(:,:,t))^(-1)*B(:,:,t) '*pk1 (:,:,t+1) ;

Xk1 (:,:,t)=A(:,:,t)^(-1) *(Xk1 (:,:,t+1) -B(:,:,t)*uk1 (:,:,t)-G(:,:,t)*...

wk1 (:,:,t)-e(:,:,t));

pk1 (:,:,t)=A(:,:,t) '*pk1 (:,:,t+1)+bet^t*Q(:,:,t)*( Xk1 (:,:,t)-xbar(:,:,t));

t=t-1;

end

%Check initial condition again

Fk1=Xk1 (:,:,1) -x0;

%Update the Jacobian estimate

YXk=Fk1 -Fk;

Ak1=Ak+(( YXk -Ak*Sk)*Sk ')/(Sk '*Sk);

%Use the new state -costate and new Jacobian as new end points

Xk(:,:,T)=Xk1 (:,:,T);

pk(:,:,T)=(bet^T)*Q(:,:,T)*(Xk(:,:,T)-xbar (:,:,T));

Ak=Ak1;

stop=sum(abs(Fk1));%Calculate sum of absolute errors

end

%Assign values

x=Xk1;

w=wk1;

u=uk1;

crt=stop;

end


