

Outline

- Available data
- II. Stress-testing Framework
- III. Stress-testing models
 - a. FX shock
 - b. IR shock
 - c. Liquidity shock

Available data

- Nonfinancial corporations data available for the whole population, at firm level:
 - Balance Sheet and P&L biannual data
 - Credit Register Bureau monthly data
 - Exports and imports biannual data, until 2006

Banks:

- Interbank exposure matrix
- Foreign and domestic positions
- Available collateral
- Available reserves

II. Stress-testing framework

FX shocks

 Companies with foreign trade activity

Interest rate shocks

 Companies with bank loans

Liquidity shocks

 Companies with credit lines Effect on balancesheet and income statement through:

- Turnover
- Operational expenses
- Interest rate
- Liquidity (Cash)

ratios for financial stability purposes (FSI)

B. Shocked PDs using credit risk model

A. Analysis of key

a. FX Shocks

Overview

- First round effects:
 - impact on financial statements of companies with foreign trade activity
 - by adjusting quantities, prices and costs
 - using sector elasticieties
 - does not take into account company management response or other correlations between macro variables that may impact economic activity
 - it attempts to isolate the first round, direct, impact of an FX shock
- **Second round effects**: Not enough information on companies' net foreign position

a. FX Shocks

Conceptual framework

Impact assessment: based on two building blocks

- Import only companies:
 - cost of goods sold changes as a result of FX shocks.
 - as a result, new equilibrium level must be determined: both quantity and price adjust so that profit is maximized (taking into account the elasticity of demand).
- Export only companies:
 - RON appreciation Romania is a price taker in international markets, therefore any adjustment (at least in the short term) is by quantity alone, as price can not be increased.
 - RON depreciation price in domestic currency rises, resulting in higher profits. In the short run, quantity and price (in foreign currency) do not change.

a. FX Shocks

Import – only companies

- Operational expenses effects:

$$dCHE_i^N = I_i^N[(1+\alpha)(1-\alpha\tau\beta^N)-1]$$

- Turnover effects:

$$dCA_i^N = CA_i^N [(1 + \alpha \tau)(1 - \alpha \tau \beta^N) - 1]$$

- τ is set to maximize profitability:

$$\max(dCA_i^N - dCHE_i^N)$$

N - NACE class

i – ith firm

dCHE_i^N - adjustments in the operating costs

dCA_iN - adjustments in turnover

I,N - volume of imports in the baseline period respectively

α - FX shock

 $\beta^{\text{N}}\text{-the}$ elasticity of goods sold by companies from NACE group N

a. FX Shocks

Export – only companies

- 1. RON appreciation (negative effect)
 - Operational expenses effects:

$$dCHE_i^N = CHE_i^N \cdot (-x)$$

- Turnover effects:

$$dCA_i^N = E_i^N[(1+\alpha)(1-x)-1]$$

- Survival condition:

$$CPR_{i}^{N} + E_{i}^{N}[(1+\alpha)(1-x)-1] - CHE_{i}^{N}(-x) > 0$$

Change in Retained Earnings

 E_i^N - volume of exports in the baseline period respectively CPR_i^N - own funds x - amount of exports reduction

a. FX Shocks

Export – only companies

- 2. RON depreciation (positive effect)
 - Turnover effects:

$$dCA_i^N = E_i^N \cdot \alpha$$

- A depreciation of domestic currency will not trigger caeteris paribus changes in the volume of activity, but only an increase in the level of sales prices

a. FX Shocks

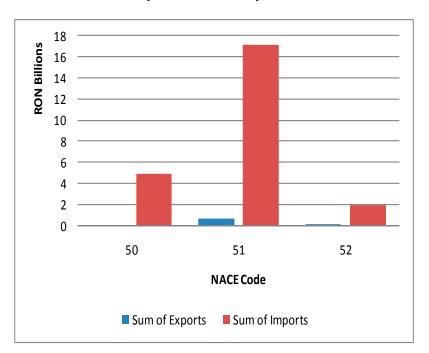
Export & Import companies

Subgroups according to business model:

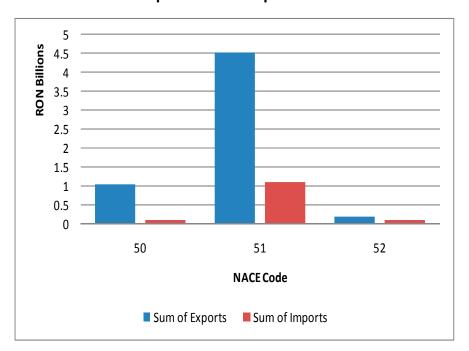
- A. Trade companies similar to
 - Import only
 - ii. Export only

B.Manufacturing Industry

- i. Active processing identification: Exports > Imports & Exports > Turnover
- ii. Exports > Imports & Exports < Turnover
- iii. Imports > Exports & Exports < Turnover



a. FX Shocks

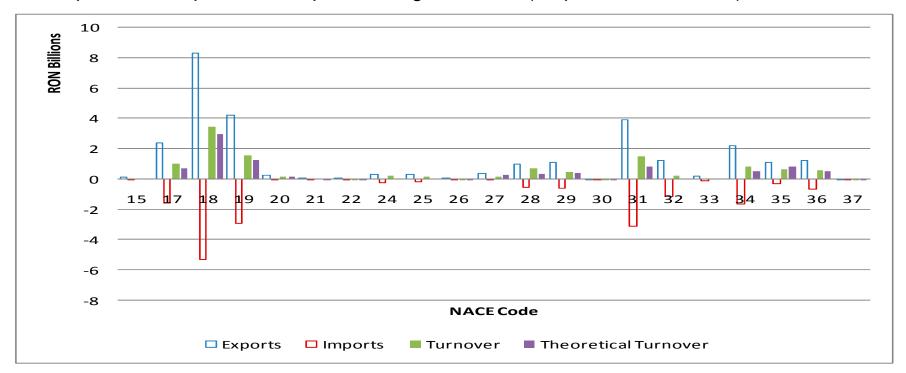

Export & Import companies

A. Trade companies – justifying assumption of similarities with import only and export only companies

Imports > Exports

Exports > Imports

a. FX Shocks


Export & Import companies

B. Industry companies

Active processing firms (Lohn)

Characteristics:

- Exports~Imports+Turnover
- Imports and exports do not pass through BS or IS (empirical observation)

a. FX Shocks

Export & Import companies

B. Industry companies

 i. Active processing firms (Lohn) – Export only companies model considering the level of Net Exports (Exports-Imports)

RON appreciation

RON depreciation

$$dCHE_{i}^{N} = CHE_{i}^{N} \cdot (-x)$$

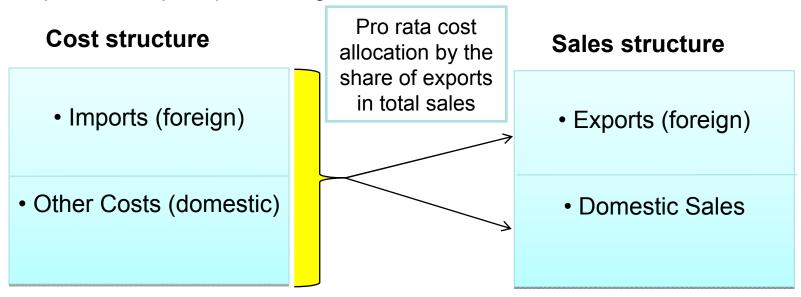
$$dCA_{i}^{N} = E_{i}^{N}[(1+\alpha)(1-x)-1]$$

$$exports$$

$$CPR_{i}^{N} + E_{i}^{N}[(1+\alpha)(1-x)-1] - CHE_{i}^{N}(-x) > 0$$

$$dCA_{i}^{N} = E_{i}^{N} \cdot \alpha$$

a. FX Shocks

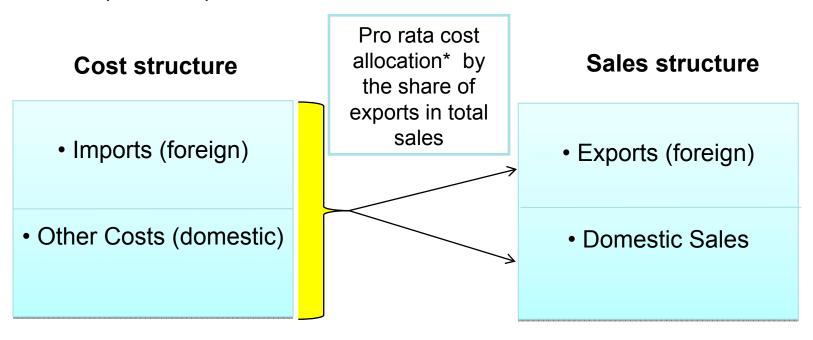

Export & Import companies

B. Industry companies

ii. Exports > Imports & Exports < Turnover (most important export segment ~ 43%)

Characteristics:

Imports and exports pass through BS or IS

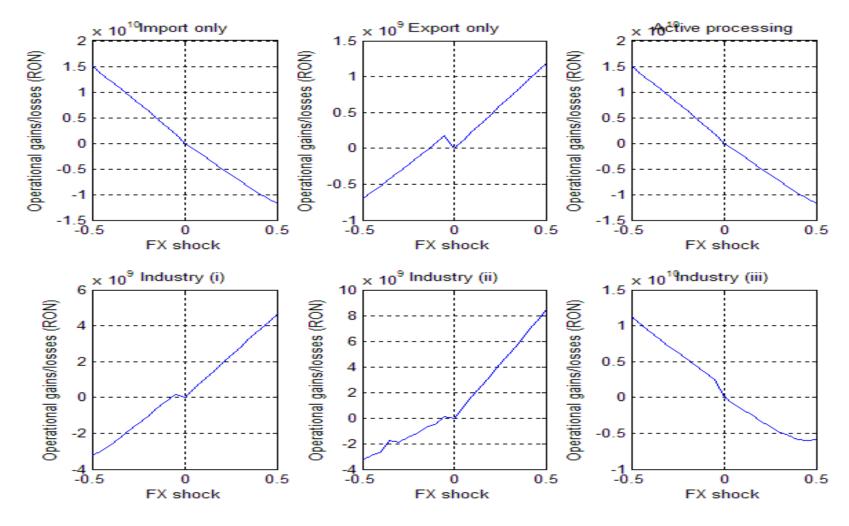


a. FX Shocks

Export & Import companies

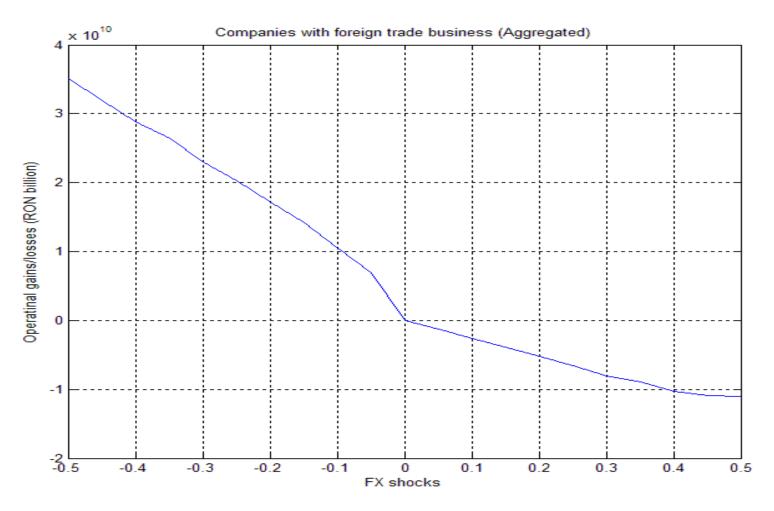
B. Industry companies

iii. Imports > Exports & Exports < Turnover – similar to companies with Exports > Imports & Exports < Turnover



^{*} Adjustment is made if imports allocated to foreign sales (exports) exceed the actual level of imports

a. FX Shocks


Empirical results

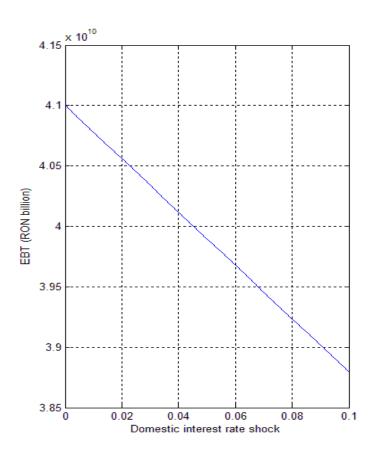
a. FX Shocks

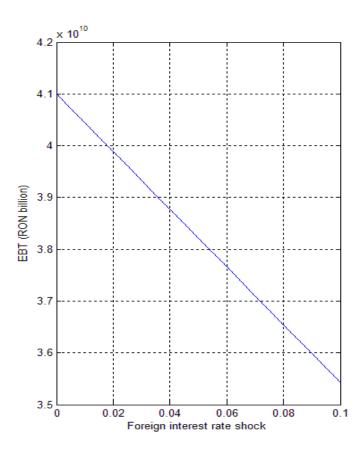
Empirical results

b. Interest Rate Shocks

Conceptual framework

- **Hypothesis**: all bank loans (domestic and foreign) to firms are made at variable rate
- Interest rate shock propagation: Interest expenses (direct linear effect) → Net profit (Cashflows) → Equity → Leverage...


$$dIC_i^N = L_i^N \delta$$

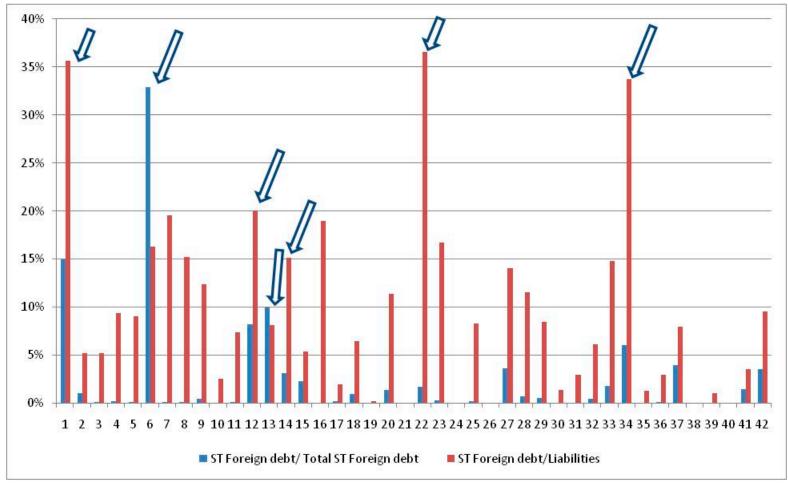

 dIC_i^N – change in interest expenses L_i^N – total bank loans

δ - interest rate shock

b. Interest Rate Shocks

Empirical results

c. Liquidity Shocks


Conceptual framework

- External liquidity shock
- Impact on domestic banking system trough repayment of short term foreign debt
- Domestic banking sector: significant foreign exposure (25% of total foreign exchange liabilities)
- High concentration of short term foreign debt: 5 banks account for 79%
- Domestic banks are highly dependent on parent financing

c. Liquidity Shocks

Banking sector exposures

c. Liquidity Shocks

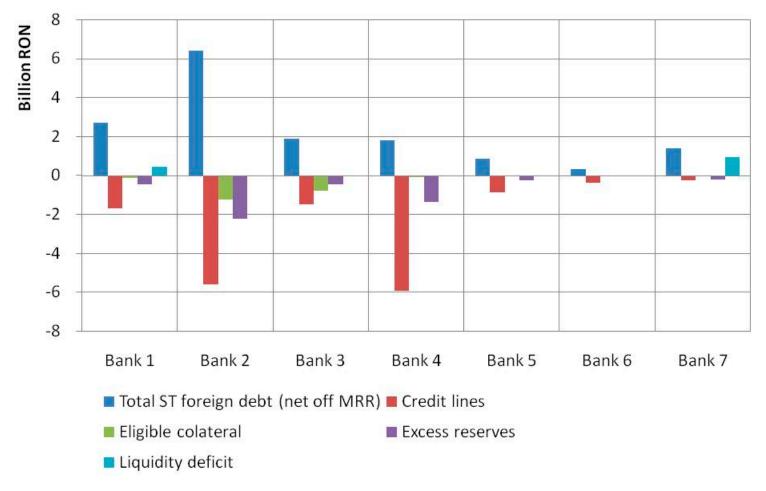
Selected banks for the stress-testing scenario

7 banks with significant short term foreign dept exposure

Criteria:

- To account for a significant part of total short term foreign debt (as a measure of systemic importance)
- To have a significant share of short term foreign dept in total liabilities
- These 7 banks account for:
 - 25 bn. RON (app. 7 bn. Euro) short term foreign debt
 - 79% of total short term foreign dept
 - 58% market share

c. Liquidity Shocks


Sources of liquidity for the banking system (II)

- Extreme scenario: the 7 banks considered have to pay 100% of their short term foreign debt (25 bn. RON)
- Sources of liquidity (used sequentially):
 - 1. Minimum required reserves
 - Excess reserves at NBR
 - 3. NBR financing
 - Not extending (in total or in part) the credit lines to non-financial corporations

c. Liquidity Shocks

Sources of liquidity for the banking system (II)

c. Liquidity Shocks

Formula for liquidity deficit

$$D = \sum_{i=1}^{r} ((I_{F_i > S_i} (F_i - S_i) - T_i) I_{(I_{F_i > S_i} (F_i - S_i) - T_i) > 0} - L_i) I_{I_{F_i > S_i} (F_i - S_i) - T_i) I_{(I_{F_i > S_i} (F_i - S_i) - T_i) > 0}$$

D – total deficit

I – indicator function

Fi – short term external debt of bank *i*, net off MRR and short term external assets

Si – bank i excess reserves at NBR

Ti – bank *i* eligible collateral

Li – bank *i* credit lines to non-financial corporations

c. Liquidity Shocks

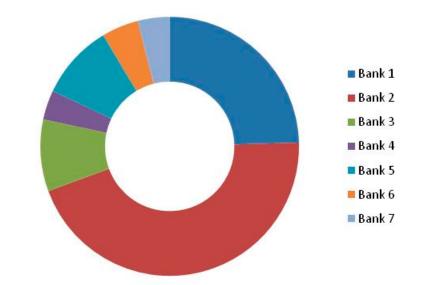
Non-financial corporations: sources of finance

- Companies would have to repay 6.8 bn. RON, representing approximately 35% of their yearly operational cash-flow
- Balance-sheet structure of non-financial corporations: cash and cash equivalents - 2.2 bn. RON
- Resulting in 4.6 bn. RON bank arrears

c. Liquidity Shocks

Impact on real economy

- Banks will cancel, in part, the credit lines (on a pro-rata basis)
- Companies that would not be able to fully repay credit lines have systemic importance:
 - 9% of value added
 - 13% of labor employed


c. Liquidity Shocks

Empirical results – structure of new arrears

New arrears by sector

52 24 51 50 45

New arrears by bank

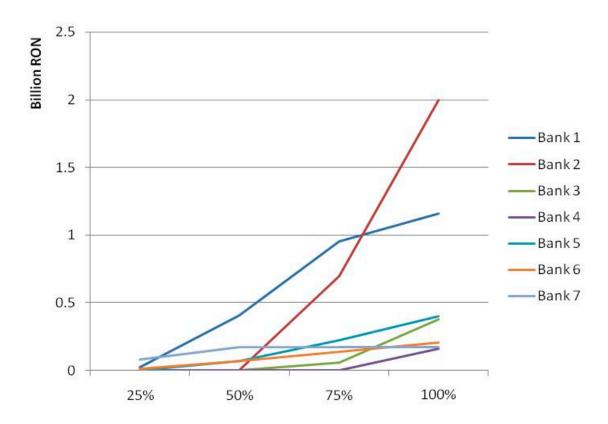
NACE codes:

50, 51, 52 – trade 45 – construction 15 - food and beverages

24 - chemical products

c. Liquidity Shocks

Collateral


- Most credit lines (97.4%) are collateralized, hence:
 - Medium to long term: limited credit risk
 - Short term: liquidity risk
- 50% of collateral: real estate properties

c. Liquidity Shocks

Alternative scenarios

 Different percentage of short term external debt being repaid by each bank – newly created arrears by bank

Thank you!

