

Unbalanced Trade

Robert Dekle University of Southern California, Los Angeles

Jonathan Eaton New York University

Samuel Kortum University of Chicago

Presentation given at the 8th Jacques Polak Annual Research Conference Hosted by the International Monetary Fund Washington, DC—November 15-16, 2007 Please do not quote without the permission from the author(s).

The views expressed in this presentation are those of the author(s) only, and the presence of them, or of links to them, on the IMF website does not imply that the IMF, its Executive Board, or its management endorses or shares the views expressed in the presentation.

Global Rebalancing with Gravity: How Big is the Burden of Adjustment?

Robert Dekle, Jonathan Eaton, and Samuel Kortum

15 November 2007

DEK (IMF)

current account	857
goods and services	764
goods	836
petroleum	271

Image: Image:

э

current account	857
goods and services	764
goods	836
petroleum	271

• When the inevitable adjustment happens, how bad is it going to be for the USA?

current account	857
goods and services	764
goods	836
petroleum	271

- When the inevitable adjustment happens, how bad is it going to be for the USA?
- What happens to the big surplus countries (e.g., Japan, Germany, and China)

current account	857
goods and services	764
goods	836
petroleum	271

- When the inevitable adjustment happens, how bad is it going to be for the USA?
- What happens to the big surplus countries (e.g., Japan, Germany, and China)
- Will there be spillovers to neighbors?

TABLE 1: GDP AND DEFICIT MEASURES, 2004

	GDP	Deficits		
country	-	CA	Trade	Manuf.
ALGERIA	85	-11.2	-7.2	13.2
ARGENTINA	153	-3.6	-11.0	10.3
AUSTRALIA	659	39.2	21.8	60.3
AUSTRIA	293	-1.2	-4.4	1.1
BELGIUM/LUXEM	392	-16.6	-20.5	54.5
BRAZIL	604	-12.5	-26.1	-5.8
CANADA	992	-22.5	-35.7	26.9
CHILE	96	-1.7	-8.1	1.9
CHINA/HK	2106	-87.2	-54.0	-121.8
COLOMBIA	98	0.8	0.8	8.4
DENMARK	245	-6.3	-11.3	9.5
EGYPT	82	-4.0	0.8	1.2
FINLAND	189	-9.9	-9.6	-14.4
FRANCE	2060	4.1	7.4	5.3
GERMANY	2740	-105.4	-122.9	-209.5
GREECE	264	13.1	13.9	29.5
INDIA	689	-7.8	14.5	-5.4
INDONESIA	254	-1.9	-10.1	-20.8
IRELAND	183	0.8	-25.5	-66.2
ISRAEL	122	-3.3	0.1	0.7
ITALY	1720	13.4	-4.0	-21.2
JAPAN	4580	-178.1	-72.4	-277.0
KOREA	680	-29.1	-26.3	-82.1
MALAYSIA	118	-15.0	-24.6	-33.3
MEXICO	683	5.8	17.8	22.0
NETHERLANDS	608	-55.2	-44.4	9.2
NEW ZEALAND	98	6.3	1.1	11.0
NORWAY	255	-35.1	-34.9	16.4
PAKISTAN	113	0.7	6.5	0.4
PERU	70	-0.1	-1.6	2.7
PHILIPPINES	87	-1.7	7.9	-13.5
PORTUGAL	178	12.7	14.3	10.7
RUSSIA	592	-59.4	-69.6	-7.7
SINGAPORE	107	-26.5	-29.2	42.5
SOUTH AFRICA	216	7.2	2.6	2.9
SPAIN	1040	53.5	44.8	62.8
SWEDEN	349	-27.9	-27.4	-23.2
SWITZERLAND	360	-57.1	-32.8	-9.5
THAILAND	161	-7.1	-6.0	-7.9
TURKEY	302	15.2	12.5	18.7
UNITED KINGDOM	2150	32.3	74.2	109.2
UNITED STATES	11700	649.7	667.0	484.6
VENEZUELA	112	-14.0	-17.3	6.2
REST OF WORLD	3025	-53.4	-171.3	-102.6
(US\$ billions)				

• To balance current accounts what changes will be required in

47 ▶

- To balance current accounts what changes will be required in
 - relative factor prices and GDP's

- To balance current accounts what changes will be required in
 - relative factor prices and GDP's
 - which are the nominal exchange rates if nominal GDP's don't change

- To balance current accounts what changes will be required in
 - relative factor prices and GDP's
 - which are the nominal exchange rates if nominal GDP's don't change
 - real wages or real exchange rates

- To balance current accounts what changes will be required in
 - relative factor prices and GDP's
 - which are the nominal exchange rates if nominal GDP's don't change
 - real wages or real exchange rates
- We use a forty-four country model of production and bilateral trade to seek answers

- To balance current accounts what changes will be required in
 - relative factor prices and GDP's
 - which are the nominal exchange rates if nominal GDP's don't change
 - real wages or real exchange rates
- We use a forty-four country model of production and bilateral trade to seek answers
- Key to some answers is the degree of **internal** factor mobility

- Is there a secondary burden to ending current account deficits
- Our model is with Keynes
- But our numbers are with Ohlin

• Dornbusch, Fischer, and Samuelson (1977) analysis in a two-country model

- ∢ ⊢⊒ →

- Dornbusch, Fischer, and Samuelson (1977) analysis in a two-country model
 - Show that Keynes was right about the terms of trade

- Dornbusch, Fischer, and Samuelson (1977) analysis in a two-country model
 - Show that Keynes was right about the terms of trade
- A series of papers by Obstfeld and Rogoff (2000, 2005) with three "regions"

- Dornbusch, Fischer, and Samuelson (1977) analysis in a two-country model
 - Show that Keynes was right about the terms of trade
- A series of papers by Obstfeld and Rogoff (2000, 2005) with three "regions"
 - endowment economies

- Dornbusch, Fischer, and Samuelson (1977) analysis in a two-country model
 - Show that Keynes was right about the terms of trade
- A series of papers by Obstfeld and Rogoff (2000, 2005) with three "regions"
 - endowment economies
 - 3 world regions

- Dornbusch, Fischer, and Samuelson (1977) analysis in a two-country model
 - Show that Keynes was right about the terms of trade
- A series of papers by Obstfeld and Rogoff (2000, 2005) with three "regions"
 - endowment economies
 - 3 world regions
 - focus on real exchange rates rather than relative wages and real absorption

Manufacturing does the work

• Focus on manufactures, the largest component of trade

- Focus on manufactures, the largest component of trade
 - Gross manufacturing output Y_i^M , gross manufacturing absorption X_i^M , and manufacturing deficit D_i^M :

$$Y_i^M = X_i^M - D_i^M$$

- Focus on manufactures, the largest component of trade
 - Gross manufacturing output Y_i^M , gross manufacturing absorption X_i^M , and manufacturing deficit D_i^M :

$$Y_i^M = X_i^M - D_i^M$$

$$X_i^M = \alpha_i X_i + (1 - \gamma)(1 - \beta_i) Y_i^M$$

- Focus on manufactures, the largest component of trade
 - Gross manufacturing output Y_i^M , gross manufacturing absorption X_i^M , and manufacturing deficit D_i^M :

$$Y_i^M = X_i^M - D_i^M$$

$$X_i^M = \alpha_i X_i + (1 - \gamma)(1 - \beta_i) Y_i^M$$

• α_i share of mftr in final absorption (folding in use as intermediates in non-mftr

- Focus on manufactures, the largest component of trade
 - Gross manufacturing output Y_i^M , gross manufacturing absorption X_i^M , and manufacturing deficit D_i^M :

$$Y_i^M = X_i^M - D_i^M$$

$$X_i^M = \alpha_i X_i + (1 - \gamma)(1 - \beta_i) Y_i^M$$

- α_i share of mftr in final absorption (folding in use as intermediates in non-mftr
- β_i share of value added in mftr

- Focus on manufactures, the largest component of trade
 - Gross manufacturing output Y_i^M , gross manufacturing absorption X_i^M , and manufacturing deficit D_i^M :

$$Y_i^M = X_i^M - D_i^M$$

$$X_i^M = \alpha_i X_i + (1 - \gamma)(1 - \beta_i) Y_i^M$$

- α_i share of mftr in final absorption (folding in use as intermediates in non-mftr
- β_i share of value added in mftr
- γ share of non-mftr in mftr intermediates

• Input costs c_i

∃ ► < ∃ ►</p>

• • • • • • • •

æ

- Input costs *c_i*
- Efficiency making particular good $j z_i(j)$

Image: Image:

э

- Input costs c_i
- Efficiency making particular good $j z_i(j)$
- Iceberg transport costs $d_{ni} \ge 1$ to deliver from *i* to *n*.

- Input costs c_i
- Efficiency making particular good $j z_i(j)$
- Iceberg transport costs $d_{ni} \ge 1$ to deliver from *i* to *n*.
- Cost of delivering a unit of good *j* from *i* to *n* (gravity):

$$p_{ni}=rac{d_{ni}c_i}{z_i(j)}$$

• Distribution for z:

$$F(z) = e^{-T_i z^{-\theta}}$$

Image: A mathematical states and a mathem

э

• Distribution for z:

$$F(z) = e^{-T_i z^{-\theta}}$$

• CES preferences (with elasticity of substitution σ)

Implications

• Define:

$$\Phi_n = \sum_{i=1}^N T_i (c_i d_{ni})^{- heta}$$

country n's access to world technology adjusting for cost (input and transport)

< 4 ► >

э

Implications

• Define:

$$\Phi_n = \sum_{i=1}^N T_i (c_i d_{ni})^{-\theta}$$

country n's access to world technology adjusting for cost (input and transport)

• Price Index:

$$p_i = \gamma \Phi_n^{-1/\theta}$$

< 47 ▶

э

Implications

• Define:

$$\Phi_n = \sum_{i=1}^N T_i (c_i d_{ni})^{- heta}$$

country n's access to world technology adjusting for cost (input and transport)

Price Index:

$$p_i = \gamma \Phi_n^{-1/\theta}$$

Trade share:

$$\pi_{ni} = \frac{T_i(c_i d_{ni})^{-\theta}}{\Phi_n}$$

Implications

• Define:

$$\Phi_n = \sum_{i=1}^N T_i (c_i d_{ni})^{-\theta}$$

country n's access to world technology adjusting for cost (input and transport)

Price Index:

$$p_i = \gamma \Phi_n^{-1/\theta}$$

Trade share:

$$\pi_{ni} = \frac{T_i(c_i d_{ni})^{-\theta}}{\Phi_n}$$

• World Manufacturing Equilibrium:

$$Y_i^M = \sum_{n=1}^N \pi_{ni} X_i^M$$

• Internal factor immobility

3

Image: A matrix

- Internal factor immobility
 - Endowments L_i^M and L_i^N

< A

э

- Internal factor immobility
 - Endowments L_i^M and L_i^N
 - Factor rewards w_i^M and w_i^N

- Internal factor immobility
 - Endowments L_i^M and L_i^N
 - Factor rewards w_i^M and w_i^N

•
$$c_i = \kappa_i \left(w_i^M \right)^{\beta_i} (w_i^N)^{\gamma(1-\beta_i)} p_i^{(1-\gamma)(1-\beta_i)}$$

- Internal factor immobility
 - Endowments L_i^M and L_i^N
 - Factor rewards w_i^M and w_i^N

•
$$c_i = \kappa_i \left(w_i^M \right)^{\beta_i} (w_i^N)^{\gamma(1-\beta_i)} p_i^{(1-\gamma)(1-\beta_i)}$$

Internal factor mobility

- Internal factor immobility
 - Endowments L_i^M and L_i^N
 - Factor rewards w_i^M and w_i^N

•
$$c_i = \kappa_i \left(w_i^M \right)^{\beta_i} (w_i^N)^{\gamma(1-\beta_i)} p_i^{(1-\gamma)(1-\beta_i)}$$

- Internal factor mobility
 - Endowment $L_i = L_i^M + L_i^N$

- Internal factor immobility
 - Endowments L_i^M and L_i^N
 - Factor rewards w_i^M and w_i^N

•
$$c_i = \kappa_i \left(w_i^M \right)^{\beta_i} (w_i^N)^{\gamma(1-\beta_i)} p_i^{(1-\gamma)(1-\beta_i)}$$

- Internal factor mobility
 - Endowment $L_i = L_i^M + L_i^N$
 - Factor reward w_i

- Internal factor immobility
 - Endowments L_i^M and L_i^N
 - Factor rewards w_i^M and w_i^N

•
$$c_i = \kappa_i \left(w_i^M \right)^{\beta_i} (w_i^N)^{\gamma(1-\beta_i)} p_i^{(1-\gamma)(1-\beta_i)}$$

- Internal factor mobility
 - Endowment $L_i = L_i^M + L_i^N$
 - Factor reward w_i

•
$$c_i = \kappa_i w_i^{\beta_i + \gamma(1-\beta_i)} p_i^{(1-\gamma)(1-\beta_i)}$$

Data

• Forty four countries in 2004

DEK (IMF)

Putting numbers on parameters

• θ

DEK (IMF)

э

< □ > < ---->

Putting numbers on parameters

• θ

• $\theta = 8.28$ Eaton and Kortum (2002)

Putting numbers on parameters

• θ

- $\theta = 8.28$ Eaton and Kortum (2002)
- $\theta = 3.60$ Bernard, Eaton, Kortum, and Jensen (2003)

Putting numbers on parameters

• θ

- heta= 8.28 Eaton and Kortum (2002)
- $\theta = 3.60$ Bernard, Eaton, Kortum, and Jensen (2003)

• α_i , β_i from UNIDO production data; UN National Accounts data

Putting numbers on parameters

• θ

- heta= 8.28 Eaton and Kortum (2002)
- heta= 3.60 Bernard, Eaton, Kortum, and Jensen (2003)
- α_i , β_i from UNIDO production data; UN National Accounts data
- γ OECD input output table for USA

Technology and Geographic Barriers

• Reformulate Equilibrium Conditions in terms of *changes* in GDP, value added, and trade shares from current values

Immobile labor 1: mftr labor market equilibrium

• mftr labor market equilibrium:

$$\widehat{w}_{i}^{M} \frac{V_{i}^{M}}{\beta_{i}} = \sum_{n=1}^{N} \pi_{ni}^{\prime} \left(\widehat{w}_{n}^{M} \frac{V_{n}^{M}}{\beta_{n}} + D_{i}^{M\prime} \right)$$

Immobile labor 2: non-mftr labor market equilibrium

• non-mftr labor market equilibrium:

$$\widehat{w}_n^N V_n^N = \left[\frac{1-\alpha_n}{\alpha_n} + \frac{\gamma(1-\beta_n)}{\alpha_n\beta_n}\right] \widehat{w}_n^M V_n^M + \frac{1}{\alpha_n} D_n^{M\prime} - D_n^{\prime}$$

Immobile labor 3: trade shares

• trade shares:

$$\pi_{ni}' = \frac{\pi_{ni} \left[\left(\widehat{w}_i^M \right)^{\beta_i} \left(\widehat{w}_i^N \right)^{\gamma(1-\beta_i)} \widehat{p}_i^{(1-\gamma)(1-\beta_i)} \right]^{-\theta}}{\sum_{k=1}^N \pi_{nk} \left[\left(\widehat{w}_k^M \right)^{\beta_k} \left(\widehat{w}_k^N \right)^{\gamma(1-\beta_k)} \widehat{p}_k^{(1-\gamma)(1-\beta_k)} \right]^{-\theta}}$$

э

Immobile labor 4: price indices

• price index:

$$\widehat{p}_{n} = \left(\sum_{i=1}^{N} \pi_{ni} \left[\left(\widehat{w}_{i}^{M} \right)^{\beta_{i}} \left(\widehat{w}_{i}^{N} \right)^{\gamma(1-\beta_{i})} \widehat{p}_{i}^{(1-\gamma)(1-\beta_{i})} \right]^{-\theta} \right)^{-1/\theta}$$

Image: Image:

3

Mobile labor

• Similar, only with total GDP rather than sectoral value added

Calibration and Quantification

Counterfactual experiment

Set $D_i^{M'} = D_i^M + CA_i$ for each country, fixing D_i^O

3

RESULTS

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

TABLE 2: Exchange Rate Changes Associated with Eliminating Current Accounts (Immobile and mobile labor)

	CA Deficit	Exchange Rate Change	
Country	(% of GDP)	immobile	mobile
CANADA	-2.27	1.031	0.989
CHINA/HK	-4.14	1.037	1.016
DENMARK	-2.56	1.105	1.034
GERMANY	-3.85	1.073	1.026
ISRAEL	-2.72	1.064	1.010
JAPAN	-3.89	1.093	1.035
UNITED STATES	5.55	0.859	0.954

TABLE 3: Sectoral Changes Associated with Eliminating Current Accounts (Immobile and Mobile Labor)

	Immobile Labor		Mobile Labor
	real wage change		change in mfg
Country	mfg	non-mfg	employment shr
CANADA	0.948	1.013	0.943
CHINA/HK	0.989	1.007	0.988
DENMARK	0.922	1.016	0.901
GERMANY	0.932	1.017	0.934
ISRAEL	0.922	1.012	0.920
JAPAN	0.922	1.020	0.925
UNITED STATES	1.231	0.960	1.226

TABLE 4: Changes in Real Exchange Rates Associated with Eliminating Current Accounts

(Immobile and Mobile Labor and Alternative Lower Trade Elasticity)

	Change in the Real Exchange Rate			
	high trade e	lasticity	low trade e	lasticity
Country	immobile mobile		immobile	mobile
CANADA	1.002	1.003	1.002	1.005
CHINA/HK	1.000	1.000	1.000	1.000
DENMARK	1.005	1.003	1.007	1.005
GERMANY	1.000	1.002	1.002	1.005
ISRAEL	1.000	1.001	0.999	1.001
JAPAN	0.999	1.002	1.001	1.004
UNITED STATES	0.995	0.996	0.991	0.991

TABLE 5: CHANGES IN REAL WAGES, REAL GDP, OVERALL PRICE INDEX, AND REAL ABSORPTION (FACTOR IMMOBILITY)

	real wages		real	aggregate	real
country	mfg	non-mfg	GDP	price index	absorption
ALGERIA	0.760	1.075	1.058	1.282	1.197
ARGENTINA	0.983	1.010	1.004	1.045	1.032
AUSTRALIA	1.191	0.961	0.986	0.890	0.926
AUSTRIA	0.992	1.002	1.000	1.040	1.005
BELGIUM/LUXEM	0.959	1.017	1.008	1.051	1.054
BRAZIL	0.955	1.014	1.001	1.066	1.025
CANADA	0.948	1.013	1.002	1.029	1.026
CHILE	0.962	1.011	1.003	1.053	1.027
CHINA/HK	0.989	1.007	1.000	1.037	1.042
COLOMBIA	1.019	0.996	0.999	1.010	0.991
DENMARK	0.922	1.016	1.005	1.099	1.034
EGYPT	0.937	1.019	1.004	1.092	1.048
FINLAND	0.906	1.024	1.000	1.099	1.056
FRANCE	1.004	0.999	1.000	1.029	0.998
GERMANY	0.932	1.017	1.000	1.073	1.041
GREECE	1.177	0.969	0.986	0.918	0.939
INDIA	0.983	1.003	1.000	1.039	1.010
INDONESIA	0.988	1.004	1.000	1.040	1.009
IRELAND	1.019	0.999	1.004	1.015	1.002
ISRAEL	0.922	1.012	1.000	1.064	1.026
ITALY	1.013	0.997	0.999	1.024	0.992
JAPAN	0.922	1.020	0.999	1.094	1.037
KOREA	0.921	1.022	0.996	1.081	1.040
MALAYSIA	0.925	1.036	1.001	1.055	1.168
MEXICO	1.014	0.994	0.997	0.987	0.989
NETHERLANDS	0.826	1.042	1.015	1.134	1.111
NEW ZEALAND	1.106	0.967	0.987	0.940	0.921
NORWAY	0.763	1.067	1.037	1.238	1.201
PAKISTAN	1.012	0.997	0.999	1.014	0.993
PERU	0.996	1.001	1.000	1.021	1.002
PHILIPPINES	0.937	1.013	0.995	1.075	1.007
PORTUGAL	1.163	0.968	0.994	0.947	0.929
RUSSIA	0.804	1.054	1.015	1.230	1.134
SINGAPORE	1.060	0.891	0.936	1.064	1.254
SOUTH AFRICA	1.061	0.985	0.998	0.990	0.965
SPAIN	1.096	0.977	0.995	0.976	0.945
SWEDEN	0.826	1.040	1.002	1.159	1.089
SWITZERLAND	0.733	1.085	1.020	1.250	1.182
THAILAND	0.964	1.019	1.000	1.051	1.045
TURKEY	1.081	0.973	0.995	0.981	0.946
UNITED KINGDOM	1.038	0.992	0.998	1.006	0.983
UNITED STATES	1.231	0.960	0.995	0.863	0.943
VENEZUELA	0.833	1.076	1.036	1.221	1.197
REST OF WORLD	0.953	1.009	1.000	1.062	1.022

change in exchange rate

ѕтата™

Large changes in relative GDPs and hence nominal exchange rates with immobile labor

- Large changes in relative GDPs and hence nominal exchange rates with immobile labor
- 2 Smaller with labor mobility

- Large changes in relative GDPs and hence nominal exchange rates with immobile labor
- Smaller with labor mobility
- The pull of gravity of large economies on the small (Canada vs. Denmark)

- Large changes in relative GDPs and hence nominal exchange rates with immobile labor
- Smaller with labor mobility
- The pull of gravity of large economies on the small (Canada vs. Denmark)
- With Immobile labor there are large redistributions toward mftr labor in deficit countries, with the reverse in surplus countries

- Large changes in relative GDPs and hence nominal exchange rates with immobile labor
- Smaller with labor mobility
- The pull of gravity of large economies on the small (Canada vs. Denmark)
- With Immobile labor there are large redistributions toward mftr labor in deficit countries, with the reverse in surplus countries
- In either case overall real wages and real exchange rates change very little

Model trade in nonmanufactures

æ

- Model trade in nonmanufactures
- Q Nail down determinants of factor mobility to connect the two cases

- Model trade in nonmanufactures
- I Nail down determinants of factor mobility to connect the two cases
- Embed in a model that explains the reasons for current account imbalances