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Abstract

This paper provides a model of the view that the 2008 financial cri-

sis is reminiscent of a bank run, focussing on six stylized key features.

In particular, core financial institutions have invested their funds in

asset-backed securities rather than committed to long-term projects:

in distress, these can potentially be sold to a large pool of outside

investors at steep discounts. I consider two different motives for out-

side investors and their interaction with banks trading asset-backed
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securities: uncertainty aversion versus adverse selection. I shall argue

that the version with uncertainty averse investors is more consistent

with the stylized facts than the adverse selection perspective: in the

former, the crisis deepens, the larger the market share of distressed

core banks, while a run becomes less likely instead as a result in the

adverse selection version. Therefore, the outright purchase of troubled

assets by the government at prices above current market prices may

both alleviate the financial crises as well as provide tax payers with

returns above those for safe securities.

Keywords: systemic bank run, bank run, systemic risk, financial crisis,

firesale pricing, adverse selection, uncertainty aversion

JEL codes: G21, G12, G14, G01
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1 Introduction

Bryant (1980) and Diamond and Dybvig (1983) have provided us with the

classic benchmark model for a bank run. The financial crisis of 2007 and

2008 is reminiscent of a bank run, but not quite, see Brunnermeier (2008)

and Gorton (2009). The following six features summarize the prevalent view

by many observers:

1. The withdrawal of funds was done by financial institutions (in par-

ticular, money market funds and other banks) at some core financial

institutions (I shall call them “core banks” for the purpose of this pa-

per), rather than depositors at their local bank.

2. The troubled financial institutions held their portfolio in asset-backed

securities (most notably tranches of mortgage-backed securities and

credit default swaps) rather than being invested directly in long-term

projects.

3. These securities are traded on markets.

4. There is a large pool of investors willing to purchase securities. For

example, in the 2008 financial crisis, newly issued US government bonds

were purchased at moderate discounts and the volume on stock markets

was not low.

5. Nonetheless, investors were willing to buy the asset-backed securities

during the crisis only at prices that are low compared to standard

discounting of the entire pool of these securities.

6. The larger the market share of troubled financial institutions, the steeper

the required discounts.

This perspective has possibly been crucial for a number of policy interven-

tions, despite the inapplicability of the original Diamond-Dybvig framework.



This creates a gap in our understanding. A new or at least a modified theory

is needed.

This paper seeks to contribute to filling that gap, and provide a model

(in two variants) of a systemic bank run. A systemic bank run is a situation,

in which early liquidity withdrawals by long-term depositors at some bank

are larger and a bank run more likely, if other banks are affected by liquidity

withdrawals too, i.e. the market interaction of the distressed banks is crucial.

This is different from a system-wide run, which may occur if all depositors

view their banks as not viable, regardless of whether the depositors at other

banks do to.

The goal is for the model to produce the stylized view, i.e. the six items

listed above. That stylized view may be entirely incorrect as a description of

the 2008 financial crisis. It is possible that the appropriate perspective is one

of insolvency rather than illiquidity, and future research will hopefully sort

this out. Absent that clarification, it is worthwhile to analyze the situation

from a variety of perspectives, including the one above.

It will turn out, that items 1 to 3 are straightforward to incorporate,

merely requiring some additional notation. Item 4 is easy to incorporate in

principle, but hard once one demands item 5 and 6 as well. Item 6 will turn

out to be particulary thorny to achieve, and decisive in selecting one of two

variants for modeling outside investors.

Here is the key argument. Common to both variants, suppose that there

are some unforeseen early withdrawals. Therefore, core financial institutions

need to sell part of their long-term securities, thereby incurring opportunity

costs in terms of giving up returns at some later date. Suppose that the

remaining depositors (or depositing institutions) are the more inclined to

withdraw early as well, the larger these opportunity costs are. If a larger

market share of distressed banks and therefore larger additional liquidity

needs drive these opportunity costs up, then a wide spread run on the core

banks is more likely: this creates a systemic bank run. Whether this happens

depends on the market for the long-term securities, the outside investors, and
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the reasons for steep discounts of these securities, and it is here where the

two variants differ.

In the first variant, I hypothesize that expert investors have finite re-

sources, while the remaining vast majority of investors is highly uncertainty

averse: they fear getting “stuck” with the worst asset among a diverse port-

folio, and are therefore not willing to bid more than the lowest price, see

section 3. For the second variant, I assume that risk-neutral investors to-

gether with adverse selection create an Akerlof-style lemons problem: liquid

core banks have an incentive to sell their worst assets at a given market

price, leading to a low equilibrium price, see section 5. Both models generate

a downward sloping demand curve or, more accurately, an upward sloping

period-2 opportunity cost for providing period-1 resources per selling long-

term securities from the perspective of the individual core bank, holding

aggregate liquidity demands unchanged.

However, the two variants have sharply different implications regarding

the last feature in the list above. With uncertainty aversion, a larger market

share of troubled institutions dilutes the set of expert investors faster, lead-

ing more quickly to steep period-2 opportunity costs for providing period-1

liquidity, and thereby setting the stage for a systemic bank run. By contrast

and with adverse selection, a larger pool of distressed institutions leads to

less free-riding of unaffected core banks, thereby lowering the opportunity

costs for providing liquidity, see section 6. I shall therefore argue to rather

analyze the 2008 financial crisis and draw policy conclusions, using the tools

of uncertainty aversion. For example, with uncertainty aversion, a govern-

ment purchase of assets above market price may be a good deal for the tax

payers under uncertainty aversion, but not under adverse selection.

There obviously is a large literature expanding the Diamond-Dybvig bank

run paradigm, including investigations of systemic risk and the occurrence

of fire sales. A thorough discussion is beyond the scope here, but is available

elsewhere. Allen and Gale (2007) have succinctly summarized much of the

bank run literature and in particular their own contributions. Rochet (2008)
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has collected a number of his contributions with his co-authors on banking

crises and bank regulation. Several papers on the recent financial crises

and on resolution proposals have been collected in Acharya and Richardson

(2009).

Nonetheless, it may be good to provide to explore at least some rela-

tionships. While the Diamond-Dybvig model is originally about multiple

equilibria (“bank run” vs “no bank run”), Allen and Gale (2007) have em-

phasized fundamental equilibria, in which it is individually rational for a

depositor to “run”, even if nobody else does. Here, I also employ this fun-

damental view. Heterogeneous beliefs by depositors will create partial bank

runs here. Allen and Gale (1994, 2004b) have investigated the scope and

consequences of cash-in-the-market pricing to generate fire sale pricing and

bank runs. Technical and legal details as well as institutional frictions and

barriers surely play a key role in preventing outside investors to enter this

market quickly, see Duffie (2009). It still remains surprising that outside

investors remain reluctant to enter, if there truly is underpricing. Thinking

about this reluctance and its implications is a goal of this paper.

Diamond and Rajan (2009) have argued that banks have become reluctant

to sell their securities at present, if they foresee the possibility of insolvency

due to firesale prices in the future, as they will gain on the upside. Additional

reasons are needed to generate the firesale price in the first place: the latter

is the focus of this paper.

While the popular press views financial crises and bank runs as undesir-

able disasters, e.g. Allen and Gale (1998, 2004a) have shown that they may

serve a socially useful rule by partially substituting for a missing market, and

policy should not necessarily seek to avoid them. On a more subtle level, En-

nis and Keister (2008) have shown that ex-post efficient policy responses to a

bank run of allowing urgent depositors to withdraw may actually increase the

incentives to participate in a bank run and the conditions for a self-fulfilling

bank run in the first place. In this paper, the main focus is on the positive

rather than the normative analysis.
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There is a large literature on systemic risk and contagion. For example,

Cifuentes et al (2005) have studied the interplay between uncontingent capi-

tal adequacy requirements and the endogenous collapse of prices and balance

sheets, as banks need to unload assets in order to meet these requirements.

They assume that demand for these assets is downward sloping: this paper

seeks to investigate why. Allen and Gale (2000) have studied the possibility

for contagion in a sparse network of banks interlinked by mutual demand

deposits, where a collapse of one bank can lead to a domino effect per with-

drawals on their neighbor. Here, I assume a hierarchy, where local banks hold

deposit contracts on core banks, who in turn use the market to obtain liq-

uidity. Diamond and Rajan (2005) have investigated the contagious nature

of bank failures, when returns on long-term projects can only be obtained

by banks. Here instead, I assume that a asset-backed securities will pay its

return, irrespective of ownership.

The role of adverse selection in firesale pricing has been analyzed before

in Eisfeldt (2004). In contrast to that paper, I compare different versions of

“bad times” here to obtain my key insight. There is a growing literature on

the role of uncertainty aversion (or Knightian uncertainty) for asset markets

and macroeconomics, see e.g. Hansen and Sargent (2008) and the references

therein. Its importance as a key ingredient in the current crisis has been

stressed also by e.g. Caballero and Krishnamurthy (2008), Easley and O’Hara

(2008) and Backus et al (2009).

The structure of the paper is as follows. After a literature review, I de-

scribe the model in section 2 and provide a brief description of the equilibrium

under “normal” conditions, see subsection 4. I then analyze the uncertainty

averse case in section 3 and the adverse selection case in section 5. Section 6

offers some policy discussion, followed by a short conclusion. The appendix

offers additional details, in particular on the equilibrium under normal con-

ditions, see appendix B.
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2 The model

The model can be summarized as follows. I consider an environment inspired

by Smith (1991), in which depositors interact with a local bank, which in turn

refinances itself via an (uncontingent) demand deposit account with one of a

few core banks, who in turn invest in long-term (“mortgage-backed”) secu-

rities. Clearly, the observable world of securities is considerably richer (and

harder to describe), but this framework may capture the essence of the in-

teractions. I assume that there are two aggregate states, a “boom” state

and a (rare) “bust” state. In the “boom” state, everything follows from the

well-known analysis in the benchmark bank run literature, see section B:

essentially, things are fine. More serious problems arise in the bust state. I

assume that the long-term securities become heterogeneous in terms of their

long-term returns, and that local banks (together with their local deposi-

tors) hold heterogeneous beliefs regarding the portfolio of their core bank.

Therefore, some local banks may withdraw early, even if local consumption

demands are “late”. Long term securities will then be sold to outside in-

vestors, who may be heterogeneous in their information and their beliefs

regarding these assets.

I shall now describe the details. There are three periods, t = 0, 1, 2. There

are two fundamental aggregate states: “boom” and “bust”. The aggregate

state will be learned by all participants in period 1. There are four types of

agents or agencies:

1. Depositors in locations s ∈ [0, 1].

2. Local banks in locations s ∈ [0, 1].

3. Core banks, n = 1, . . . , N .

4. Outside investors i ∈ [0,∞).

There are two types of assets

1. A heterogeneous pool of long-term securities.
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2. A short term security, providing a safe return of 1.

Figure 1 provides a graphical representation of the model: there, I have

drawn the unit interval as a unit circle.

assets

Demand by 

outside 

investors

Price 

(discount, 

expected 

return)

Core 

banks

local bank

local depositors

Supply of assets

Figure 1: A graphical representation of the model.

2.1 Depositors and local banks

As in Diamond and Dybvig (1983), I assume that depositors have one unit of

resources in period 0, but that they care about consumption either in period

1 (“early consumer”) or in period 2 (“late consumer”). As in Smith (1983),
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I assume that all depositors at one location are of the same type. They learn

their type in period 1. I assume that a fraction 0 < ϕ < 1 of locations has

early consumers and a fraction 1 − ϕ has late consumers. I assume that

the realization of the early/late resolution is iid across locations and that

depositors are evenly distributed across locations. I assume that depositors

learn of their type in period 1. Ex-ante utility is therefore given by

U = ϕE[u(c1)] + (1 − ϕ)E[u(c2)] (1)

where c1 and c2 denotes consumption at date 1, if the consumer is of the

early type and c2 denotes consumption at date 2, if the consumer is of the

late type and where u(·) satisfies standard properties. This heterogeneity in

consumption preference induces a role for liquidity provision and maturity

transformation, as in Diamond and Dybvig (1983) and the related literature.

I assume that depositors only bank with the local bank in the same location,

e.g. due to some unspecified cost to diversification.

Local banks open uncontingent demand deposit accounts with the core

banks, depositing resources in period 0 and taking withdrawals in period 1

and/or period 2. Again, for some unspecified cost reasons, I assume that

local banks operate a deposit account only with one of the core banks.

2.2 Core banks and securities

Core banks, local banks and depositors all can invest in short term securities

in period 0 or in period 1, returning 1 unit next period. Additionally, core

banks can invest in a set of long-term securities in period 0 and trade them

on asset markets in period 1. One may wish to view these as “mortgage

backed securities”: appendix A details, how the model can be extended to

describe that feature.

In the aggregate “boom” state, the long-term securities are all assumed

to return Rboom per unit invested. I assume that

ϕu(0) + (1 − ϕ)u(Rboom) < u(1) (2)
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1 < Rboom <
u′(1)

u′(Rboom)
(3)

If u(c) is CRRA with an intertemporal elasticity of substitution below unity

and if Rboom > 1, both equations are satisfied. Further, (2) is generally

satisfied, if (1 − ϕ)Rboom < 1.

In the “bust” state, each long term securities offers a safe1 return R per

unit invested in period 0, but these returns are heterogeneous and distributed

according to R ∼ F , drawn from some distribution F on some interval [R, R̄],

where 0 < R ≤ R̄ <∞, with unconditional expectation Rbust, satisfying

Rbust ≤ Rboom (4)

Once the aggregate state is revealed to be a “bust” in period 1, I assume

that core banks all know the type and therefore the period-2 payoff of the

securities in their portfolio, and by implication the return distribution of their

securities. The entire portfolio of the long-term securities has the safe return

Rbust. Particular long-term securities within that portfolio have different

returns, however. An outside investor who buys one particular long-term

security, and e.g. draws a random security from the entire pool therefore

exposes himself to that return risk.

But even for the entire portfolio at a core bank, the composition is as-

sumed to be unknown to depositors and local banks. Instead, they form

heterogeneous beliefs about that. I assume that local banks at location s

and its depositors believe their core bank to hold a portfolio with return

distribution F (·; s), where F (·; ·) is measurable and F (·; s) is a distribution

function. This may arise e.g. due to unmodeled heterogeneous signals arriv-

ing at each location: with that interpretation, one needs to insist on local

banks not updating their beliefs in light of the actions of other local banks.

One may wish to impose that

F (R) =
∫

F (R; s)ds (5)

1It is not hard to generalize this to risky returns, but the additional insights may be

small. From the perspective of outside investors, who do not know the specific R, the

returns will be uncertain, and this is what matters.

9



so that aggregate beliefs accurately reflect the aggregate distribution (or a

similar assumption at each core bank), but none of the results appear to

depend on this.

For simplicity, I shall assume that core banks actually all hold exactly

the same portfolio, i.e. there is a mismatch between the beliefs of the local

banks and the portfolio of their core bank. Note that the portfolio of any

core bank has the safe return Rbust. Core banks are not allowed to con-

tract or condition on the bust-state beliefs F (·; s), e.g. due to unmodelled

informational reasons.

2.3 Outside investors

Finally, there is a large pool of outside investors i ∈ [0,∞). These investors

can invest in the long-term securities or the short-term securities in period 1,

though not in period 0. Each investor is endowed with one unit of resources.

I do not allow them to engage in short-selling. They are assumed to be risk

neutral, discounting the future at some rate β, with

βRboom < 1 (6)

It remains to specify the information and beliefs of these investors. I shall

investigate three variants.

1. [Benchmark:] As a benchmark, I assume that outside investors are

risk-neutral, discounting resources between period 1 and period 2 at

rate β. Furthermore, I assume that core banks sell their portfolio as

proportional bundles (or, equivalently, sell randomly selected long-term

securities, without adverse selection).

2. [Uncertainty Aversion:] I assume the investors to be uncertainty

averse, following Schmeidler (1989) or Epstein (1999) or to follow ro-

bust control rules against downside risks, following Hansen and Sargent

(2008). There may also be an interpretation as extreme loss aversion,
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see Tversky and Kahnemann (1991) and Barberis, Huang and Santos

(2001). In either case, I presume the following starkly simplified struc-

ture: given a security drawn from a pool of securities with some interval

as the support of its payoffs, these investors are willing to pay β times

the lower bound of this interval as the price per unit invested, i.e. the

investor is risk neutral, but minimizes over all probability distributions

with support on that interval. Put differently, if offered to trade a se-

curity from the described set, they will fear that they will always be

offered the security with the lowest of these returns, even though this

cannot happen to all investors in equilibrium. Another potential justi-

fication may be that these are traders working on behalf of institutional

investors and face lopsided incentives: due to the complexity of these

securities, they cannot afford to risk loosing money ex post during the

bust, as their managers may not be able to tell whether this was bad

luck or poor research.

Let ω ≥ 0. I assume the group i ∈ [0, ω] of these investors to have

the expertise of discerning the quality of the long-term securities, i.e.

they know the return of a given long-term security, the support interval

is a single number, and they are therefore willing to buy them when

the return exceeds 1/β. I call them the expert investors. All other

investors i > ω only know the distribution F and the equilibrium, but

not the specific return of some offered long-term security. They use the

support interval [R, R̄] and are therefore willing to pay

βR

per unit invested.

3. [Adverse Selection:] I assume that outside investors are risk-neutral,

discounting period-2 payoffs at rate β, but cannot distinguish between

the qualities of the long-term securities sold to them. I assume that

core banks can “adversely select” the long-term security they wish to

sell. I assume in this scenario, that all investors know that all core
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banks hold a portfolio of long-term securities with return distribution

R ∼ F (R).

2.4 Timing and equilibrium

The timing is as follows. In period 0, core banks offer deposit contracts to

local banks, offering state-uncontingent withdrawals of r in period 1 per unit

deposited. Likewise, local banks offer state-uncontingent withdrawals of r̃

in period 1 per unit deposited. In period 1 and depending on the aggregate

state, local banks may withdraw r from their core bank. The core banks

match these withdrawal demands from payoffs of their portfolio of short-

term securities as well as sales of long-term securities. If they cannot meet

all withdrawal demands, they declare bankruptcy. In that case, all local

banks, who have decided to withdraw, obtain an equal pro-rata payment

from the remaining resources.

I assume that Bertrand competition in these contracts makes local banks

pay out everything to their depositors2 and likewise makes core banks pay

out everything to local banks. Therefore, r̃ = r and all resources left in

period 2 will be paid in proportion to the remaining deposits. Furthermore,

local banks will be indifferent which particular core bank to choose. Let

ν : [0, 1] → {1, . . . , N}

be the core bank selection function, i.e. let ν(s) be the core bank selected by

the local bank s. I assume ν(·) to be measurable3 To analyze what happens

when the number of distressed banks increases, I consider in particular the

case, where a fraction µ of the core banks (in terms of their market share)

face the same heterogeneous beliefs of their local banks, whereas a fraction

1−µ of core banks has local banks, who all (accurately) believe the portfolio

of their core bank to be given by securities with R ∼ F (R).

2For that, one may want to assume that there are at least two local banks in each

location, though that assumption is immaterial for the rest of the analysis
3An alternative is to assume ν(·) to be random and use Pettis integration, see Uhlig

(1996).
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Finally and for simplicity, I assume that the “bust” state is sufficiently

unlikely a priori, so that r = r̃ are determined entirely from the “boom”

state calculus. With this, deposit contracts will be written as is standard

in the banking literature. Appendix B contains the details. Given these

contracts, I analyze the unfolding of the equilibrium in the bust state, with

either uncertainty averse investors or with adverse selection.

3 Variant 1: uncertainty aversion.

The analysis will proceed as follows. Given a “conjectured” fraction θ of

withdrawals by late-consumer local banks at some core bank and given ag-

gregate liquidations L, I shall calculate the actual fraction of withdrawals by

local banks, assuming that only local banks believing in otherwise receiving

less consumption in period 2 will withdraw early. This then provides me with

a mapping from conjectured withdrawal fractions (and therefore aggregate

liquidations) to actual withdrawal fractions (and therefore aggregate liqui-

dations): the lowest fix point of that is a fundamental, partial bank run. It

is systemic, if L exceeds ω and if this matters for the withdrawal decisions.

Consider first the dependence of the market price for any security on the

aggregate liquidation L of long-term securities. If L < ω, there is an “excess

supply” of expert investors. They will bid more than non-expert uncertainty-

averse investors for the securities sold: therefore, the market price will be

the final payoff, discounted at β. If L > ω (and, by assumption, if L = ω),

however, the “marginal” investor is an uncertainty-averse investor, willing

only to pay βR, regardless of the asset. This then must be the market

price. Thus, given some specific security, its market price is a decreasing

function of the aggregate liquidity needs L. This is the key feature needed

in this section. The market price also happens to fall discontinuously, as

L crosses ω: this is due to our particularly stark assumption regarding the

uncertainty aversion of the outside investors and assuming a discontinuity

at ω. This is not essential to the results, and can be relaxed, at the price
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of higher complexity of the analysis. The required general construction of

an equilibrium is available in a working paper version of this paper. The

cash-in-the-market pricing scenario of Allen and Gale (1994) or Allen and

Gale (2007), chapter 4, corresponds to an extreme version of the scenario

considered here, with the non-expert investors all bidding zero for all assets

and where the core banks cannot raise more liquidity than ω.

3.1 The withdrawal decision of local banks.

Consider a core bank and suppose that a fraction θ of its local banks at late-

consuming locations withdraw early. Suppose that aggregate liquidations

are L. If L < ω, the opportunity costs in terms of period-2 resources for

providing one unit of resources for period-1 withdrawals is 1/β. If L ≥ ω,

the market price βR, regardless of the security sold. The core bank will

therefore sell its securities with the lowest period-2 payoff first. Suppose the

core bank started initially with ξ resources. It therefore purchased (1−ϕr)ξ

units of long-term securities. Given the early withdrawals, the core bank

needs to raise period-1 liquidity ℓ = rθ(1 − ϕ)ξ, and hence sell ℓ/(βR) units

of its long-term securities, i.e. the fraction

ζ(θ) =
1 − ϕ

1 − ϕr

rθ

βR
(7)

similar to equation (38).

Consider now one of its local banks and its beliefs F (·; s) about the return

distributions of the securities in the portfolio of its core bank (before selling

any of its securities). For ease of notation, I shall write G in place of F (·; s).
Let

G−1(τ) = sup{R | G(R) < τ}, τ ∈ [0, 1] (8)

be the inverse function of G, see figure 2. Note that

EG[R | R ≤ G−1(ζ)] =

∫ ζ
0 G

−1(τ)dτ

ζ
(9)
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is the expected return of all returns below the level given by G−1(ζ), under

the distribution G. Also note that G−1(τ) is a continuous function of τ and

EG[R | R ≤ G−1(ζ)] is a continuous function of ζ .

 

G!1( )

G(R)1

R R

Figure 2: The function G−1 and expected returns.

From the perspective of this local bank, the period-2 opportunity costs

for period-1 withdrawals are

Γ(θ, L;G) =
1

β

(

1L<ω +
EG[R | R ≤ G−1(ζ(θ, L))]

R
1L≥ω

)

(10)

Proposition 1 1. Γ(θ, L;G) is increasing and continuous in θ.
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2. Γ(θ, L;G) is increasing in L and satisfies βΓ(θ, L;G) ≥ 1. More pre-

cisely, it is constant in L, except for a nonnegative jump at L = ω.

3. Suppose that H first-order stochastically dominates G. Then

Γ(θ, L;G) ≤ Γ(θ, L;H)

i.e. Γ(θ, L;G) is increasing in G, when ordering distributions by first-

order stochastic dominance.

Proof:

1. Note that ζ(θ) and therefore EG[R | R ≤ G−1(ζ(θ))] is increasing in θ.

Continuity is a consequence of the continuity of ζ(θ, L) in θ.

2. Note that R−1EG[R | R ≤ G−1(ζ(θ))] ≥ 1.

3. Define H−1 as the inverse of H as in 8. Since H(R) ≤ G(R) for

all R, H−1(τ) ≥ G−1(τ) for all τ ∈ [0, 1]. Equation (9) shows that

EG[R | R ≤ G−1(ζ)] ≤ EH [R | R ≤ G−1(ζ)] and the claim follows.

•

As a result, a local bank with beliefs G = F (·; s) perceives the second-

period payoff to be

c2(0, 0;G) = EG[R]
1 − ϕr

1 − ϕ
(11)

if there are no withdrawals of late-consumer local banks in period 1, i.e.

if θ = 0 and L = 0. With withdrawals of a fraction θ of late-consumer

local banks and given aggregate liquidations L, the (perceived) remaining

resources at period 2 per late consumer for this core bank is therefore

c2(θ, L;G) =
c2(0, 0;G) − rθΓ(θ, L;G)

1 − θ
(12)

which generalizes (39). The local bank will therefore surely opt for period-1

withdrawal, if c2(θ, L;G) < r.
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Generally, c2(θ, L;G) is not monotone in G, when ordering G according

to first-order stochastic dominance: while the first term is increasing in G,

the second term is now decreasing, due to the negative sign. c2(θ, L;G) is

decreasing in L and it is decreasing in θ under the mild condition (13), which

generalizes (34) and which essentially assures, that no late-withdrawal local

bank will be happy about other late consumer local banks withdrawing early.

Proposition 2 1. c2(θ, L;G) is monotonously decreasing in L. More pre-

cisely, it is constant in L, except for a nonpositive jump at L = ω.

2. c2(θ, L;G) is continuous in θ.

3. Assume that

c2(0, 0;G) <
r

β
(13)

Then c2(θ, L;G) is strictly decreasing in θ.

Proof:

1. This follows directly from proposition 1.

2. Continuity follows from the continuity of Γ(θ, L;G) in θ.

3. Write c2(θ, L;G) as

c2(θ, L;G) = c2(0, 0;G) − θ

1 − θ
χ(θ, L;G) (14)

where

χ(θ, L;G) = rΓ(θ, L;G) − c2(0, 0;G) (15)

is strictly positive and increasing in θ per (13) and proposition 1. Let

θa < θb. Then

c2(θa, L;G) = c2(0, 0;G) − θa

1 − θa
χ(θa, L;G)

> c2(0, 0;G) − θb

1 − θb
χ(θa, L;G)

≥ c2(0, 0;G) − θb

1 − θb
χ(θb, L;G)

= c2(θb, L;G)
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•

3.2 Equilibrium

Assume that (13) is true for all conjectured distributions G = F (·, s). There-

fore, if local banks opt for early withdrawals at some level of market liquidity

or some fraction of other early withdrawals, they will do also for higher levels

of L and θ. Let

Sn(θ, L) = {s | ν(s) = n, c2(θ, L;F (·, s)) < r} (16)

be the set of local banks with deposits at core banks n, which will surely

withdraw early, if a fraction θ of depositors at core bank n do, and if there

is total liquidity demand L.

Given L and a core bank n, define the mappings

ηn,L : [0, 1] → [0, 1]

per

ηn,L(θ) = λ(Sn(θ, L))

where λ(·) denotes the Lebesgue measure. Intuitively, if aggregate liquidity

needs are given by L and if all local banks at core bank n conjecture the

fractions θ of late consumer local banks to withdraw early at that core bank,

then the fractions ηn,L(θ) surely will. Fixed points of η are bank runs, where

withdrawers strictly prefer to do so.

Proposition 3 Assume that (13) is true for all conjectured distributions

G = F (·, s).

1. ηn,L : [0, 1] → [0, 1] is increasing and continuous from the left, i.e. for

θj → θ∞, θj < θ∞, we have ηn,L(θj) → ηn,L(θ∞).
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2. Given n, L, let θ0 = 0 and construct the sequence

θj;n,L = ηn,L(θj−1;n,L)

Then θj;n,L → θ∞;n,L, which satisfies θ∞;n,L = ηn,L(θ∞;n,L). Further-

more,

θ∞;n,L = min{θ | θ ≥ ηn,L(θ)} (17)

Proof:

1. This follows from proposition 2.

2. The first part of the second part follows from the first part. For (17),

consider any θ < θ∞;n,L. Therefore, for some j,

θj−1;n,L ≤ θ < θj;n,L = ηn,L(θj−1;n,L) ≤ ηn,L(θ)

or θ < ηn,L(θ).

•
Given L, define

−→
θ ∞;L = (θ∞;1,L, . . . , θ∞;N,L)

Define

LA = L(
−→
θ ∞;0)

LB = L(
−→
θ ∞;LA

)

If LA < ω, then LB = LA and
−→
θ ∞;LA

is a partial fundamental bank

run, but without systemic feature. If LA ≥ ω, it still may be the case that

LB = LA, i.e. there again is no systemic feature per the repercussion of ag-

gregate liquidity needs on the individual withdrawal decisions4. A systemic

bank run obtains (or is defined to be the situation), if LB > LA, i.e., more

local banks withdraw, if it is known that aggregate liquidations exceed the

cash in the hands of expert investors. A numerical example for a systemic

bank run is provided in C.1.

4Here, I need R > 0. If R = 0, then one has cash-in-the-market pricing and a systemic

bank run will always have L = ω.
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4 The benchmark.

Suppose (and as a benchmark for comparison), that investors are risk-neutral

and that there is no adverse selection in selling the long-term securities.

The analysis of the “bust” state is now a corollary to the analysis above by

setting ω = ∞ and using Γ(θ, L;G) = 1/β throughout. The details can be

skipped, except perhaps for some useful formulas. With (12), second-period

consumption will assumed to be

c̃2(θ, L;G) =
c2(0, 0;G) − rθ/β

1 − θ
(18)

which is monotone in G, when ordering distributions according to first-order

stochastic dominance, and which does not depend on L (and where I use the

·̃ to distinguish it from the scenario above). As in (40) , a late consumer local

bank will withdraw early, if θ ≥ θ̃∗(G), where

θ̃∗(G) =
β

1 − β

(

1

r

1 − ϕr

1 − ϕ
EG[R] − 1

)

(19)

This scenario serves as a benchmark. While there can also be a funda-

mental partial bank run in this case, there is no spillover to other core banks.

A fundamental bank run in this scenario and the scenario with uncertainty

averse investors start the same and affect the same core banks. However, a

fundamental bank run with uncertainty averse investors can be systemic in

the way defined and described above and therefore run considerably deeper.

5 Variant 2: adverse selection.

Consider now the variation of the model with adverse selection. Investors

know the return distribution F of all securities, but not the return of any

given security, while core banks do. All long-term securities are sold at the

same market price p. This creates adverse selection: not only will core banks

sell the securities with their worst quality first (and this happens also in
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the uncertainty aversion variant), but furthermore, some core banks without

liquidity needs due to withdrawals may sell long-term securities of low quality,

if the price is right. The latter is a key difference between the two variants.

With uncertainty averse investors and sufficiently high discounting, there is

no reason for “opportunistic” selling by liquid core banks5

Suppose that core banks with a market share µ face early withdrawals

of the same6 fraction θ of their late-consumer serving local banks, due to

heterogeneous beliefs of their local banks. They need to sell a share ζ of

their portfolio, where

ζ =
1 − ϕ

1 − ϕr

rθ

p
, (20)

as in (45) or (38). On average, these securities pay EG[R | R ≤ G−1(ζ)] per

unit, see equation (9).

Assume that the other core banks have local banks who all correctly

believe the core-bank portfolio to have securities with returns distributed

according to R ∼ F (R). These core banks will sell long-term securities for

purely opportunistic reasons, in case their price exceeds the expected return.

For tractability, assume that the true portfolio F is atomless. Given a market

price p for long-term securities, core banks without early withdrawals will sell

all securities with R ≤ p, i.e. sell the fraction F (p).

Per rational expectations of the outside investors, the market clearing

price p = p(θ, µ) and the fraction of the portfolio ζ = ζ(θ, µ) sold by the

distressed core banks solve the two equations (20) and

p = β
µ
∫ F−1(ζ)
R RdF + (1 − µ)

∫ p
RRdF

µζ + (1 − µ)F (p)
(21)

5Clearly, the distinction here has been sharply drawn, for analytic purposes. It may

well be that some mixture of the two variants is a better description than one of these two

extreme variants.
6It is straightforward, but tedious to extend this to the case, where θ differs from core

bank to core bank.
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where (per notational convention or per calculation of the integral)

0 =
∫ p(θ,µ)

R
RdF, if p(θ, µ) < R

and where F−1(·) is defined as in (8). Note that the right hand side of (21)

is simply the average return of the securities sold, discounted at β. Define

θ̄ =

(

1 − rϕ

1 − ϕ

)

βR

r
(22)

as the maximal θ compatible with ζ ≤ 1, if p = βR. Note that θ̄ < 1.

Proposition 4 1. For every θ ∈ [0, θ̄] and µ ∈ (0, 1], there is a unique

solution (p, ζ) to (20,21) with βR ≤ p ≤ βRbust and 0 ≤ ζ ≤ 1, so

that p < F−1(ζ).

2. Given θ, p(θ, µ) is a strictly increasing function in µ ∈ (0, 1].

Proof:

1. Recall that the support of F is [R, R̄]. Define the function ρ(p) per the

right hand side of (21), with ζ replaced with (20). Note that ρ(p) is

continuous on p ∈ [βR, R̄] with

ρ(βR) ≥ βR, ρ(R̄) ≤ βEF [R] = βRbust < R̄

By the mean value theorem, there is therefore a value p with p = ρ(p).

Suppose that F−1(ζ) ≤ p at this value. Then the right hand side of (21)

is not larger than βp, a contradiction. To show uniqueness, suppose to

the contrary that there are two solutions, say pa < pb, together with

1 ≥ ζa > ζb. It is easy to see that F (pb) and F (pa) cannot both be

zero: hence, F (pb) > 0. Note generally that

∫ pb

R
RdF −

∫ pa

R
RdF ≤ (F (pb) − F (pa))pb

≤ F (pb)pb − F (pa)pa
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Define the function

ψ(p, ζ ; θ, µ) =
βµ

∫ F−1(ζ)
R RdF + β(1 − µ)

∫ p
RRdF

µrθ
(

1−ϕ
1−rϕ

)

+ (1 − µ)F (p)p
(23)

Note that pj = ρ(pj) can be rewritten as

1 = ψ(pj, ζj; θ, µ) (24)

for j = a, b. Therefore,

1 = ψ(pa, ζa; θ, µ) =
βµ

∫ F−1(ζa)
R RdF + β(1 − µ)

∫ pa

R RdF

µrθ
(

1−ϕ
1−rϕ

)

+ (1 − µ)F (pa)pa

>
βµ

∫ F−1(ζa)
R RdF + β(1 − µ)

∫ pa

R RdF + β(1 − µ)(F (pb)pb − F (pa)pa)

µrθ
(

1−ϕ
1−rϕ

)

+ (1 − µ)F (pa)pa + (1 − µ)(F (pb)pb − F (pa)pa)

≥
βµ

∫ F−1(ζa)
R RdF + β(1 − µ)

∫ pb

R RdF

µrθ
(

1−ϕ
1−rϕ

)

+ (1 − µ)F (pb)pb

≥
βµ

∫ F−1(ζb)
R RdF + β(1 − µ)

∫ pb

R RdF

µrθ
(

1−ϕ
1−rϕ

)

+ (1 − µ)F (pb)pb

= ψ(pb, ζb; θ, µ)

and therefore, (24) cannot hold for pb, a contradiction.

2. Given θ, µ, denote the unique equilibrium with p(θ, µ) and ζ(θ, µ). Let

ζ(p) denote the expression on the right hand side of (20). The previous

calculation shows more generally that

ψ(p, ζ(p); θ, µ) > 1 for p < p(θ, µ) (25)

ψ(p, ζ(p); θ, µ) < 1 for p > p(θ, µ)

(26)

Consider some µ̄ and write p̄ = p(θ, µ̄) and ζ̄ = ζ(θ, µ̄). Since ψ(p̄, ζ̄; θ, µ̄) =

1 and since

β
∫ p̄

R
RdF < F (p̄)p̄
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it follows that

β
∫ F−1(ζ̄)

R
RdF > rθ

1 − ϕ

1 − rϕ

Therefore, ψ(p̄, ζ̄; θ, µ) is increasing in µ. For µ′ > µ̄, one therefore has

ψ(p̄, ζ̄; θ, µ′) > 1. It follows from (25) that p(θ, µ′) > p̄, as claimed.

•
At the distressed core banks, local banks with beliefs G regarding their port-

folio will therefore belief the opportunity costs for providing period-1 re-

sources in terms of period-2 resources to be

Γ(θ, µ;G) =
EG[R | R ≤ G−1(ζ(θ, µ))]

p(θ, µ)
(27)

The remaining late-consumer local banks will obtain

c2(θ, µ;G) =
1

1 − θ

(

x

1 − ϕ
EG[R] − rθ

EG[R | R ≤ G−1(ζ(θ, µ))]

p(θ, µ)

)

(28)

The analysis of the resulting equilibrium is similar to the analysis in section 3

and can therefore be omitted.

It is instructive to compare (27) to (10) for the case ω = 0: the two ex-

pressions coincide iff p(θ, µ) = βR. Generally, the returns are quite different.

In fact,

Γ(θ, 1;G) =
EG[R | R ≤ G−1(ζ(θ, µ))]

βEF [R | R ≤ G−1(ζ)]
(29)

as can be seen by direct calculation. In particular, for G = F , I obtain

Γ(θ, 1;F ) =
1

β
(30)

More generally,

Proposition 5 Γ(θ, µ;G) is decreasing in µ.

Proof: This is a direct consequence of (27) together with the fact that

p(θ, µ) is increasing in µ, implying that ζ(θ, µ) and thus EG[R | R ≤ G−1(ζ)]

are decreasing in µ. •
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I obtain the key insight that an increasing market share of distressed banks

lessens rather than deepens the crisis. Furthermore, with homogeneous be-

liefs, F (·, s) ≡ F , and with the market share of distressed banks approaching

unity, the moral-hazard scenario turns into the standard bank run scenario

considered in section B.3.

6 Some policy implications

A full discussion of the policy and welfare implications is beyond the scope

here. Instead, I investigate the more modest question of the impact of certain

policies for a policy maker who may be interested in learning the consequences

for avoiding (or stopping) a crisis and for the government budget, given the

model in this paper.

To see the key difference between the two variants considered above, sup-

pose that all banks are distressed and need to sell an equal fraction of their

portfolio to meet early withdrawals. With uncertainty averse investors, this

is the scenario which will most easily lead to total market liquidations ex-

ceeding the resources of expert investors, and thereby to a systemic bank

run. With adverse selection by contrast, all core banks now receive “fair

value” for their assets, i.e., the situation essentially turns into a classic bank

run, but only with standard discounting of assets, as the share of free-riding

banks has disappeared. Therefore, the adverse selection scenario violates

item six of the stylized description list in the introduction, while the sce-

nario with uncertainty averse investors does not. For these reasons, I argue

that it is more plausible to look at the 2008 financial crisis through the lense

of the uncertainty averse investor scenario rather than the adverse selection

scenario.

Consider, for example, a government guarantee of payoffs of the securi-

ties sold by the core banks, e.g. guaranteeing a return of at least Rgov. In

that case, the uncertainty averse investors will pay βRgov instead of βR.

In particular, if Rgov = 1, i.e. if the government guarantees that invest-
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ments will not make losses, the “deep” bank run results in discounting with

β throughout and turns the scenario with uncertainty averse investors into

the “classic” bankrun situation of subsection 4 for the distressed core banks.

The government will loose money on all securities with returns R < Rgov.

Additionally, if βRgov > R, the government now creates an additional ad-

verse selection problem at the core banks which are not distressed, and which

now find it at their advantage to sell all assets with R ≤ R ≤ βRgov.

From the tax payers perspective, a more advantageous procedure in the

case of uncertainty averse investors seems to be the purchase of the troubled

assets outright. Consider a fixed government purchase price p > βR at which

the government stands ready to purchase assets from the core banks. Core

banks in distress will no longer sell to uninformed investors: instead, they

will sell their worst assets to the government and remaining assets to expert

investors, up to their resource limit. More resources will be left for period-

2 withdrawals, lessening the incentives to withdraw early. Unaffected core

banks will sell assets opportunistically, if p > R.

The calculations now are somewhat similar to the analysis in the adverse

selection framework. Given the government price p, one can calculate the

expected value ρ(p) of the securities obtained at that price, where ρ(p) is

the right hand side of (21), with ζ replaced with (20), see also the beginning

of the proof of proposition 4. Assuming that the government is purchasing

a large quantity of securities, the law of large number holds so that the

expected value equals the safe payoff of that portfolio, per unit purchased.

With that, one can then calculate the losses or gains to the tax payers at the

mandated government purchase price. If p < ρ(p), i.e. if the price offered

by the government is below the equilibrium price of the adverse selection

scenario, the government will earn a safe return above 1/β. Assuming that

tax payers discount the future at rate β (and that they do not suffer from

some uncertainty aversion, as the government purchases this pool of assets),

this is beneficial to tax payers, and it lessens the possibility for a systemic

bank run.
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The situation is quite different, if we are in the adverse selection scenario

to begin with. In that case, the government would only find takers for its

offers, if the government price is above the current market clearing price,

in which case the government will make losses compared to the benchmark

return of 1/β.

Since I have argued that the uncertainty averse scenario is more plau-

sible than the adverse selection scenario, the analysis here provides some

support for the argument that an outright purchase of troubled assets by

the government at prices above current market prices can both alleviate the

financial crises as well as provide tax payers with returns above those for safe

securities.

A number of private sector solutions may likewise provide reasonable

avenues for resolving the crisis situation, e.g. the complete purchase of port-

folios of a distressed core bank or the sale of a distressed core bank and a

guarantee of its deposits through the buyer. It may be, however, that the

same caution that drives uncertainty averse investors to demand steep dis-

counts on asset backed securities might also prevent the sale of distressed

financial institutions to the same investors at a price that can resolve the sit-

uation sufficiently well. Solutions that mix private sector involvement with

government intervention may likewise offer specific advantages or fallacies,

that can be analyzed in this context.

7 Conclusions

I have set out to provide a model of a systemic bank run delivering six fea-

tures described in the introduction. I have considered two variants for outside

investors, when purchasing asset-backed securities: uncertainty aversion ver-

sus adverse selection. While both variants deliver the first five points, this is

only true for the sixth point with the uncertainty aversion variant. In the ad-

verse selection case, as a larger share of financial institutions are distressed,

the discounts lessen rather than rise instead.
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I conclude from that that the variant with uncertainty averse investors

rather than the adverse selection scenario is more suitable to analyze policy

implications. For example, an outright purchase of assets at a price mod-

erately above the market price absent government intervention may both

alleviate the financial crises as well as provide tax payers with returns above

those for safe securities. A number of private sector solutions may likewise

provide reasonable avenues for resolving the crisis situation. Follow-up work,

providing a deeper analysis of the various options and policy scenarios, is

surely called for.
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Appendix

A Securitization

The model directly assumes that core banks invest in long-term securities,

rather than “generating” them as asset-backed securities. It is easy to extend

the model to incorporate that feature, though, and it thereby provides a

rationale and reason for securitization, and this appendix provides the details.

While securitization has received a substantial share of the popular blame for

the financial crisis, this appendix therefore can also be viewed as providing a

rationale for why securitization can be beneficial. Furthermore, this feature

may prove useful for other modeling exercises.

To provide this extension, I assume that at date zero, local banks can

invest in long-term projects (“mortgages”) of location s or short-term securi-

ties, and they can invest in short-term securities in period 1, but they cannot

invest in long-term securities. Long-term projects pay off only in period 2.

I assume that long-term projects cannot be terminated (“liquidated”) pre-

maturely. I assume that local banks administer the local long-term projects,

delivering their payment streams to whoever finances them originally.

Core banks invest the period-0 deposits received from local banks in local

long-term projects, and turn their period-2 payments into long-term securi-

ties. In all periods, core banks can trade in short-term as well as long-term

securities.

In the aggregate “boom” state, local long-term projects return Rboom +

ǫs, where ǫs is a random variable with mean zero, distributed independently

and identically across locations s ∈ [0, 1].

Long-term securities pool these risks. To describe this a bit more formally,

suppose there are m = 1, . . . ,M long-term securities, suppose that (Am)M
m=1

is a partition of [0, 1] with each Am having equal Lebesque measure, and

suppose that the payoff for the long term security with index m is the integral

of all long-term projects s ∈ Am. The law of large numbers in Uhlig (1996)
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then implies a safe return. Conversely, knowning the return of the long-term

securities, one might directly assume that the long-term projects return this

amount plus the idiosynchratic noise ǫs. This structure can also be used

for the “bust” episode. To make this formal structure fully consistent with

the model – where a continuum of asset-backed securities is needed to e.g.

generate a return distribution with a density for the adverse selection variant

– it may be best to alter the model slightly, with local banks indexed by

(i, j) ∈ [0, 1]2, and with securitization of “pool j” achieved by pooling all

payoffs in localities (i, j), holding j fixed, and applying the law of large

numbers for each j.

B Analysis: Preliminaries

It is useful to first analyze some special cases in order to set the stage of

the analysis of the bust state. The analysis of these special cases are the

same, no matter which assumption has been made about the type of outside

investors.

B.1 No core banks

Consider first the environment above without core banks. The investors then

do not matter: they would love to short-sell the short-term securities, but

they cannot do so (and that certainly seems reasonable, if one imagines the

short-term securities to be Treasury bills). In that case, local banks offer

contracts to their local depositors. Note that all their depositors wish to

either only consume at date 1 or at date 2. Due to local Bertrand competition,

the local banks will choose the deposit contract that maximizes expected

utility (1).

Consider first the choice between investing everything in the long term

project versus investing everything in short-term securities. In the first case,

depositors only get to consume in case they turn out to be late consumers,
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and their ex ante utility is

U = ϕu(0) + (1 − ϕ)E[u(R)] ≤ ϕu(0) + (1 − ϕ)u(Rboom)

due to concavity of u(·) as well as (4). In the second case, depositors can

consume in both periods, at ex ante utility equal to u(1). If the choice

is “either-or” and since the latter is larger than the former due to (2), local

banks will only invest in short-term securities. One can view this as a version

of 100% reserve banking. Note that there cannot be a bank run or financial

crisis in this situation, but, as is well known and as we shall see, this solution

is inefficient.

Generally,

U(y) = ϕu(y) + (1 − ϕ)u((1 − y)Rboom + y)

is a concave function of the fraction y invested in the short-term security:

the corner solution y = 1 obtains, if

(1 − ϕ)Rboom < 1 (31)

and otherwise one obtains an interior solution. The inefficiency still remains,

see the discussion in Allen and Gale (2007), chapter 3.

B.2 Only “boom” state

To set the stage of the “bust” state analysis as well as an important bench-

mark, consider the situation with only a boom state. Competition drives

core banks to maximize the ex-ante welfare of depositors, with local banks

merely passing resources onwards. This amounts to choosing the amount x

to be invested in the long-term securities, y to be invested in the short-term

security and the amount z of the investment in the long-term security to be

sold to outside investors at date 1 in order to solve

max
x,y,z

ϕu(c1) + (1 − ϕ)u(c2)
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s.t. ϕc1 = y + βRboomz

(1 − ϕ)c2 = Rboom(x− z)

0 ≤ x, 0 ≤ y, x+ y = 1, 0 ≤ z ≤ x

c2 ≥ c1 ≥ 0

where the last constraint prevents local banks in locations with late con-

sumers to withdraw their funds in period 1 and investing in the short security.

Note that the optimal solution will have z = 0 due to (6): it is cheaper to

deliver resources for period 1 per investing in the short-term security rather

than investing it in the long-term security and selling it at a steep discount to

the outside investors. With the interpretation of the sale to outside investors

as the liquidation value of long-term projects, this problem is a baseline prob-

lem in the literature on banking and has been thoroughly analyzed in the

literature, see e.g. Allen and Gale (2007), in particular chapter 3. A brief

description of the solution is useful for the analysis below, however.

Due to (3) there will be an interior solution with Rboom > c2 > c1 > 1

with
u′(c1)

u′(c2)
= Rboom (32)

The period-1 withdrawals offered by the deposit contracts are

r = r̃ = c1 =
y

ϕ

and the bank invests

x = 1 − ϕr (33)

in long term securities. With (6), c2 < Rboom < 1/β < c1/β = r/beta or

c2 <
r

β
(34)

so that late consumers do not have an incentive to withdraw early, unless

they suspect to not actually receive c2 in period 2. Generally, this is rather

far from being a sharp bound.
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As is well-understood, the solution is more efficient than the solution

with 100% reserve banking of subsection B.2, but potentially subject to bank

runs. For example, if preferences are CRRA with an intertemporal elasticity

of substitution below unity,

u(c) =
c1−1/σ − 1

1 − 1/σ
, where 0 < σ < 1 (35)

and if Rboom > 1, then (3) is satisfied and

r =
(

ϕ+ (1 − ϕ)Rσ−1

boom

)−1
, c1 = r, c2 = Rσ

boomr = Rboom
1 − ϕr

1 − ϕ
(36)

There are perhaps two twists compared to the standard solution. First,

core bank runs (i.e. local banks running on the core banks) can occur but

they invoke the resale of long-term securities to outside investors at the mar-

ket discount rate rather than the early termination of projects. This already

could be viewed as a solution to the task set forth in the introduction of cre-

ating a bank-on-bank run in terms of marketable securities. It is obviously

a rather trivial solution, as it simply amounts to one of many possible inter-

pretations of the standard bank run model. That literature is typically silent

on what it means to “liquidate” the long-term projects, and selling them at

a steep discount certainly is consistent with these models.

Second, aside from liquidity provision, the core banks also offer insurance

against the idiosynchratic fluctuations in the returns of long-term projects.

Consider a slightly different environment, in which local depositors split into

fractions ϕ of early consumers and (1 − ϕ) of late consumers at each lo-

cation. The local bank may still solve a problem as above, but with the

random return Rboom + ǫs in place of the safe return Rboom. It is obvious,

that the solution involving securitization is welfare improving compared to

this “local-only” solution, which exposes local depositors to additional lo-

cal risks. Moreover, it is more likely to trigger “fundamental” bank runs,

where long-term depositors run on the local bank, if Rboom + ǫs < c1. In-

deed, absent intermediation by core banks, these fundamental bank runs
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are welfare-improving compared to regulating that deposit contracts need

to avoid fundamental bank runs at the local level: these bank runs provide

a partial substitute to the missing insurance market, see Allen and Gale

(2007). Put differently, securitization improves welfare and makes the sys-

tem less prone to local bank runs, but exposes it instead to the possibility

of “systemic” runs on core banks and thereby to “contagion” across different

locations. This interdependence has been analyzed in the literature previ-

ously, see e.g. the exposition in chapters 5 and 10 of Allen and Gale (2007),

and the literature discussion there.

B.3 The “bust” state and the classic bank run case

To analyze the full model, we assume that the probability of the “bust”

state is vanishingly small7. It therefore remains to analyze the “bust” state,

fixing the first-period withdrawal r of the deposit contracts and the total

investments rϕ in the short-term securities and the long-term securities 1−rϕ
as provided by the solution to the “boom”-only situation above.

Note first, that in the absence of a run,

c
2,bust(0) = Rbust

(1 − ϕr)

1 − ϕ

where I use the argument “(0)” to denote that the fraction zero of local banks

in locations with late consumers run. Therefore, if c
2,bust(0) < r, there will

be a fundamental bank run, even if core banks hold the same “market”

portfolio of long-term securities and local banks believe them to do so, as

insurance against the “boom-bust” aggregate uncertainty is not available.

For CRRA preferences (35) and therefore (36), this will be the case if

Rbust < R1−σ

boom (37)

Suppose even further, that all long-term securities offer the return Rbust
and that a fraction θ of all local banks serving late consumers opt for early

7Alternatively, assume that the “bust” state was “irrationally” ignored at the time the

deposit contracts were signed.
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withdrawal. The following algebra is well understood, but will be useful for

comparison to the more general case. The core banks meet the additional

liquidity demands by selling a fraction ζ of its long-term portfolio or z = xζ

units of its long-term securities to obtain additional liquidity ℓ, where

rθ(1 − ϕ) = ℓ = βRbust(1 − ϕ)ζ (38)

The securities are discounted by outside investors at q = β and 1/β is the

opportunity cost in terms of period-2 resources for providing one unit of

resources of period-1 withdrawals. This leaves the remaining late-consumer

local banks with

c2(θ) =
c
2,bust(0) − rθ/β

1 − θ
(39)

=
1

1 − θ

(

1 − ϕr

1 − ϕ
Rbust −

r

β
θ

)

in period 2. Let θ∗ solve c2(θ) = r,

θ∗ =
β

1 − β

(

1

r

1 − ϕr

1 − ϕ
Rbust − 1

)

(40)

If θ∗ < 0, there is a fundamental bank run: all local banks will try to with-

draw early, because even if no one else did, second-period consumption would

be below the promised withdrawal at date 1, c2(0) < r. If 0 < θ∗ < 1, there

is scope for a Diamond-Dybvig “sunspot” bank run. If late-consumer local

banks believe that the fraction of early withdrawals by late-consumer local

banks exceeds θ∗, they will withdraw early too, so that θ = 1 in equilibrium.

If late-consumer local banks believe that the fraction of early withdrawals by

late-consumer local banks is below θ∗, they will choose to wait until period

2, and θ = 0 in equilibrium.

There are therefore three scenarios, namely a fundamental bank run, a

a Diamond-Dybvig “sunspot” bank run and no bank run. I call these the

“classic bank run” scenarios, for comparison with the more general case to

be analyzed in the main part of the paper.
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C Numerical examples

C.1 A numerical example for uncertainty aversion.

To provide a specific, illustrative example, suppose that σ = 1/2, Rboom =

1.44 and ϕ = 1/7. Equation (36) then implies

c1 = r =
7

6
= 1.1666, x =

5

6
, c2 =

7

5
= 1.44

35

36

Assume that β = 2/3, therefore satisfying (6). Assume that 10% of the

returns are uniformly distributed on [0.6, 1.4], whereas 90% are equal to 1.4

in the bust state: this is the aggregate distribution F , see figure 3. Therefore,

Rbust = 1.36. Note that (37) is violated, and that therefore there is no

fundamental bank run with complete information in the bust state or if the

beliefs F (·, s) of all local banks coincide with the asset distribution.

Assume that for a fraction (1− µ) of core banks, local banks assume the

correct aggregate distribution, and will therefore not run in a fundamental

bank run equilibrium. However, for the remaining fraction µ of the core

banks, the local banks believe with certainty that the return is some return

R, where R is randomly drawn from F . I.e., if the local banks of these core

banks are enumerated τ ∈ [0; 1], then Γ(τ) = 0.6 + 8τ for 0 ≤ τ ≤ 0.1 and

Γ(τ) = 1.4 for τ ≥ 0.1. As a result, the local banks are correct in aggregate,

but wrong individually, see figure 4

Absent a bank run, each late consumer local bank expects a pay out of

c2(0;F (·; τ)) = Γ(τ)
35

36

Even for the most optimistic bank, I have

c2(0;F (·; 1)) = 1.4
35

36
<
r

β
=

7

4
= 1.75

Therefore, the condition (13) is satisfied for all G = F (·; s).
Suppose first, that there are only risk neutral investors (or only expert

investors), as in subsection 4. In that case, (19) can be used to calculate the
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Figure 3: Return distribution in the bust state.

fundamental bank run, if it exists, by calculating the smallest τ so that

θ∞;n,0 = θ̃∗(F (·; τ)) = τ

where I have also used the notation θ∞;n,0 to denote the fraction of local banks

at one of the affected core banks, say with index n, if aggregate liquidity

demands L are believed to be below ω (or L = 0, for simplicity). The

solution is approximately θ∞;n,0 = 0.0811, i.e. 8 percent of late consumer

local banks will decide to run, see figure 5.

In the scenario with uncertainty averse investors, note that

L = L(θ) = rθ(1 − ϕ)µ (41)

so that the market price drops to the uncertainty-averse investor price βR
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as a function of θ, when θ exceeds the threshold value θcrit given by

θcrit =
ω

µr(1 − ϕ)
=
ω

µ

since my numerical values happen to imply r(1 − ϕ) = 1. Put differently,

the given expertise of outside investors will be diluted, the more core banks

are affected by withdrawals, “accelerating” the bank run compared to the

experts-only scenario. It is in this sense, that the bank run is systemic.

Conversely, the experts-only partial bank run described above is not an

equilibrium, if θ∞;n,0 > θcrit or

ω

µ
< θ∞;n,0r(1 − ϕ) ≈ 0.0811, (42)

i.e. if the fraction of affected core banks is somewhat above 12 times the re-

sources of the expert investors relative to the entire amount initially invested
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Figure 5: Bankrun calculus when only expert investors are present.

in all securities.

To calculate the equilibrium in that case, consider a value L < ω and a

value L > ω. For each value, calculate c2(θ, L;F (·, θ)). Calculate the lowest

θ = τ so that

c2(θ, L;F (·, θ)) = r (43)

or, absent that and depending on the boundary conditions, either θ = τ = 0,

if c2 > r always, or θ = τ = 1, if c2 < r always.

The resulting second-period consumption is shown in figure 6. If L > ω,

the graph shows that θ = 1, i.e. a run on all core banks affected by doubtful

local banks, as the only solution. By contrast, there are multiple solutions

to (43), if L < ω. Therefore, if (42) holds, a system-wide bank run on the

fraction µ of the core banks, which are subject to heterogeneous beliefs by
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their local banks, results, while the other 1−µ core banks remain unaffected

(unless there is a Diamond-Dybvig sunspot-type bank run). Variations of this

example can produce partial fundamental bank runs as well. Furthermore

and in a generalized version of this model, if Γ varies smoothly with L,

figure 6 suggests a critical value as the c2-curve is shifted downwards with

increasing L, when the equilibrium close to the small expert-only partial

bank run disappears and only the system-wide bank run on the affected core

banks remains.
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Figure 6: Consumption of local banks that wait until the second period, assum-

ing that all banks with τ < θ run, and banks with τ > θ do not. Comparison

to c1 = r.
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C.2 A numerical example for adverse selection.

I use the same parameterization as in subsection C.1. For low values of

θ ≤ θ, the market price will be below R = 0.6 and the required market

discount Γ(θ, µ;F ) at the true distribution will equal 1/β. For these low

values of θ and due to the uniform distribution, the market price equals

p(θ;µ) = β
F−1(ζ) + 0.6

2
(44)

Therefore, θ is low enough, iff p(θ;µ) ≤ 0.6 or, equivalently, F−1(ζ) ≤ 1.2.

By the parameterization in (C.1),

F−1(ζ) = min{0.6 + 8ζ, 1.4}

Therefore, F−1(ζ) ≤ 1.2 corresponds to ζ ≤ 0.075. To find p and ζ when

F−1(ζ) ≤ 1.2, I therefore need to solve

ζ =
rθ

β(0.6 + 4ζ)

(

1 − ϕ

1 − rϕ

)

(45)

Let

κ =
r

4β

(

1 − ϕ

1 − rϕ

)

=
9

20

The solutions to (45) are therefore given by

ζ = −0.075 +
√

0.0752 + κθ

(where the negative root has been excluded as not sensible). Therefore,

ζ ≤ 0.075, if

θ ≤ θ = 3 ∗ 0.0752/κ = 0.0375.

For θ > θ, the behavior of the price depends on market share of the

distressed core banks. Two extreme scenarios can provide some general in-

sights. If µ → 0, then the price will remain “stuck” at p = R = 0.6, as

all remaining banks would sell arbitrarily large chunks of their worst assets

otherwise. If µ = 1, then discounting of future returns will remain to be done

at the discount rate β. For any given µ, local banks with c2(θ, µ;G) < r will

withdraw, see (28).
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