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Abstract 

 
Building on De Nicolò and Lucchetta (2010), this paper presents a novel modeling framework 
that delivers: (a) density forecasts of indicators of real activity and financial health, and implied 
indicators of systemic real risk and systemic financial risk; (b) reduced-form stress tests as 
historical simulations, and structural stress-tests as impulse responses of systemic risk 
indicators to structural shocks identified by standard macroeconomic and banking theory. This 
framework is implemented using large sets of quarterly time series of indicators of financial and 
real activity for the G-7 economies in 1980Q1-2010Q2. We show that the model exhibits 
significant out-of sample forecasting power for tail real and financial risk realizations in each 
country and stress tests provide important early warnings on the build-up of real and financial 
vulnerabilities. Furthermore, we find that in all countries aggregate demand shocks are the main 
drivers of the real cycle, and bank credit demand shocks are the main drivers of the bank 
lending cycle: these results suggest that sharp declines in real activity may have been the key 
drivers of the observed decline of bank credit in the G-7 economies in the aftermath of 
Lehman’s collapse in 2008Q3.  
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“Pangloss enseignait la métaphysico-théologo-cosmolonigologie. Il prouvait admirablement 
qu'il n'y a point d'effet sans cause, et que, dans ce meilleur des mondes possibles, le château de 
monseigneur le baron était le plus beau des châteaux et madame la meilleure des baronnes 
possibles.1  
                                                                                     Voltaire, “Candide, ou l'Optimisme”, 1759 
 
 
 

I.   INTRODUCTION 

Systemic financial risk is not new to researchers and policy-makers. About ten years 

ago, Group of Ten (2001) concluded that “... [Risk] interdependencies between large and 

complex banking organizations have increased over the last decade in the United States and 

Japan, and are beginning to do so in Europe. ....Areas of increased interdependency include 

interbank loans, market activities such as OTC derivatives, and payment and settlement systems 

(our italics)” (p.4). In the early 2000s several other studies documented the increased potential 

for systemic financial risk realizations in several advanced economies, consistent with the 

conclusion of the Group of Ten study.2   

However, buoyant growth and record profits in the financial industries of advanced 

economies until the early 2007 lead many to lean toward a Panglossian view of the world.  

More significantly, the monitoring technologies tracking systemic financial risk available to 

central banks and international organizations failed to provide strong early warnings on the 

eruption of the crisis in 2007-2008. Since then, a number of contributions have proposed new 

ways of measuring and tracking systemic financial risk. Nevertheless, what are the best 

technologies to accomplish these tasks is still an open issue.    

                                                 
1 “Master Pangloss taught the metaphysico-theologo-cosmolonigology. He could prove to admiration that there is 
no effect without a cause; and, that in this best of all possible worlds the Baron’s castle was the most magnificent 
of all castles, and My Lady the best of all possible baronesses.” 

2 See De Bandt and Hartmann (2000) and for a review of the literature of the 1990s, and Summer (2002) for an 
early discussion of regulatory implications.  De Nicolò (2000) documented increased risk-taking at large banking 
organizations in the U.S., Europe and Japan since the late 1980s. De Nicolò and Kwast (2002) found increased risk 
interdependencies among U.S. large and complex banking organizations since the mid-1990s.. Under a variety of 
measures, systemic risk profiles of large and complex financial institutions were found to continue to increase 
during the early 2000s in the U.S. and in Europe (De Nicolò, Hayward, and Vir Bhatia, 2004, Stiroh, 2004, 
Hartmann, Straetmans, and de Vries, 2005, De Nicolò et al., 2005, Stiroh and Rumble, 2006, and Houston and 
Stiroh, 2006), as well as globally (De Nicolò et al, 2004).  
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Building on our previous effort (De Nicolò and Lucchetta, 2010), this paper develops a 

tractable model that can be used for positive analysis as well as a real-time systemic risk 

monitoring system. The model combines dynamic factor VARs and quantile regressions 

techniques to deliver density forecasts of systemic risk indicators, and employs theory-based 

structural identification to detect the sources of shocks and their propagation mechanisms.  

Our model is rooted in the architecture underpinning standard Dynamic Stochastic 

General Equilibrium (DSGE) modeling. Its objectives are to track and quantify the impact and 

transmission of structural shocks within/between real sectors, financial markets and 

intermediaries, as well as their “tail” realizations. In terms of Figure A below, we aim at 

identifying which sectors of the economy are most affected by a shock at impact as well as size 

and persistence of shocks’ propagation within and between sectors. In addition, we require our 

model to have a satisfactory forecasting performance: such performance is a necessary 

condition for a model to qualify as a useful risk monitoring tool.  

Figure A 

Financial exposures (stocks and flows) between sectors
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Ideally, a computable general equilibrium model with satisfactory forecasting properties 

and specified at a suitable level of dis-aggregation, would allow us to identify the sources of 

shocks, the linkages through which they are propagated, and to conduct informative policy 

experiments and stress tests. In practice, formulating and implementing such a model is a 

formidable theoretical and computational task.   
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Work on DSGE modeling is advancing significantly (see e.g. Shorfheide, 2010), but 

progress is still in its infancy in at least two dimensions: the incorporation of meaningful 

interactions between financial and real sectors, for which no consensus paradigm is yet 

available, and forecasting. The forecasting ability of current DSGE models is still a relatively 

under-researched area to-date, and in particular, the superiority of the forecasting performance 

of DSGE models relative to other data-driven models is not yet established.3 As a result, 

available modeling technologies providing systemic risk monitoring tools based on explicit 

linkages between financial and real sectors are still underdeveloped. Contributing to fill in this 

void is a key objective of this paper.  

Three features characterize our model. First, we make a distinction between systemic 

real risk and systemic financial risk, and show it is operationally relevant. This distinction is 

based on the notion that real effects with potential adverse welfare consequences are what 

ultimately concerns policymakers. Second, the model produces real-time density forecasts of 

indicators of real activity and financial health, and uses them to construct measures of systemic 

real and financial risks. To obtain these forecasts, we use a dynamic factor model (DFM) with 

many predictors combined with quantile regression techniques. The choice of the DFM with 

many predictors is motivated by its superior forecasting performance over both univariate time 

series specifications and standard VAR-type models (see Watson, 2006). Third, our design of 

stress tests can be flexibly linked to selected implications of DSGE models and other theoretical 

constructs. Structural identification provides economic content of these tests, and imposes 

discipline in designing stress test scenarios.4 In essence, our model is designed to exploit and 

make operational the forecasting power of DFM models and structural identification based on 

explicit theoretical constructs, such as DSGE models.  

Our framework can be designed to deliver density forecasts of any set of variables that a 

researcher wishes to predict.  However, in this paper we focus on two key indicators: one of real 

activity, and one of financial health. Real activity is measured by GDP growth. Financial health 
                                                 
3 For a recent review of the literature on forecasting with DSGE models see Christoffel, Coenen and Warne (2010).  
4 For a discussion of the problems in designing consistent stress test scenarios, see Drehmann (2008). For 
guidelines of best practice on stress testing for individual financial institutions, see Basel Committee on Banking 
Supervision (2009).  
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is measured by an indicator based on equity market valuation, called FS. The joint dynamics of 

GDP growth and the FS indicator is modeled through a factor-augmented VAR (FAVAR) 

model, following the methodology detailed in Stock and Watson (2002, 2005).  

Density forecasts of GDP growth and the FS indicator are obtained by estimating sets of 

quantile auto-regressions, using forecasts of factors derived from the companion factor VAR as 

predictors. The blending of a dynamic factor model with quantile auto-regressions is a novel 

feature of our model. The use of quantile auto-regressions is advantageous, since it allows us to 

avoid making specific assumptions about the shape of the underlying distribution of GDP 

growth and the FS indicator.  

Systemic risk indicators and their forecasts are constructed on the basis of density 

estimates of GDP growth and the FS indicator. The systemic real risk indicator is GDP-

Expected Shortfall (GDPES), defined as the expected decline of GDP growth conditional on 

such growth being lower than a certain tail level. The systemic financial risk indicator is FS-

Expected Shortfall (FSES), defined analogously.  

Stress-tests of systemic risk indicators are implemented by either historical simulation 

(reduced-form stress tests), or by gauging their impulse responses to structural shocks 

(structural stress tests). The identification of structural shocks is accomplished with a version of 

the sign restriction methodology introduced by Canova and De Nicolò (2002), where aggregate 

shocks are extracted based on standard macroeconomic and banking theory.   

We wish to emphasize that our approach to stress testing differs markedly from many—

although not all—implementations of stress testing currently used in central banks and 

international organizations. In these implementations, shock scenarios are imposed on sets of 

observable variables, and their effects are traced through “behavioral” equations of certain 

variables of interest. Yet, the “shocked” observable variables are typically endogenous: thus, it 

is unclear whether we are shocking the symptoms and not the causes. As a result, it is difficult 

to assess the quantitative implications of the stress test results. This is, essentially, the problem 

of “endogeneity of risk” pointed out by Drehmann (2008). Under the assumption that the deep 

parameters underlying our estimates are policy-invariant—as commonly assumed in simulations 

based on DSGE models—our stress testing procedures are immune to this problem.  

We implement our model using a large set of quarterly time series of financial and real 

activity for the G-7 economies during the 1980Q1-2010Q1 period. We obtain two main results. 
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First, we find significant evidence of out-of sample forecasting power for tail real and financial 

risk realizations for all countries. Moreover, stress tests based on historical simulations and 

structural identification provide early warnings of vulnerabilities in the real and financial 

sectors. Second, in all countries aggregate demand shocks are the main drivers of the real cycle, 

and bank credit demand shocks are the main drivers of the bank lending cycle. These results 

suggest that sharp declines in real activity may have been the key drivers of the observed 

decline of bank credit in the G-7 economies in the aftermath of Lehman’s collapse in 2008Q3.  

The remainder of the paper is composed of six sections. Section II defines systemic risks 

and describes indicators consistent with these definitions. Section III outlines the model setup, 

estimation and forecasting. Section IV details the stress testing procedures. Section V describes 

the implementation of the modeling framework on data for the G-7 countries and the relevant 

forecasting results. Section VI illustrates implementations of stress testing. Section VII 

concludes.  

 

II.   SYSTEMIC RISKS: DEFINITIONS AND MEASUREMENT  

We adopt the following definitions: 

 

Systemic financial risk is the risk that a shock will trigger a loss of economic value or 

confidence in, and attendant increases in uncertainty about, a substantial portion of the 

financial system.  

 

Systemic real risk is the risk that a shock will trigger a significant decline in real activity. 

 

As in Group of Ten (2001) and in De Nicolò and Kwast (2002), these definitions embed 

a key necessary condition for a financial shock to induce adverse systemic real risk realizations: 

financial shocks must be highly likely to induce significant adverse real effects, such as 

substantial reductions in output and employment.  In other words, the negative externalities of a 

financial shock that extend to the financial system are required to extend also to the real 

economy.  Financial markets turbulence, attendant increases in volatility and/or failures of 

financial intermediaries that are devoid of significant real effects are not classified as systemic. 

Importantly, distinguishing systemic financial risk from systemic real risk allows us to assess 
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the extent to which a realization of a financial shock is just amplifying a shock in the real sector, 

or originates in the financial system.   

Guided by these definitions, our measurement follows a risk management approach.5  

To control risk in financial institutions, risk managers may track a portfolio’s Expected 

Shortfall (ES), given by the expected loss of its value conditional on a given level of Value-at-

Risk (VaR). VaR is defined as the worst possible portfolio loss over a given time horizon at a 

given (low) probability. To control risk in the economy, policy makers may wish to track 

measures of worst possible real aggregate outcomes. A measure of systemic real risk is GDP-

Expected Shortfall (GDPES ), given by the expected loss in GDP growth conditional on a given 

level of GDP-at-Risk (GDPaR). GDPaR is defined here as the worst predicted realization of 

quarterly growth in real GDP at a given (low) probability.  

To control risk in the financial system, policy-makers may also wish to track measures 

of worst possible system-wide financial outcomes. Following Campbell, Lo and MacKinlay 

(1997), our measure of such outcomes is an indicator of health of the financial system (FS) 

given by the return of a portfolio of a set of systemically important financial firms less the 

return on the market. This indicator is germane to measures adopted in recent studies to 

construct systemic financial risk indicators (see Acharya et al., 2010, Brownlees and Engle, 

2010, and the references therein). A measure of systemic financial risk is FS-Expected Shortfall 

(FSES), given by the expected loss in FS conditional on a given level of FS-at-Risk (FSaR). 

FSaR is defined as the worst predicted realization of the FS indicator at a given (low) 

probability level.  

We have chosen GDP growth and the FS indicator as measures of real activity and 

financial health for their relevance and simplicity. However, our modeling framework can be 

easily adapted to embed multiple measures of real or financial risk, both at aggregate and 

disaggregate levels. 6 

                                                 
5 For an earlier contribution adopting a risk management approach as applied to banks, see Lehar (2005).  

6 Aggregate indicators may include unemployment and inflation measures, or indicators of financial market stress, 
such as the liquidity indicators introduced in De Nicolò and Ivaschenko (2009).  Disaggregated indicators may 
include sectoral measures of real activity, or bank-specific measures of risk such as those based on CDS spreads 
introduced in Huang, Zhou and Zhu (2009 and 2010). 
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III.   THE MODEL: ESTIMATION AND FORECASTING  

Following Stock and Watson (2002, 2005), the dynamics of real GDP growth (denoted 

by tGDPG ) and the FS indicator (denoted by tFS ) are modeled with a Dynamic Factor Model 

(DFM) described by the following equations:   

 

                                                    ( )it i t itX L f v                                      (1)        

                                       1( )t t tf L f                                          (2) 

1
1 1( ) ( )R

t t R t tGDPG L f L GDPG u           (3) 

2
1 1( ) ( )F

t t F t tFS L f L FS u                      (4) 

 

 The dynamics of N series (predictors) itX  (indexed by i N , with N large) is 

represented by the factor model (1), where tf  is a vector of dynamic factors.  Equation (2) 

describes the dynamics of these factors through a VAR. Equations (3) and (4) describe the 

dynamics of tGDPG  and tFS  , with factors as predictors.  

Under the assumptions that factors and idiosyncratic errors 1
1tu  , 2

1tu  , and itv  are 

uncorrelated at all leads and lags, that dynamic factors have finite lags up to p , and defining the 

vector of static factors with 1 1[ , ,....., ]t t t t pF f f f     , one obtains the static form representation 

of the DFM:  

                                                    it i t itX F v                                          (5)        

                                       1( )t t tF L F G                                   (6) 

1
1 1( )R

t t R t tGDPG F L GDPG u 
           (7) 

2
1 1( )F

t t F t tFS F L FS u 
                      (8) 

Matrix ( )L  includes ( )L  and 0’s, while G  is a matrix of coefficients of dimension rxq , 

where r is the number of static factors and q that of dynamic factors. If r q , then ( ) ( )L L    

andG I , that is, (6) is equivalent to (2). Equations (6)-(8) describe a version of a Factor-

Augmented VAR (FAVAR) representation of the DFM akin to that adopted by Bernanke, 

Boivin, and Eliasz (2005).  
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A.   Density Forecasts and Systemic Risk Measures 

We construct density forecasts of tGDPG and tFS  by estimating quantile auto-

regressions (Koenker, 2005) of the form (7) and (8), with estimates of the static factors tF  as 

conditioning variables. Denote with (0,1)   a particular quantile, and with a “hat” estimated 

quantile coefficients. Initial quantile estimates of (7) and (8) for each {1,2,.....,99}  are: 

 

          1 1
ˆˆ ˆ( ) ( ) ( ) ( )( )R

t t R tGDPGQ F L GDPG     
         (9) 

             1 2
ˆˆ ˆ( ) ( ) ( ) ( )( )F

t t F tFSQ F L FS     
               (10) 

 

Importantly, the quantile estimates of equations (9) and (10) are “raw” estimates, since 

we apply a “rearrangement” method to guarantee their consistency, as detailed below. For 

expositional purposes, however, in what follows we refer to (9) and (10) as our final quantile 

estimates.   

For low values of (0,1)  , the VaR measures GDPaR and FSaR are the fitted values of 

( )tGDPGQ   and ( )tFSQ  . There are two well known limitations of VaR measures: (a) they 

not take into account the size of tail losses; and (b) they lack “coherence” in the sense of Artzner 

et al. (1999), since they do not satisfy the sub-additivity property required for consistent risk 

ordering.7  A measure that overcomes these problems is given by the Expected Shortfall (ES). 

Given a random variable X, expected shortfall is defined as the expected downside loss at   

percent probability that X falls below quantile   (see, e.g. Acerbi and Tasche, 2002).  

In our context, expected shortfalls are conditional on a given state of the economy at a 

given date. Denoting with t  the expectation operator conditional on information available at 

date t, for any given (0,1)   our systemic risk indicators are defined as: 

 

                                                 
7 Failing to account for the size of (conditional) losses is also a limitation of measures of distance-to-default and 
probability of default based on Black-Sholes-Merton-type models used in a large applied literature, as well as in 
many “vendor” models assessed by the Basel Committee on Banking Supervision (2010). For a recent review of 
this literature and an application of these measures, see Zambrana (2010). 
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( ) ( | ( ))t t t t tGDPES GDPG GDPG GDPaR       (11) 

( ) ( | ( ))t t t t tFSES FS FS FSaR                          (12) 

 

B.   Estimation and Forecasting 

Estimation and forecasting are accomplished in four steps. 

 

Number of factors and lags 

In the first step, we compute static factors, and choose their number and the lags of the 

FAVAR (6)-(8) according to the following criterion. First, we use principal components to 

extract all factors with eigenvalues greater than 1, in number R . Second, we order factors 

according to their explanatory power of the variance of the data, and construct the set of factors 

1 1 2 1 2{( ), ( , ),...., ( , ,..., )}r r r RF F F F F F F   . Lastly, we choose the number of lags L  and the 

number of static factors r  that maximize the Bayesian Information Criterion (BIC) for FAVARs 

(6)-(8) estimated for each set of factors in F  and with one, two, three,  and a maximum of four 

lags. In other words, the optimal number of lags *L  and the number of static factors *r   yield the 

maximum BIC criterion among 4 by R  FAVAR specifications.   

 

Quantile Estimation 

In the second step, we use the optimal number of lags *L , the number of static factors *r , 

and the estimated factors to estimate quantile auto-regressions for 1, 2....99   specified as in 

(7) and (8).   

Estimated quantile regressions may generally exhibit “crossings” of the conditional 

quantile functions. Such “crossing”, if and when it occurs, implies that the key assumption that 

distribution functions are monotonically increasing is violated. As stressed by Koenker (2005, 

Ch. 8), this problem is likely to be more severe for quantile auto-regressions.  Crossing can be 

the result of a mis-specification of the model, which in turn can adversely affect its forecasting 

performance.  

We address this problem by adopting the “rearrangement” procedure introduced by 

Chernuzukhov, Fernandez-Val and Galichon (2010). They show that rearranging original 

quantile estimates into monotone quantile estimates, the  resulting quantile curves are closer to 
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the true quantile curves in finite samples and, by construction, these rearranged quantile curves 

do not exhibit crossing. To our knowledge, ours is the first implementation of a quantile 

rearrangement method in the context of macro-financial forecasting. 

We implement this rearrangement procedure by re-ordering at each date the quantiles 

originally estimated via (7) and (8). These sorted quantiles are the final estimates used to 

construct conditional densities.  

 

Density Estimates and Systemic Risk Indicators 

In the third step, we construct estimates of conditional densities used to derive estimates 

of systemic risk indicators. Note that our quantile estimates provide discrete density estimates at 

each date, which can be represented by simple histograms.  To obtain continuous densities and 

compute expected shortfalls, we proceed as follows.  

Given a continuous probability distribution F of a random variable X, , the quantile 

corresponding to probability  , denoted by ( )Q  , is also equal to ( ) ( )Q F  , where 

( ) inf( | ( ) )F x F x     is the generalized inverse of F. Then, the expected shortfall of X can 

be expressed as: 

0 0

1 1
( ) ( ) ( )ES F y dy Q y dy

 


 
          (13) 

To obtain quantiles as continuous functions of (0,1]  , we regress the series of the 99 

discrete quantiles at each date on a polynomial function of order m, obtaining 
0

ˆ ˆ( )
m

i
t i

i

Q a 


 , 

where “hats” denote estimated coefficients.  Then, expected shortfall estimates are given by: 

2 1

0 1 20 0
0

1 1ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ... )
2 3

mm
i

t t i m
i

ES Q y dy a y dy a a a a
m

    
 





               (14) 

Our procedure is similar to several methods aimed at estimating tails of distributions 

based on extreme value theory (EVT). These methods estimate Hill indicators employing 

subsets of observations of the data relatively close to the tail of interest. The underlying 

assumptions are that unconditional densities are generated by a wide family of distributions with 

supports that are unbounded below. Our procedure differs from these methods in two ways: we 

do not impose distributional assumptions on conditional densities for our real and financial 
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indicators, which have supports that are bounded below, and use information on the entire 

distribution of interest through the full range of quantile estimates.8    

 

Forecasting 

In the last step, we construct forecasts of conditional densities and of systemic risk 

indicators. Using the VAR of static factors described by equation (6), we compute dynamic 

forecasts of static factors k  quarters ahead. Subsequently, these forecasts are used to obtain 

recursive forecasts of quantile estimates, which in turn provide discrete forecasts of the relevant 

density. Continuous density forecasts are obtained applying the procedure described previously. 

Forecasts of systemic risk indicators k  quarters ahead are obtained as a by-product of this step.  

  

IV.   STRESS TESTING 

 We define stress testing as the measurement of size, persistence and impact of 

configurations of shocks on density estimates and systemic risk indicators. The resilience of the 

economy to these unexpected disturbances is gauged by assessing the sensitivity of densities and 

systemic risk indicators to different configurations of these shocks at a point in time and/or 

through time. We outline two complementary procedures. Reduced-form stress tests are based 

on historical shocks recovered from a statistical model of the dynamics of the distribution of the 

variables of interest.  Structural stress tests are based on shocks derived from, and interpreted in 

light of, some set of theoretical models.  

A.   Reduced-Form Stress Testing 
 

To retrieve the historical sequence of shocks to the distributions of GDP growth and the 

FS indicator, we assume that each quantile 1, 2....99   of these variables evolves according to 

the following AR(1) process: 

 

          1( ) ( ) ( ) ( ) ( )R
t R R t tGDPGQ a b GDPGQ                  (15) 

                                                 
8 In his recent review of tail estimates based on EVT, Le Baron (2009) advocates the use of the Hill estimators 
introduced by Huisman et al (2001).  Comparing such estimates  with ours is work in progress. 
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          1( ) ( ) ( ) ( ) ( )F
t F F t tFSQ a b GDPGQ                      (16) 

 

The steady state density functions for GDP growth and the FS indicators can be view as 

determined indirectly by the “steady state” quantiles ( ) ( ) / (1 ( ))R RGDPGQ a b     

and ( ) ( ) / (1 ( ))F FFSQ a b    . 9 We estimate (15)-(16) with OLS to obtain the series of 

estimated residuals ˆ ( )R
t   and ˆ ( )F

tt  for each 1, 2....99   and each date [0, ]t T , where T is the 

last date of the sample period. The series of estimated residuals is the historical sequence of 

“shocks” hitting each quantile of GDP growth and the FS indicator. Note that these are shocks 

to the entire distribution of these variables at each date t, quantile by quantile.  

Denote with ( )T HGDPGQ   the quantile forecast at horizon 0H  . For any given H, we 

construct a time series of stressed quantiles by adding the series of estimated residuals ˆ ( )R
t   

and ˆ ( )F
tt   for each quantile 1, 2....99   and each date [0, ]t T  to the quantile forecasts at 

horizon H. Thus, these stressed quantile series are defined as: 

 

, ( ) ( ) ( )R
T H t T H tSGDPGQ GDPGQ            (17) 

, ( ) ( ) ( )F
T H t T H tSFSQ FSQ                        (18) 

 

Equations (17)-(18) measure what the current quantile forecasts at horizon H would be if 

they would be subject to the entire set of (unexpected) shocks to each quantile experienced at a 

given date t during the sample period.   

The comparison between stressed densities for a given shock date t constructed on the 

basis of (17)-(18) and in-sample estimates at date t is what we term a reduced-form stress test. 

These tests can be equivalently viewed as a historical simulation.  The stress test is reduced-

form, since the “historical” shocks are not identified in the sense of being interpretable as shocks 

characterizing the stochastic structure of a specific theoretical model or class of models, since a 

shock experienced at a particular date t is just super-imposed on a particular density forecast. 
                                                 
9 Comparing (15)-(16) with (9)-(10), we see that the estimated residuals ˆ ( )R

t   and ˆ ( )F
tt   capture the overall 

variation of the impact of factors on each quantile.  
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However, as we will show, stress tests statistics based on these “historical” shocks are 

informative as early warning signals about impending real and/or financial vulnerabilities.  

One metric to evaluate the results of a stress test is constructed as follows. Note that for 

any value of (0,1)  , stressed GDPaR ( tSGDPaR ) is ( )T HSGDPGQ  , and stressed FSaR 

(SFSaR) is , ( )T H tSFSQ  . Thus, for any given (0,1)  , stressed expected shortfalls are: 

  

, ( ) ( | ( ))T H t t t t tSGDPES GDPG GDPG SGDPaR        (19) 

, ( ) ( | ( ))T H t t t t tSFSES FS FS SFSaR                           (20) 

 

To compare these stressed shortfalls to the historical shortfalls, we define the Expected 

Shortfall Stress-Test Deviation (ESSTD) for any given (0,1)   at each date as:  

 

,( ) ( ) ( )t T H t tGDPES SGDPGES GDPES        (21) 

,( ) ( ) ( )t T H t tFSES SFSES FSES        (22) 

 

Equations (21) and (22) summarize the result of a stress test in terms of deviations of the 

stressed density from the historical density, evaluated for each date and each quantile. A 

positive (negative) deviation would indicate that stressed expected shortfalls are larger (smaller) 

than the historical estimate, signaling higher (lower) risk for each given quantile.   

A summary statistics of these deviations is obtained by averaging deviations through 

time and reporting them for each quantile. This provides a natural risk metric to evaluate 

whether systemic risks at a current date are higher or lower relative to the historical experience. 

In our implementation of the model described below, we illustrate an example of the use of this 

risk metric. 

 

B.    Structural Stress Testing 

To measure how systemic risk indicators respond to structural shocks in the economy, 

we use impulse responses to identified structural shocks through the FAVAR. These impulse 

responses can be viewed as an ideal vehicle to set up stress test scenarios for systemic risk 
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indicators. Structural shocks derived from specific implications of theoretical models give 

economic content to the stress test in terms of their nature (technology, demand, etc.) and their 

possible source and their propagation. For these reasons, we term such stress testing procedure 

structural.  

Structural stress testing is carried out in two stages: (a) identification; and (b) analysis of 

the sensitivity of impulse responses and variance decompositions of systemic risk indicators to 

different configurations of structural shocks.  

 
 
Identification 
 
 As detailed in Stock and Watson (2005), we can obtain impulse responses of “factors” to 

their orthogonalized innovations obtained through the Factor VAR in equation (6). In turn, we 

can translate them into impulse responses of the quantiles of indicators of systemic risk via the 

estimated coefficients of the quantile regressions. This procedure is briefly explained as follows.  

Inverting (6) yields the Moving Average (MA) representation of the factor VAR : 

                                                   ( )t tF A L                   (6a), 

where 1( ) (1 ( ) )A L L L G  .   Substituting (6a) in (7) and (8), we obtain: 

1
1( )R

t t tGDPG B L w          (7a), 

2
1( )F

t t tFS B L w                (8a), 

where 1( ) (1 ( ) ) ( )R R
RB L L L A L     ,  1( ) (1 ( ) ) ( )F F

FB L L L A L      , 1 1 1(1 ( ) )t R tw L L u    

and  2 1 2(1 ( ) )t F tw L L u   .   

Likewise, quantiles (9) and (10) can be expressed as: 

1( ) ( )( )R
t tGDPGQ B L           (9a), 

1( ) ( )( )F
t tFSQ B L                 (10a), 

where 1( )( ) (1 ( ) ) ( )R R
RB L L L A L

      ,  1( )( ) (1 ( ) ) ( )F F
FB L L L A L

       .  

 

Structural identification in the DFM can be conducted using a variety of methods, as 

described in Stock and Watson (2005).  However, our preferred identification strategy is based 

on the sign restriction methodology introduced by Canova and De Nicolò (2002). This strategy 
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allows us to use in an informative way the implications of different theoretical constructs, as 

outlined next.  

Note that orthogonal innovations extracted from the FAVAR do not have any 

“economic” interpretation, although they have the useful property of being contemporaneously 

and serially uncorrelated. These orthogonal innovations can be identified as economically 

interpretable structural shocks if the impulse responses of sets of observable variables to these 

innovations satisfy certain sign restrictions dictated by a model of class of models. As detailed 

in Canova (Ch. 4, 2007), identification through sign restrictions can be carried out through a 

variety of linearized DGSE models that have a VAR representation, and are also implementable 

in the context of Bayesian VARs (see Del Negro and Schorfheide, 2010). In practice, a 

theoretical model will impose sign restrictions on the responses of certain variables in equation 

(5) to shocks to factors. If the responses of these variables to a given orthogonalized shock from 

the factor VAR in equation (6) match the set of sign restrictions implied by the model, then this 

shock will be identified.     

In this paper we adopt a variant of the procedure implemented by Canova and De Nicolò 

(2002), since the sign restrictions we consider are derived from both aggregate dynamic 

macroeconomic theory and a simple banking model.   

The theoretical restrictions implied by a large class of aggregate macroeconomic model 

are as follows.  If a positive temporary orthogonal innovation represents a positive transitory 

aggregate supply shock, then it should generate transitory weakly positive output responses and 

weakly negative transitory responses in inflation, depending on capacity utilization. On the 

other hand, if it is a real aggregate demand shock, it should generate weakly positive transitory 

responses in output and inflation. Canova and De Nicolò (2002) show that these sign restrictions 

can be derived from a wide class of general equilibrium monetary macroeconomic models with 

different micro-foundations.   

To examine the implications of these theoretical responses for the demand and supply of 

bank credit, we use the simple partial equilibrium model in Boyd, De Nicolò and Loukoianova 

(2009). In this model, aggregate shocks can have an impact on both borrowers’ demand for 

bank credit and banks’ supply of funding.  

The theoretical restrictions on the responses of bank credit growth and changes in loan 

rates implied by this banking model are as follows.  If there is a positive transitory shock to the 
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demand for bank credit (e.g. because of a positive technology shock to firms generating an 

increase in demand for investment, or an increase in the quality of investment prospects), then 

we should observe a transitory increase in bank credit growth and an increase in loan rates. We 

call a shock generating these responses a positive credit demand shock. Conversely, if there is a 

positive transitory shock to the supply of bank credit (e.g. the supply of bank liabilities increases 

or banks expand by raising capital), then we should observe a transitory increase in bank credit 

growth but a decline in loan rates. We call a shock generating these responses a positive credit 

supply shock. Of course, negative shocks have the signs of these responses all reversed.  

Note that real aggregate demand or supply shocks can affect the underlying drivers of 

the supply and demand for bank credit simultaneously. For example, a negative aggregate 

demand shock can induce firms and household to decrease their demand for bank credit, shifting 

the demand for bank credit to the left: this would result in a decline in loan rates ceteris paribus. 

At the same time, the adverse wealth effects of a negative aggregate demand shock may induce 

investors to reduce their supply of funds to banks, or banks could reduce their supply of credit 

as they may become increasingly capital constrained or risk averse: this would result in a 

leftward shift in the supply of credit ceteris paribus. Which effect dominates on net will be 

reflected in movements in loan rates and bank credit growth. If negative credit demand shocks 

dominate, then loan rates and bank credit growth should decline, while the converse would be 

true if negative credit supply shocks dominate.  

Table A below summarizes the responses of GDP growth, inflation, bank lending 

growth, and changes in loan rates in response to positive structural shocks implied by standard 

aggregate macroeconomic models and a partial equilibrium banking model: 

Table A.     Theoretical responses of key variables to positive shocks 

Macroeconomic Model Aggregate Supply Aggregate Demand 

GDP growth Positive Positive 

Inflation Negative Positive 

Banking Model Bank Credit Demand  Bank Credit Supply  

Bank Credit Growth Positive Positive 

Change in Lending Rates Positive Negative 
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Thus, identification of structural shocks is conducted by checking whether a subset of 

orthogonal innovations of the FAVAR produces responses of the four variables considered that 

match the signs of the responses implied by theory. 

 

Impulse Responses as Stress Testing Devices 
 

At a given date, the size of these responses provides a gauge of the sensitivity of 

systemic risk indicators to shocks of a given (standardized) size.  Between dates, changes in the 

size of impulse responses of the systemic risk indicators to a given set of structural shocks 

provide a measure of changes in the resilience of an economy to these shocks. The responses of 

observable variables to structural shocks can be used to detect which sectors of the economy are 

most sensitive to a particular structural shock. 

 

V.        IMPLEMENTATION:  ESTIMATION AND FORECASTING 

Our modeling procedure is implemented using quarterly macroeconomic and financial 

series for the G-7 economies for the period 1980Q1-2010Q1. All series are taken from 

Datastream.  

For each country, the vector of quarterly series tX  in equation (1) includes about 95 

series, which are detailed in the Appendix. These series can be classified into three main groups.  

The first group comprises equity markets data, including prices, price/earnings ratios and 

dividend yields for the entire market and by sector. The inclusion of all sectors spanning from 

manufacturing to services allows us to gauge the differential impact of shocks on different 

sectors of the economy, as well as to capture the impact of specific sectors on systemic risks. 

The second group includes financial, monetary and banking variables related to credit 

conditions, namely: interest rates for different maturities, monetary policy rates, bank prime 

rates and interbank rates, bank lending, and monetary aggregates. The third group includes price 

and quantity indicators of real activity. This set of variables includes net exports, capacity 

utilization, firms’ investment, consumer confidence, unemployment, consumption and saving 

for firms, government and household, a consumer price index, industrial production, house 

prices and manufacturing orders.  
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As shown in Table 1, there are significant variations in the first two moments of GDP 

growth and the FS indicator across countries. Two facts are worth noticing. First, volatilities of 

GDPG and FS appear to differ markedly across countries, suggesting differential sensitivities of 

these indicators to underlying shocks. Second, means of FS are generally small and not 

significantly different from zero according to simple t-statistics tests: this is expected, as in the 

long-run the evolution of bank stock returns tracks that of the market. As per the last column of 

Table 1, note that the contemporaneous correlation between GDPG and FS is very small in five 

out of seven countries, being significantly positive only for the U.K. and Germany.  

  

A.   Estimation  

 We estimated static factors of each variable by principal components according to the 

procedures described in Stock and Watson (2002 and 2005), and chose their number and the 

lags according to the selection criterion described previously. This criterion selected only one 

lag for each country, and between 7 and 9 static factors depending on a country dataset. 10  We 

used these estimated factors as independent variables of quantile regressions specified with one 

lag. The resulting density estimates were used to obtain fitted values and forecasts of our 

systemic risk indicators. 

 Table 2 reports basic descriptive statistics of the systemic risk indicators at 10 percent 

probability ( 0.10  ). As in Table 1, ranges as well as volatilities of both types of indicators 

differ markedly across countries, suggesting differential sensitivities of indicators of tail risk to 

underlying shocks. In addition, ranges and volatilities of expected shortfall measures all 

significantly higher than VaR measures. This indicates that VaR measures might not capture the 

actual extent of potential tail real and financial losses exactly when such assessment is needed 

most, namely, when adverse tail realizations are large. This evidence further reinforces the 

preference of expected shortfall measures over VaR measures as systemic risk indicators.   

 

 

                                                 
10 As a cross-check, we also estimated the number of factors using the Bai and Ng (2002) criterions as applied to 
equation (2), obtaining a similar number of static factors for each country dataset.  
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B.    Forecasting and Forecast Evaluation 
 
 As detailed in the previous section, density forecasts and systemic risk indicators eight 

quarters ahead were obtained projecting forward the factors through the VAR of equation (6) 

with all data available as of June 30, 2009, that is, at end-2010Q2.11   

To illustrate, Figure 1 depicts density forecasts of GDP growth and the FS indicator for 

2010Q3, compared to those estimated in the quarter including Lehman’s collapse (2008Q3).  

Observe the fat left tail for both indicators in 2008Q3 (blue curve), compared to the current 

forecast (red curve). 

 
Figure 1   
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Figure 2 reports time series of estimated expected shortfalls for GDP growth and the FS 

indicator, and relevant forecasts as of 2010Q1 for the U.S., as measured by GDPES and FSES 

series at 20 and 5 percent probability levels. The forecasts of ES indicators at 20 and 5 percent 

probability depict systemic risk fan charts, which compactly summarize the range of expected 

tail real and financial prospects for a given probability range. 

 

 

    

                                                 
11 Note, that in 2010Q2 actual real GDP was available only up to 2010Q1. Therefore, the first effective forecast 
date for the systemic real risk indicator is 2010Q2, and the estimated 2010Q2 GDP growth is a “nowcast”. 
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Figure 2 
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Note that spikes in GDPES correspond to every recession episode, but their magnitude 

differs across episodes, with the spike in 2008Q4-2009Q1 being the largest experienced since 

the 1980s. Interestingly, spikes in FSES do not necessarily match spikes in GDPES, suggesting 

that the co-movements in the left tails of real activity and financial stress are time-varying and 

more complex than commonly believed. Perhaps most importantly, the difference between ES 

indicators at 5 percent and 20 percent probability track changes in the expected shortfalls 

associated with changes of the size (or fatness) of the left tail.  Indeed, the size of the left tail 

increases at each spike, and the extent to which that occurs indicates that expected shortfalls are 

time-varying, and differ markedly for real activity and financial stress.  These observations 

apply as well to the systemic risk fan charts of the other six countries reported in Appendix 

Figure Set 1.              

 

Forecast Evaluation 
 
 We evaluate the accuracy of density forecasts both in-sample and out-of-sample.  By 

implication, this evaluation is a test of the forecasting performance of our systemic risk 
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indicators. We conduct this evaluation applying standard tests proposed in the literature and 

adapted to our model. Recall that our systemic risk indicators are constructed on the basis of full 

density estimates. Assessing the quality of forecasts therefore amounts to assessing whether the 

estimated density is “close” to the true unobserved density (for a survey of tests of accuracy of 

density forecasts, see Corradi and Swanson, 2006).  

As shown in Diebold, Gunther and Rey (1998), a series of estimated quantiles  

accurately captures the actual distribution of a variable tX  if the series of Probability Integral 

Transforms (PIT) tz , defined as the series of quantiles of the probability distribution that 

correspond to each observation in tX , satisfies two properties:  a) the series tz  is identically 

and independently distributed (independence),  and b) the series tz  is distributed uniformly over 

the unit interval (uniformity). To test these properties, we constructed PITs for both our real 

activity and FS indicators for each of the seven countries.  

To check independence, we tested whether autocorrelations of these series up to eight 

lags were significantly different from 0 for each of the seven countries. We found that for all 

countries and both indicators these autocorrelations are not significantly different from 0 at 

standard confidence levels, suggesting that our model generates PITs consistent with the 

independence property.  

To check uniformity, we followed Diebold, Gunther and Rey’s (1998) suggestion to 

compare graphically our density estimates to a uniform density on the unit interval, and 

compute confidence intervals under the null of i.i.d. uniform distribution, decile by decile.  For 

all countries, we found that uniformity was satisfied for most deciles, with few exceptions either 

in the tails or in the middle deciles. Overall, this evidence suggests that the quality of our 

density estimates is satisfactory, although there is room for improvements especially in the 

uniformity dimension.  

A more fundamental set of tests concerns an assessment of densities’ in-sample fit and, 

most importantly, their out-of sample fit. This latter test ultimately gauges the usefulness of our 

model as a risk monitoring tool. Given the relatively low number of observations in our 

application, we resorted to non-parametric methods. Specifically, we used standard “goodness-

of-fit” test for categorical data based on the Pearson’s Q statistics. For small samples, the 
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Pearson’s Q statistics is approximately distributed as a chi-square with k-1 degrees of freedom, 

where k is the number of categories or partitions of the data.12 

To test in-sample fit, we partitioned the unit interval in regions delimited by two specific 

quantile ranges, where we used (in-sample) quantile estimates.  The first partition includes 4 

regions delimited by the estimated quantiles:  [<Q5,Q5-Q10,Q10-Q20,>Q20]. This partition is 

designed to test whether the fraction of actual realizations of GDPG and FS are close to the left-

tail of the actual (unobserved) distribution. A perfect matching of the estimated and the actual 

distribution would result in 5 percent of observations falling in the first region (<Q5), 5 percent 

in the second region (Q5-Q10), 10 percent in the third region (Q10-Q20), and 20 percent in the 

fourth region. In this case, a Q statistics not greater than the .95 percentile of the chi-square 

distribution with 3 degrees of freedom (equal to 7.815) would lead to not reject (or to accept) 

the null that the fit is good. The second partition includes 6 regions delimited by the estimated 

quantiles:  [<Q10,Q10-Q25,Q25-Q50,Q50-Q75,Q75-Q90,>Q90]. This partition is designed to 

test whether the fraction of actual realizations of GDPG and FS are close to the entire actual 

(unobserved) distribution.  A perfect matching of the estimated and the actual distribution 

would result in 10 percent of observations falling in the first region (<Q10) and the last region 

(>Q90), 15 percent in regions Q10-Q25 and Q75-Q90, and 25 percent in regions Q25-Q50 and 

Q50-Q75. In this case, a Q statistics not greater than the .95 percentile of the chi-square 

distribution with 5 degrees of freedom (equal to 11.07) would lead to accept the null that the fit 

is good.  

As illustrated in Table 3, the tests of in-sample goodness of fit show that for all 

countries, for both real and financial indicators, and for both tests for the tail and the entire 

distribution, the model delivers (in-sample) density estimates with a good fit.  

To assess out-of sample fit, the limited number of observations compelled us to limit the 

partition of the unit interval into two regions: [<Q20,>Q20].  Thus, our tests focus on out-of-

sample goodness of fit on the left-tail. We considered four forecasting horizons, from one 

quarter to four quarters ahead. Recursive forecasts of quantiles were computed in “simulated” 

real-time, starting in 1999Q1. In each forecasting quarter, up to quarter 2008Q4, we re-

                                                 
12 For details on these tests, see for example De Groot and Schervish (2002). For a review of applications in 
financial risk management, see Campbell (2005).  
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estimated the entire model using only observations up to that quarter, but kept the selection of 

the number of factors and lags fixed. In this case, a Q statistics not greater than the .95 

percentile of the chi-square distribution with one degree of freedom (equal to 3.84) would lead 

to accept the null that the prediction is accurate.13 

As shown in Table 4, out-of sample predictions are generally satisfactory. For two 

countries, the U.S. and the U.K., predictions are good for both variables and all forecasting 

horizons. For GDPG, there is only one rejection at some horizon for Canada, Japan and France, 

and two for Italy. By contrast, there is only one rejection for FS (Germany).  

Overall, the fit of our density forecasts, both in-sample and out-of-sample, provide 

support for the ability of our systemic risk indicators to forecast actual systemic real and 

financial risk realizations satisfactorily.  

 

VI.   IMPLEMENTING STRESS TESTING  

We illustrate our stress-testing procedures with real-time simulations. These tests gauge 

whether the model generates early warning signals of enhanced systemic risks. In essence, these 

tests can be viewed as a risk monitoring tool complementary to the forecasts of systemic risk 

indicators, as summarized, for example, by the systemic risk charts. 

We report perhaps the most demanding evaluation of the model’s ability to serve as a 

risk monitoring tool: we assess if the model signals increased systemic risks prior to historical 

declines in real activity and increased financial stress during certain periods of the 2007-2008 

crisis.  

 

A.   An Example of Reduced-Form Stress Testing  

After a surge experienced in March 2008, during the entire second quarter of 2008  most 

financial risk indicators (such as CDS spreads) in advanced economies returned to levels 

witnessed on the onset of the crisis in the summer of 2007 (see BIS, 2008, pp.1-2). On the real 

side, global growth was projected to slow down moderately, with the U.S. predicted to “tip into 

                                                 
13 Following West (2006), we plan to implement alternative forecasting schemes based on rolling windows to 
check whether out-of-sample forecasting accuracy could be improved by capturing time variation in estimated 
parameters.  
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a mild recession in 2008.....before starting a modest recovery in 2009” (IMF World Economic 

Outlook, 2008, Executive Summary, p. XV).  In sum, as of the end of the second quarter of 

2008, the substantial ease in risk indicators in the financial sector suggested a decline in 

systemic financial risk, whereas growth prospects, although revised downward, were not 

generally judged as implying imminent systemic real risk.  

By contrast, a very different picture would have emerged from reduced-form stress tests 

conducted at that time. Recall that a positive (negative) ESSTD indicates expected shortfalls 

larger (smaller) than those of the distribution of reference, indicating higher vulnerability. 

When the positive (negative) values of the ESSTD concentrate on the lower quartiles, this is an 

indication of higher (lower) systemic risk.  

Using only data available as of end of the first and second quarter of 2008, Figure 3 

illustrates for the U.S. the average ESSTD for GDP growth and the FS indicator at each 

quantile for the entire sequence of shocks experienced since 1980Q1, applied to the quantile 

estimates in 2008Q1,  and a quarter later, in 2008Q2.  

Figure 3 
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Note that the 2008Q2 average ESSTD for GDP growth is about double the size of that in 

2008Q1 across all quantiles, but particularly for the lowest 20 quantiles. Similarly, the 2008Q2 
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ESSTD for the FS indicator is almost three times larger than that recorded in 2008Q1 for all 

quantiles, but again, the difference is greater for the lowest 20 quantiles. Similar patterns are 

recorded for Japan, Germany and France, as shown in Figure Set 2 in the Appendix.   

Thus, these stress tests would have given strong early warnings of systemic real and 

financial risks also in 2008Q2, when such warnings could not be inferred by looking simply at 

market developments and real data releases. As it is well known, what happened in 2008Q3-Q4 

confirmed the prediction of heightened systemic real and financial risks. We view these results 

as evidence of the ability of reduced-form stress tests to serve as a useful risk monitoring tool.  

 

B.   Structural Stress Testing  
 
 Assessing to what extent real and financial sectors are primarily hit by common shocks, 

or spillovers from one sector to the other dominate is important, especially during periods of 

both real and financial instability. Whether the 2007-2008 crisis has been one in which the sharp 

contraction in real activity registered at end-2008 and beginning 2009 has been caused by sharp 

declines in the aggregate supply of bank credit, or alternatively, sharp declines in real activity 

are the main drivers of the reduction in the demand for bank credit, is still an open issue.  

 The conventional wisdom has been one in which the credit crunch has prompted 

banking systems to curtail lending, and banks’ increasingly binding capital constraints have 

forced banks to de-leverage, with the attendant contraction of their asset size and further 

constraints in their lending capacity. Yet, bank loan growth in the U.S. and the Euro area, for 

example, has been buoyant since the start of the crisis, although it has started to decelerate in 

September 2008. This may suggest that the contraction in bank lending growth reflects 

primarily the sharp decline in the demand for bank credit resulting from the severe contraction 

in consumption growth and investment.14  Identification is essential to address these issues. 

 

 

 

                                                 
14 For the U.S., Chari, Christiano and Kehoe (2008) made assertions at variance with the common wisdom, which 
were countered by Cohen-Cole et al. (2008) and Ivashina and Sharfstein (2010).  
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Identification 
 
 Recall that the number of static factors estimated for each country dataset ranges from 

seven to nine. Given the relatively short time dimension of our dataset, we restricted the number 

of factors in the VAR of equation (3) to be equal to the number of dynamic factors estimated as 

principal components of the residuals of each variable in equation (7) and (8). We estimated 

five dynamic factors for the U.S., and between 4 and 6 dynamic factors for the other countries. 

For simplicity, for each country dataset we treated the first five estimated static factors as equal 

to the number of dynamic factors, essentially assuming t tF f , so that in equation (8) G I .  

The identification procedure outlined previously was implemented following three steps. 

First, we selected an orthogonal decomposition of the MA representation (9a). Second, for each 

country, we computed impulse responses of FAVARs for GDP Growth, Inflation, Bank 

Lending Growth and first differences in Loan Rates.15 Lastly, we checked whether the joint 

signs of the responses of these variables conformed to the signs predicted for different shocks 

by the basic macroeconomic and banking models summarized in Table A.  

As a benchmark orthogonalization, we chose Choleski decomposition with factors 

ordered according to their explanatory power of the common variations in the data, with factor 1 

ordered first, factor 2 second, and so on, and with GDPG, Inflation, Bank Lending Growth and 

first differences in loan rates ordered last in each FAVAR equation. The simple assumption 

underlying this choice is that the casual ordering implied by this decomposition reflects the 

relative importance of factors in explaining variations in the data, and each idiosyncratic 

component of the observable variables does not affect any of the factors at impact.  

To check robustness, however, we examined alternative decompositions with inverted 

ordering of the variables, obtaining similar signs of the responses of each of the observable 

variables to shock to orthogonalized innovations. We also examined the covariance matrix of 

innovations of the VAR of each country, and such matrices appeared approximately diagonal in 

all cases, indicating that the ordering of variables in the VAR was not likely to change results 

under the casual ordering selected. Furthermore, these covariance matrices are approximately 

diagonal: this suggests that our results may be robust to other orthogonal decompositions— not 
                                                 
15 Recall that these FAVARs involve nine variables: the selected five factors plus the four observable variables 
used for identification 
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necessarily recursive—that can be extracted applying the systematic statistical search 

implemented by Canova and De Nicolò (2002).  

Figure Set 3 in the Appendix reports impulse responses of GDP growth, Inflation, Bank 

Lending Growth and changes in Lending Rates for each of the G-7 countries.  Strikingly, the 

response of all variables to all shocks at impact or for at least up to two quarters after impact is 

either strictly positive (in most cases) or non negative (in few cases).16 Hence, according to 

Table A, under the assumed orthogonalization, all structural shocks in these economies can be 

identified as aggregate demand shocks associated with bank credit demand shocks.  

The finding of aggregate demand shock as the predominant drivers of real cycles in the 

G-7 economies is consistent with the findings by Canova and De Nicolò (2003), who used only 

a small dimension VAR for the G-7 countries, but implemented a full search for shocks 

interpretable according to aggregate macroeconomic theory in the entire space of non-recursive 

orthogonalizations of the VAR of each country. Our results are also consistent with recent work 

by Arouba and Diebold (2010), who find demand shocks as the dominant source of aggregate 

fluctuations in the U.S. 

The finding that aggregate bank demand shocks are the predominant drivers of cycles in 

bank credit growth is consistent with their being prompted by aggregate demand shocks. This 

result also supports the conjecture that slowdowns in aggregate bank credit growth are primarily 

the result of downturns in real activity, as they reflect declines in the aggregate demand for bank 

credit by households and firms, rather than a reduction in the aggregate supply of bank credit. 

Recent detailed evidence by Berrospide and Edge (2010) for the U.S. is consistent with our 

results. 17   

Notably, the five identified aggregate demand and bank credit demand shocks are not all 

the same, as they have a differential impact on GDP growth, inflation, bank lending growth and 

changes in loan rates within as well as between countries. This suggests that the sectors of the 

economy where they originate are different. As shown in Table 4, the variance decompositions 

                                                 
16 The only exception is the shock associated with the third factor for Canada, whose responses do not satisfy any 
of the sign restrictions in Table A, and thus results unidentified under the chosen decomposition.  
17 Interestingly, similar results are obtained by Bherens, Corcos and Mion (2010) with regard to international trade 
patterns. 
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of the four variables VAR in each country show that the variance explained by each shock 

varies across both variables and countries, with most shocks resulting relevant in each country.18 

Similar results are obtained when we look at the impulse responses and variance 

decompositions of GDPES and FSES measures. As shown in Figure Set 2, the sign of the 

impact of each shock on GDPES and FSES is qualitatively very similar in each country, 

although magnitude and persistence of these shocks differ markedly. As shown in Table 5, the 

relevant variance decompositions indicate the importance of each of the identified shocks for 

the systemic risk indicators in each country, as these decompositions are significant in 

magnitude for each shock.  

In sum, all identified structural shocks are aggregate demand shocks associated with 

bank credit demand shocks, this identification is the same for all countries considered, and 

appears robust to alternative sets of orthogonal innovations in the FAVAR.      

 

An Example of Structural Stress Testing  
 

Recall that a stress-test is the impulse response of the density function of the indicators 

of real and financial activity to a particular selection of structural shocks. Changes in the 

impulse response function of the density of our real and financial indicators to given sizes of 

structural shocks, or comparisons of impulse responses at different point in time, can give a 

measure of resilience of the real and financial sides of the economy. 

We illustrate this stress-testing procedure with a simple example. Specifically, we gauge 

weather our stress tests signal lower resilience to structural shocks in the G-7 economies prior 

to the 2007Q3, which is the quarter during which the 2007-2008 crisis began. 

Table 7 shows the difference of the cumulative impact of the impulse response functions 

of GDPES and FSES to each structural shock up to 8 quarters estimated for the whole sample 

period before the crisis (1980Q1-2007Q2), and since the mid 1990s (1993Q2-2007Q2) A 

positive difference would indicate a larger cumulative adverse impact in the last sub-period 

compared to the whole sample period.  

                                                 
18 These results echo the findings of an increased impact of sectoral shocks on aggregate industrial production 
indexes documented recently by Foerster, Sarte and Watson (2008) 
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This table summarizes two pieces of information that could have been useful for 

policymakers in 2007Q2.  First, in all countries the first two shocks become predominant in the 

latest sub-period, compared with the full sample. This is true for both GDPES and FSES 

indicators. This can be viewed as a signal of increased risk concentrations in these economies 

on both the real and financial sides. Second, the U.S. economy is the only country that exhibits a 

positive difference in the cumulative impact of impulse responses for both GDPES and FSES 

indicators. In 2007Q2, this signaled that the U.S. economy had increased its vulnerability to 

shocks both on the real and financial sides, in absolute terms as well as relative to the other G-7 

economies.  

 Structural stress testing can be also designed to detect where identified structural shocks 

are likely to originate, and to which other sectors of the economy they are transmitted. This can 

be accomplished using impulse responses and variance decompositions of selected key 

observable variables. In terms of Figure A of the introduction, we can associate certain 

observable variables to each box. The size of the impulse response of these observable variables 

at impact may indicate where a particular shock hits most severely, and such a shock is 

transmitted between “boxes”. Tracing these impulse responses across variables in each box may 

provide a risk map at a point in time. Comparisons of risk maps at different points in time can 

be useful to gauge how the sensitivity of an economy to given structural shock evolves. 

Detailing these risk maps and designing structural stress tests as comparisons of risk maps 

across time is our work in progress. 

 

VII.   CONCLUSION  

Building on our previous effort, this paper has presented a modeling framework that can 

be used as a positive tool as well as a systemic risk monitoring system implementable in real 

time. The model delivers real-time density forecasts of indicators of real activity and financial 

health, and systemic real and financial risk indicators constructed on these density forecasts. In 

addition, the proposed stress testing procedures make it feasible to gauge the resilience of the 

real and financial sectors of economies to systemic risk realizations, measured by the sensitivity 

of the systemic risk indicators to both reduced-form and structural shocks.  

We believe that further developments and extensions of this modeling framework are 

likely to yield increasing returns. The model can guide a more effective integration of financial 
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frictions into current macroeconomic modeling, encourage the development of more 

disaggregated versions of such macroeconomic modeling by incorporating the insights of 

models of financial intermediation, and can be an increasingly powerful monitoring tool 

available to policy-makers.  

Two developments are already part of our research agenda. The first is an extension of 

our framework to the simultaneous modeling of countries and regions of the world. This would 

allow us to expand the set of positive questions that the model can address, and provide risk 

monitoring tools of systemic risk interdependencies across countries. The second development 

would use more disaggregated data, together with a richer set of theoretical constructs as 

identification tools, to construct more detailed risk maps. 
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Tables and Figures 
 

Table 1.  Descriptive Statistics of Real GDP Growth (GDPG) and the  
Financial Stress Indicator (FS) 

(Significance at 5% confidence level in boldface) 
 

                                  GDPG                                            FS 
          corr. 

 Mean 
Std. 
Dev Min Max  Mean 

Std. 
Dev Min Max GDPG/FS 

           
United States 0.68 0.75 -2.07 2.22  -0.23 8.61 -33.50 38.34 0.11 

Canada 0.62 0.77 -1.82 2.47  0.51 6.92 -17.56 25.06 -0.04 
Japan 0.54 1.04 -4.30 3.11  -0.35 10.20 -29.09 56.07 0.15 
U.K. 0.53 0.70 -2.64 2.17  -0.17 8.68 -38.68 19.52 0.21 

France 0.45 0.50 -1.64 1.45  0.33 9.72 -41.30 29.16 0.15 
Germany 0.32 0.72 -3.60 1.80  -0.72 6.94 -34.26 19.66 0.37 

Italy 0.35 0.65 -2.76 2.19  -0.28 7.67 -17.69 29.27 0.02 
           

Average 0.50 0.73 -2.69 2.20  -0.13 8.39 -30.30 31.01 0.14 

 
Table 2.  Descriptive Statistics of Systemic Risk Indicators ( 0.10  ) 

                                               REAL                                                                    FINANCIAL 
 Mean Std. Dev. Min Max   Mean Std. Dev. Min Max 

U. S.            
GDPaR(10) 0.07 0.62 -1.02 3.60  FSaR(10) 9.17 4.80 0.95 33.50 
GDPES(10) 0.45 0.79 -0.87 4.66  FSES(10) 13.92 6.08 4.91 40.04 

Canada           
GDPaR(10) 0.07 0.60 -1.05 2.79  FSaR(10) 7.66 2.40 0.81 17.02 
GDPES(10) 0.41 0.60 -0.72 3.06  FSES(10) 11.28 3.23 3.96 23.36 

Japan           
GDPaR(10) 0.63 0.50 -1.14 2.93  FSaR(10) 10.59 4.01 0.15 23.03 
GDPES(10) 1.24 0.70 -0.44 3.97  FSES(10) 16.21 5.61 4.04 37.42 

U.K           
GDPaR(10) 0.07 0.54 -0.99 2.10  FSaR(10) 10.21 4.84 -0.62 30.45 
GDPES(10) 0.43 0.92 -6.93 2.97  FSES(10) 14.83 6.11 0.70 37.68 

France           
GDPaR(10) 0.71 0.36 -0.70 2.22  FSaR(10) 9.98 4.18 -0.44 28.30 
GDPES(10) 0.35 0.43 -0.48 2.65  FSES(10) 17.90 7.65 2.17 44.66 
Germany           

GDPaR(10) 0.50 0.45 -0.26 2.87  FSaR(10) 7.64 2.55 1.91 15.33 
GDPES(10) 0.82 0.61 -0.20 3.62  FSES(10) 12.30 4.82 2.75 31.13 

Italy           
GDPaR(10) 0.29 0.44 -0.73 1.97  FSaR(10) 8.83 2.29 2.55 15.79 
GDPES(10) 0.62 0.54 -0.40 3.14  FSES(10) 12.51 1.71 7.73 18.21 
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Table 3.  In–Sample Goodness-of-Fit 
Each column reports the fraction of observations falling in the region delimited by each 
estimated quantile. Significance of the Q- statistics at a 5 percent confidence level is reported in 
boldface.  
   Left-Tail     

GDPG <Q5 Q5-Q10 Q10-Q20 >Q20 Qstat   
United States 2.24 2.99 11.94 72.39 4.61   

Canada 3.73 4.48 8.21 72.39 1.90   
Japan 2.24 5.22 9.70 73.88 2.70   
U.K. 2.99 5.22 10.45 72.38 2.09   

France 2.99 4.48 10.45 73.13 1.96   
Germany 2.98 4.48 11.19 73.13 2.14   

Italy 2.99 5.97 7.46 71.64 3.37   
        

FS        
United States 3.73 4.48 8.21 73.88 1.56   

Canada 3.73 5.22 8.96 72.39 1.56   
Japan 2.23 5.97 7.46 72.39 4.13   
U.K. 3.73 3.73 10.45 71.64 2.06   

France 3.73 3.73 10.45 71.64 2.06   
Germany 3.73 3.73 9.70 73.13 1.66   

Italy 5.22 4.48 9.70 69.40 1.98   
        

   Distribution     
GDPG <Q10 Q10-Q25 Q25-Q50 Q50-Q75 Q75-Q90 >Q90 Qstat 

United States 5.22 17.16 18.66 22.39 11.94 14.18 8.39 
Canada 8.21 14.93 19.40 20.15 13.43 12.69 4.23 
Japan 7.46 15.67 18.67 20.15 15.67 13.43 5.41 
U.K. 8.21 14.18 17.91 22.39 14.93 13.43 4.60 

France 7.46 14.93 17.16 23.13 13.43 14.18 6.12 
Germany 7.46 15.67 21.64 20.15 12.69 12.69 3.89 

Italy 8.96 12.69 18.66 20.90 14.93 11.19 3.81 
        

FS        
United States 8.21 14.18 17.91 22.39 14.18 12.69 4.25 

Canada 8.96 13.43 20.90 20.15 14.93 11.94 2.87 
Japan 8.21 13.43 23.13 19.40 13.43 11.94 3.07 
U.K. 7.46 15.67 20.15 21.64 13.43 11.19 3.12 

France 7.46 14.18 22.39 20.15 14.18 11.19 2.74 
Germany 7.46 15.67 21.64 20.15 11.19 11.94 4.40 

Italy 9.70 16.42 18.66 19.40 14.93 10.45 4.05 
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Table 4.  Out-of–Sample Goodness of Fit 
 

Each column reports the Q statistics corresponding to the forecast horizon k (in quarters). 
Significance of the Q- statistics at a 5 percent confidence level is reported in boldface.  

 
    GDPG         FS    
                   
  k=1 k=2 k=3 k=4  k=1 k=2 k=3 k=4 
          

U.S.  0.03 2.19 1.14 3.57  0.43 2.19 2.19 0.43 
Canada 2.19 2.19 2.19 7.36  2.19 0.33 0.33 0.03 
Japan 5.30 1.14 1.14 1.14  1.14 1.14 0.43 0.43 
France 2.19 3.57 5.30 1.14  0.06 0.06 0.03 0.03 

Germany 2.19 1.14 1.14 1.14  7.36 2.19 0.43 0.43 
Italy 1.14 1.14 5.30 7.36  0.97 0.97 1.95 1.95 
U.K. 2.19 0.03 0.06 1.14  2.19 0.43 0.43 0.43 
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Table 5.  Variance Decomposition of GDP Growth, Inflation, 
Bank Lending Growth and Changes in Loan Rates to  

Identified Aggregate Demand and Bank Credit Demand Shocks 
Shock 1 Shock2 Shock 3 Shock 4 Shock 5 Shock Sum Idiosyncratic

United States GDP Growth 0.17 0.18 0.19 0.03 0.01 0.58 0.42

Inflation 0.03 0.24 0.14 0.02 0.05 0.48 0.52
Bank Credit Growth 0.05 0.11 0.20 0.06 0.02 0.44 0.56
Loan Rate 0.02 0.58 0.01 0.14 0.00 0.75 0.25

Canada GDP Growth 0.12 0.09 0.09 0.30 0.01 0.61 0.39

Inflation 0.01 0.08 0.00 0.03 0.02 0.14 0.86
Bank Credit Growth 0.01 0.21 0.06 0.13 0.05 0.46 0.54
Loan Rate 0.07 0.10 0.02 0.22 0.03 0.44 0.56

Japan GDP Growth 0.10 0.03 0.01 0.09 0.11 0.34 0.66

Inflation 0.03 0.02 0.04 0.15 0.23 0.47 0.53
Bank Credit Growth 0.02 0.01 0.05 0.17 0.29 0.54 0.46
Loan Rate 0.02 0.14 0.08 0.10 0.01 0.35 0.65

U.K GDP Growth 0.09 0.14 0.42 0.02 0.00 0.67 0.33

Inflation 0.01 0.14 0.22 0.00 0.01 0.38 0.62
Bank Credit Growth 0.02 0.08 0.44 0.02 0.03 0.59 0.41
Loan Rate 0.02 0.53 0.08 0.01 0.10 0.74 0.26

France GDP Growth 0.15 0.07 0.25 0.06 0.20 0.73 0.27

Inflation 0.01 0.04 0.05 0.04 0.05 0.19 0.81
Bank Credit Growth 0.11 0.17 0.10 0.02 0.08 0.48 0.52
Loan Rate 0.00 0.03 0.04 0.00 0.01 0.08 0.92

Germany GDP Growth 0.15 0.33 0.20 0.03 0.03 0.74 0.26

Inflation 0.04 0.00 0.03 0.00 0.00 0.07 0.93
Bank Credit Growth 0.02 0.00 0.15 0.08 0.00 0.25 0.75
Loan Rate 0.13 0.25 0.03 0.01 0.00 0.42 0.58

Italy GDP Growth 0.07 0.08 0.30 0.22 0.04 0.71 0.29

Inflation 0.05 0.02 0.29 0.07 0.01 0.44 0.56
Bank Credit Growth 0.07 0.14 0.17 0.33 0.03 0.74 0.26
Loan Rate 0.08 0.33 0.04 0.02 0.01 0.48 0.52  

 
 
N.B.: Boldfaced values denote estimates significantly different from 0 at 5 percent confidence 
levels. 
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Table 6.  Variance Decomposition of GDPES and FSES 
to Identified Aggregate Demand and Bank Credit Demand Shocks 

___________________________________________________________________________ 
 

Shock 1 Shock2 Shock 3 Shock 4 Shock 5 Shock Sum Idiosyncratic

United States GDPaR 0.12 0.09 0.09 0.30 0.01 0.61 0.39

FSaR 0.06 0.19 0.12 0.22 0.07 0.67 0.33

Canada GDPaR 0.15 0.02 0.08 0.17 0.06 0.48 0.52

FSaR 0.00 0.18 0.47 0.00 0.13 0.79 0.21

Japan GDPaR 0.10 0.03 0.01 0.09 0.11 0.34 0.66

FSaR 0.05 0.22 0.14 0.24 0.13 0.78 0.22

U.K GDPaR 0.09 0.14 0.42 0.02 0.00 0.67 0.33

FSaR 0.09 0.02 0.03 0.22 0.40 0.76 0.24

France GDPaR 0.15 0.07 0.25 0.06 0.21 0.74 0.26

FSaR 0.13 0.04 0.05 0.45 0.01 0.68 0.32

Germany GDPaR 0.15 0.33 0.20 0.03 0.03 0.74 0.26

FSaR 0.12 0.04 0.01 0.08 0.11 0.36 0.64

Italy GDPaR 0.07 0.08 0.30 0.22 0.04 0.71 0.29

FSaR 0.00 0.22 0.13 0.02 0.01 0.38 0.62  
 
___________________________________________________________________________________________ 
 
N.B.:  Boldfaced values denote estimates significantly different from 0 at 5 percent confidence 
levels. 
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Table 7.  Structural Stress Test: An Example 
 

The table reports the difference of Impulse Response Functions (IRF) and Variance Decompositions 
(VD) for GDP growth (Real) and the FS Indicator (Financial) between the latest sub-sample (1993Q1-
2007Q2) and the entire sample (1980Q1-2007Q2).   

 
SUM Shock 1 Shock2 Shock 3 Shock 4 Shock 5

IRF*VD IRF VD IRF VD IRF VD IRF VD IRF VD

United States Real 0.17 0.01 0.08 0.72 0.22 -0.98 -0.07 -0.26 -0.05 -0.78 -0.05

Financial 0.55 2.99 0.01 7.60 0.13 -6.80 -0.09 -1.96 -0.04 -0.78 -0.05

Canada Real -0.15 -0.09 -0.04 0.12 0.03 -0.74 -0.01 -0.23 -0.03 -0.78 -0.05

Financial -0.79 -0.83 0.01 -3.03 0.16 -0.42 -0.08 -0.79 -0.04 -0.78 -0.05

Japan Real -0.09 -1.42 0.11 0.27 0.13 0.22 -0.24 0.31 0.04 -0.78 -0.05

Financial -0.09 -1.42 0.11 0.27 0.13 0.22 -0.24 0.31 0.04 -0.78 -0.05

U.K Real -0.38 0.31 0.09 0.45 0.15 -1.41 -0.31 -0.70 0.03 -0.78 -0.05

Financial -0.11 6.96 0.06 -1.38 0.14 -6.94 -0.03 -3.24 0.09 -0.78 -0.05

France Real 0.11 0.22 0.11 0.12 0.08 -0.78 -0.09 0.22 0.19 -0.78 -0.05

Financial -1.11 -3.30 -0.07 -5.33 0.16 -0.36 -0.06 -0.79 -0.04 -0.78 -0.05

Germany Real -0.54 -0.73 0.07 -0.21 -0.04 -1.05 -0.17 -1.31 0.09 -0.78 -0.05

Financial 4.82 -1.50 0.03 -2.54 0.04 -0.39 0.03 14.28 0.30 -0.78 -0.05

Italy Real -0.05 0.19 0.09 0.17 0.07 -0.78 -0.11 -0.43 0.01 -0.78 -0.05

Financial -0.08 0.10 0.00 -0.09 -0.06 2.25 -0.02 0.26 0.00 -0.78 -0.05
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Appendix  
 

Figure Set 1. Systemic Risk Fan Charts 
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Figure Set 2. Reduced-Form Stress Tests 
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Figure Set 3. Impulse Responses of GDP Growth, Inflation, Bank Lending Growth  
and Change in Lending Rates to Shocks to Factors and Own Shock 
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Figure Set 4 (cont…) 
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 LIST OF VARIABLES 

All variables below are extracted for each country in the G-7 group during the 1980.Q1-
2009.Q3 period. The frequency of all series is quarterly.  Data transformations are implemented 
to make all series stationary.  ∆ln = log level difference; ∆levels = level difference. 
 
  

Equity Markets Transformations 
Equity indices, Price Earnings ratios and Dividend yields 
total and by sector: 

 

  
Market                                                                                          ∆ln 
Oil & gas     ∆ln 
Chemicals     ∆ln 
Basic resources     ∆ln 
Construction & Materials     ∆ln 
Industrial goods and services     ∆ln 
Auto and Parts     ∆ln 
Food and Beverages     ∆ln 
Personal and Household goods     ∆ln 
Health Care     ∆ln 
Retail     ∆ln 
Media     ∆ln 
Travel and leisure     ∆ln 
Telecom     ∆ln 
Utilities     ∆ln 
Banks     ∆ln 
Insurance     ∆ln 
Financial services     ∆ln 
Technology     ∆ln 
  
Credit Conditions  
3 month money rate ∆levels 
Treasury bonds:   
2 YR ∆levels 
3 YR ∆levels 
5 YR ∆levels 
7 YR ∆levels 
10 YR ∆levels 
30 YR ∆levels 
  
Financial Variables  
Money base ∆ln 
Money supply M1 ∆ln 
Interbank rate ∆levels 
Prime rate charged by banks (month AVG) ∆levels 
Bank Lending ∆ln 
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Real Sector Variables  
GDP ∆ln 
Personal consumption expenditure ∆ln 
Government consumption and investment ∆ln 
Private domestic fixed investment ∆ln 
Export of goods on balance of payments basis ∆ln 
Import of goods on balance of payments basis ∆ln 
Net export or Capital and financial account balance ∆ln 
Consumer confidence index ∆levels 
Personal income ∆ln 
Personal savings as % of disposal income ∆levels 
Unemployment rate ∆levels 
Output per hour of all persons ∆ln 
Industrial production-total index ∆ln 
CPI all items ∆ln 
New orders manufacturing ∆ln 
Capacity utilization ∆levels 
Housing market index ∆levels 
  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 


