

The Global Labor Market Impact of Emerging Giants: a Quantitative Assessment

Andrei A. Levchenko University of Michigan

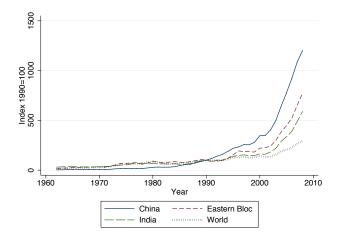
Jing Zhang University of Michigan

Paper presented at the 13th Jacques Polak Annual Research Conference Hosted by the International Monetary Fund Washington, DC—November 8–9, 2012

The views expressed in this paper are those of the author(s) only, and the presence of them, or of links to them, on the IMF website does not imply that the IMF, its Executive Board, or its management endorses or shares the views expressed in the paper.

The Global Labor Market Impact of Emerging Giants: a Quantitative Assessment

Andrei A. Levchenko^{1,2} Jing Zhang¹


¹University of Michigan

²NBER

09 November, 2012

Introduction	Quantitative Framework	Results	Conclusion
00000			
Motivation			

 Rapid trade integration of emerging giants – China, India, Central and Eastern Europe (CEECs)

Introduction	Quantitative Framework	Results	Conclusion
○●○○○		000000	O
Labor Market Ir	npact?		

- Workers displaced by import competition suffer longer unemployment and lower wages (OECD 2005)
- U.S. workers competing with Chinese imports experience reductions in income and LF participation (Autor, Dorn and Hanson 2012, Autor, Dorn, Hanson and Song 2012)
- Labor share of income in OECD has been falling, partly due to trade with emerging market countries (IMF 2005, OECD 2012)
- More generally, labor market adjustment to trade liberalization is far from frictionless (Artuç 2009, Artuç Chaudhuri and McLaren 2010, Dix-Carneiro 2011)

Introduction	Quantitative Framework	Results	Conclusion
○○●○○	0000000	000000	O
This Paper			

Quantitative assessment of both aggregate and distributional effects of emerging giants' trade integration

- Ricardian-Heckscher-Ohlin model
- 75 countries, 20 sectors
 - A number of realistic features: fully fledged input-output linkages between sectors; a non-tradeable sector; multiple factors of production; both inter- and intra-sectoral trade
- Estimated productivities in each sector and country; match incomes and bilateral/overall trade flows
- Simulate trade opening of emerging giants in global general equilibrium, with and without within-country factor mobility

Introduction	Quantitative Framework	Results	Conclusion
00000		000000	O
Main Results:	Aggregate		

- World gains from trade integration of emerging giants under perfect cross-sectoral factor mobility
 - 0.37% on average
 - Ranging from negative to positive: -0.38% (Honduras) to 2.28% (Sri Lanka)
- Reallocation of factors across sectors contributes relatively little (0.065%) to the *aggregate* gains
- Reallocation of labor and capital are complementary: only one immobile factor (capital or labor) yields largely the same results as when both are immobile

Introduction	Quantitative Framework	Results 000000	Conclusion O
Main Results:	Distributional		

- Distributional impacts are an order of magnitude larger than aggregate impacts
 - Range -5% to +5% across sectors in most countries
 - Workers in emerging giants' comparative advantage sectors tend to lose (light manufacturing)
 - Workers in emerging giants' comparative disadvantage sectors tend to gain (high-tech manufacturing)

Introduction	Quantitative Framework	Results	Conclusion
00000		000000	O
Preferences			

- Countries n, i = 1, ..., N; sectors j, k = 1, ..., J + 1; sector J + 1 nontradeable
- Consumption of the final good:

$$Y_{n} = \left(\sum_{j=1}^{J} \omega_{j}^{\frac{1}{\eta}} \left(Y_{n}^{j}\right)^{\frac{\eta-1}{\eta}}\right)^{\frac{\eta}{\eta-1}\xi_{n}} \left(Y_{n}^{J+1}\right)^{1-\xi_{n}},$$

where Y_n^{J+1} is the nontradable-sector composite good, and Y_n^j is the composite good in tradable sector j = 1, ..., J.

• Budget constraint/ trade balance in country N:

$$P_n Y_n = w_n L_n + r_n K_n,$$

where
$$P_n = B_n \left(\sum_{j=1}^J \omega_j (p_n^j)^{1-\eta} \right)^{\frac{1}{1-\eta}\xi_n} (p_n^{J+1})^{1-\xi_n}$$

Introduction	Quantitative Framework	Results	Conclusion
00000		000000	O
Technology			

• Each sector's output Q_n^j aggregates a continuum of varieties $q \in [0, 1]$ unique to each sector:

$$Q_n^j = \left[\int_0^1 Q_n^j(q)^{\frac{\varepsilon-1}{\varepsilon}} dq\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

- Producing one unit of good q in sector j in country n requires $\frac{1}{z_n^j(q)}$ input bundles.
- $z_n^j(q)$ is drawn from the Fréchet distribution with cdf

$$F_n^j(z)=e^{-T_n^jz^{-\theta}},$$

where T_n^j varies by country and sector

• Costly trade: $d_{ni}^j \ge 1$

Introduction	Quantitative Framework	Results	Conclusion
00000		000000	O
Production F	unction		

Input bundle has a cost:

$$c_n^j = \left((w_n^j)^{\alpha_j} (r_n^j)^{1-\alpha_j} \right)^{\beta_j} \left(\prod_{k=1}^{J+1} \left(p_n^k \right)^{\gamma_{k,j}} \right)^{1-\beta_j},$$

- Production is Cobb-Douglas in L, K, and intermediate inputs coming from sectors 1, ..., J + 1
- Full set of I-O linkages between all sectors, including nontradeable
- Factor and intermediate input intensities differ by sector HO feature

Introduction	Quantitative Framework	Results	Conclusion
00000		000000	O
Factor Mar	ket Equilibria		

Factor prices/optimal factor usage:

$$\sum_{i=1}^{N} \pi_{in}^{j} \boldsymbol{p}_{i}^{j} \boldsymbol{Q}_{i}^{j} = \frac{w_{n}^{j} \boldsymbol{L}_{n}^{j}}{\alpha_{j} \beta_{j}} = \frac{r_{n}^{j} \boldsymbol{K}_{n}^{j}}{(1-\alpha_{j})\beta_{j}}.$$
 (1)

Feasibility:

$$\sum_{j=1}^{J+1} L_n^j = L_n \text{ and } \sum_{j=1}^{J+1} K_n^j = K_n,$$
 (2)

Four assumptions on factor market:

- **1** Flexible factors: L_n^j , K_n^j , w_n , r_n solve (1)-(2)
- **2** Fixed factors: L_n^j , K_n^j fixed, w_n^j , r_n^j solve (1)
- **3** Flexible K: L_n^j fixed, w_n^j , r_n , K_n^j solve (1)-(2)/for K
- 4 Flexible L: K_n^j fixed, w_n^j , r_n , L_n^j solve (1)-(2)/for L

Introduction	Quantitative Framework	Results	Conclusion
00000		000000	O
Estimation	and Calibration		

- 75 countries: China, India, 10 CEECs, 63 ROW; 19 tradeable sectors; 2005-2007
- Estimate: T_n^j , d_{ni}^j
 - Output, wages, value added, α_j , β_j : EUROSTAT, UNIDO
 - Bilateral, sector-level trade: COMTRADE
 - Trade costs, RTA, Currency Union: CEPII, WTO, Rose (2004)
- Calibrate/directly measure:
 - Input-Output Matrix (γ_{k,j}), α_{J+1}, β_{J+1}, ω_j: U.S. 1997 Benchmark Detailed Make and Use tables
 - L_n, K_n, per capita income: Penn World Tables
 - ξ_n : Yi and Zhang (2010)
 - Remaining parameters: $\theta = 8.28$ (EK preferred value); $\eta = 2$; $\varepsilon = 4$

Introduction 00000		Quantitative Framework ○○○○○●○	Resu 000				Conclusion 0
Secto	rs						
	ISIC code	Sector Name		ß			
	151C code	Food and Beverages	α_j 0.290	β_j 0.290	$\gamma_{J+1,j}$ 0.303	ω_j 0.169	
	15	Tobacco Products	0.290	0.290	0.505	0.109	
	10	Textiles	0.444	0.490	0.295	0.014	
	18	Wearing Apparel, Fur	0.468	0.369	0.295	0.109	
	10	Leather, Leather Products, Footwear	0.469	0.359	0.320	0.109	
	20	Wood Products (Excl. Furniture)	0.455	0.368	0.288	0.008	
	20	Paper and Paper Products	0.351	0.341	0.407	0.012	
	22	Printing and Publishing	0.484	0.453	0.407	0.005	
	23	Coke, Refined Petroleum Products, Nuclear Fuel	0.248	0.246	0.246	0.141	
	24	Chemical and Chemical Products	0.297	0.368	0.479	0.009	
	25	Rubber and Plastics Products	0.366	0.375	0.350	0.014	
	26	Non-Metallic Mineral Products	0.350	0.448	0.499	0.073	
	27	Basic Metals	0.345	0.298	0.451	0.002	
	28	Fabricated Metal Products	0.424	0.387	0.364	0.013	
	29C	Office, Accounting, Computing, and Other Machinery	0.481	0.381	0.388	0.051	
	31A	Electrical Machinery, Communication Equipment	0.369	0.368	0.416	0.022	
	33	Medical, Precision, and Optical Instruments	0.451	0.428	0.441	0.038	
	34A	Transport Equipment	0.437	0.329	0.286	0.220	
	36	Furniture and Other Manufacturing	0.447	0.396	0.397	0.065	
	4A	Nontradeables	0.561	0.651	0.788		
		Mean	0.414	0.393	0.399	0.053	
		Min	0.244	0.243	0.246	0.002	
		Max	0.561	0.651	0.788	0.220	

Introduction	Quantitative Framework	Results	Conclusion
00000	○○○○○●	000000	0

Μ	od	el	Fit

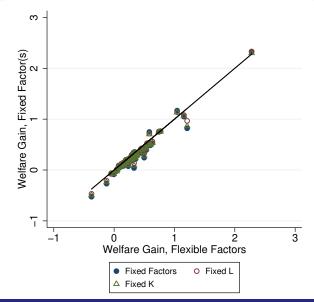
		model	data
Wages:			
mean		0.463	0.413
median		0.149	0.154
corr(mod	el, data)	0.9	994
Return to capital:			
mean		1.035	1.074
median		0.767	0.758
corr(mod	el, data)	0.9	938
π_{nn}^{j}			
mean		0.620	0.565
median		0.678	0.607
corr(mod	el, data)	0.9	914
$\pi_{ni}^{j}, i \neq n$. ,		
mean		0.0055	0.0059
median		0.0002	
corr(mod	el. data)	0.886	
(.,)		

Introduc 00000		Quantit 00000	ative Framewo 00		Results ●00000		Conclusi 0	
				<u><u> </u></u>	—	1.1		

The Welfare Impact of Emerging Giants' Trade Integration

Flexible Factors

	Mean	Median	Min	Max	Countries
China India CEECs	3.48 1.63 7.26	7.18	2.75	13.36	10
OECD East and South Asia Latin America and Caribbean Middle East and North Africa Sub-Saharan Africa	0.28 0.70 0.16 0.44 0.48	0.30 0.58 0.15 0.49 0.29	-0.01 -0.05 -0.38 0.25 0.12	0.57 2.28 0.54 0.60 1.21	22 11 15 7 8

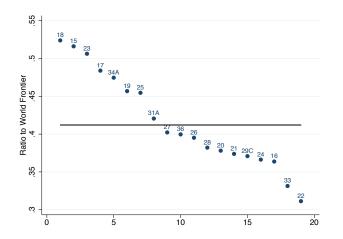

Introduction	Quantitative Framework	Results	Conclusion
00000		0●0000	o

		\sim ·				\sim
Lachnal		Simi	LO KITY	and	Irada	(octo
Techno	וסטוכאו			and	LAUE	
1001110	i o gi o u i	<u> </u>	i ai i cy	ana	11446	00000
	0					

	Difference with Respect to Flexible Factors				
	Fixed Factors	Fixed Labor	Fixed Capital	Countries	
China	-0.35	-0.25	-0.28		
India	-0.23	-0.15	-0.19		
CEECs	-0.78	-0.50	-0.65	10	
OECD	-0.05	-0.04	-0.05	22	
East and South Asia	-0.03	-0.02	-0.04	11	
Latin America and Caribbean	-0.06	-0.04	-0.05	15	
Middle East and North Africa	-0.15	-0.10	-0.13	7	
Sub-Saharan Africa	-0.08	-0.05	-0.07	8	

Introduction	Quantitative Framework	Results	Conclusion
		000000	

Gains and Factor Mobility

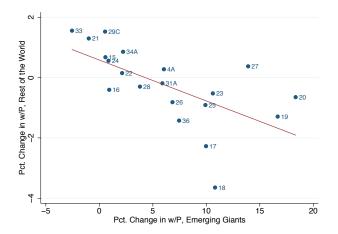

Introduction	Quantitative Framework	Results	Conclusion
		000000	

Sectoral Wage Changes, Fixed Factor Equilibrium

ISIC code	Sector Name	Emerging Giants	Rest of World
15	Food and Beverages	0.57	0.67
16	Tobacco Products	0.92	-0.40
17	Textiles	9.97	-2.27
18	Wearing Apparel, Fur	10.81	-3.64
19	Leather, Leather Products, Footwear	16.67	-1.29
20	Wood Products (Excl. Furniture)	18.35	-0.65
21	Paper and Paper Products	-0.99	1.30
22	Printing and Publishing	2.12	0.15
23	Coke, Refined Petroleum Products, Nuclear Fuel	10.61	-0.53
24	Chemical and Chemical Products	0.86	0.56
25	Rubber and Plastics Products	9.91	-0.91
26	Non-Metallic Mineral Products	6.83	-0.82
27	Basic Metals	13.91	0.37
28	Fabricated Metal Products	3.79	-0.30
29C	Office, Accounting, Computing, and Other Machinery	0.53	1.52
31A	Electrical Machinery, Communication Equipment	5.89	-0.19
33	Medical, Precision, and Optical Instruments	-2.56	1.55
34A	Transport Equipment	2.22	0.85
36	Furniture and Other Manufacturing	7.45	-1.43
4A	Nontradeables	6.03	0.28

– •	Circulal Community		
		000000	
Introduction	Quantitative Framework	Results	Conclusion

Emerging Giants' Comparative Advantage


Comp. Adv.: Apparel, Food, Fuel, Textiles; Comp. Disadv.: Printing/Publishing, Precision Machinery

Levchenko and Zhang

Labor Global Market Impact of Emerging Giants

Introduction	Quantitative Framework	Results	Conclusion
		000000	

Sectoral Wage Changes: Emerging Giants vs. ROW

NB: Corr = -0.63

Conclusion: Emerging giants's trade integration

- Modest aggregate effects (fraction of 1%), gains not driven by cross-sectoral reallocation of factors
- Much more substantial distributional effects
 - -5% to +5% in most countries
 - As expected, factors in EGs' comparative advantage sectors lost (light manufacturing)
 - Complete heterogeneity of country/sector experiences