Comments of “Measuring the Macroeconomic Impact of Monetary Policy at the Zero Lower Bound”

Borağan Aruoba
University of Maryland

Paper presented at the 16th Jacques Polak Annual Research Conference
Hosted by the International Monetary Fund
Washington, DC—November 5–6, 2015

The views expressed in this paper are those of the author(s) only, and the presence of them, or of links to them, on the IMF website does not imply that the IMF, its Executive Board, or its management endorses or shares the views expressed in the paper.
Discussion of Wu and Xia

S. Borağan Aruoba
University of Maryland

November 5, 2015

IMF 16th Jacques Polak Annual Research Conference
Summary

- Start with a standard Gaussian Affine Term Structure model, except

\[r_t = \max(r, s_t) \]

and \(s_t \) is an affine function of states, not \(r_t \).

- Use an approximation for the forward rate using \(g(z) \).
 - Faster than alternatives, not much loss in accuracy.

- Use extended Kalman filter (approximate the nonlinear state space model with a linear one) to estimate.
 - Data: One-month forward rates for maturities of 3-month, 6-month, 1-year, 2-year, 5-year, 7-year and 10-year.

- Obtain an estimate of \(s_t \), the shadow rate.
 - Use it in a FAVAR as a measure of monetary policy.
 - Impulse responses
 - Link between unconventional policies and shadow rate.
Start with a standard Gaussian Affine Term Structure model, except

\[r_t = \max(r, s_t) \]

and \(s_t \) is an affine function of states, not \(r_t \).

Use an approximation for the forward rate using \(g(z) \).
- Faster than alternatives, not much loss in accuracy.

Use extended Kalman filter (approximate the nonlinear state space model with a linear one) to estimate.

Data: One-month forward rates for maturities of 3-month, 6-month, 1-year, 2-year, 5-year, 7-year and 10-year.

Obtain an estimate of \(s_t \), the shadow rate.
- Use it in a FAVAR as a measure of monetary policy
- Impulse responses
- Link between unconventional policies and shadow rate.
Start with a standard Gaussian Affine Term Structure model, except

\[r_t = \max(r, s_t) \]

and \(s_t \) is an affine function of states, not \(r_t \).

Use an approximation for the forward rate using \(g(z) \).

- Faster than alternatives, not much loss in accuracy.

Use extended Kalman filter (approximate the nonlinear state space model with a linear one) to estimate.

- Data: One-month forward rates for maturities of 3-month, 6-month, 1-year, 2-year, 5-year, 7-year and 10-year.

Obtain an estimate of \(s_t \), the shadow rate.

- Use it in a FAVAR as a measure of monetary policy impulse responses.
- Link between unconventional policies and shadow rate.
Start with a standard Gaussian Affine Term Structure model, except

\[r_t = \max(r, s_t) \]

and \(s_t \) is an affine function of states, not \(r_t \).

Use an approximation for the forward rate using \(g(z) \).
- Faster than alternatives, not much loss in accuracy.

Use extended Kalman filter (approximate the nonlinear state space model with a linear one) to estimate.
- Data: One-month forward rates for maturities of 3-month, 6-month, 1-year, 2-year, 5-year, 7-year and 10-year.

Obtain an estimate of \(s_t \), the shadow rate.
- Use it in a FAVAR as a measure of monetary policy
- Impulse responses
- Link between unconventional policies and shadow rate.
Start with a standard Gaussian Affine Term Structure model, except

\[r_t = \max(r, s_t) \]

and \(s_t \) is an affine function of states, not \(r_t \).

Use an approximation for the forward rate using \(g(z) \).
- Faster than alternatives, not much loss in accuracy.

Use extended Kalman filter (approximate the nonlinear state space model with a linear one) to estimate.
- Data: One-month forward rates for maturities of 3-month, 6-month, 1-year, 2-year, 5-year, 7-year and 10-year.

Obtain an estimate of \(s_t \), the shadow rate.
- Use it in a FAVAR as a measure of monetary policy.
- Impulse responses
- Link between unconventional policies and shadow rate.
Start with a standard Gaussian Affine Term Structure model, except

\[r_t = \max(r, s_t) \]

and \(s_t \) is an affine function of states, not \(r_t \).

Use an approximation for the forward rate using \(g(z) \).
- Faster than alternatives, not much loss in accuracy.

Use extended Kalman filter (approximate the nonlinear state space model with a linear one) to estimate.
- Data: One-month forward rates for maturities of 3-month, 6-month, 1-year, 2-year, 5-year, 7-year and 10-year.

Obtain an estimate of \(s_t \), the shadow rate.
- Use it in a FAVAR as a measure of monetary policy.
- Impulse responses
- Link between unconventional policies and shadow rate.
Start with a standard Gaussian Affine Term Structure model, except

\[r_t = \max(r, s_t) \]

and \(s_t \) is an affine function of states, not \(r_t \).

Use an approximation for the forward rate using \(g(z) \).

- Faster than alternatives, not much loss in accuracy.

Use extended Kalman filter (approximate the nonlinear state space model with a linear one) to estimate.

- Data: One-month forward rates for maturities of 3-month, 6-month, 1-year, 2-year, 5-year, 7-year and 10-year.

Obtain an estimate of \(s_t \), the shadow rate.

- Use it in a FAVAR as a measure of monetary policy.
- Impulse responses
- Link between unconventional policies and shadow rate
Start with a standard Gaussian Affine Term Structure model, except

\[r_t = \max(r, s_t) \]

and \(s_t \) is an affine function of states, not \(r_t \).

Use an approximation for the forward rate using \(g(z) \).
- Faster than alternatives, not much loss in accuracy.

Use extended Kalman filter (approximate the nonlinear state space model with a linear one) to estimate.
- Data: One-month forward rates for maturities of 3-month, 6-month, 1-year, 2-year, 5-year, 7-year and 10-year.

Obtain an estimate of \(s_t \), the shadow rate.
- Use it in a FAVAR as a measure of monetary policy.
 - Impulse responses
 - Link between unconventional policies and shadow rate
Start with a standard Gaussian Affine Term Structure model, except

\[r_t = \max(r, s_t) \]

and \(s_t \) is an affine function of states, not \(r_t \).

Use an approximation for the forward rate using \(g(z) \).
- Faster than alternatives, not much loss in accuracy.

Use extended Kalman filter (approximate the nonlinear state space model with a linear one) to estimate.
- Data: One-month forward rates for maturities of 3-month, 6-month, 1-year, 2-year, 5-year, 7-year and 10-year.

Obtain an estimate of \(s_t \), the shadow rate.
- Use it in a FAVAR as a measure of monetary policy.
- Impulse responses
 - Link between unconventional policies and shadow rate
Start with a standard Gaussian Affine Term Structure model, except

\[r_t = \max(r, s_t) \]

and \(s_t \) is an affine function of states, not \(r_t \).

Use an approximation for the forward rate using \(g(z) \).
- Faster than alternatives, not much loss in accuracy.

Use extended Kalman filter (approximate the nonlinear state space model with a linear one) to estimate.
- Data: One-month forward rates for maturities of 3-month, 6-month, 1-year, 2-year, 5-year, 7-year and 10-year.

Obtain an estimate of \(s_t \), the shadow rate.
- Use it in a FAVAR as a measure of monetary policy.
- Impulse responses
- Link between unconventional policies and shadow rate
Is the Shadow Rate “Unconstrained”?

Swanson and Williams (2015, AER)

(a) 3-Month Treasury Yield Sensitivity to News
Is the Shadow Rate “Unconstrained”?

<table>
<thead>
<tr>
<th></th>
<th>Pre-ZLB</th>
<th>Full</th>
<th>ZLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-3.8</td>
<td>-3.8</td>
<td>-4.2</td>
</tr>
<tr>
<td>ZLB</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Claims Surprises</td>
<td>-10.9</td>
<td>-11.1</td>
<td>-0.5</td>
</tr>
<tr>
<td>Initial Claims Surprises × ZLB</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.05</td>
<td>0.05</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- Perhaps more work needed with more surprises and a daily frequency.
- This suggests the shadow rate has muted response to news.
- Remember: the shadow rate is the short rate of the yield curve.
Is the Shadow Rate “Unconstrained”?

<table>
<thead>
<tr>
<th></th>
<th>Pre-ZLB</th>
<th>Full</th>
<th>ZLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant ZLB</td>
<td>-3.8</td>
<td>-3.8</td>
<td>-4.2 (**)</td>
</tr>
<tr>
<td>Initial Claims Surprises</td>
<td>-10.9 (**)</td>
<td>-11.1 (**)</td>
<td>-0.5</td>
</tr>
<tr>
<td>Initial Claims Surprises \times ZLB</td>
<td>10.0 (**)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.05</td>
<td>0.05</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- Perhaps more work needed with more surprises and a daily frequency.

- This suggests the shadow rate has muted response to news.

- Remember: the shadow rate is the short rate of the yield curve.
Is the Shadow Rate “Unconstrained”?

<table>
<thead>
<tr>
<th></th>
<th>Pre-ZLB</th>
<th>Full</th>
<th>ZLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant ZLB</td>
<td>-3.8</td>
<td>-3.8</td>
<td>-4.2 (**)</td>
</tr>
<tr>
<td>Initial Claims Surprises</td>
<td>-10.9 (**)</td>
<td>-11.1 (**)</td>
<td>-0.5</td>
</tr>
<tr>
<td>Initial Claims Surprises × ZLB</td>
<td>10.0 (**)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.05</td>
<td>0.05</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- Perhaps more work needed with more surprises and a daily frequency.
- This suggests the shadow rate has muted response to news.
- Remember: the shadow rate is the short rate of the yield curve.
Is the Shadow Rate “Unconstrained”?

<table>
<thead>
<tr>
<th></th>
<th>Pre-ZLB</th>
<th>Full</th>
<th>ZLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-3.8</td>
<td>-3.8</td>
<td>-4.2</td>
</tr>
<tr>
<td>ZLB</td>
<td></td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Initial Claims Surprises</td>
<td>-10.9</td>
<td>-11.1</td>
<td>-0.5</td>
</tr>
<tr>
<td>Initial Claims Surprises \times ZLB</td>
<td></td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.05</td>
<td>0.05</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- Perhaps more work needed with more surprises and a daily frequency.
- This suggests the shadow rate has muted response to news.
- Remember: the shadow rate is the short rate of the yield curve.
“The natural question is whether the shadow rate could be used in place of the fed funds rate to describe the stance and effects of monetary policy under the ZLB.”

They test (simplifying notation) if $\rho_1 = \rho_3$ in

$$x_t = \mu + \rho_x x_{t-1} + 1_{(t<\text{December 2007})} \rho_1 s_{t-1} + 1_{(\text{December 2007} \leq t \leq \text{June 2009})} \rho_2 s_{t-1} + 1_{(t>\text{June 2009})} \rho_3 s_{t-1} + \epsilon_t$$

Issues:

- Why expect equality? A major structural change is occurring in the economy.
“The natural question is whether the shadow rate could be used in place of the fed funds rate to describe the stance and effects of monetary policy under the ZLB.”

They test (simplifying notation) if $\rho_1 = \rho_3$ in

$$x_t = \mu + \rho_x x_{t-1} + 1_{(t < \text{December 2007})} \rho_1 s_{t-1} + 1_{(\text{December 2007} \leq t \leq \text{June 2009})} \rho_2 s_{t-1} + 1_{(t > \text{June 2009})} \rho_3 s_{t-1} + \epsilon_t$$

Issues:

- Why expect equality? A major structural change is occurring in the economy.
“The natural question is whether the shadow rate could be used in place of the fed funds rate to describe the stance and effects of monetary policy under the ZLB.”

They test (simplifying notation) if $\rho_1 = \rho_3$ in

$$x_t = \mu + \rho x_{t-1} + 1_{(t<\text{December 2007})}\rho_1 s_{t-1} + 1_{(\text{December 2007} \leq t \leq \text{June 2009})}\rho_2 s_{t-1} + 1_{(t>\text{June 2009})}\rho_3 s_{t-1} + \epsilon_t$$

Issues:

- Why expect equality? A major structural change is occurring in the economy.
 - End of Great Moderation
 - New policy regime? (figure)
 - New shocks: financial, uncertainty, fiscal
“The natural question is whether the shadow rate could be used in place of the fed funds rate to describe the stance and effects of monetary policy under the ZLB.”

- They test (simplifying notation) if $\rho_1 = \rho_3$ in

$$x_t = \mu + \rho_1 x_{t-1} + 1_{(t<\text{December 2007})}\rho_1 s_{t-1} + 1_{(\text{December 2007} \leq t \leq \text{June 2009})}\rho_2 s_{t-1} + 1_{(t>\text{June 2009})}\rho_3 s_{t-1} + \epsilon_t$$

- Issues:
 - Why expect equality? A major structural change is occurring in the economy.
 - End of Great Moderation
 - New policy regime? (figure)
 - New shocks: financial, uncertainty, fiscal
“The natural question is whether the shadow rate could be used in place of the fed funds rate to describe the stance and effects of monetary policy under the ZLB.”

- They test (simplifying notation) if $\rho_1 = \rho_3$ in

$$x_t = \mu + \rho x_{t-1} + 1_{(t<\text{December 2007})}\rho_1 s_{t-1} + 1_{(\text{December 2007} \leq t \leq \text{June 2009})}\rho_2 s_{t-1} + 1_{(t>\text{June 2009})}\rho_3 s_{t-1} + \epsilon_t$$

- **Issues:**
 - Why expect equality? A major structural change is occurring in the economy.
 - End of Great Moderation
 - New policy regime? (figure)
 - New shocks: financial, uncertainty, fiscal
“The natural question is whether the shadow rate could be used in place of the fed funds rate to describe the stance and effects of monetary policy under the ZLB.”

They test (simplifying notation) if $\rho_1 = \rho_3$ in

$$x_t = \mu + \rho_x x_{t-1} + \mathbf{1}_{(t<\text{December 2007})}\rho_1 s_{t-1} + \mathbf{1}_{(\text{December 2007} \leq t \leq \text{June 2009})}\rho_2 s_{t-1} + \mathbf{1}_{(t>\text{June 2009})}\rho_3 s_{t-1} + \epsilon_t$$

Issues:

- Why expect equality? A major structural change is occurring in the economy.
 - End of Great Moderation
 - New policy regime? (figure)
 - New shocks: financial, uncertainty, fiscal
“The natural question is whether the shadow rate could be used in place of the fed funds rate to describe the stance and effects of monetary policy under the ZLB.”

- They test (simplifying notation) if $\rho_1 = \rho_3$ in

$$x_t = \mu + \rho x_{t-1} + 1_{(t<\text{December 2007})} \rho_1 s_{t-1} + 1_{(\text{December 2007} \leq t \leq \text{June 2009})} \rho_2 s_{t-1} + 1_{(t>\text{June 2009})} \rho_3 s_{t-1} + \epsilon_t$$

- Issues:
 - Why expect equality? A major structural change is occurring in the economy.
 - End of Great Moderation
 - New policy regime? (figure)
 - New shocks: financial, uncertainty, fiscal
“The natural question is whether the shadow rate could be used in place of the fed funds rate to describe the stance and effects of monetary policy under the ZLB.”

They test (simplifying notation) if $\rho_1 = \rho_3$ in

$$x_t = \mu + \rho x x_{t-1} + 1_{(t<\text{December 2007})} \rho_1 s_{t-1} + 1_{(\text{December 2007} \leq t \leq \text{June 2009})} \rho_2 s_{t-1} + 1_{(t>\text{June 2009})} \rho_3 s_{t-1} + \epsilon_t$$

Issues:

- Why expect equality? A major structural change is occurring in the economy.
 - End of Great Moderation
 - New policy regime? (figure)
 - New shocks: financial, uncertainty, fiscal
Fernandez-Villaverde et al. (2010, St. Louis Fed Review)

Smoothed Path for the Taylor Rule Parameter on Inflation ±2 SDs
Does the shadow rate reflect the stance of monetary policy?

Fed Balance Sheet (Right) Wu-Xia (Left)

QE1 QE2 Twist QE3

B. Aruoba Wu-Xia Discussion
Was the Fed policy not nearly expansionary as it should be in 2009-2010?

Comparison of Shadow Rate with Unconstrained Policy Rate from a DSGE Model

-8 -6 -4 -2 0 2 4

R* (Aruoba Cuba-Borda Schorfheide, 2015)

Wu-Xia

B. Aruoba

Wu-Xia Discussion
Promises replacing federal funds rate in one’s favorite empirical model (DSGE, VAR etc.)

Not clear if it is a sufficient description of Fed’s stance.

Lift-off? (End of September: −0.74%) Is the Fed keeping the policy rate down by 100 basis points?

Major challenge: When looking back to the U.S. data in 2020, how are we going to estimate our models?

- Continuous regime?
- New regime with new tools? (Balance sheet)

Very useful step forward.
Promises replacing federal funds rate in one’s favorite empirical model (DSGE, VAR etc.)

Not clear if it is a sufficient description of Fed’s stance.

Lift-off? (End of September: -0.74%)
 - Is the Fed keeping the policy rate down by 100 basis points?

Major challenge: When looking back to the U.S. data in 2020, how are we going to estimate our models?
 - Continuous regime?
 - New regime with new tools? (Balance sheet)

Very useful step forward.
Promises replacing federal funds rate in one’s favorite empirical model (DSGE, VAR etc.)

Not clear if it is a sufficient description of Fed’s stance.

Lift-off? (End of September: -0.74%)
- Is the Fed keeping the policy rate down by 100 basis points?

Major challenge: When looking back to the U.S. data in 2020, how are we going to estimate our models?
- Continuous regime?
- New regime with new tools? (Balance sheet)

Very useful step forward.
Promises replacing federal funds rate in one’s favorite empirical model (DSGE, VAR etc.)

Not clear if it is a sufficient description of Fed’s stance.

Lift-off? (End of September: \(-0.74\%\))
 - Is the Fed keeping the policy rate down by 100 basis points?

Major challenge: When looking back to the U.S. data in 2020, how are we going to estimate our models?
 - Continuous regime?
 - New regime with new tools? (Balance sheet)

Very useful step forward.
Conclusion

- Promises replacing federal funds rate in one’s favorite empirical model (DSGE, VAR etc.)
- Not clear if it is a sufficient description of Fed’s stance.
- Lift-off? (End of September: −0.74%)
 - Is the Fed keeping the policy rate down by 100 basis points?
- Major challenge: When looking back to the U.S. data in 2020, how are we going to estimate our models?
 - Continuous regime?
 - New regime with new tools? (Balance sheet)
- Very useful step forward.
Promises replacing federal funds rate in one’s favorite empirical model (DSGE, VAR etc.)

Not clear if it is a sufficient description of Fed’s stance.

Lift-off? (End of September: −0.74%)
 - Is the Fed keeping the policy rate down by 100 basis points?

Major challenge: When looking back to the U.S. data in 2020, how are we going to estimate our models?
 - Continuous regime?
 - New regime with new tools? (Balance sheet)

Very useful step forward.
Promises replacing federal funds rate in one’s favorite empirical model (DSGE, VAR etc.)

Not clear if it is a sufficient description of Fed’s stance.

Lift-off? (End of September: -0.74%)
- Is the Fed keeping the policy rate down by 100 basis points?

Major challenge: When looking back to the U.S. data in 2020, how are we going to estimate our models?
- Continuous regime?
 - New regime with new tools? (Balance sheet)

Very useful step forward.
Promises replacing federal funds rate in one’s favorite empirical model (DSGE, VAR etc.)

Not clear if it is a sufficient description of Fed’s stance.

Lift-off? (End of September: −0.74%)
 - Is the Fed keeping the policy rate down by 100 basis points?

Major challenge: When looking back to the U.S. data in 2020, how are we going to estimate our models?
 - Continuous regime?
 - New regime with new tools? (Balance sheet)

Very useful step forward.
Promises replacing federal funds rate in one’s favorite empirical model (DSGE, VAR etc.)

Not clear if it is a sufficient description of Fed’s stance.

Lift-off? (End of September: −0.74%)
 - Is the Fed keeping the policy rate down by 100 basis points?

Major challenge: When looking back to the U.S. data in 2020, how are we going to estimate our models?
 - Continuous regime?
 - New regime with new tools? (Balance sheet)

Very useful step forward.