The Macroeconomic Effects of the Federal Reserve’s Unconventional Monetary Policies

Eric M. Engen
Federal Reserve Board

Thomas Laubach
Federal Reserve Board

David Reifschneider
Federal Reserve Board

Paper presented at the 16th Jacques Polak Annual Research Conference
Hosted by the International Monetary Fund
Washington, DC—November 5–6, 2015

The views expressed in this paper are those of the author(s) only, and the presence of them, or of links to them, on the IMF website does not imply that the IMF, its Executive Board, or its management endorses or shares the views expressed in the paper.
The Macroeconomic Effects of the Federal Reserve’s Unconventional Monetary Policies

Eric Engen, Thomas Laubach and David Reifschneider
Federal Reserve Board

Presented at the sixteenth
Jacques Polak Annual Research Conference
International Monetary Fund
November 5, 2015

The opinions expressed are those of the authors and do not necessarily reflect the views of anyone else in the Federal Reserve System.
Two Questions

1. Did the Fed’s unconventional policy actions alter beliefs about its implicit policy rule?
 • Use Blue Chip forecasts to infer changes in perceived policy rule
 • Finding – marked shifts in rule after explicit FG and QE expansion

2. Did changes in the perceived policy rule plus QE-related term premium effects provide much stimulus?
 • Use FRB/US to simulate outcomes w/o unconventional policy
 • Finding – moderate support to real activity and inflation
Review of Unconventional Policy Actions

1. Asset purchases and other QE programs
 - $3.8 trillion in purchases (Treasuries and MBS, three phases)
 - Other actions – reinvestment, maturity extension program

2. Forward guidance
 - Qualitative (Dec 2008 through June 2011)
 - Calendar-based and explicit (Aug 2011 through Oct 2012)
 - Threshold conditions (Dec 2012 through Jan 2014)
Blue Chip Forecasts of Average Annual Conditions

Unemployment Rate

Imputed Output Gap -- 2(U*-U)

GDP Price Inflation

3-Month Treasury Bill Rate

Blue Chip T-Bill Forecasts and Taylor Rule Prescriptions

October 2009 Survey

October 2010 Survey

October 2011 Survey

March 2012 Survey

October 2012 Survey

October 2013 Survey

Blue Chip T-bill forecast

Taylor rule prescription given BC inflation and unemployment
Identifying Shifts in BC-Consistent Policy Rules

- Assume forecasters always expect the same general rule but may update its perceived parameters over time

\[i_t = r^* + \pi_t + \alpha(\pi_t - \pi^*) + \beta \text{gap}_t \]

- March/October surveys provide forecasts for \(i_t, \pi_t \) and \(\text{gap}_t \) for years 0 to 6, plus \(r^* \) and \(\pi^* \)
 - Estimate separate \(\beta \) for each survey
 - Assume \(\alpha = 0.5 \) (projected inflation gaps uninformative)

- For pooled 1992-2007 surveys, \(\alpha \) and \(\beta \) close to 0.5
Blue Chip T-Bill Forecasts and Fitted Policy Rules

October 2009 Survey

- Beta = 0.228

October 2010 Survey

- Beta = 0.269

October 2011 Survey

- Beta = 0.541

March 2012 Survey

- Beta = 0.717
- Lambda = 0.8, Beta = 0.380

October 2012 Survey

- Beta = 0.852
- Lambda = 0.8, Beta = 0.625
- Lambda = 0.8, Beta = 1.167

October 2013 Survey

- Beta = 1.605
- Lambda = 0.8, Beta = 1.167

Forecast, estimated annual rule, calibrated inertial rule
What Were the Macro Effects of Unconventional Policy?

1. Difficult question
 - Did others also perceive a shift in the policy rule?
 - Not obvious how to embed changes in perceived rule in a VAR
 - Structural models may not account for term premium effects

2. Use FRB/US model
 - Structural model with rational expectations
 - but simulations incorporate gradual learning
 - Model incorporates role for term premiums
 - Has dynamics similar to range generated by other models

3. Address uncertainty using alternative versions of the model (e.g., lower interest elasticity of demand)
Evolution of QE-Related Term Premium Effects

Source: Ihrig et al. (2012), Li and Wei (2013), and authors’ calculations
Simulation Procedure

1. Create set of overlapping baselines consistent with BC surveys
 • Solve for past/future shocks to policy and economy consistent with Mar 2009 real-time data, Blue Chip forecasts, estimated β, and expected QE term premium effects
 • Repeat parsing exercise for October 2009, March 2010, ..., October 2013
 • Simulating this sequence of past/expected shocks replicates evolution of the economy from early 2009 to late 2013

2. Re-simulate model eliminating shifts in β and QE-related reductions in term premiums

3. Difference between history and counterfactual simulation measures effective stimulus
Baseline Estimates of Macro Effects

Unemployment Effects

- Non-inertial rule
- Inertial rule

Inflation Effects

- Percentage points

Engen, Laubach and Reifschneider (2015)
Alternative Estimates of Macro Effects

Unemployment Effects

Inflation Effects

-1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

2008 2010 2012 2014 2016 2018

-1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

2008 2010 2012 2014 2016 2018

-1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

2008 2010 2012 2014 2016 2018

-1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

2008 2010 2012 2014 2016 2018

-1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

2008 2010 2012 2014 2016 2018

% points

percentage points

baseline model
alternative inflation dynamics
rational expectations in financial markets only
low interest elasticity of demand
policy-linked house price effects