
 

 

 
 
 
 

 
 
 
 

     Monetary Policy, Incomplete Information, and 
the Zero Lower Bound 

 
 

Christopher Gust 
Federal Reserve Board 

 
Benjamin K. Johannsen 
Federal Reserve Board 

 
David López-Salido 

Federal Reserve Board 
 
 
 
 
 
 

 
Paper presented at the 16th Jacques Polak Annual Research Conference 
Hosted by the International Monetary Fund 
Washington, DC─November 5–6, 2015 
 
 
 The views expressed in this paper are those of the author(s) only, and the presence 

of them, or of links to them, on the IMF website does not imply that the IMF, its 
Executive Board, or its management endorses or shares the views expressed in the 
paper. 

 

 

  

1166TTHH  JJAACCQQUUEESS  PPOOLLAAKK  AANNNNUUAALL  RREESSEEAARRCCHH  CCOONNFFEERREENNCCEE  
NNOOVVEEMMBBEERR    55––66,,  22001155  



Finance and Economics Discussion Series
Divisions of Research & Statistics and Monetary Affairs

Federal Reserve Board, Washington, D.C.

Monetary Policy, Incomplete Information, and the Zero Lower
Bound

Christopher J. Gust, Benjamin K. Johannsen, and David
Lopez-Salido

2015-099

Please cite this paper as:
Gust, Christopher J., Benjamin K. Johannsen, and David Lopez-Salido (2015). “Monetary
Policy, Incomplete Information, and the Zero Lower Bound,” Finance and Economics Dis-
cussion Series 2015-099. Washington: Board of Governors of the Federal Reserve System,
http://dx.doi.org/10.17016/FEDS.2015.099.

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary
materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth
are those of the authors and do not indicate concurrence by other members of the research staff or the
Board of Governors. References in publications to the Finance and Economics Discussion Series (other than
acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers.



Monetary Policy, Incomplete Information,
and the Zero Lower Bound

Christopher Gust Benjamin K. Johannsen David López-Salido∗

November 3, 2015

Abstract

In the context of a stylized New Keynesian model, we explore the interaction be-
tween imperfect knowledge about the state of the economy and the zero lower bound.
We show that optimal policy under discretion near the zero lower bound responds to
signals about an increase in the equilibrium real interest rate by less than it would
when far from the zero lower bound. In addition, we show that Taylor-type rules
that either include a time-varying intercept that moves with perceived changes in the
equilibrium real rate or that respond aggressively to deviations of inflation and output
from their target levels perform similarly to optimal discretionary policy. Our analysis
of first-difference rules highlights that rules with interest rate smoothing terms carry
forward current and past misperceptions about the state of the economy and can lead
to suboptimal performance.
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1 Introduction

Policymakers routinely have to make decisions based on incomplete knowledge about the

state of the economy. Once source of incomplete knowledge is the level of the equilibrium

real rate.1 As former Chairman Bernanke recently wrote:2

If the Fed wants to see full employment of capital and labor resources (which, of

course, it does), then its task amounts to using its influence over market interest

rates to push those rates toward levels consistent with the equilibrium rate, or—

more realistically—its best estimate of the equilibrium rate, which is not directly

observable.

Imperfect knowledge about the equilibrium real rate raises the possibility that pol-

icymakers might misperceive its value, which has important implications for the design of

monetary policy. In this paper, we discuss the ways in which optimal policy (under discre-

tion) should take account of variation in the level of the equilibrium real interest rate in

the context of a simple New Keynesian (NK) model in which policymakers have imperfect

information about the level of the equilibrium real rate and are constrained by the zero lower

bound.

We find that uncertainty about the current state of the economy affects optimal

policy in a number of important ways. First, there is an attenuation of the policy response

to perceived changes in the equilibrium real rate coming from the filtering problem facing

the monetary authority, as in Aoki (2003). Second, the zero lower bound non-linearly alters

the distribution of equilibrium prices and quantities for both the private sector and the

central bank, as has been recently discussed by Evans et al. (2015). Third, in our setup,

the private sector has access to different information than the monetary authority and thus

forms different beliefs about both current and future prices and quantities. Because the

central bank has to form expectations about those private-sector expectations, they are not

ex-post equal and the optimal policy response to perceived changes in the equilibrium real

rate is further attenuated by the information processing problem. This muted response

reflects asymmetric risks faced by the central bank near the zero lower bound. Finally, the

private sector understands that the monetary authority may in the future respond to noise

in the signals it receives. Near the zero lower bound, the private sector internalizes that

1In the context of the New Keynesian model that we use, the equilibrium real rate corresponds to the
rate of interest associated with the effi cient economy that is undistorted by nominal or real rigidities.

2Ben Bernanke’s Blog, “Why are interest rates so low?” March 30, 2015,
http://www.brookings.edu/blogs/ben-bernanke/posts/2015/03/30-why-interest-rates-so-low
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the monetary authority can only respond in one direction, which increases the mean of the

private sector’s expected future paths for short-term nominal (and real) interest rates. This

tightening bias affects prices and quantities in the current period.

Optimal monetary policy takes this tightening bias into account by attenuating the

response of the nominal interest rate to positive signals about the equilibrium real rate. In

particular, when the policy rate is constrained by the zero lower bound and the policymaker

receives a noisy signal that the equilibrium rate has increased, the optimal policy is to make

a mistake on the side of keeping the real policy rate below the perceived effi cient rate so as

to reduce the likelihood that an adverse shock will weaken the economy enough, to require a

return to the zero lower bound. That is, policymakers “take out insurance”against situations

in which the information about the equilibrium real rate might lead them to mistakenly raise

the policy rate.

Optimal policy under discretion in the neighborhood of the zero lower bound pre-

scribes a complicated, nonlinear reaction function for the policy rate that may, in practice,

be diffi cult to communicate and implement. An alternative approach would be to commit

to a policy rule for the short-term nominal interest rate. Thus, we also study the potential

benefits of committing to a rule-based approach in setting monetary policy within the same

incomplete information framework. In particular, we compare the performance of simple

Taylor-type rules with a constant intercept term to alternatives in which the intercept term

is time-varying and changes based on a central bank’s estimate of the equilibrium real rate.

We also compare their performance to first-difference rules (e.g., Orphanides and Williams

(2002)) in which there is no intercept term and it is thus unnecessary to take a stand on how

the equilibrium real rate should enter this rule. The performance of simple Taylor rules, us-

ing conventional parameter values, are substantially improved when the intercept in the rule

is adjusted for movements in the equilibrium real rate. However, if the intercept of the rule

is held constant, we find that simple Taylor rules can perform almost as well as rules with

a time-varying equilibrium real rate when they respond much more aggressively to inflation

and the output gap. Similarly, we find that first-difference rules with an aggressive response

to inflation tend to perform well.

Most of the existing literature studying optimal monetary policy at the zero lower

bound focuses on the case in which policymakers have complete information. Thus, one of our

contributions is to assume that the monetary authority has less information about the state of

the economy than the private sector. A justification for this assumption is that private agents

make decisions after seeing shocks that affect them directly. By contrast, policymakers have
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to learn about the shocks that cause households and firms to make demand, production, and

pricing decisions, which we model as the monetary authority receiving noisy signals about

the state of the economy. If there were no noise in the signals, the monetary authority would

know the underlying structural shocks exactly, which would mean it had perfect information

about equilibrium prices and quantities as well. In this sense, the central bank’s informational

disadvantage relative to the private sector captures that, in reality, central banks need to

now-cast prices and quantities when they make their policy decisions.

While we prefer to interpret our setup from the perspective of a now-casting problem

faced by the central bank, another way to rationalize our framework is from a sequential

structure to the decisions made in the model. In particular, a model economy in which

nominal interest rate decisions have to be made before private-sector decisions in the same

period requires that the central bank base its decisions on less information than the private

sector has available at that time. This type of timing assumption captures the fact that,

in reality, policy rate decisions are not made on a daily basis, but rather during meetings

that occur infrequently. While policymakers may be able to react to incoming data received

during the intermeeting periods, historically policy decisions have only been infrequently

made outside of regularly scheduled meetings. Thus, policymakers regularly set short-term

nominal interest rates based on information available only at the beginning of the period in

which that policy decision will be operative. Moreover, with lags in offi cial data releases and

revisions to real-time data, the information available even about the recent past is likely to

be affected by noise, further emphasizing the informational problem faced by central banks.

This paper is related to a growing literature in NK models exploring the implications

of the zero lower bound for optimal policy. Eggertsson and Woodford (2003) emphasized

that optimal commitment policy can be very effective in stabilizing the economy at the zero

lower bound. However, as noted in Levin et al. (2010), optimal commitment policies at the

zero lower bound suffer from a severe time inconsistency problem. Accordingly, we focus

on optimal discretion to abstract from how the central bank can have access to a credible

commitment technology.

Adam and Billi (2007) and Nakov (2008) consider optimal discretionary policy at

the zero lower bound with full information, while Aoki (2003) studies the optimal discre-

tionary policy without the zero lower bound but when the monetary authority has imperfect

knowledge about the state of the economy. We consider both imperfect information and

the zero lower bound in a unified framework and thus, unlike Aoki (2003), optimal policy

deviates from certainty equivalence. Several other studies have focused on the use of simple
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feedback rules for conducting monetary policy near the zero lower bound (e.g., Reifschneider

and Williams (2000) and Coenen and Wieland (2003)). We also consider simple rules but in

the context of a central bank with imperfect knowledge about the state of the economy. By

considering optimal simple rules in the context of imperfect information, our paper builds on

work by Boehm and House (2014). Our paper is also closely related to a recent contribution

by Evans et al. (2015). In their complete information setup, they focus on uncertainty about

future values of the equilibrium real rate. By contrast, in our incomplete information setup,

the central bank does not observe the current equilibrium real rate, and private-sector beliefs

about equilibrium prices and quantities differ from those of the central bank.

The remainder of this paper is organized as follows. Section 2 discusses the basic

elements of the model that we use to characterize the determinants of the equilibrium real

rate. Section 3 reviews optimal policy under discretion in the presence of the zero lower

bound. It also describes the information structure of the model and characterizes the optimal

filtering problem. This section presents the main results regarding optimal discretionary

policy near the zero lower bound when the central bank has imperfect information about the

true state of the economy. Section 4 then discusses the performance of simple rules in this

environment. Finally, section 5 offers some concluding remarks.

2 A Simple New Keynesian Model

Our analysis builds on Woodford (2003) and Galí (2008) who use the simple NK model to

characterize optimal monetary policy. The model has two key equations: an IS equation

that relates output to the real interest rate (that is, the nominal short-term rate adjusted by

expected inflation) and expected future output, and a Phillips curve relationship that relates

inflation to the output gap and expected future inflation. We leave the details of the model

for an appendix and devote this section to defining the natural and the effi cient levels of the

real interest rates using a log-linear approximation of the model economy.

As discussed in the appendix, the private sector (log-linearized) equilibrium conditions

around the non-stochastic steady state can be written as follows:

yt = Et{yt+1} − Et {it − πt+1 − ηt} (1)

πt = βEt{πt+1}+ κ[yt + µt] (2)

where Et represents the expectation conditional on time t information; yt and πt refer to the

log deviations of output and inflation from their values in nonstochastic steady state; and it
represents the short-term nominal interest rate in deviations from its non-stochastic steady
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state. The parameter β represents the household’s discount factor. The parameter κ = ε−1
ϕ

is inversely related to firms’costs of changing prices (ϕ) and directly related to the elasticity

of demand (ε). The variables ηt and µt represent exogenous shocks to the discount rate and

the firm’s marginal cost, respectively.3 A decrease in ηt represents an exogenous factor that

induces a temporary rise in households’propensity to save, and reduces current aggregate

household demand for goods. An increase in µt corresponds to an exogenous cost-push shock

that increases inflation for given levels of output and expected future inflation; therefore, it

introduces a tradeoff between inflation and output.

The natural rate of output and the natural real interest rate are defined as the levels

of output and the real interest rate in the economy without price rigidities. As shown in the

appendix, deviations of the natural real rate from its steady state value can be expressed as

follows:

rnt = ηt − Et{µt+1 − µt}

Thus, there are two sources of exogenous disturbances to the natural rate of interest:

shocks to the discount factor and shocks to the marginal cost. A decrease in the desire to

save (an increase in ηt) and expected decrease in marginal costs cause the natural rate of

interest to rise.

The effi cient equilibrium corresponds to that of the economy with flexible prices

and no exogenous variation in marginal costs, as those shocks push equilibrium quantities

and prices from their effi cient values. Formally, as shown in the appendix, the log-linear

approximation around the effi cient non-stochastic steady state implies that:4

ret = ηt,

where ret denotes the deviation of the effi cient real interest rate from its steady state value.

As discussed in Woodford (2003) and Galí (2008), the presence of a gap between the

natural and the effi cient levels of output due to exogenous changes in real marginal costs

implies that the relevant concept for welfare is the difference between the observed level and

the effi cient level of output. Formally, fluctuations in output relative to its effi cient level, xt,

can be decomposed as follows:

xt = yt − yet = (yt − ynt ) + (ynt − yet ) = (yt − ynt )− µt
3The relationship of these shocks with the specification of preferences and technology is described in the

appendix. Both shocks follow first-order autoregressive processes.
4As shown in the Appendix, the non-stochastic effi cient level of output is constant and normalized to one,

that is yet = 0.
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Thus, xt can be decomposed in the sum of deviations of output from the natural rate

(due to the presence of nominal frictions) plus deviations of the natural level of output from

its effi cient level (due to changes in real marginal costs, µt, exogenous to monetary policy).

Using this definition, the aggregate demand equation can be written in terms of deviation

of output from its natural rate as follows:

yt − ynt = Et{yt+1 − ynt+1} − Et {it − πt+1 − rnt }

The inflation equation can also be written in terms of the output gap:

πt = βEt{πt+1}+ κ[xt + µt], (3)

given that there are not exogenous variation in productivity as described in the appendix

yet = 0. We can also rewrite equation (1) in terms of the output gap as follows:

xt = Et{xt+1} − Et {it − πt+1 − ret} (4)

Because of the presence of the cost-push shocks, µt, the “divine coincidence”property

discussed in Blanchard and Galí (2007) is not present in our model. Thus, it will also not

be optimal for the policymaker to pursue a policy in which the ex-ante real rate equals the

effi cient real interest rate.

3 Optimal Discretionary Policy

We now discuss the optimal monetary policy when the policymaker is unable to credibly

commit to future policy actions, and when the nominal interest rate is constrained by the

zero lower bound. We consider the cases in which the central bank has perfect information

first and later imperfect information regarding the current state of the economy.

3.1 The Optimal Policy Problem

We build on Eggertsson and Woodford (2003) who first introduced the zero lower bound con-

straint into the linear-quadratic framework originally studied by Rotemberg and Woodford

(1997) and Clarida et al. (1999).5 Following Woodford (2003) we assume that the monetary

authority seeks to minimize the following quadratic loss function,

1

2
E0

∞∑
t=0

βt
{
π2
t + λx2

t

}
,

5Adam and Billi (2007) and Nakov (2008) also offer discussions of the effect of the effective zero lower
bound on optimal monetary policy under discretion.
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where β is the discount factor, λ is a trade-off parameter and Et represents the expectation

conditional on time t information. The monetary authority is constrained by the private

sector equilibrium conditions, equations (4) and (3), as well as by the zero lower bound on

the nominal interest rate:

it ≥ log

(
β

Π

)
. (5)

In this paper we focus on the optimal stabilization policy at the zero lower bound and

abstract from the issue on how the zero lower bound will affect the optimal average rate of

inflation. Instead, πt in the loss function represents the deviation of inflation from a two

percent target which is consistent with the longer-run objective of the Federal Reserve.6

This allows us to focus on how the nonlinearity introduced by the zero lower bound limits

the optimal real rate from being equal to the effi cient real rate. At the zero lower bound,

any shock creates a tradeoff between inflation and output stabilization for the policymaker

because of the constraint it places on monetary policy actions.

We assume that the monetary authority chooses policy under discretion taking private-

sector expectations as given. Under these assumptions and under the assumption of complete

information, the first-order conditions characterizing optimal policy are:

λxt = κθt − φt
πt = −θt
γt = φt,

where φt, θt, and γt denote the Lagrange multipliers on equations (3), (4), and (5), respec-

tively. The complementary slackness condition is:

[it − log(
β

Π
)] · γt = 0.

In normal circumstances (e.g., far away from the zero lower bound), the previous

first-order conditions correspond to those analyzed by Clarida et al. (1999). In this case

φt = γt = 0, and hence the optimal discretionary policy gives rise to the following optimality

condition or targeting rule:

xt = −κ
λ
πt.

Without exogenous shocks to marginal costs and under the assumption that the

economy will never be at the zero lower bound, the optimal discretionary policy consists of

6See Coibion et al. (2012) and the references therein, for a discussion of how the optimal steady state
inflation is affected by the presence of the zero lower bound.
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setting the actual real rate equal to the effi cient real rate, ret . In these circumstances, this

policy implies that inflation is equal to target and the output gap is closed at every date

(i.e., πt = xt = 0).

However, the presence of the zero lower bound will change this prescription. At the

zero lower bound, the equilibrium under discretion implies that the targeting rule character-

izing optimal policy is affected by the Lagrange multiplier associated with that constraint:

xt = −κ
λ
πt −

1

λ
φt. (6)

In normal times, the output gap moves proportionately with the inflation gap; however, at

the zero lower bound, a tightening in the constraint implies a larger decline in the output

gap relative to the decline in the inflation gap, since φt > 0.

3.2 Information Structure

Our novel modeling contribution is to describe how optimal policy at the zero lower bound

changes because the monetary authority faces imperfect information about the state of the

economy. Importantly, we assume that the monetary authority has less knowledge about the

state than the private sector. A justification for this assumption in the context of our model

is that private agents (households and firms) make decisions after seeing shocks that affect

them directly. By contrast, policymakers have to learn about the nature of fluctuations in

the economy that cause private agents to make demand, production, and pricing decisions.

Formally, at every time t households and firms know the entire history of exogenous

shocks and endogenous prices and quantities up to date t. However, for the monetary

authority, information about the history of exogenous shocks and endogenous prices and

quantities is available up to date t − 1, and the monetary authority only receives noisy

signals about current values. In particular, at time t, the monetary authority observes:

sηt = ηt + eηt, where eηt ∼ N(0, σ2
eη)

sµt = µt + eµt, where eµt ∼ N(0, σ2
eµ).

That is, the monetary authority observes noisy signals about the discount rate and the

marginal cost shocks at time t. If there were no noise in the signals, the monetary authority

would know ηt and µt exactly, which would mean that it had perfect information about

πt and xt as well. In this sense, uncertainty about ηt and µt is a stand-in for uncertainty

about the equilibrium values of πt and xt. In a very general sense, the values πt and xt are
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determined in equilibrium by a mapping from states and shocks to equilibrium prices and

quantities: [
πt
xt

]
= f(ηt−1, µt−1, eηt, eµt, εηt, εµt),

where the time-invariant function f represents the equilibrium mapping. When σ2
eη = σ2

eµ =

0, sηt and s
µ
t reveal εηt and εµt, which in turn reveal equilibrium quantities and prices, xt and

πt. In our setup, the monetary authority has to form beliefs about eηt, eµt, εηt and εµt.

We assume that the central bank has an informational disadvantage relative to the

private sector so as to capture that, in reality, the central banks need to now-cast prices and

quantities when they make policy decisions. There is a long literature about the now-casting

problems that central banks face and their associated policy implications. For example,

a string of work initiated by Orphanides and Williams (2002) emphasizes that real-time

measurement errors can lead to persistent policy mistakes if monetary policy rules do not

confront this now-casting problem. In the context of NK models, the literature on monetary

policy with imperfect information (typified by Svensson and Woodford (2003), Svensson and

Woodford (2004), and Aoki (2003)) often specifies signals as noisy indicators of endogenous

variables. Typically, signals take the form:

sπt = πt + eπt

syt = yt + eyt.

When signals are specified in this way, the zero lower bound on the short-term nominal

interest rate complicates the joint signal extraction problem and optimal policy problem

dramatically. Our information structure allows us to model central bank beliefs using a

Kalman filter (discussed below) to form beliefs, which is optimal because ηt and µt evolve

independently of endogenous prices and quantities. That is, there is no simultaneity problem

in our setup because the conditioning set of the monetary authority does not contain any

quantities that are functions of endogenous values that are determined in response to the

policy decision. This leads to a separation between the optimal filtering problem and the

optimal policy problem, which greatly simplifies the information processing problem. We

view this imposition of separation as a compromise that embodies an information friction

while keeping the problem tractable in the context of the zero lower bound.

An alternative interpretation of our approach is that the distributions of eπt and eyt
are not normal and instead are such that the signals sπt and s

y
t embody the same information

as sηt and s
µ
t . That is, rather than eπt and eyt being independently and normally distributed

around the endogenous variables that they simultaneously determine, we assume that they
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have a complex and unknown distribution that makes our assumed signal structure (and the

separation between the filtering problem and the optimal policy problem) exactly correct.

While we prefer to interpret our setup from the perspective of a now-casting problem

faced by the central bank, another way to rationalize our framework is through a sequential

decision structure. In particular, a model economy in which nominal interest rate decisions

for period t have to be made before private agents make decisions in period t requires that

the central bank bases them on less information than the private sector has available at

time t. If, for example, the central bank makes its policy rate decision at the beginning of

period t, that decision will be based on information available at time t− 1 and potentially,

any signals the central bank may have regarding current shocks that affect private sector

decisions.

This type of timing assumption captures the fact that policy rate decisions are not

made on a daily basis, but rather during meetings that occur infrequently. While policy-

makers may be able to react to incoming data received during the intermeeting periods,

historically policy decisions have only been infrequently made outside of regularly scheduled

meetings. Thus, most central banks regularly set short-term nominal interest rates based on

information available only at the beginning of the period in which that policy decision will

be operative. Moreover, with lags in offi cial data releases and frequent revisions to real-time

data, even the information available to the central bank about the recent past is likely to be

affected by noise.

3.3 Information Processing

To define the signal-extraction problem of the central bank, it is convenient to denote the

vector of current state variables by:

ξt =

[
µt
ηt

]
.

Given our assumptions in the model, these exogenous variables evolve according to:

ξt = Fξt−1 + vt, (7)

where

F =

[
ρµ 0
0 ρη

]
and vt˜N

(
0
0
,
σ2
µ 0

0 σ2
η

)
= N (0, Q) .

As described above, the monetary authority sees all prices and quantities, as well as all state

variables, up through time t − 1. In addition, the monetary authority has access to noisy
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signals about the current values of the state variables, which we specified above, and can be

written as

st =

[
sµt
sηt

]
= ξt + wt, (8)

where

wt˜N (0, R) ,

where R is defined accordingly given the definitions above. In terms of our notation, the

central bank information set is

{st, ξt−1, ξt−2,...} .

We assume that the private sector has complete information, meaning that its information set

includes everything the monetary authority sees, as well as the true values of current-period

state variables.

Conditional on this information structure, the problem of the monetary authority is

to determine the optimal policy rate, given its expectations about equilibrium prices and

quantities. The linearity of equations (7) and (8), the normality of the innovations, and the

normality of the noise in the signals implies that the beliefs of the central bank about ξt will

be normally distributed. In fact, given a signal, st, the central bank optimally forms beliefs

about ξt using the Kalman filter so that

E (ξt| {st, ξt−1, ξt−2,...}) = Fξt−1 +Q (Q+R)−1 (st − Fξt−1)

V ar (ξt| {st, ξt−1, ξt−2,...}) =
(
I −Q (Q+R)−1)Q

where the Kalman gain is given byQ (Q+R)−1. These objects are the mean and the variance

of the normal posterior distribution of the central bank. The monetary authority can use

this distribution to form beliefs about about inflation and the output gap by integrating

over the distribution of ξt. The distribution of ξt can then be used to solve the optimal

policy problem of the central bank. Under incomplete information, the first-order necessary

condition associated with minimizing the central bank loss function is:

E [λxt + πtκ| {st, ξt−1, ξt−2,...}] + φt = 0.

The expectations operator in this first-order condition reflects policymakers use their

best estimate of inflation and the output gap in their optimal choice of the nominal interest

rate. This condition when coupled with the expressions for xt and πt, the zero lower bound

constraint, and the complementary slackness condition defines the equilibrium conditions
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under imperfect information. To see how this first order condition affects the central bank’s

choice of it, it is useful to substitute for xt in order to get

it =
1

λ
φt + E

[
Et{xt+1}+ Et {πt+1 + ret}+

κ

λ
πt| {st, ξt−1, ξt−2,...}

]
.

Written in this way, it is clear that even if the private sector has perfect information at time

t, the monetary authority needs to form expectations about private sector expectations in

order to solve its optimal policy problem.

Uncertainty about the state of the economy in our setup affects optimal policy in

a number of ways. As we will show below, there is an attenuation coming from imperfect

information. Additionally, the zero lower bound alters the distribution of equilibrium objects

for both the private sector and the central bank. Furthermore, because of its informational

disadvantage, the monetary authority has to form beliefs about private sector expectations.

As such, the private sector expectations about future inflation and output can be thought

of as time t variables about which the central bank is uncertain. In our setup, the private

sector has different beliefs about both current and future prices and quantities than the

monetary authority. Because the central bank has to form expectations about those private

sector expectations, they are not ex-post equal. This additional uncertainty about private

sector expectations arises because of our informational setup, and affects the optimal policy

response near the zero lower bound. Finally, the private sector understands that the mon-

etary authority may in the future respond to noise in the signals it receives. Near the zero

lower bound, the private sector internalizes that the monetary authority can only respond

in one direction, which shifts the mean of the private sector’s expected future paths for the

short-term nominal interest rates. This tightening bias affects prices and quantities in the

current period, which the central bank internalizes.

3.4 Results

As discussed in the appendix, we solve the model using a global solution method that allows

us to characterize how imperfect information near the zero lower bound affects optimal policy.

We pick relatively standard values for the parameters of the model (see, e.g., Woodford (2003)

and more recently Evans et al. (2015)). The discount factor, β, is chosen to be consistent with

a quarterly model and is set equal to 0.995. As a result, the steady state real rate equals 2

percent on an annual basis. The central bank’s inflation target, Π̄, is chosen to be consistent

with a 2 percent annual rate. The parameter κ which governs the slope of the Phillips curve,

is set equal to 0.01. Following Woodford (2003), we choose λ = 0.0156. This quarterly weight
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translates into an annualized weight of λ × 16 ≈ 0.25. We set the parameters describing

the shocks as follows. The discount factor shocks has an autocorrelation, ρη, equal to 0.8

with a standard deviation, ση, of 0.45. Likewise, the markup shock has an autocorrelation

coeffi cient, ρµ, equal to 0.3 with a standard deviation, σµ, of 0.1. The standard deviations

of the noise in the signals, σeη and σeµ, are calibrated to be 0.9 and 0.1, respectively. This

implies signal-to-noise ratios of 1.25 and 2, respectively.

Figure 1 illustrates how incomplete information about the effi cient real interest rate

interacts with the zero lower bound to affect optimal policy. Each panel in Figure 1 shows

the optimal response to a positive signal about the effi cient real rate. That is, for each

panel, we show how the policymaker optimally sets the nominal short-term interest rate (on

the vertical axes, measured in percentage points) in response to an innovation that signals

that the natural rate has increased (the horizontal axes show the magnitude of that positive

signal, measured in percentage points). The three panels differ in their assumed initial values

for the effi cient rate.

The top panel assumes that the effi cient rate has been well below zero and, as result,

the zero lower bound is binding. Even for relatively large positive signals about the effi cient

rate, the optimal policy leaves the nominal rate unchanged. By contrast, if the lower bound

were irrelevant, as shown by the dashed blue line, the optimal policy would set the nominal

rate below zero for small, positive signals about the level of the effi cient rate. For signals

larger than forty basis points the optimal unconstrained policy rate would be positive. No-

tably, once the zero lower bound is taken into account, the presence of uncertainty keeps

the nominal rate at the zero lower bound even in situations where the unconstrained policy

would be positive. These lower policy prescriptions reflect that optimal policy opts to insure

against particular bad outcomes associated with the zero lower bound.

The middle panel repeats the exercise assuming that the effi cient rate has been low

enough to put the short-term nominal interest rate at the cusp of the zero lower bound.

If the monetary authority acts as if policy is not constrained by the zero lower bound, the

nominal rate rises about ten basis point for a positive signal of fifty basis points. When we

account for the lower bound constraint, the optimal policy reacts less, rising only five basis

points for a signal of fifty basis points, because the policy rate remains at the lower bound

until the signal rises above thirty basis points. As the signal grows larger, the reaction of

the optimal policy non-linearly approaches the reaction of the unconstrained optimal policy.

The bottom panel shows the effects in normal times corresponding to an initial value

of the effi cient real rate that is high enough so that the zero lower bound is very unlikely

13



Figure 1: Optimal Discretionary Policy with Incomplete Information
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to bind in the near future. In this case, the policymaker translates any change in beliefs

about the natural rate into the nominal interest rate in the same way as a policymaker who

is unconstrained by the lower bound.

In Figure 2, we repeat the above experiments for the cases of incomplete and com-

plete information while accounting for the zero lower bound on nominal short-term interest

rates. As shown in the bottom panel, policymakers operating in a world of incomplete in-

formation downweight the signal they receive about the effi cient rate– because they do not

know that the signal is correct– whereas policymakers under complete information do not.

As can be seen, the optimal policy response in the presence of incomplete information is

substantially muted relative to its complete-information counterpart in which the monetary

authority translates one-for-one any change in beliefs about the natural rate into the short-

term nominal interest rates. Thus, as discussed in Aoki (2003), the optimal policy is muted

under incomplete information relative to complete information.

The top panel shows that when the zero lower bound is binding, incomplete infor-

mation can keep optimal policy at the zero lower bound even when optimal policy with

complete information would increase the short-term nominal rate. In sum, the effects of im-

perfect information are magnified at the zero lower bound. This can be seen by comparing

the distance between the lines in the top panel and the distance between the lines in the

bottom panel at the far right of each chart.

More generally, the combination of the zero lower bound and imperfect information

makes the optimal policy response a complicated, non-linear function of signals about the

state of the economy. For small revisions to the equilibrium real rate, the policy rate remains

at the zero lower bound regardless of whether information is complete or incomplete. But if

the estimate of effi cient rate is known to be imprecise, a larger perceived increase is required

to move away from the zero lower bound, and the policy responses under these conditions

are even more attenuated than they are in normal times. The reason is as follows. When

the policy rate is constrained by the zero lower bound and the policymaker receives a noisy

signal that the effi cient rate has increased, the optimal policy is to make a mistake on the

side of keeping the real policy rate below the perceived effi cient rate so as to reduce the

likelihood that an adverse shock will weaken the economy enough, to require a return to the

zero lower bound. That is, policymakers “take out insurance”against situations in which the

information about the equilibrium real rate might lead them to mistakenly raise the policy

rate.

In contrast to the model studied by Aoki (2003) and Boehm and House (2014), the
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Figure 2: Optimal Discretionary Policy under Alternative Information Sets
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Figure 3: Optimal Discretionary Policy near the ELB: More Volatile Economy
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zero lower bound makes the optimal policy deviate from certainty equivalence. Figure 3

shows the implications for optimal policy of increasing the variance of shocks in the economy.7

In a more uncertain environment, optimal policy becomes even less responsive to positive

signals about the state of the economy when the economy is at the cusp of the lower bound.

Figure 4 shows the outcomes for inflation and the output gap when ex-post the signal

about the change in the effi cient real rate is either correct or entirely noise. Ex-ante the

optimal policy reacts to the signal itself, so the policy rate is identical whether the signal

turns out to be correct or not (as shown in the top-right panel). Because the economy is at

the cusp of the zero lower bound, with a suffi ciently positive signal the central bank increases

the short-term interest rate. For the same ex-ante policy, ex-post if the signal turns out to

be entirely noise (the red dot-dashed line), the output gap is relatively small and inflation is

near target. If the signal turns out to reflect an actual change in the natural rate, then the

output gap and inflation move in the same direction as the natural rate. However, responses

of the output gap and inflation are much larger when the effi cient rate has ex-post declined

as opposed to increased. That is, it is more costly to (ex-ante) overestimate the natural

rate, and to raise the nominal rate without an actual increase in the natural rate, than it is

to (ex-ante) underestimate the natural rate and leave the nominal rate at the lower bound.

This captures the essence of a risk-management approach at the cusp of the lower bound:

Optimal policy preserves the option to maintain the zero short-term rate so that if the (ex-

ante) signal about the effi cient real rate is proven to be wrong the costs of misinterpreting

the signal (deferring the rate increase) are low.

Another way to grasp the effects of imperfect information about the effi cient real rate

near the zero lower bound is to look at the distribution of economic outcomes. Figure 5

shows the distribution of the effi cient rate, the nominal rate, the output gap, and inflation

when we simulate the economy at the cusp of the lower bound (dot-dashed lines) and in

normal times (solid lines).8 As reflected in top-left panel, in normal times the mean of this

distribution is higher as compared to when the economy is at the cusp of the lower bound.

Accordingly, during normal times the distribution of nominal interest is centered to the right

of the distribution of the nominal rates when the economy is at the cusp of the zero lower

bound. When the economy is at the cusp of the lower bound there is substantial probability

that the nominal interest rate will remain at its lower bound. For the output gap, there is

7When we increase the volatility of the underlying shocks, we keep the same signal-to-noise ratio as in
the previous exercises.

8For the simulations, the innovations (including the noisy ones) for the effi cient real rate and marginal
cost shocks are simulated according to their exogenous stochastic distributions, while initial values for the
marginal cost shocks is set to zero.
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Figure 4: The Effect of Actual and Perceived Innovations to the Natural Rate
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Figure 5: Distributions Conditional on Alternative Natural Real Rates
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a notable difference in the two distributions, as the distribution with the economy near the

cusp of the lower bound is markedly skewed downward. These adverse outcomes are what

leads to the muted response we discussed above. In effect, an optimal policy that accounts

for the imperfect knowledge about the effi cient rate will provide precautionary stimulus to

offset the downward bias in economic outcomes caused by the zero lower bound.

4 Simple Rules

The analysis up to now has focused on optimal discretionary policy, which consists of a

strategy such that the policymaker sets the nominal rate in response to incoming data on

a period-by-period basis without committing itself to future actions as a way of affecting

private sector expectations. The results highlight the interplay of the zero lower bound

and imperfect knowledge about the effi cient rate in shaping optimal discretion as a basis

for pursuing a risk-management approach that insures the economy against undesirable

outcomes. In this section, we study the effectiveness of committing to a rule-based approach

in setting monetary policy within the same economic framework.

4.1 Taylor-type Rules

Common simple rules in the literature on monetary policy are Taylor-type rules which take

the form of the rules studied in Taylor (1993) and Taylor (1999). We compare the perfor-

mance of Taylor-type rules to optimal policy. The Taylor-type rule that we consider has the

form:

it = max{log(βΠ
−1

), E [αret + γππt + γxxt| {st, ξt−1}]}.

The rule studied in Taylor (1999) serves as a baseline case and corresponds to parameter

values of α = 0, γπ = 1.5, and γx = 1/4. When α = 0, the rule does not includes a

time-varying intercept to reflect movements in the effi cient real rate (ret ). Notably, because

policymakers have imperfect information about the exact values of the underlying state of

the economy, we assume that the use their best estimate of inflation, the output gap, and

the effi cient real rate as arguments to the rule. Even if policymakers were to commit to a

simple policy rule, operationalizing a rule for the time t interest rate that is written in terms

of time t inflation and the time t output gap would require measurement of inflation and

output and estimation of the deviation of output from its potential level. Our imperfect

information setting is meant to capture that process.

Figure 6 shows the response of the nominal interest rate to a positive signal about
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Figure 6: Taylor Rules and Optimal Discretion at the Cusp of the ZLB
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and increase in ret . We show the policy response assuming that the economy is initially in

a situation where the equilibrium real rate is low and the zero lower bound is just binding

for optimal policy under discretion. The policy response under discretion is shown as the

dot-dashed red line. The policy response for the Taylor-type rule where α = 0 corresponds

to the blue solid line, which is notably higher than the optimal policy under discretion. That

the Taylor-type rule prescribes higher interest rates than the optimal policy under discretion

is reminiscent of results reported in Boehm and House (2014), who show that the parameter

values considered by Taylor (1999) systematically under-react to movements in endogenous

variables relative to the optimal policy rule.

The blue dotted line shows the reaction of the Taylor-type rule with α = 1, that is,

the case when the intercept term of the Taylor rule adjusts with perceived movements in the

effi cient real rate. The prescriptions of this rule are notably lower than the case in which

α = 0 because the central bank’s estimate of the effi cient real rate directly enters the rule.

That the prescriptions of this rule are similar to optimal discretionary policy might not be

entirely surprising given that optimal policy in a model that ignores the zero lower bound (in

the absence of markup shocks) is to set the nominal interest rate equal to the effi cient real

rate. The fact that the rule does mimic optimal discretion when α = 1 reflects the presence

of the zero lower bound which makes optimal policy even more accommodative than the

policy prescribed by the rule.

Figure 7 shows the distributions of outcomes, conditional on the economy being at the

cusp of the zero lower bound (as assumed in the previous figure) for the Taylor-type rules with

α = 0 and α = 1. The top panel shows the distribution of the time t nominal interest rate.

Because of our assumed initial conditions for the equilibrium real rate, there is a significant

probability that the nominal rate remains at the zero lower bound for optimal policy under

discretion as well as under the Taylor rule with a time-varying intercept term that tracks

perceived movements in the natural real rate. The Taylor rule with a constant intercept

equal to the steady state real rate produces a distribution of higher nominal interest rates,

with much less mass at the zero lower bound. This result is a direct effect of the relatively

high prescriptions for the policy rate coming from a Taylor rule with a constant intercept

(shown in the previous figure).

The relatively high nominal interest rate from the Taylor rule with a constant intercept

leads to lower average outcomes for the output gap and inflation, shown in the middle and

bottom panels of Figure 7. That this rule underreacts to perceived changes in the equilibrium

real rate is reflected in the relatively dispersed distributions for the output gap and inflation
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Figure 7: Conditional Distributions (at the Cusp of the ZLB) under Alternative Taylor Rules
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when compared to the outcomes under optimal discretionary policy. By contrast, if the

intercept of the Taylor rule reflects perceived changes in the equilibrium real rate (the case

of α = 1), the distributions of the nominal interest rate, the output gap, and inflation closely

resemble the outcomes under optimal discretion.

The differences between the two specifications of these Taylor-type rules are also

apparent in an unconditional sense. Figure 8 shows the unconditional distributions of the

nominal interest rate, the output gap, and inflation under optimal policy and the Taylor-type

rules when α = 0 and when α = 1. The distributions of outcomes when α = 1 are very similar

to those under optimal policy. Given the close relationship between the two policies when the

zero bound is ignored, this is perhaps not surprising. The Taylor-type rule with a constant

intercept performs notably worse than the others in that the distributions of inflation and

output are much more dispersed than under optimal discretionary policy. These dispersed

outcomes are the result of the rule systematically under-responding to movements in the

effi cient real interest rate, which can be seen by the relatively thin tails of the distribution

of the nominal interest rate, shown in the top panel.

In our simulations, the nominal interest rate under optimal policy spends more time,

on average, at the zero lower bound than either specification of the Taylor-type rule. This

reflects the nonlinearity in the optimal policy response that causes policymakers to ease

policy in the vicinity of the zero lower bound as a risk-management approach to policy.

That is, deviating from a Taylor-type rule with a constant intercept term by keeping policy

lower near the zero lower bound is an optimal response, which can be approximated by

adjusting the Taylor-rule intercept to changes in the central bank’s best estimate of the

effi cient real rate.
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Figure 8: Unconditional Distributions under Alternative Taylor Rules
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Table 1. Unconditional Welfare Losses for Alternative Monetary Policy Rules

Contributions of
Welfare Inflation Output

Policy Rules Losses (π − E(π))2 E(π)− π (x− E(x))2 E(x)

Optimal 5.375 0.02233 -0.0038 0.2877 -0.051

Taylor-type
Constant Intercept 14.720 0.0265 0.00017 3.0203 0.0018
Time-Varying Intercept 5.529 0.0221 -0.0077 0.3356 -0.1211
Constant Intercept, Optimal 5.654 0.0224 -0.0050 0.3747 -0.0327

First-Difference, Optimal 19.830 0.0153 -0.0032 5.3746 -0.0228

The unconditional distributions of the inflation and the output gap determine the

relative performance of these rules as evaluated by the monetary authority’s unconditional

loss function. Table 1 shows the relevant moments as well as the unconditional losses across

rules. Notably, the zero lower bound shifts the means of the distributions down for almost

all of the rules, although by small amounts.9 Differences in relative performance across rules

are almost entirely driven by differences in the dispersion of the distributions of the output

gap and inflation. The more dispersed outcomes under the standard Taylor rule (α = 0)

lead to greater losses than the other specification of the Taylor rule (α = 1). Interestingly,

in our model neither specification performs better than optimal discretion.

While the Taylor-type rule with a constant intercept performs relatively poorly for

the parameter values chosen above, we also consider an optimal version of the rule, where

the parameters γπ and γx are chosen to minimize the unconditional loss function of the

monetary authority. The optimal parameter values (which are about γπ = 18 and γx = 10)

are much higher than those commonly used in the literature on monetary policy rules.10

Notably, they imply that the monetary authority should optimally respond more strongly

to deviations of inflation and output from their targets than prescribed by more-traditional

parameter values.11 This aggressive response is evidenced by the fatter tails of the uncon-

ditional distribution of the nominal interest rate with the optimal Taylor-type rule with a
9All of the numbers in Table 1 are expressed in percent.
10The welfare loss is relatively flat for relatively high values of these coeffi cients.
11These results are reminiscent of results reported in Boehm and House (2014), who do not consider the

interest-rate lower bound.
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Figure 9: Unconditional Distributions under Optimal Taylor Rules
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constant coeffi cient in Figure 9, relative to the Taylor-type rule with a constant intercept

and our baseline parameters.

Interestingly, as shown in Figure 9, the unconditional distribution of the nominal

interest rate under the optimal Taylor-type rule is similar to the distribution under optimal

policy, however optimal policy has a somewhat fatter left tail, even though it spends less time

at the zero lower bound, reflecting the complex nonlinear reaction function of the monetary

authority under optimal policy. Notably, the distributions of inflation and output under

the optimal Taylor-type rule are similar to the distributions under discretion. That is, the

outcomes under optimal policy, in our model, can be well approximated by a Taylor-type rule

that either adjusts its intercept to changes in the equilibrium real rate or by a Taylor-type

rule that responds aggressively to deviations of inflation and output from their target values.

Although the unconditional distributions are similar, the optimal Taylor rule still slightly

underperforms optimal discretionary policy as shown in Table 1.

4.2 First-difference Rules

Because of the uncertainty surrounding the equilibrium real rate, some researchers have

argued that rules that depend on it are flawed (e.g., Orphanides and Williams (2002)).

As an alternative, they have advocated for first-difference rules as a guide for the conduct

of policy, as these rules do not require responding to changes in the equilibrium real rate

because they are rules for the change in the nominal interest rate, rather than the level.

We revisit this debate by evaluating the performance of first-difference rules when there is

imperfect information about the equilibrium real rate and compare their performance to the

Taylor-type rules discussed above, as well as optimal discretionary policy.

We consider first-difference rules of the form:

it = max{log(βΠ
−1

), it−1 + E [γππt + γy(yt − yt−1)| {st, ξt−1}]}.

Although this rule eliminates the equilibrium rate from its specification, policymakers still

need to form expectations about (now-cast) current inflation and the current level of output.

We specify the rule in terms of output growth, rather than the output gap as in the Taylor-

type rules above, because Orphanides and Williams (2002) have emphasized that responding

to the output gap requires estimating the potential level of output, which is unobservable and

potentially diffi cult to learn about. However, unlike in Orphanides and Williams (2002), we

assume that the monetary authority is not perfectly informed about the output and inflation

terms that enter the rule at time t.
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Figure 10: Unconditional Distributions under Optimal First-Difference Rules
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Figure 10 shows the unconditional distributions of the nominal interest rate, the

output gap, and inflation under the first-difference rule in which the coeffi cients have been

chosen to minimize the unconditional loss function facing the monetary authority. Even

when we optimally choose the parameters, the unconditional distribution of the nominal

interest rate from the first-difference rule is less dispersed than under optimal policy. While

we find that the optimal first-difference rule responds aggressively to inflation γπ = 2.1, we

find that the optimal coeffi cient on output growth is almost zero. This muted response to

changes in output growth leads to the wide dispersion of the output gap, shown in the middle

panel of figure. While the unconditional distribution of inflation under the first-difference

rule is less dispersed than the distribution of inflation under optimal policy, this reduction

in variance does not lead to better welfare outcomes (as shown in the last row of Table 1)

than under discretionary optimal policy because of the wide distribution of the output gap.

The reason that the optimal first-difference rule does not respond more strongly to

output or inflation is that doing so would also respond more strongly to incorrect signals.

When noise in the monetary authority’s information set at time t enters the first-difference

rule, the noise is incorporated into the level of the nominal interest rate and is not discarded

in the next period. That is, the first-difference rules carries imperfect information forward,

magnifying the effects. By contrast, Taylor-type rules (without interest rate smoothing) do

not carry forward past misperceptions about the state of the economy directly in the rule.

While we could of course lag the inflation and output terms in the first-difference

rule by one period so that there would no longer be any quantities in the rule about which

the monetary authority has imperfect information, that solution would be specific to the

information structure assumed in our model. If measures of inflation and output will never be

free of noise (e.g. measurement error), even after many subsequent periods of measurement,

the optimal policy problem will always have to confront the imperfect information problem,

and if imperfectly observed quantities enter a first-difference rule, misperceptions will be

carried forward.

5 Conclusions

Our analysis has shown that, in a simple NK model, imperfect knowledge about the equi-

librium real interest rate interacts with the zero lower bound to cause optimal policy under

discretion to respond to signals about an increase in the equilibrium real rate by less than

it would during more-normal circumstances. Because optimal policy under discretion in the

neighborhood of the zero lower bound prescribes a complicated, nonlinear reaction function
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for the policy rate that may, in practice, be diffi cult to communicate and implement, we also

study simple policy rules. In our model, we show that Taylor-type rules that either include a

time-varying intercept that moves with perceived changes in the equilibrium real rate or that

respond aggressively to deviations of inflation and output from their target levels perform

similarly to optimal discretionary policy. While we do not explicitly model credibility and

communications concerns for the monetary policy authority, these simple rules may be easier

to implement and communicate to the public. Our analysis of first-difference rules highlights

that rules with smoothing terms carry forward current and past misperceptions about the

state of the economy and can lead to suboptimal performance.
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Appendix

A Detailed Description of the Model The economy consists of a representative house-

hold, a continuum of firms producing differentiated intermediate goods, perfectly competitive

final goods firms, and a central bank in charge of monetary policy.

Households There is a representative household that values streams of consump-

tion Ct and hours worked Ht according to preferences given by the utility function:

Et

∞∑
t=1

δt−1 (log [Ct]− µtHt) (9)

where Et represents the mathematical expectation conditional on all exogenous shocks and

endogenous prices and quantities up to time t. The household maximizes expected utility

flows subject to a sequence of budget constraints,

PtCt +R−1
t Bt = WtHt +Bt−1 + Tt. (10)

where household nominal expenditures on consumption at date t are given by PtCt, where

Pt denotes the aggregate price level, Bt are nominal bonds sold at the price R−1
t , and

Rt = (1+it) denotes the gross nominal return on these bonds. The nominal bonds purchased

by a household pay one unit of the numéraire in the next period with certainty. A household

receives income from any bonds carried over from last period in addition to its labor income,

WtHt, from supplying its labor services to the economy’s firms. A household also pays lump-

sum taxes and receives dividends from intermediate goods firms, the sum of which is denoted

by Tt. The labor supply shock, µt, is assumed to follow an AR(1) process in logs, such that:

log(µt) = ρµ log(µt−1) + εµ,t (11)

where ρµ denotes the persistence of the shock and σµ denotes the standard deviation of the

innovations, εµ,t.

To capture exogenous changes in the household’s desire to save, we allow for a shock

to the discount rate. The rate of time discounting at time t is given by δt = βt
(

t∏
s=0

ηs

)−1

,

where 0 < β < 1. Hence, δt+1
δt

= β
ηt+1

, and ηt+1 is the shock to the discount rate (or the

natural rate of interest, as will be clear below). The discount rate shock follows an AR(1)

process in logs, such that:

log(ηt) = ρη log(ηt−1) + εη,t (12)
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where ρη denotes the persistence of the shock and ση denotes the standard deviation of the

innovations, εη,t. A decrease in ηt represents an exogenous factor that induces a temporary

rise in a household’s propensity to save, and reduces current aggregate household demand

for goods.

The first order necessary conditions for optimality from the household’s problem can

be written as follows:

1 =
β

ηt
RtEt

{
Ct
Ct+1

Π−1
t+1

}
, (13)

µtwt = Ct (14)

where wt = Wt

Pt
denotes the real wage, and Πt+1 = Pt+1

Pt
is the inflation rate between t and

t+1. The linear specification for labor services in equation (9) along with a competitive labor

market implies that there is a perfectly elastic supply of labor available to the economy’s

firms.

Firms There is a continuum of monopolistically competitive firms producing dif-

ferentiated intermediate goods. The latter are used as inputs by perfectly competitive firms

that produce a single final good, Yt, using a constant returns to scale production technol-

ogy, Yt =
(∫ 1

0
Yt(j)

ε−1
ε dj

) ε
ε−1
, where Yt(j) is the quantity of intermediate good j used as

an input, and ε > 1 is the elasticity of substitution. Profit maximization and perfect com-

petition yield the set of demand schedules, Yt(j) =
(
Pt(j)
Pt

)−ε
Yt and aggregate price index,

Pt =
(∫ 1

0
Pt(j)

1−ε dj
) 1
1−ε
.

The production function for intermediate good j is given by:

Yt(j) = Ht(j). (15)

Since intermediate goods are imperfect substitutes, the intermediate goods-producing firms

sell their output in a monopolistically competitive market. During period t, the firm sets its

nominal price Pt(j), subject to the requirement that it satisfies the demand of the represen-

tative final goods producer at that price. As in Rotemberg (1982), the intermediate good

producer faces a quadratic cost of adjusting its nominal price between periods, measured in

terms of the finished good and given by: ϕ
2

(
Pt(j)

Π̄Pt−1(j)
− 1
)2

Yt, where ϕ governs the obstacles

to price adjustment and Π denotes the central bank’s inflation target. The cost of price ad-

justment makes the problem of the intermediate good producer dynamic; that is, it chooses

Pt(j), taking as given Π̄, to maximize its present discount value of expected profits:

E0

∞∑
t=1

δt−1

Ct

{(
Pt(j)

Pt

)1−ε

Yt −
(
Pt(j)

Pt

)−ε
(1 + τ)µtwtYt −

ϕ

2

[
Pt(j)

Π̄Pt−1(j)
− 1

]2

Yt

}
,
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where δt−1
Ct

measures the marginal value– in utility terms– to the representative household

of an additional unit of real profits received in the form of dividends during period t, wt is

the firm’s real marginal cost. τ is an employment subsidy. The first order condition for this

problem is:

(1− ε)
(
Pt(j)

Pt

)−ε
+ ε

(
Pt(j)

Pt

)−ε−1

(1 + τ)µtwt − ϕ
[

Pt(j)

Π̄Pt−1(j)
− 1

]
Pt(j)

Π̄Pt−1(j)
(16)

+ϕ
β

ηt
Et

{
Ct
Ct+1

[
Pt+1(j)

Π̄Pt(j)
− 1

]
Pt+1(j)

Π̄Pt(j)

Pt
Pt(j)

Yt+1

Yt

}
= 0.

Notice that under flexible prices, i.e. ϕ = 0, then expression (16) leads to the well-known

expression where firm set prices as a time-varying mark-up, ε
ε−1
, over marginal cost, i.e.

Pt = ε
ε−1

(1 + τ)µtwt.

Market Clearing and Symmetric Equilibrium Conditions In a symmetric

equilibrium, all intermediate goods producing firms make the same decisions so that aggre-

gate output satisfies Yt = Yt(j) and aggregate labor satisfies Ht = Ht(j) ∀j. It then follows
that Yt = Ht and goods market clearing can be written in aggregate terms as:

Yt = Ct +
ϕ

2

(
Πt

Π̄
− 1

)2

Yt. (17)

Households trade the nominal bond among themselves so that bond market clearing implies

Bt = 0.

The symmetric equilibrium conditions from households and firms as well as the goods

market clearing condition are:

1 =
βRt

Gηt
Et

{
Ct
Ct+1

Π−1
t+1

}
, (18)

ϕ

(
Πt

Π̄
− 1

)
Πt

Π̄
=
ϕβ

ηt
Et

{
Ct
Ct+1

(
Πt+1

Π̄
− 1

)
Πt+1

Π̄

Yt+1

Yt

}
+ εCt(1 + τ)µt + (1− ε) (19)

Yt = Ct +
ϕ

2

(
Πt

Π̄
− 1

)2

Yt (20)

These conditions along with the monetary policy rule and the stochastic processes

for the shocks must be satisfied in equilibrium. Equation (18) is the consumption Euler

equation that jointly with the next equation, the aggregate resource constraint, constitute

the basis for the aggregate demand relationship. Equation (19) is the nonlinear version of

the New Keynesian Phillips curve that relates current inflation to past and expected future

inflation and output.
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Natural and Effi cient Levels The natural rate of output and the real interest

rate are defined as the levels in an associated economy without price rigidities. The flexible

price equilibrium is characterized by the following two equations:

1 =
βRRn

t

ηt
Et

{
Y n
t

Y n
t+1

}
(1 + τ)µtY

n
t =

ε− 1

ε

We assume that, in the non-stochastic steady state, the employment subsidy is set

such that it offsets the monopoly distortion. A log-linearized approximation around the

natural equilibrium steady state yields:

rnt = ηt − Et{µt+1 − µt}

ynt = −µt

Thus, there are two sources of exogenous disturbances to the natural rate of interest:

shocks to the discount factor and shocks to the marginal cost. A decrease in the desired to

save (an increase in ηt) and expected decrease in marginal costs cause the natural rate of

interest to rise. The natural level of output moves with exogenous changes in the marginal

costs.

The effi cient equilibrium corresponds to that of flexible prices and no exogenous

variation in marginal costs. Formally, the effi cient allocations can be described as follows:

1 =
βRRe

t

ηt
Et

{
Y e
t

Y e
t+1

}
Y e
t = 1

The log-linear approximation around the effi cient non-stochastic steady state implies

that:

ret = ηt

and the effi cient level of output is constant and normalized to one. Thus, shocks to the

marginal costs reduce output relative to its effi cient level.

Solution Method To solve the nonlinear model, under optimal discretionary policy, we

use a projection method similar to Gust et al. (2012) and Christiano and Fisher (2000). The

solution algorithm involves parameterizing the unknown functions Etxt+1 = fx (ξt, st, ξt−1),

Etπt+1 = fπ (ξt, st, ξt−1) , where Et denotes rational expectations based on private sector
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information. We also parameterize the function f r (st, ξt−1), which satisfies the central bank’s

first order condition. In particular, this function can be derived by substituting the private

sector equilibrium conditions into the central bank’s first order condition and rewriting it as:

it −
φt

λ+ κ2
= f r (st, ξt−1) + E{ret +

(
κ2

λ+ κ2

)
µt| {st, ξt−1}}

where i is the steady state value of the nominal interest rate. To solve for the optimal policy

we use the fact that φt = 0 when it is greater than or equal to the lower bound constraint.

To be consistent with the information structure, the function f r does not take ξt
as an argument. This ensures that the solution imposes that the monetary authority is

unable to use information encoded in the private sector decisions in the current period.

To solve for the unknown parameters of these functions, we conjecture a guess and iterate

until the parameters satisfy the private sector equilibrium conditions and the central bank’s

first order condition at a finite number of points. Note that the above expression can be

used to determine the short-term interest rate and the Lagrange multiplier φt as follows.

If the right-hand side is positive (f r (st, ξt−1) + E{ret +
(

κ2

λ+κ2

)
µt| {st, ξt−1}} > 0) then

it = f r (st, ξt−1) + E{ret +
(

κ2

λ+κ2

)
µt| {st, ξt−1}}; otherwise it = 0 and φt = −[f r (st, ξt−1) +

E{ret +
(

κ2

λ+κ2

)
µt| {st, ξt−1}}}].
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