

16TH JACQUES POLAK ANNUAL RESEARCH CONFERENCE NOVEMBER 5-6,2015

Measuring the Macroeconomic Impact of Monetary Policy at the Zero Lower Bound

Jing Cynthia Wu Chicago Booth and NBER

> Fan Dora Xia Merrill Lynch

Paper presented at the 16th Jacques Polak Annual Research Conference Hosted by the International Monetary Fund Washington, DC—November 5–6, 2015

The views expressed in this paper are those of the author(s) only, and the presence of them, or of links to them, on the IMF website does not imply that the IMF, its Executive Board, or its management endorses or shares the views expressed in the paper.

Measuring the Macroeconomic Impact of Monetary Policy at the Zero Lower Bound

Jing Cynthia Wu Chicago Booth and NBER Fan Dora Xia Merrill Lynch

Key question

What is the macroeconomic impact of monetary policy at the ZLB?

Conventional approach before ZLB

VAR with the fed funds rate

But since December 2008, the fed funds rate has been near zero

Challenges of zero lower bound

Challenges

- ▶ What framework to study unconventional monetary policy?
 - ► The fed funds rate has been replaced by large-scale asset purchases and forward guidance as primary policy tools.
- How to describe the yield curve?
 - Gaussian ATSM allows negative interest rates.

Shadow rate term structure model: Black (1995)

- Non-negative short rate: $r_t = max(\underline{r}, s_t)$
- ► Analytical solution does not exist in general

Contributions

This paper

▶ an analytical approximation for SRTSM

Contributions

This paper

- ▶ an analytical approximation for SRTSM
- shadow rate has similar dynamic correlations with macro variables as the fed funds rate did previously

Contributions

This paper

- an analytical approximation for SRTSM
- shadow rate has similar dynamic correlations with macro variables as the fed funds rate did previously
- our shadow rate updated monthly by Atlanta Fed www.frbatlanta.org/cqer/researchcq/shadow_rate.cfm

- Shadow rate
- Macroeconomic Implications
- Conclusion

Bond pricing

Risk-neutral factor dynamics:

$$X_{t+1} = \mu^{\mathbb{Q}} + \rho^{\mathbb{Q}} X_t + \Sigma \varepsilon_{t+1}^{\mathbb{Q}}, \quad \varepsilon_{t+1}^{\mathbb{Q}} \stackrel{\mathbb{Q}}{\sim} N(0, I).$$

Pricing equation

$$P_t^n = \mathbb{E}_t^{\mathbb{Q}}[\exp(-r_t - r_{t+1} - ... - r_{t+n-1})]$$

Yield

$$y_t^n = -\frac{1}{n}\log(P_t^n)$$

Forward rate

$$f_{n,n+1,t} = (n+1)y_{n+1,t} - ny_{nt}$$

SRTSM and GATSM

SRTSM

$$r_t = \max(\underline{r}, s_t)$$

 $s_t = \delta_0 + \delta_1' X_t$

Forward rate

$$f_{n,n+1,t}^{SRTSM} = \underline{r} + \sigma_n^{\mathbb{Q}} g \left(\frac{a_n + b_n' X_t - \underline{r}}{\sigma_n^{\mathbb{Q}}} \right)$$

where
$$g(z) = z\Phi(z) + \phi(z)$$

GATSM

$$r_t = \delta_0 + \delta_1' X_t$$

Forward rate

$$f_{n,n+1,t}^{GATSM} = a_n + b_n' X_t.$$

Property of g(.)

Model fit

- ► GSW Data: monthly 1990-2013; maturities: 3m, 6m, 1y, 2y, 5y, 7y, 10_y
- ► Estimation: Kalman filters ► details
- ▶ Average absolute approximation error between 1990M1 and 2013M1 → more

	3M	6M	1Y	2Y	5Y	7Y	10Y
forward rate error forward rate level yield error	0.01	0.02	0.04	0.13	0.69	1.14	2.29
forward rate level	346	357	384	435	551	600	636
yield error	0.00	0.01	0.01	0.04	0.24	0.42	0.78

Model fit

Log likelihood values

specification

SRTSM: 856; GATSM: 755

Shadow rate

Summary for unconventional monetary policy?

Shadow rate and LSAPs

Macroeconomic Implications

Monetary policy

Can we use shadow rate as similar summary of Fed actions as fed funds rate provided historically?

Factor augmented vector autoregression

Replace the fed funds rate with s_t^o in Bernanke, Boivin, and Eliasz (2005)

$$Y_t^m = a_m + b_x x_t^m + b_s s_t^o + \eta_t^m, \quad \eta_t^m \sim N(0, \Omega)$$

- Y_t^m : 97 economic variables from 1960 to 2013
- $\triangleright x_t^m$: 3 underlying macro factors

Factor dynamics:

$$\begin{bmatrix} \mathbf{x}_t^m \\ \mathbf{s}_t^o \end{bmatrix} = \begin{bmatrix} \boldsymbol{\mu}^{\mathbf{x}} \\ \boldsymbol{\mu}^{\mathbf{s}} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\rho}^{\mathbf{x}\mathbf{x}} & \boldsymbol{\rho}^{\mathbf{x}\mathbf{s}} \\ \boldsymbol{\rho}^{\mathbf{s}\mathbf{x}} & \boldsymbol{\rho}^{\mathbf{s}\mathbf{s}} \end{bmatrix} \begin{bmatrix} \boldsymbol{X}_{t-1}^m \\ \boldsymbol{S}_{t-1}^o \end{bmatrix} + \boldsymbol{\Sigma}^m \begin{bmatrix} \boldsymbol{\varepsilon}_t^m \\ \boldsymbol{\varepsilon}_t^{\mathrm{MP}} \end{bmatrix}, \quad \begin{bmatrix} \boldsymbol{\varepsilon}_t^m \\ \boldsymbol{\varepsilon}_t^{\mathrm{MP}} \end{bmatrix} \sim N(0, I)$$

- monthly VAR(13)
- $\triangleright \Sigma^m$: Cholesky decomposition

Can we use shadow rate as similar summary of Fed actions as fed funds rate provided historically?

Can we use shadow rate as similar summary of Fed actions as fed funds rate provided historically?

Hypothesis I

$$H_0: \rho^{xs}(t < \text{Great Recession}) = \rho^{xs}(t > \text{Great Recession})$$

▶
$$p = 0.29 \text{ for } s_t^o$$

Can we use shadow rate as similar summary of Fed actions as fed funds rate provided historically?

Hypothesis I

$$H_0: \rho^{xs}(t < \text{Great Recession}) = \rho^{xs}(t > \text{Great Recession})$$

- $p = 0.29 \text{ for } s_t^o$
- p = 0.0007 for EFFR

Can we use shadow rate as similar summary of Fed actions as fed funds rate provided historically?

Macroeconomic Implications

Hypothesis I

$$H_0: \rho^{\mathsf{xs}}(t < \mathsf{Great} \; \mathsf{Recession}) = \rho^{\mathsf{xs}}(t > \mathsf{Great} \; \mathsf{Recession})$$

- p = 0.29 for s_t^o
- p = 0.0007 for EFFR

Hypothesis II

$$H_0: \rho^{sx}(t < \text{Great Recession}) = \rho^{sx}(t > \text{Great Recession})$$

- $ightharpoonup p = 1 \text{ for } s_t^o$
- p = 1 for EFFR

Can we use shadow rate as similar summary of Fed actions as fed funds rate provided historically?

Hypothesis I

$$H_0: \rho^{xs}(t < \mathsf{Great} \; \mathsf{Recession}) = \rho^{xs}(t > \mathsf{Great} \; \mathsf{Recession})$$

- $p = 0.29 \text{ for } s_t^o$
- p = 0.0007 for EFFR

Hypothesis II

$$H_0: \rho^{sx}(t < \text{Great Recession}) = \rho^{sx}(t > \text{Great Recession})$$

- p=1 for s_t^o
- p = 1 for EFFR

Implication: researchers can use shadow rate to update earlier studies that had been based on the historical fed funds rate Robustness

Historical decomposition

What if there had been no monetary policy shocks?

- ightharpoonup realized: $\varepsilon_t^{\mathrm{MP}} = \hat{\varepsilon}_t^{\mathrm{MP}}$
- counterfactual: $\varepsilon_t^{MP} = 0$ for ZLB

Unconventional monetary policy

reduced the shadow rate by 0.4% between 2011 and 2013.

Macroeconomic Implications

Historical decomposition

What if there had been no monetary policy shocks?

- ightharpoonup realized: $\varepsilon_t^{\mathrm{MP}} = \hat{\varepsilon}_t^{\mathrm{MP}}$
- counterfactual: $\varepsilon_t^{MP} = 0$ for ZLB

Unconventional monetary policy

▶ reduced unemployment by 0.13% in Dec 2013. ▶ More

Macroeconomic Implications

Counterfactual II

What if the shadow rate had been kept at r?

ightharpoonup counterfactual: $\varepsilon_t^{\mathrm{MP}}$ is such that $s_t^o = \underline{r}$ at ZLB

Unconventional monetary policy

▶ reduced unemployment by 1% in December 2013 ▶ More

Impulse resposne: full sample

A -25bps monetary policy shock

Full sample FAVAR(13) vs. ZLB FAVAR(1)

71 B with effective federal funds rate

Full sample FAVAR(13) vs. ZLB FAVAR(1)

ZLB with shadow rate

ZLB duration

$$\tau_t = \inf\{\tau_t \ge 0 | s_{t+\tau} \ge \underline{r}\}.$$

Method

Develop an approximation for bond prices in the SRTSM

Economics

- ► The shadow rate exhibits similar dynamic correlations with economic variables after the Great Recession as the fed funds rate did earlier in data.
- ▶ Unconventional monetary policy lowered the unemployment rate by 0.13% in December 2013.

Conclusion

Source: www.frbatlanta.org/cqer/researchcq/shadow_rate.cfm

Conclusion

ECB shadow rate

Pricing kernel

Factor dynamics:

$$X_{t+1} = \mu + \rho X_t + \Sigma \varepsilon_{t+1}, \quad \varepsilon_{t+1} \sim N(0, I).$$

Pricing kernel

$$m_{t+1} = r_t + \frac{1}{2}\lambda_t'\lambda_t + \lambda_t'\varepsilon_{t+1}$$
$$\lambda_t = \lambda_0 + \lambda_1 X_t$$

where $\mu^{\mathbb{Q}} = \mu - \Sigma \lambda_0$, and $ho^{\mathbb{Q}} =
ho - \Sigma \lambda_1$

Pricing equation

$$P_t^n = \mathbb{E}_t[\exp(-m_{t+1})P_{t+1}^{n-1}]$$

Bond recursions

$$a_{n} = \delta_{0} + \delta'_{1} \left(\sum_{j=0}^{n-1} \left(\rho^{\mathbb{Q}} \right)^{j} \right) \mu^{\mathbb{Q}} - \frac{1}{2} \delta'_{1} \left(\sum_{j=0}^{n-1} \left(\rho^{\mathbb{Q}} \right)^{j} \right) \Sigma \Sigma' \left(\sum_{j=0}^{n-1} \left(\rho^{\mathbb{Q}} \right)^{j} \right)' \delta_{1},$$

$$b'_{n} = \delta'_{1} \left(\rho^{\mathbb{Q}} \right)^{n}.$$

Model specification

r = 0.25, interest rate on reserves

three factors

Normalization: restrict Q parameters

Repeated eigenvalues

$$ho^{\mathbb{Q}} = egin{bmatrix}
ho_1^{\mathbb{Q}} & 0 & 0 \ 0 &
ho_2^{\mathbb{Q}} & 1 \ 0 & 0 &
ho_2^{\mathbb{Q}} \end{bmatrix}.$$

Kalman filters

State equation

$$X_{t+1} = \mu + \rho X_t + \Sigma \varepsilon_{t+1}, \varepsilon_{t+1} \sim N(0, I)$$

observation equation for SRTSM \Rightarrow extended Kalman filter

$$f_{n,n+1,t}^{o} = \underbrace{\underline{r} + \sigma_{n}^{\mathbb{Q}} g\left(\frac{a_{n} + b_{n}' X_{t} - \underline{r}}{\sigma_{n}^{\mathbb{Q}}}\right)}_{f_{n,n+1,t}^{SRTSM}} + \eta_{nt}, \eta_{nt} \sim N(0,\omega)$$

observation equation for GATSM ⇒ Kalman filter

$$f_{n,n+1,t}^{o} = \underbrace{a_n + b_n' X_t}_{f_{n,n+1}^{GATSM}} + \eta_{nt}, \eta_{nt} \sim N(0,\omega)$$

Approximation error for ZLB

Average absolute approximation error between 2009M1 and 2013M1

	3M	6M	1Y	2Y	5Y	7Y	10Y
forward rate error forward rate level	0.00	0.01	0.06	0.43	2.50	3.51	5.41
forward rate level	23	26	46	111	326	418	481
yield error	0.00	0.00	0.01	0.10	0.91	1.50	2.37

Robustness

Robustness

Robustness

		ρ -value for $ ho_1^{xs} = ho_3^{xs}$	\mid <i>p</i> -value for $ ho_1^{ extsf{sx}}= ho_3^{ extsf{sx}}$
	Baseline	0.29	1.00
A1	estimate <u>r</u>	0.18	1.00
A2	2-factor SRTSM	0.13	0.97
A3	Fama-Bliss	0.38	1.00
A4	5-factor FAVAR	0.70	1.00
A5	6-lag FAVAR	0.09	0.98
	7-lag FAVAR	0.19	0.97
	12-lag FAVAR	0.22	1.00

Historical decomposition

Counterfactual II

Impulse responses: forward guidance

A monetary policy shock to increase the ZLB by 1 year

Forward guidance vs. shadow rate

Unemployment rate decreases by 0.1% with

- a one year increase in the expected ZLB duration
- ▶ 15 basis-point decrease in the policy rate ▶ Back □