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Abstract

We analyze the optimal intervention policy for an emerging market central bank

which wishes to stabilize the exchange rate in response to a capital outflow shock, but

possesses limited reserves. Using a stylized framework, we show that the zero lower

bound on reserves combined with limited capital mobility generates a time inconsis-

tency problem, and we compare outcomes under full, zero and partial commitment. A

central bank with full commitment achieves a gradual exchange rate depreciation to

the pure float level by promising a path of sustained intervention, including a com-

mitment to exhaust reserves after particularly adverse shocks. A central bank without

commitment intervenes less, wishing instead to preserve at least some reserves forever,

and suffers a larger exchange rate depreciation. For more persistent shocks, the time

inconsistency problem is larger, and simple intervention rules can achieve welfare gains

relative to discretion. We relate the optimal intervention policy to the composition of

investors in the FX market.
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1. Introduction

How should central banks in emerging market economies (EMEs) intervene in the foreign

exchange (FX) market when faced with capital outflows? As capital flows to EMEs have

begun to retrench and reverse after the post-crisis inflows bonanza, and as new risks to the

global economy have surfaced, many countries are grappling with this question.

The principle that EME central banks may have reason to undertake sterilized FX inter-

vention in response to inflow shocks has become increasingly accepted. For a start, there is

growing recognition that owing to the widespread presence of financial market imperfections,

exchange rates can become disconnected from fundamentals and instead turn into a source

of shocks (e.g., Gabaix and Maggiori, 2015)1. Moreover, several papers have found that

sterilized FX intervention has traction on the exchange rate in EMEs, at least under some

circumstances (e.g., Blanchard, Adler and Filho, 2015; Chamon, Garcia and Souza, 2015)2.

As a result, policymakers and academics have conditionally endorsed the use of FX inter-

vention alongside monetary policy in the face of capital inflows (in particular, see Ghosh,

Ostry, and Chamon, 2016, and Blanchard, Ostry, Ghosh, and Chamon, 2015). Such research

has provided intellectual backing for the growing popularity among EMEs of managed float

regimes (as documented by Ghosh, Ostry, and Qureshi, 2015).

However, the optimal FX intervention policy for a managed float regime facing outflow

shocks is not well understood. Outflow shocks and inflow shocks are conceptually different,

because FX intervention to offset outflow shocks may result in the entire stock of reserves be-

coming depleted, and optimal policy needs to take this possibility into account. In addition,

both the stochastic dynamics of the shock and the categories of investors active in the FX

market may differ substantially between outflow and inflow shocks. In the absence of a clear

policy framework, policymakers as well as commentators in the financial press have con-

ventionally tended towards recommending no intervention except to counter severe market

dysfunction. Indeed, they have often used language associated with the bipolar cases of free

floats and pegs—for example, deeming reserves to have been “wasted” if the exchange rate is

allowed to move by the end of the outflow episode3—and judged it likely that interventions

1Gabaix and Maggiori (2015) show how balance sheet constraints on international financial intermediaries
cause the exchange rate to become sensitive to financial shocks in addition to the traditional shocks to imports
and exports, and they trace the impact of financially-driven changes in the exchange rate onto real variables
such as output and unemployment. These authors build on a long literature on exchange rate determination
in the presence of financially constrained agents. For example, Jeanne and Rose (2002) show that the
existence of noise traders in the FX market means that exchange rate movements may become disconnected
from fundamentals. Hau and Rey (2006) connect market incompleteness (specifically, the inability to hedge
foreign investments because of a short sale constraint on foreign bonds) to high exchange rate volatility.

2Blanchard, Adler and Filho (2015) assess the effects of intervention in response to global inflow shocks.
Chamon, Garcia and Souza (2015) analyze the case of Brazil during an outflow episode. For a more extensive
literature review, see table 1 of Ghosh, Chamon, and Ostry (2016). Those authors conclude that on the
whole, the evidence supports the notion that intervention has some traction on the exchange rate in EMEs.

3Wildau and Mitchell (2016) document that “Critics say PBoC [People’s Bank of China] spending on
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are “counterproductive”4, implying that they invite speculative attacks and thereby cause

an even worse depreciation than would have otherwise materialized.

In practice, EME central banks in managed float regimes have behaved in a heterogeneous

manner when faced with capital outflows. We highlight in this paper some notable cases of

outflow episodes across different EMEs where sterilized FX intervention was used. We do

this not to establish stylized facts for intervention, but rather, to gain some appreciation of

the judgments and trade-offs that central banks need to make and that even a simple model

should seek to capture5. Several salient features stand out: central banks must determine

how large their initial reserve stock is relative to the shock; they must assess the probability

that the shock continues for many periods; and they must evaluate the composition of

participants in the FX market, and judge whether a rapid reserves depletion and/or a sharp

exchange rate depreciation is likely to generate a panic.

In this paper, we analyze optimal FX intervention policy in response to capital outflows

in a managed float regime. We take explicit account of the zero lower bound on reserves,

which is a distinguishing feature of the outflows case, and derive its implications for the

optimal policy. We then show how the derived optimal policy depends on the nature of the

shock and the composition of participants in the FX market. For purposes of tractability

(bearing in mind that we are attempting in this paper to understand the basic fundamentals

of the problem), we focus on a stylized theoretical framework where the central bank has an

exchange rate target subject to an exchange rate equation, the latter of which nests various

forms of limited capital mobility, such as imperfect asset substitutability (e.g., Kouri, 1976,

and Blanchard, Giavazzi, and Sa, 2005) and imperfect arbitrage owing to balance sheet

constraints on international financial intermediaries (e.g., Gabaix and Maggiori, 2015)6. We

abstract from alternative policy tools such as interest rates in order to focus on the FX

intervention policies7. Nevertheless, despite the stylized framework, we believe that our core

insights are applicable across a broad range of more elaborate model set-ups.

Our key result is that the zero lower bound (ZLB) on reserves, combined with imperfect

capital mobility, generates a time consistency problem which in turn can have a large impact

on the optimal policy. Therefore, the central bank’s commitment power and communication

intervention has been a waste because it has only delayed further weakness in the renminbi.”
4Subramanian (2013), when assessing the effectiveness of India’s FX intervention during the taper

tantrum, states by way of background that “international experience suggests that sterilized intervention to
defend a currency, especially during crises, tends to be ineffective or counterproductive.”

5The specific outflow episodes we highlight are: Russia 2008Q2, Korea 2008Q2, Brazil 2013Q1, India
2013Q2, Russia 2013Q4, and China 2014Q1. See Section 2 for more details.

6Gabaix and Maggiori (2015) show that not all forms of limited capital mobility are equal: for there
to be a role for FX intervention, it must be that there is a financial imperfection that limits the ability of
financial intermediaries to arbitrage excess returns in the FX market.

7We do not explicitly consider capital outflow controls, which in our model would simply reduce the
magnitude of the outflow shocks. If such controls were perfectly effective, then they would eliminate the
need for FX intervention to defend the exchange rate.
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strategy are central to the set of implementable policies.

Starting our analysis in the deterministic outflow case (i.e., a constant outflow), we show

that a central bank with commitment is able to engineer a gradual exchange rate deprecia-

tion to the pure float level during the outflows episode (with the speed of the depreciation

being related to the central bank’s discount factor). It does so by promising a path of sus-

tained intervention in the future, which is aggressive enough so that the entire reserves stock

eventually becomes depleted. The expectation of intervention at a future date within the

outflow episode helps stabilize the exchange rate today.

However, the full commitment solution is not time consistent. In the time-consistent

solution, the central bank can ignore past promises and simply re-optimize at every date.

It intervenes less, both because it wishes to preserve reserves at every date for its own

future use in case the shock continues, and also because it recognizes that in the absence

of credible promises, the level of the stock of reserves in its vault is the only observable

variable that bolsters investors’ exchange rate expectations. As a result, irrespective of the

history of shocks, reserves never run out. The consequence of lower expected FX intervention

throughout the outflow episode is a larger exchange rate depreciation as soon as the outflow

episode begins8.

How can a central bank without full commitment escape the poor exchange rate stabi-

lization outcomes of the time-consistent policy? If the central bank has partial commitment,

i.e., it cannot commit to an arbitrarily defined intervention policy but it is able to commit

to simple intervention rules (such as a crawling peg or a rule to offset a fixed fraction of

any outflow shock), then some escape is possible. Committing to a rule mitigates the large

immediate depreciation that is associated with the time-consistent solution, and thereby

improves welfare.

Unlike in the alternative bipolar regimes of free floats and pegs, FX intervention and

depreciation are jointly optimal under a managed float, even after taking into account that

reserves may run out. This result contrasts with many conventional narratives that are

skeptical of FX intervention. Our result is, of course, conditional on FX intervention having

at least some traction on the exchange rate during the intervention episode.

Having characterized the deterministic outflow case, we turn next to the stochastic out-

flow case, and we show how the optimal policy responses depend on the assessed persis-

tence of the shock. We show that the persistence of the shock affects the timing of the

8The time-consistent solution must be solved using numerical fixed point methods. The solution proce-
dure is not trivial, and the stylized nature of our model makes the problem tractable enough to analyze under
a variety of parameter choices. Because of the zero lower bound constraint, we are not able to draw on the
numerical solution techniques in the literatures on linear-quadratic, and more general nonlinear, problems
(e.g., Levine and Pearlman, 2011; Ambler and Pelgrin, 2010; Blake and Kirsanova, 2011). Adam and Billi
(2007) numerically simulate a model with a zero lower bound on monetary policy rates, but they do not face
the problem of a non-shock state variable inside the Euler equation. Therefore, we need to implement what
is, to the best of our knowledge, a novel approach.
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full-commitment FX intervention (which is pushed further into the future for more persis-

tent shocks) and the level of the time-consistent FX intervention (which declines for more

persistent shocks). The reason for this comparative static is that the severity of the time

consistency problem is related to the shock’s assessed persistence. The more persistent is

the shock, the longer the outflow episode is expected to last, and the more important are in-

vestors’ expectations of future interventions in terms of determining the exchange rate today.

Therefore, the absence of credible promises to intervene in the future becomes more costly in

welfare terms. Simple FX intervention rules dominate the time-consistent solution for more

persistent shocks. Conversely, if the outflow shock is known to occur for one period only and

disappear thereafter, the optimal full-commitment and time-consistent policies coincide9.

Finally, we show how the optimal policy responses depend on the composition of investors

in the FX market. First, we consider the participation in the FX market of “panickers”: a

new class of foreign investors who enter the market not based on expected returns, but

who sell the domestic currency or reduce their FX lending to domestic banks when they

observe central bank reserves being rapidly depleted. If the propensity to panic is high, then

intervention has less traction on the exchange rate, and as the central bank undertakes more

and more intervention, such actions may become “counterproductive” on the margin—i.e.,

a further increase in FX intervention may depreciate the exchange rate. The result is poorer

exchange rate stabilization even if reserves are plentiful. Second, we discuss “Knightian

flight,” when a group of investors hold the currency because they (incorrectly) view it as a safe

asset, and consequently will sell all their holdings as soon as the exchange rate depreciates.

Such investors turn out to hurt welfare under full commitment, but their impact on welfare is

ambiguous under time consistency because they provide the central bank with the credibility

to implement a temporary peg and prevent a sharp immediate depreciation.

The remainder of the paper is structured as follows. Section 2 highlights some cases

where EME central banks have intervened in response to outflow shocks. Section 3 presents

our baseline model. Section 4 solves the model for the deterministic case, with subsections

on full commitment, time consistency, and simple rules. Section 5 solves the model for the

stochastic case, highlighting the role of shock persistence. Section 6 explores how the optimal

policy depends on the composition of the FX market. Section 7 concludes.

9At a conceptual level, the analysis of the stochastic case highlights why our core insight, regarding the
relation between the zero lower bound on reserves and time consistency, is likely to apply more generally
to other models in the literature. Suppose that the full-commitment policy for a model without a binding
constraint is applied. If the outflow shock process is such that the probability of reserves becoming fully
depleted in the future is above zero under this policy, then the mere possibility of the constraint being
binding in the future is enough to alter the optimal path today, and the amount by which today’s allocation
changes depends on investors’ expectations regarding future central bank policy.
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2. Heterogeneous Responses to Outflow Shocks

Several EME central banks have in fact undertaken sterilized FX intervention to support

their currencies in response to capital outflows and/or a sudden decline in inflows. Here

we describe some recent cases of outflow episodes. We do not seek to establish a list of

stylized facts regarding FX intervention, except for making the observation that central

bank behavior is highly heterogeneous and depends on both observable economic variables

and the central bank’s assessments about the economic environment. Instead, we use a

narrative approach to briefly outline the judgments and trade-offs that central banks need

to make. We attempt later to capture these judgments and trade-offs in our simple model.

We highlight the following key assessments that the central bank must make:

• The level of reserves relative to the shock’s magnitude (which we explore in Section 3).

• The persistence of the shock (which we explore in Section 4).

• The composition of participants in the FX market (which we explore in Section 5).

The following six capital outflow episodes help illustrate the relation between the above

assessments and the policies deployed by central bank EMEs:

I. Russia 2008Q3. The Central Bank of Russia (CBR) started with a large level of

reserves (USD 556bn, or 119 percent of GDP). Faced with a large temporary shock, as

the global financial crisis caused a collapse in oil prices and export revenues, the CBR

heavily intervened in order to “slow the pace of the rouble’s depreciation” and thereby

mitigate the “heavy strain on the balance sheets of banks, firms and households via the

significant level of foreign-currency-denominated debt that these agents had taken on”

(CBR-authored section in BIS, 2013). Reserves fell by USD 187bn over three quarters,

while the exchange rate depreciated by 31 percent. Conscious of the possibility that a

contraction in banks’ external lending might cause further depreciation, the CBR also

mitigated outflows by offering unsecured lending to banks.

II. Korea 2008Q3. The Bank of Korea (BOK) also started with a large level of reserves

(USD 258bn, or 95 percent of GDP) and intervened heavily during the global financial

crisis in order to achieve its twin goals: to “contain excessive exchange rate volatil-

ity” and to “alleviate the FX funding shortages of banks” (BOK-authored section in

BIS, 2013)10. The BOK also provided liquidity directly to banks with FX borrowing.

Reserves fell by USD 57bn before recovering, while the exchange rate depreciated by

24 percent. The BOK kept FX intervention secret, because they “believe that such

information could stimulate speculative trading in the FX market.”

10Despite Korea’s current account surpluses, Korean banks have significant FX borrowing because they
are intermediaries for the FX hedging motives of the Korean private sector. For more details, see BIS (2013).
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Figure 1: Selected Capital Outflow Episodes in EMEs
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Figure 1 (Continued)
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III. Brazil 2013Q2. The Brazilian Central Bank (BCB) faced a moderate decline in

inflows rather than an outright outflow in 2013, which started at the beginning of the

year and was exacerbated by the “taper tantrum” in May. The BCB started with

reserves of USD 374bn, or 60 percent of GDP. Following a period of discretionary FX

intervention, the BCB decided to announce an intervention rule of daily sales of USD

500m in currency forwards, insuring investors against a domestic currency depreciation,

which was reduced in size at the end of the year11. Reserves fell by USD 18bn and the

exchange rate depreciated by 14 percent.

IV. India 2013Q3. India suffered from a reversal in capital flows during the time of

the “taper tantrum,” which turned out to be moderate and short-lived, but which

was seen by some at the time as a harbinger of future trends as advanced economies

began to normalize monetary policies. The Reserve Bank of India’s (RBI) moderate

reserves were large relative to the immediate shock (USD 264bn, or 58 percent of

GDP), although not to a sustained continuation of outflows. The RBI intervened by

lending in USD to state-owned oil companies (Subramanian, 2013), and later allowing

FX losses by the companies to be repaid in rupees instead of USD (Indian Express,

2014). The intervention was small, and reserves fell by just USD 5bn; the exchange

rate depreciated by 5 percent.

V. Russia 2014Q1 and Q4. Russia was hit by a sequence of two outflow shocks in

2014, the first as a result of the beginning of the military intervention in Ukraine,

and the second later in the year owing to Western sanctions and the collapse in oil

prices. Relative to the 2008 crisis, the CBR started with a lower level of reserves (USD

471bn, or 78 percent of GDP), and the shock was smaller (albeit still large) and more

permanent. Reserves fell by USD 160bn over five quarters (so intervention was smaller

but more sustained than in the 2008 crisis), while the exchange rate depreciated by

44 percent over five quarters and continued depreciating after the intervention had

been stopped. The CBR also provided capital support to banks to ease their FX

deleveraging process (IMF, 2015).

VI. China 2014Q2. The People’s Bank of China (PBC) started with the largest level

of reserves of all the EME examples considered here (USD 3.97tn, or 174 percent of

GDP). As the Chinese economy weakened in 2014, capital outflows picked up, and

then worsened in mid-2015. The persistence of the shock remained unclear. During

this period, China was moving to a managed float regime from a fixed peg. The

PBC used its warchest of reserves to maintain the exchange rate almost unchanged

for five quarters before allowing some depreciation. While some observers deemed the

11Using a variety of approaches, Chamon, Garcia and Souza (2015) argue that the announcement of the
new intervention rule was effective in mitigating the depreciation of the Brazilian real.
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interventions to have been “wasted” because the exchange rate eventually moved, some

PBC officials were reportedly cautiously pleased that they had managed to contain

some of the depreciation pressures, because a sharp depreciation carried the risk of

generating a larger panic: “Once confidence is lost, it can’t easily be restored” (Wildau

and Mitchell, 2016)12.

We now turn to constructing a model which can help shed light on optimal policy as a

function of the level of reserves, the nature of the shock, and the composition of the FX

market. We begin with a simple baseline model and then extend it in several steps to shed

light on several of the practical considerations which emerge from the above narratives.

3. Stylized Model

Our starting point is a stylized model of exchange rate determination motivated by imperfect

arbitrage between domestic and foreign assets. The capital flow equation is as follows:

kt
(
st
)

= a
(
Estet+1

(
st+1

)
− et

(
st
))

+ zt
(
st
)
, (1)

where kt represents capital outflows, et is the exchange rate (defined so that an increase

means a depreciation), and zt denotes a capital outflow shock. st is the state of nature

in period t = 0, 1, 2, ... and st ≡ {s0, s1, s2, ..., st} is the history of shocks up to period t.

Estet+1 (st+1) ≡
∑

st+1�st et+1 (st+1) is the expected exchange rate for period t + 1 over the

histories st+1 which are feasible given the history st up to period t.

A finite value for a reflects a limit to arbitrage by the private sector, which in turn

creates an opening for welfare-improving central bank policies. By contrast, as the parameter

a→∞, the equation above tends to the standard perfect-arbitrage uncovered interest parity

condition. Our specification is conceptually related to the framework in Gabaix and Maggiori

(2015), where there is a limit to the arbitrage between domestic and foreign assets because

the financial intermediaries who must conduct such arbitrage face balance sheet constraints13.

Notice also that the portfolio balance models of Kouri (1976) and Blanchard, Giavazzi, and

12Wildau and Mitchell (2016) document the anonymous PBC official’s comments as follows: “The cost of
intervention in terms of reserves has been high but this policy can’t be evaluated just in terms of numbers.
Once confidence is lost, it can’t easily be restored. Then a lot of bad things can happen.”

13Our parameter a can be compared with the variable 1
Γ in Gabaix and Maggiori’s (2015) framework,

where Γ is related to the portion of shareholders’ funds that financial intermediaries are able to steal, and
therefore measures the strength of financial frictions for investors. Under this interpretation, as a → ∞,
Γ → 0 and financial frictions disappear, so perfect arbitrage becomes possible. In our model, however,
unlike in Gabaix and Maggiori’s setup, tomorrow’s exchange rate is not assumed to be determined by the
unwinding of carry trades undertaken today. The reason is that we imagine a large number of different
agents undertaking new carry trades in every period, with the net capital outflow being determined by the
expected depreciation between today and tomorrow rather than by past transactions.
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Sa (2005) produce exchange rate equations which are broadly consistent with our above

equation. We implicitly assume that the domestic and foreign interest rates are identical or

that the wedge between them is constant (and therefore absorbed into the shock zt (st)), so

that the policy rate is not a separate item in the toolkit14.

We impose a simple linear formulation for the current account surplus, which is normal-

ized so that the current account is in balance when et (st) = 0:

cat
(
st
)

= cet
(
st
)
. (2)

Finally, the central bank’s policy variable is the level of sterilized FX intervention ft (st):

ft
(
st
)
≡ Rt

(
st−1

)
−Rt+1

(
st
)

subject to Rt+1

(
st
)
≥ 0 and ft

(
st
)
≥ 0, (3)

where Rt (st−1) is the stock of reserves that is available at the beginning of time t and is

determined by the FX intervention policies up to time t − 1, and R0 is the exogenous level

of initial reserves. The first constraint is the zero lower bound (ZLB) on reserves, so the

central bank is conscious of the possibility that reserves may run out. Since we are focused

on an outflow episode, we also impose (for analytical convenience) that reserve accumulation

is not possible, but our core results are robust to the relaxation of this assumption.

The balance of payments identity is as follows:

kt
(
st
)
≡ cat

(
st
)

+ ft
(
st
)
. (4)

Substituting equations (1), (2), and (3) into the identity (4), we derive the reduced set of

equations that fully characterizes the feasible set of the model.

Definition 1 (Reduced-form model) The reduced-form version of the model is described

by the equations for the exchange rate and FX intervention:

et
(
st
)

=
1

a+ c

(
zt
(
st
)
− ft

(
st
)

+ aEstet+1

(
st+1

))
(5)

ft
(
st
)

= Rt

(
st−1

)
−Rt+1

(
st
)
∈
[
0, Rt

(
st−1

)]
. (6)

The exchange rate equation can be iterated forward to yield:

et
(
st
)

=
1

a+ c
Est

∞∑
i=0

(
a

a+ c

)i [
zt+i

(
st+i
)
− ft+i

(
st+i
)]
. (7)

14Ghosh, Ostry and Chamon (2016) show in a model without a lower bound on reserves that if the policy
rate is available, it should be used alongside FX intervention so as to stabilize the exchange rate (i.e., higher
interest rate after outflow shocks). We abstract from such considerations in this paper and focus instead on
the simplest model with a zero lower bound on reserves.
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Therefore, in our model, FX intervention affects the exchange rate. This result is consistent

with the empirical evidence for EMEs in Blanchard, Adler, and Filho (2015). Our model

includes an expectations channel: FX intervention to support the exchange rate in future

periods supports the exchange rate today as well. One unit of FX intervention today appreci-

ates the exchange rate by 1
a+c

today, while one unit of FX intervention tomorrow appreciates

the exchange rate today by the lower amount a
(a+c)2

. We denote the pure float exchange rate

level e (st) as the level of the exchange rate in the absence of any intervention at all.

In this paper, we focus on two different stochastic processes for outflow shocks.

Definition 2 (Capital outflow shock) The outflow shocks {zt (st)}∞t=0 are assumed to have

one of the following structures:

• Deterministic constant: zt (st) = z > 0 for all t and st.

• Finite markov with absorbing state: {zt (st)}∞t=0 evolves according to following Markov

transition matrix, where the columns represent zt (st) and the rows represent zt+1 (st+1):

z 0

z

0

[
p 1− p
0 1

]
, where z0 (s0) = z > 0.

(8)

The deterministic shock involves a constant outflow forever, which means that irrespective

of the initial level of reserves, it is impossible to offset the entire shock. Section 4 is devoted to

the case of deterministic outflows, and characterizes the full-commitment solution, the time-

consistent solution, and the solutions under simple FX intervention rules. The stochastic

shock begins at an outflow level of z and then in every period, it has a probability p of

persisting at the same level into the next period, and a probability 1 − p of falling to zero

and remaining there forever. Irrespective of the initial level of reserves, the probability that

FX intervention can fully offset the entire sequence of capital outflow shocks is less than one.

Section 5 focuses on the stochastic outflows case.

Finally, the central bank’s objective function shows a preference for stabilization.

Definition 3 (Welfare objectives) Given a discount factor β ∈ [0, 1), a given state-

contingent sequence of FX intervention {ft (st)}∞t=0 is evaluated in terms of the deviations of

the sequence of exchange rates {et (st)}∞t=0 from a given target e?:

W (R0,
{
ft
(
st
)}∞

t=0
) = −Es0

[
∞∑
t=0

βt
(et (st)− e?)2

2

]
. (9)

e∗ 6= e (st) is the exchange rate target relevant for the episode. This specification captures

in reduced form the notion that exchange rate fluctuations can be destabilizing under certain
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conditions, for example by causing adverse shifts in the terms of trade for households, or

by tightening the borrowing constraints of domestic agents who borrow in foreign currency

(e.g., Aghion, Bacchetta, and Banerjee, 2001; Mendoza, 2002)15.

Notice that our model is designed for EMEs with managed floats, and e∗ does not rep-

resent an exchange rate peg: there is no obligation that the exchange rate be maintained

at that level as long as possible. When faced with a permanent shock, e∗ represents the

initial pre-shock exchange rate which the central bank wishes to minimize deviations from,

but knows is not feasible in the long run. When faced with a temporary shock, e∗ represents

both the initial pre-shock exchange rate and the long-run exchange rate, but the shock may

temporarily cause the actual exchange rate to depreciate above e∗.

We conclude this section with a note on the generality of the results that can be derived

from this model. On the one hand, our optimal solutions for the exchange rate path and FX

intervention level will clearly depend on the functional forms for welfare and the exchange rate

equation outlined above, and on our decision to ignore FX accumulation. Nevertheless, the

qualitative effect of the ZLB on the time consistency of the solution, and on the comparative

levels of FX intervention and welfare across different degrees of central bank commitment,

will robustly apply across a wide range of models, as long as in those models, there exists

a history {st|Pr (st) > 0} at which reserves would run out if the central bank followed the

unconstrained full-commitment policy.

4. The ZLB on Reserves and Time Consistency

In this section, we prove that the ZLB on reserves, combined with imperfect capital mobility,

generates a time consistency problem which in turn can have a large impact on the optimal

policy. In practical terms, the implication is as follows. For very large levels of reserves,

the optimal FX intervention policy does not depend much on the degree of commitment

of the central bank, and takes the form of fully offsetting the outflow shock and keeping

the exchange rate stable. For low to moderate levels of reserves, the optimal FX interven-

tion policy depends on the central bank’s commitment power. If the central bank has high

commitment power (perhaps owing to an already-existing and clearly-communicated FX in-

tervention strategy, or an extensive history of prior interventions), it can engineer a gradual

depreciation to the pure-float level (as many EME central banks in section 2 attempted to

achieve). In the absence of commitment power, the central bank may be compelled to un-

15In a standard New Keynesian (NK) model with imperfect financial markets, monopolistic competition,
and home bias, a squared quadratic term for the exchange rate around its steady state level will naturally be
a part of the central bank’s objective function, when the policy rate is not included as an instrument in the
policymaker’s toolkit (see, for example, Cavallino, 2015). More broadly, our objective function is intended
to also capture in reduced form a range of costs stemming from balance sheet effects that have not yet been
fully captured in standard NK treatments, but which are a key worry for EME policymakers.
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dertake only small FX intervention and to let the exchange rate depreciate; and surprisingly,

the ability of the central bank to stabilize the exchange rate is worse for more patient central

banks. A central bank with some commitment power, but with less of a history in under-

taking heavy interventions and/or facing investors with less anchored expectations, would

find it optimal to announce a simple FX intervention rule which involves sustained future

intervention (as in the Brazilian outflow episode in section 2).

Throughout this section, we focus on the deterministic capital outflow shock described

in definition 2, where zt (st) = z > 0 for all t and st. The pure-float exchange rate is now

e (st) = e = z
c
. The value of every variable depends only on time t and not otherwise on

the state of nature st, so the path of every variable {xt (st)}∞t=0 can now be written simply

as {xt}∞t=0. Expectation terms are no longer needed, because there is no uncertainty, so

Estxt+1 (st+1) can be written simply as xt+1. We return to the stochastic outflow shock in

the next section. The proofs for all the results in this paper are relegated to the Appendix,

subsection 8.1.

4.1. Constant outflows z under full commitment

A central bank with full commitment credibly commits in period t = 0 to the entire future

FX intervention path {ft}∞t=0. This promised FX intervention policy pins down the path of

exchange rates {et}∞t=0. All policy promises are feasible and unbreakable, so foreign investors

expect central banks to keep their word. Of course, full commitment is not a realistic

assumption, but it establishes a benchmark for the second-best policy and welfare level16.

Definition 4 (Commitment problem) The commitment solution comprises paths of FX

intervention {ft}∞t=0, exchange rates {et}∞t=0 and reserves stocks {Rt+1}∞t=0 which solve:

W FC (R0) = max
{et,ft}∞t=0

−
∞∑
t=0

βt
(et − e?)2

2
(10)

subject to, for each period t:

Γt : et =
1

a+ c
[z̄ − ft + aet+1]

Πt : Rt −Rt+1 = ft

Ψt : ft ≥ 0

Φt : Rt ≥ ft

16The maximum welfare achievable through the use of FX intervention will be below the first-best welfare
level because reserves are by nature a non-contingent instrument, and therefore are welfare-inferior to the
first-best instrument of history-contingent insurance.
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Λ : R0 ≥
∞∑
t=0

ft,

where the respective multipliers on the (in)equalities are Γt, Πt, Ψt, Φt, and Λ. The initial

level of reserves R0 is given exogenously.

Notice that in each period t, the exchange rate et is affected by the FX intervention in the

same period ft and by the next period’s exchange rate et+1. The latter variable is a sufficient

statistic capturing the effect of the entire promised path of future FX interventions {ft+i}∞i=1

on et. Therefore, the commitment problem can be written using the Bellman formulation.

Lemma 1 (Bellman representation) The commitment solution solves:

vFC (R, µ) = max
e,R′,µ′

{
−(e− e∗)2

2
+ βvFC (R− f, µ′)

}

subject to:

γ : e =
1

a+ c
[z̄ − f + aµ′]

π : R−R′ = f

ψ : f ≥ 0

φ : R ≥ f

δ : µ = e

σ : µ′ ≥ ē− 1

a+ c
R′,

where the respective multipliers on the (in)equalities are γ, π, ψ, φ, δ, and σ, and where the

final constraint is derived recursively from the definition of the feasible set M (R):

M (R) =

{
µ : µ =

1

a+ c
(z − f + aµ′) for some µ′ ∈M (R′) and f = R−R′ ∈ [0, R]

}
.

Therefore, the infinite-horizon problem can be broken down into a sequence of two-

period problems, in each of which the central bank has two policy instruments: today’s FX

intervention f (which must validate the promise µ for today’s exchange rate that has been

inherited from the past17) and today’s promise for tomorrow’s exchange rate µ′. Because of

ZLB on reserves, the lowest exchange rate µ′ that can be promised for the next period is

related to the level of reserves R′ that is left for the next period18. We need to make sure

that the optimal policy derived never violates this condition.

17The variable µ is a pseudo-state variable, in the terminology of Kydland and Prescott (1980), and we
need to add the separate “promise-keeping” constraint, µ = e, to keep track of it.

18It turns out that the most appreciated exchange rate that is feasible is achieved by spending the entire
stock of reserves immediately. This result will be important for the time-consistent case.
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In what follows, we stay within the notation of the infinite-horizon problem (we return to

the Bellman representation again in subsection 4.2, because the time consistency problem can

be solved only by recursive methods). We first derive the marginal value of FX intervention

for any period t.

Lemma 2 (Marginal value of intervention) The marginal value of FX intervention at

date t on welfare at date 0 is:

Γt =
t∑

u=0

βu
(

a

a+ c

)t−u
(eu − e∗) . (11)

The marginal effect on date 0 welfare of FX intervention in period t is positive in every

period t, and its time path depends on the interplay between opposing forces. On the one

hand, the promise of FX intervention in any period t appreciates exchange rates in all prior

periods. This effect grows as t increases, causing the marginal value of intervention evaluated

at date 0 to increase over time. On the other hand, the central bank’s welfare criterion

discounts the future, and intervention in period t has a stronger effect on the exchange rate

in periods u ≤ t than does intervention at future dates. These factors tend to reduce the

marginal value of intervention over time.

Lemma 3 (No intervention case) When {ft}∞t=0 = {0}, the marginal value of interven-

tion is hump-shaped with one maximum in period t∗ = arg max
t
{Γt} > 0.

Lemma 4 (Small initial reserves) If the initial level of reserves is very small, then it is

optimal to use all reserves in period t∗.

Figure 2: Full Commitment, Small Initial Reserves R = 0.1
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Figure 2 illustrates both the above results using baseline parameters such that 1
β

= a+c
c

,

e∗ = 0, and z̄ = 0.1. Because of the hump-shaped graph for Γt, even though the outflow
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episode begins at t = 0, the optimal strategy of the central bank is not to intervene at t = 0,

but at some point in the future t∗ > 0. The promised future intervention causes all prior

exchange rates to appreciate slightly below the pure float level e.

Using the principle that reserves are optimally used in periods when the marginal value

of intervention is the highest, we can now derive the general solution.

Proposition 1 (Euler equation) At any date t such that ft is in the interior of its feasible

set (i.e., intervention is used and reserves have not run out yet):

Γt = (a+ c) Λ (12)

(et − e∗) = β (et+1 − e∗) . (13)

Theorem 1 (Commitment solution) For a positive level of initial reserves R0, there ex-

ists a non-empty subset of consecutive periods [t1, T ] ⊂ [0,∞) at which FX intervention is

optimal: FX intervention is zero for t < t1, positive for t ∈ [t1, T ], and zero for t > T , since

reserves run out in period T . The exchange rate follows the path:

et =


ē
(

1−
(

a
a+c

)t1−t)+
(

a
a+c

)t1−t et1 ∀t ∈ [0, t1)

e∗ + βT+1−t (ē− e∗) ∀t ∈ [t1, T ]

ē ∀t ∈ (T,∞) .

(14)

Within [t1, T ], FX intervention satisfies:

ft =

[
1

β
− a+ c

a

]
aet +

[
1− 1

β

]
ae∗ + z̄. (15)

which is flat when 1
β

= a+c
a

, larger and upward-sloping when 1
β
> a+c

a
, and smaller and

downward-sloping when 1
β
< a+c

a
. T is defined by the feasibility condition:

(ē− e∗)
{
c (T + 1− t1) + [a− (a+ c) β]

1− βT+1−t1

1− β

}
= R0. (16)

Corollary 1 (Intervention path) The intervention period [t1, T ] satisfies:

t1

{
> 0 for R0 < R

= 0 for R0 ≥ R,
for some R ∈ R++ (17)

lim
R0→∞

T =∞. (18)

According to theorem 1, the optimal exchange rate path during [t1, T ] comes directly from

the quadratic form of the welfare function and the preference parameter β. By contrast, the
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FX intervention path depends on the solution of a separate sub-problem which compares the

preference parameter 1
β
, capturing the optimal rate of exchange rate depreciation, against

a+c
a

, which captures the rate of depreciation that would be achieved using a constant FX

intervention path. In the knife-edge case when 1
β

= a+c
a

, these two depreciation rates are

identical and a constant FX intervention path is optimal.

Figure 3: Full Commitment, Various Values of R
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Figure 4: Full Commitment, Various Values of a
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Figure 5: Full Commitment, Various Values of β
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The above results are illustrated in figure 3, which again features 1
β

= a+c
a

, e∗ = 0, and

z̄ = 0.1. Look first at the graphs for R0 = 1 in order to understand theorem 1. As soon as

the shock strikes at date t = 0, there is some depreciation of the exchange rate. During the

periods [0, t1), there is no FX intervention but nevertheless, the exchange rate appreciates

in the anticipation of future FX intervention. During the periods of intervention [t1, T ], the

deviation of the exchange rate from its target e∗ grows by a factor of 1
β

in every period.

At the end of the intervention period, reserves run out and the exchange rate remains at ē

forever. Because 1
β

= a+c
a

, FX intervention is completely flat at ft = z̄ during [t1, T ].

Next, to observe corollary 1 in action, see how the graphs in figure 3 vary as the initial

level of reserves R0 varies. The higher is R0, the earlier that intervention begins and the

later that reserves run out, so the longer is the intervention period [t1, T ], and the greater

the stabilization of the exchange rate. For initial reserves R0 sufficiently large, t1 = 0. As

R0 →∞, T →∞ and the exchange rate is perfectly stabilized at the target e∗.

Figures 4 and 5 show some comparative statics exercises with respect to a and β. The

higher is a, the lower the traction of FX intervention on the exchange rate. Therefore, there is

a sharper immediate depreciation above e∗ to begin with, and the intervention interval [t1, T ]

shrinks, with more intense FX intervention being necessary within that interval. The lower

is β, the more the central bank values exchange rate stabilization in early periods relative

to later periods, so the central bank intervenes earlier and more aggressively. The time path

of FX intervention becomes upward-sloping because the higher optimal depreciation rate 1
β

generates capital outflows which are higher and grow rapidly over time, and FX intervention

is increasingly required to offset the impact of these outflows.

Finally, we conclude this section with an observation which motivates the next section.

Remark 1 (Time consistency) The commitment solution is not time consistent.

Under full commitment, the central bank promises to intervene in the future because

intervention in the future affects exchange rates over a long time period. This logic holds in

every period, so if the central bank were allowed to re-optimize tomorrow, it would postpone

intervention to the future, and actual intervention would fall below the previously promised

level. The easiest way to see this is when the optimal strategy under commitment does

not involve any FX intervention during the first few periods, as is the case under several

parameter specifications in figures 3, 4 and 5. Then a central bank undertakes no intervention

in period t = 0 and promises intervention for some intervention interval [t1, T ], where t1 > 0.

When the central bank re-optimizes in any future period t, it again undertakes no intervention

in period t and promises intervention instead for the interval [t1 + t, T + t]. This continues

forever, without any intervention ever actually occurring.

Clearly, investors should never believe the promises of a central bank who can re-optimize

its entire future path of intervention in some future period t, ignoring the promises made in

previous periods.
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4.2. Constant outflows z under time consistency

When the central bank has no commitment power at all, its promises regarding FX interven-

tions at future dates are no longer credible. Instead, the solution for FX intervention must

be time consistent: the central bank re-optimizes in every period, ignoring the promises of

the past. Therefore, neither the optimal policy nor investors’ exchange rate expectations

depend on such promises. Instead, they depend on the only state variable of the problem:

the level of reserves. The FX intervention policy and exchange rate policy can be written as

the functions f (R) and e (R) respectively.

While the full-commitment solution establishes an upper bound for the welfare of EME

central banks, the time-consistent solution necessarily achieves lower welfare because com-

mitment power is valuable in our model. In practice, every central bank has an intermediate

degree of commitment power, lying somewhere between the two extremes.

Definition 5 (Time-consistent problem) The time-consistent FX intervention policy f (R)

and exchange rate policy e (R) satisfy the following conditions:

• They are fixed points of the Bellman operator:

vTC (R) = max
e,R′

{
−(e (R)− e∗)2

2
+ βvTC (R′)

}
(19)

subject to:

γ : e(R) =
1

a+ c
[z̄ − f(R) + ae(R′)]

π : R−R′ = f(R)

ψ : f(R) ≥ 0

φ : R ≥ f(R),

where the respective multipliers on the (in)equalities are γ, π, ψ, and φ, and where the

same recursive feasible set for exchange rates that we saw in the full commitment case

still applies: e (R) ≥ e− 1
a+c

R.

• They are infinitely differentiable: e (R) ∈ C∞ ([0,∞)) and f (R) ∈ C∞ ([0,∞)).

• Within the set of functions satisfying the above two bullets, select the function that

maximizes the central bank’s welfare from the perspective of t = 0.

Unlike the full-commitment problem, the time-consistent solution can only be derived as

a fixed point to a Bellman operator. In economic terms, the central bank must now take

as given the function describing investors’ expectations about next period’s exchange rate,
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where those investor expectations come from knowing that the central bank will again face

the same Bellman problem at every date in the future19.

Using this Bellman operator, we can derive the general solution.

Proposition 2 (Generalized Euler equation) Let f (R) and e (R) be solutions to def-

inition 5 such f (R) ∈ (0, R) for all R. Then they satisfy the following generalized Euler

equation and exchange rate equation:

(e (R)− e∗) [1 + aeR (R− f (R))] = β (e (R− f (R))− e∗) (20)

e (R) =
1

a+ c
[z − f (R) + ae (R− f (R))] . (21)

Theorem 2 (Time-consistent solution) For 1
β
> a+c

c
, there exists no time-consistent

solution. For 1
β
≤ a+c

c
, there may exist a time-consistent solution; such a solution satisfies

the conditions in proposition 2 and f (R) ∈ (0, R) for all R. In particular, as R→ 0:

e (R)→ e and eR (R)→ β − 1

a
, (22)

and as R→∞:

e (R)→ e∗ and eR (R)→ 0. (23)

Corollary 2 (Reserves undepleted) For 1
β
≤ a+c

c
, any time-consistent solution features

Rt > 0 for all t.

We first use the above analytical results to provide some intuition regarding the time-

consistent solution (if it exists). Then, we turn to our novel numerical solution methodology

to characterize the solution.

To build intuition, let us first interpret each term of the generalized Euler equation:

1

a+ c
(e (R)− e∗) =

1

a+ c
β (e (R− f (R))− e∗)− a

a+ c
eR (R− f (R)) (e (R)− e∗) . (24)

The left hand side captures the marginal benefit of spending an extra unit of reserves today:

the effect of FX intervention on today’s exchange rate, 1
a+c

, multiplied by the marginal

19Regarding the second bullet, we assume that the functions of interest are infinitely differentiable because
we can prove that otherwise, there exists some region of R for which the policy functions f (R) and e (R)
are not defined, and therefore that a solution does not exist. Regarding the third bullet, we can prove
that for every solution of the Bellman operator where reserves asymptotically tend to 0 as t → ∞, there
exists a horizontal translation of the solution which also satisfies the Bellman operator but where reserves
asymptotically go to a positive value. The third bullet rules out these horizontal translations as acceptable
solutions. The economic interpretation is that we assume that the EME central bank can coordinate investors’
expectations to its preferred solution out of the set of time-consistent solutions.
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utility of consumption today, (e (R)− e∗). The right hand side has two terms capturing the

marginal benefit of leaving an extra unit of reserves for tomorrow. The first term assumes

that the extra unit is entirely spent tomorrow, and is the effect of FX intervention on

tomorrow’s exchange rate, 1
a+c

, multiplied by the discounted marginal utility of consumption

tomorrow, β (e (R− f (R))− e∗). The second term is the effect of having an extra unit of

reserves tomorrow on today’s exchange rate: the strength of the expectations channel, a
a+c

,

multiplied by the change in expectations when the level of reserves left for tomorrow is higher,

eR (R− f (R)), multiplied by the marginal utility of consumption today, (e (R)− e∗)20. The

solution will involve eR (R− f (R)) < 0, with higher reserves causing an appreciation in

exchange rate expectations.

From this argument, and assuming an interior solution for now (i.e., f (R) ∈ (0, R) for all

R) such that the generalized Euler equation holds, we can see that the capacity for exchange

rate stabilization depends on the degree of patience of the central bank. The less patient is

the central bank, the more it wants to spend all its reserves today, unless the effect of leaving

reserves on exchange rate expectations, eR (R− f (R)), is large in magnitude. Therefore, as

β decreases, eR (R− f (R)) must become more negative. Conversely, the more patient is

the central bank, the less negative eR (R− f (R)) needs to be. Since expectations must

be fulfilled under rational expectations, we can conclude that reserves are more effective in

preventing exchange rate depreciations, i.e., eR (R) is more negative, if the central bank is

more impatient21. As R → 0, the eR (R− f (R)) necessary for an interior solution tends to

the expression β−1
a
< 0.

We next argue that interior solutions cannot exist for very impatient (i.e., low β) central

banks. The reason is that there is a limit to how negative eR (R− f (R)) can feasibly be: in

particular, from footnote 18 of the previous subsection, we know that the most appreciated

exchange rate possible is the one achieved by spending all reserves today, so the e (R) function

must lie above that lowest possible exchange rate. As R → 0, this condition reduces to

eR (0) ≥ − 1
a+c

. Therefore, for β−1
a

< − 1
a+c
⇔ 1

β
> a+c

c
, there exists no interior solution for

some nonempty region of R in the neighborhood of 022. What happens instead is that for

20It might appear odd that the first term assumes that the extra reserves are entirely spent tomorrow
while the second term, as long as eR (R− f (R)) > − 1

a+c , assumes that they are not. However, there is no
paradox here: the extra reserves are not entirely spent tomorrow, but from the envelope condition (which
assumes optimization of the path from tomorrow onward), we can treat them as if they are, for the purpose
of calculating the first term.

21This result can also be heuristically derived from a related conceptual argument. A central bank with full
commitment cares about past promises, today’s utility, and the continuation utility; a time-consistent central
bank cares only about the last two. Caring about the continuation utility encourages the central bank to
preserve reserves and intervene little, breaking past promises, and this happens in all periods so intervention
is lower in all periods and exchange rate stabilization is poorer. Therefore, reducing the weight on the
continuation utility in the central bank’s time-consistent maximization problem can help raise intervention
and exchange rate stabilization in all periods.

22The assumption of continuous differentiability means that violations that occur in the limit as R → 0
remain violations over R in a neighborhood of 0.
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small R, the constraint is binding, f (R) = R, and all reserves are used up, while for larger

R, they are not.

From this argument, we infer that the time-consistent solution does not exist for very

impatient central banks. We can prove that a non-interior solution involves a kink in the e (R)

function, which because of the inclusion of the eR (R− f (R)) term in the Euler equation

gets transmitted into making the e (R) and f (R) functions undefined for some region of R.

The economic interpretation of an undefined region is that for some R, it is impossible to find

investor expectations regarding future central bank actions that satisfy subgame-perfection,

i.e., the expectations regarding how the central bank would behaves as R varies, are not

fulfilled if R does indeed vary off the equilibrium path23.

Finally, for central banks that are moderately or highly patient, i.e., 1
β
< a+c

c
, interior

solutions do satisfy the feasibility condition eR (0) ≥ − 1
a+c

, and the central bank never uses

up its reserves in any period. Therefore, as corollary 2 states, when the time-consistent

solution exists, it involves a time path of FX intervention where reserves never get depleted.

Next, we take advantage of the tractable nature of our stylized model in order to solve

numerically for the time-consistent solutions f (R) and e (R).

The first step of our numerical procedure is to construct a two-part guess for the shape

of the policy functions. We guess that near R = 0, the functions behave according to their

Taylor series expansion evaluated at R = 024. We guess that as R→∞, the functions f (R)

and e (R) converge to the levels implied by the full-commitment solution, with f (R) → z,

e (R) → e∗ and eR (R) → 0, so the degree of commitment does not matter for the solution

when reserves are large. We also guess that the convergence eR (R) → 0 is rapid enough

that the generalized Euler condition converges to the full-commitment Euler condition for

large reserve levels. The second step of our numerical procedure is to put this two-part guess

for the shape of the policy functions into a simultaneous equation solver for equations (20)

and (21). We use the Levenberg-Marquardt method and cubic splines to interpolate and

calculate the derivatives eR (R).

Figure 6 illustrates our numerical solution for the policy functions f (R) and e (R) in

the time-consistent case. The time consistency problem is related to the level of reserves,

because that level reflects the proximity of the ZLB constraint on reserves. FX intervention

is low near R = 0 and converges to z as R→∞. The exchange rate is at the pure float level

e at R = 0, and converges to the exchange rate target e∗ = 0 as R→∞.

Figure 7 illustrates the time-consistent solution for the specification 1
β

= a+c
a

, e∗ = 0, and

z̄ = 0.1 and setting R0 = 1. FX intervention begins as soon as the outflow episode begins

at t = 0, and then diminishes over time. Intervention actually occurs in every period, but is

23For more details, see the proof of theorem 2 in the appendix.
24Appendix subsection 8.2 shows the Taylor expansions for f (R) and e (R) at R = 0, as the order of the

Taylor expansions are increased. The notion that the functions converge around R = 0 is tenable. However,
the Taylor expansions for f (R) and e (R) do not converge as R→∞.
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much lower than z̄ in all periods. The exchange rate depreciates more in the first period than

it does in the full-commitment case. Reserves never run out, because intervention becomes

miniscule at low reserve levels.

Figure 6. Time Consistent Policy Functions
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Figure 7: Time Consistent, R = 1
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The intuition for low FX intervention and poor exchange rate stabilization is that in

the time-consistent case, the central bank feels no obligation to fulfil any past promises and

it knows that investors’ expectations depend positively on the level of reserves left at the

end of each period. For both these reasons, the central bank wishes to preserve reserves in

each period and retain some room for maneuver in future periods. The result is low FX

intervention at all dates. In practice, central banks with low levels of commitment may

hesitate to use any of their previously accumulated reserves.

Figure 8 illustrates how the time-consistent solution varies with a. The higher is a, the less

traction of FX intervention on the exchange rate today and the stronger is the expectations

channel, so the central bank opts to stabilize investors’ exchange rate expectations by keeping

more reserves in its vaults and by conducting less FX intervention in every period. As a→∞,

FX intervention becomes ineffective, and therefore is never used. Conversely, notice that as
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a → 0, the greater the traction of FX intervention on the exchange rate. Therefore, the

time-consistent intervention rises towards z̄.

Figure 9 illustrates how the time-consistent solution varies with β. The higher is β, the

more the central bank values welfare in future periods, so even greater is the tendency for

the central bank to keep reserves for the future instead of spending them today. There is a

greater immediate depreciation above e∗ to begin with. In the limit as β → 1, there is no

FX intervention in any period at all.

Figure 8: Time Consistent, Various Values of a

Figure 9: Time Consistent, Various Values of β
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Postponement in the use of reserves translates into large immediate exchange rate depre-

ciations when shocks strike. Therefore, relative to the full-commitment case, central banks

experience a reduction in welfare when they lack the power to commit to future FX interven-

tion policies, and the reduction in welfare may be severe for some parameter specifications.

In this light, we turn next to possible remedies.
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4.3. Constant outflows z with simple FX intervention rules

In the preceding section, we have seen that lack of commitment prevents an EM central bank

from intervening to sustain the exchange rate as aggressively as it would do if it were able

to commit. In this section we consider a central bank with a partial degree of commitment

power. In other words, it does have the ability to commit to some simple FX intervention

rules which are easy to communicate to investors, but it remains unable to commit to the

general full-commitment path. We wish to assess whether, by committing to simple rules, a

central bank can raise its welfare above the purely discretionary time-consistent level.

We consider two rules: an exchange rate peg and a volume intervention rule, both indexed

by a parameter κ ∈ [0, 1] which captures how aggressive intervention is under the rule (the

higher is κ, the more aggressive is the intervention). We assume that e∗ = 0.

Definition 6 (Exchange rate peg) An exchange rate peg is characterized by:

et = (1− κ) e until Rt = 0. (25)

Proposition 3 (Exchange rate peg solution) There exists a period T in which the peg

breaks because reserves have run out. The exchange rate jumps to e from T onwards. FX

intervention and the breaking time T jointly satisfy:

ft =


z̄ for t < T − 1

z̄ + e [a− (a+ c) (1− κ)] for t = T − 1

0 for t ≥ T

(26)

z̄ (T − 1) < R0 − e [a− (a+ c) (1− κ)] ≤ z̄T. (27)

Definition 7 (Volume intervention) A volume intervention rule is characterized by:

ft = κz̄ until Rt = 0. (28)

Proposition 4 (Volume intervention solution) There exists a period T in which re-

serves run out. The exchange rate, FX intervention and the breaking time T jointly satisfy:

et =

{ (
a
a+c

)T+1−t
e for t < T

e for t ≥ T
(29)

ft =

{
min {z̄, Rt} for t < T

0 for t ≥ T
(30)

z̄ (T − 1) < R0 ≤ z̄T. (31)
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Figure 10 illustrates the time paths for FX intervention {ft}∞t=0 and exchange rates {et}∞t=0

for the simple FX intervention rules as well as for the full-commitment and time-consistent

solutions, for the specification 1
β

= a+c
a

, e∗ = 0, z̄ = 0.1, and κ = 1. The exchange rate peg

keeps the exchange rate at the target level e∗ for some time by fully offsetting the capital

outflow shock z̄, but intervention spikes in the final period T − 1, when investors pull their

money out of the country in anticipation of the break of the peg. This spike in intervention

at the end of the peg curtails the duration of the peg. The volume intervention rule also fully

offsets the capital outflow shock z̄, but the exchange rate now depreciates smoothly at rate
a+c
a

. In the figure, this rate is the same as 1
β
, but notice that even in this knife-edge case,

the volume intervention rule involves intervention starting and ending at suboptimal times

relative to the full-commitment case. Notice that both of the simple FX intervention rules

generate higher intervention than the time-consistent case at the beginning of the outflow

episode. Therefore, the immediate depreciation in period t = 0 is lower with the simple rules

than it is in the time-consistent case.

Figure 10. Policy Comparisons for the Deterministic Case
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Proposition 5 (Welfare comparison) The central bank’s welfare depends on its commit-

ment power and communication strategy:

• The full-commitment solution generates a higher welfare than any other solution.

• The time-consistent solution generates a higher welfare than zero intervention, but

represents a lower bound for welfare within the set of optimal solutions under varying

degrees of commitment power.

• There exists κ ∈ [0, 1] such that the exchange rate peg and/or volume intervention rule

generate higher welfare than the time-consistent solution.

Figure 11 illustrates the welfare levels under full, zero, and partial commitment, for

various levels of κ. The exchange rate peg and volume intervention rule achieve higher
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welfare than the time-consistent solution, primarily because they prevent the large immediate

depreciation associated with time consistency. Therefore, if a central bank has the partial

commitment power needed to commit to simple FX intervention rules, and it has less of

a history in undertaking heavy interventions and/or is facing investors with less anchored

expectations, then it should commit to such rules instead of using pure discretion.

Figure 11. Welfare Comparisons for the Deterministic Case
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5. The Persistence of the Shock

In this section, we show that the optimal policy responses by EME central banks depend

on their assessment regarding the persistence of the shock. For shocks that are assessed to

be temporary, or whose immediate severity is expected to dissipate over time (such as the

outflow episodes in many EMEs at the start of the global financial crisis described in section

2), the optimal FX intervention policy does not depend much on the degree of commitment of

the central bank, and involves fully offsetting the outflow shock and stabilizing the exchange

rate as much as possible. For shocks that are assessed to be more persistent, even if the

outflow in each period may be small (such as the “taper tantrum” episodes in section 2,

when some investors and central banks feared that additional and protracted U.S. monetary

policy tightening was imminent), the likelihood of the ZLB binding at some future date

is higher if the central bank fully offsets the shock indefinitely, and investors’ expectations

about future interventions at low reserve levels feed into exchange rate expectations and

optimal policy today. Therefore, the absence of credible promises to intervene in the future

becomes more costly in welfare terms, and the time consistency problem is larger. Under full

commitment, FX intervention is optimally postponed into the future, but the time-consistent

solution diverges from this benchmark, producing low FX intervention and poor exchange

rate stabilization instead. In this context, simple FX intervention rules (as in the Brazilian

outflow episode in section 2) may achieve better stabilization than pure discretion.
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Throughout this section, we focus on the stochastic outflow shock described in definition

2, where zt (st) = z > 0 for t = 0, and then in every period, the shock has a probability p of

persisting at the same level into the next period, and a probability 1 − p of falling to zero

and remaining there forever. The pure float exchange rate is now e (st) =
zt(st)

a(1−p)+c , which is

positive in periods when the shock strikes and zero forever once the shock disappears.

This specification of the model is more intuitive than the constant outflows case, because

the exchange rate target e∗ = 0 and the long-run exchange rate level coincide. While our

chosen stochastic process clearly does not cover the diverse array of outflow shocks observed

in practice, it does enable us to begin exploring the relationship between shock persistence

and time consistency, while also preserving the tractability of the model (which in turn helps

achieve numerical solutions in the time-consistent case).

5.1. Analytics under full commitment and time consistency

We first summarize how the central bank optimization problems are amended for the new

outflow shock, before moving on in later subsections to a comparison of the optimal policy

paths for various degrees of shock persistence p. We draw heavily here on the concepts in

subsections 4.1 and 4.2, and the notation in section 3.

Under full commitment, the central bank now credibly promises the entire history-

contingent path of FX interventions and exchange rates {ft (st) , et (st)}∞t=0. Notice that

the sequence problem can again be written in the Bellman form, because we can write the

exchange rate et (st) in each period t after history st as a function of three variables: the

shock zt (st) in the same period, the FX intervention ft (st) in the same period, and the

expectation of next period’s exchange rate Estet+1 (st+1). The latter variable is now a suf-

ficient statistic capturing the effect of the entire promised history-contingent path of future

FX interventions {ft+i (st+i)}
∞
i=1 on et (st).

Definition 8 (Commitment problem) The commitment solution comprises paths of FX

intervention {ft (st)}∞t=0, exchange rates {et (st)}∞t=0 and reserves stocks {Rt+1 (st)}∞t=0 which

solve:

W FC (R0, s0) = max
{et(st),ft(st)}∞t=0

− Es0
∞∑
t=0

βt
(et (st)− e?)2

2
(32)

subject to, for each period t:

Γt(s
t) : et(s

t) =
1

a+ c

[
zt(s

t)− ft(st) + aEstet+1(st+1)
]

Πt(s
t) : Rt(s

t−1)−Rt+1(st) = ft(s
t)

Ψt(s
t) : ft(s

t) ≥ 0
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Φt(s
t) : Rt(s

t−1) ≥ ft(s
t)

Λ : R0 ≥
∑∞

t=0
ft(s

t),

where the respective multipliers on the (in)equalities are Γt (st), Πt (st), Ψt (st), Φt (st), and

Λ. The initial level of reserves R0 and the initial state of nature s0 are given exogenously.

Lemma 5 (Bellman representation) The commitment problem can be written in the fol-

lowing Bellman form:

vFC (R, µ, s−1) = max
e(s),f(s),µ′(s)

Es−1

{
−(e (s)− e∗)2

2
+ βvFC (R− f (s) , µ′ (s) , s)

}
(33)

subject to:

γ(s) : e(s) =
1

a+ c
[z(s)− f(s) + aµ′(s)]

π(s) : R−R′(s) = f(s)

ψ(s) : f(s) ≥ 0

φ(s) : R ≥ f(s)

δ(s) : µ = Es−1e(s)

σ(s) : µ′(s) ≥ ē− 1

a+ c
R′(s),

where s represents the state of nature today, s−1 represents the state of nature in the previous

period, and the respective multipliers on the (in)equalities are denoted by γ (s), π (s), ψ (s),

φ (s), δ, and σ (s), and where the final constraint is derived recursively from the definition

of the feasible set M (R, s−1):

M (R, s−1) =

{
µ (s) : µ (s) = 1

a+c
(z (s)− f (s) + aµ′ (s))

for some µ′ (s) ∈M (R′, s) , f (s) = R−R′ (s) ∈ [0, R] , and s � s−1

}
.

Proposition 6 (Euler equation) At any date t such that ft (st) is in the interior of its

feasible set:

Γt
(
st
)

= EstΓ
(
st+1

)
(34)

c

a+ c

(
et
(
st
)
− e∗

)
+

a

a+ c
Est−1

(
et
(
st
)
− e∗

)
= βEst

(
et+1

(
st+1

)
− e∗

)
. (35)

The equations hold with the inequality ”≥” when reserves have become depleted, Rt+1 (st) = 0.

The new Euler equation for the full-commitment case appears unusual, and is in fact

related to the desire by the central bank to use future promises of FX intervention in an

attempt to offset the non-contingent nature of reserves. Given the nature of the shock,

reserves are more valuable in future histories where the shock persists than in future histories
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where the shock has disappeared. In order to “redistribute” reserves across these future

histories, the central bank achieves any given level of exchange rate stabilization today by

promising higher interventions at future dates when reserves become less valuable (after the

shock has disappeared) and lower interventions at future dates when reserves become more

valuable (after the shock persists).

As the above equation shows, this kind of commitment power is valuable and stabilizes

the exchange rate path well after shocks. Suppose that a severe shock strikes the economy

in period t and history st. The term on the right hand side, representing the expected future

deviation of the exchange rate et+1 (st+1) from the target e∗, is determined by a weighted

sum of the large exchange rate deviation after the severe shock and the smaller exchange

rate deviation that could have occurred in period t had other less severe shocks struck.

Therefore, the future expected exchange rate deviations remain “anchored,” in the sense of

being partially cushioned from adverse shock realizations today25.

While such “anchoring” of exchange rate paths may be the ultimate goal of a well-

communicated managed float regime, it may not be a realistic benchmark for most central

banks, as it requires heavy intervention after the outflow shock has actually disappeared

forever26. Therefore, in the next subsection, we compare the full-commitment and time-

consistent solutions assuming that intervention is not allowed in the full-commitment solution

after the shock has ended. In a later subsection, for completeness in our exposition, we

separately characterize the full-commitment solution without this restriction.

Under time consistency, the central bank’s FX intervention and exchange rate policy

functions now follow the formulations f (R, z) and e (R, z) respectively, where z represents

today’s value of the outflow shock. In this case, no past promises by the central bank need to

ever be fulfilled, so once the outflow shock has ended, it is trivial to show that there is no FX

intervention, f (R, 0) = 0, and the exchange rate remains forever at the target, e (R, 0) = e∗.

Therefore, we only need to find the functions f (R, z̄) and e (R, z̄) that represent the optimal

policy while the outflow shock z̄ is continuing to strike. It turns out that these functions are

the fixed points of a Bellman operator which is a slight modification of the Bellman operator

that has already been solved for the deterministic case in subsection 4.2.

Definition 9 (Time-consistent problem) The time-consistent FX intervention policy f (R, z̄)

and exchange rate policy e (R, z̄) satisfy the following conditions:

25This result echoes the result in the inflation targeting literature that credible central banks can ensure
that one-off inflation shocks, despite affecting the inflation rate today, do not feed into inflation expectations.
Bernanke (2007) explains the issue clearly: “With inflation expectations well anchored, a one-time increase
in energy prices should not lead to a permanent increase in inflation but only to a change in relative prices.”
Gürkaynak, Levin, and Swanson (2010) argue that inflation targeting makes long-run inflation expectations
less sensitive to short-term economic news.

26Consistent with other papers in the optimal policy literature, the demands on policymaker credibility
are higher (and usually, even more unrealistic) in a stochastic environment than in the deterministic case.
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• They are fixed points of the Bellman operator:

vTC (R, z̄) = max
e(R,z̄),R′(R,z̄)

{
−(e (R, z̄)− e∗)2

2
+ βpvTC (R′ (R, z̄) , z̄)

}
(36)

subject to:

γ : e(R, z̄) =
1

a+ c
[z̄ − f(R, z̄) + ape(R′(R, z̄), z̄))]

π : R−R′(R, z̄) = f(R, z̄)

ψ : f(R, z̄) ≥ 0

φ : R ≥ f(R, z̄),

where the respective multipliers on the (in)equalities are γ, π, ψ, and φ, and where the

same recursive feasible set for exchange rates that we saw in the full commitment case

still applies: e (R) ≥ e− 1
a+c

R.

• They are infinitely differentiable: e (R, z̄) ∈ C∞ ([0,∞)) and f (R, z̄) ∈ C∞ ([0,∞)).

• Within the set of functions satisfying the above two bullets, select the function that

maximizes the central bank’s welfare from the perspective of t = 0.

Proposition 7 (Generalized Euler equation) Let f (R, z̄) and e (R, z̄) be solutions to

definition 9 such f (R, z̄) ∈ (0, R) for all R. Then they satisfy the following generalized

Euler equation and exchange rate equation:

(e (R, z̄)− e∗) [1 + apeR (R− f (R, z̄) , z̄)] = β (pe (R− f (R, z̄) , z̄)− e∗) (37)

e (R, z̄) =
1

a+ c
[z − f (R, z̄) + ape (R− f (R, z̄) , z̄)] . (38)

Corollary 3 (Reserves undepleted) Suppose that e∗ = 0. For 1
β
≤ (a+c)p

a(1−p)+c , any time-

consistent solution features Rt > 0 for all t.

This solution produces new comparative statics of the time-consistent solution with re-

spect to the shock persistence parameter p. To build intuition, observe first that p < 1

qualitatively changes the problem in two ways. First, it weakens the expectations channel

of exchange rate stabilization (see the a terms multiplied by p). This change both reduces

the effect of the shock z̄, because it is not expected to last forever anymore, and the effect

of expected future intervention when the shock strikes, because there is a lower probability

that the intervention materializes. Second, the central bank discounts more heavily future

histories where the shock persists (see the β term multiplied by p). This change makes the
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central bank more impatient, more willing to spend reserves today instead of in the future,

and therefore (drawing on the arguments in subsection 4.2) better able to stabilize today’s

exchange rate.

For a lower shock persistence p, the pure-float exchange rate e (st) is more appreciated. In

addition, as R→ 0, we can derive that eR (R− f (R, z̄) , z̄) tends to the expression βp−1
ap

< 0,

which is more negative for lower p. Therefore, in the time-consistent case, FX intervention

is higher, and exchange rate stabilization superior, after a more temporary shock.

5.2. Shock persistence p and the time consistency problem

Proposition 8 (Shock persistence) When p = 1, the full-commitment and time-consistent

solutions are divergent, as described in section 4. As p→ 0, the two solutions coincide.

Figure 12 illustrates the optimal policy functions f (R, z̄) and e (R, z̄) for different values

of p. For each level of p, the intervention rule converges to the full commitment intervention

z when the level of reserves R is large enough. As the persistence p declines, the time-

consistent and full-commitment solutions appear to converge for lower levels of reserves. In

the limit as p→ 0 and the shock becomes a pure one-off, the functions f (R, z̄) and e (R, z̄)

become vertical at R = 0, which proves that the solutions under full commitment and time

consistency become identical for all levels of reserves.

Figure 12. Time Consistent Policy Functions, Various Values of p
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Figures 13 and 14 illustrate the optimal FX intervention and exchange rate time paths for

full commitment, time consistency, and simple intervention rules, for the persistence levels

p = 0.8 and p = 0.6 respectively. These graphs can be compared to figure 10, which captures

the persistence level p = 1. As described in the previous subsection, we assume for exposi-

tional purposes that there is zero FX intervention after the shock has ended (which is the

optimal result in the time-consistent case, and a realistic constraint on the full-commitment

case). As the degree of persistence p declines, the full-commitment intervention begins ear-
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lier, overlapping with the volume rule, and the time-consistent solutions for both intervention

and the exchange rate become closer to the full-commitment solutions.

Figure 13. Policy Comparisons for Shock Persistence p = 0.8
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Figure 14. Policy Comparisons for Shock Persistence p = 0.6

0 5 10 15 20

t

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Intervention

full commitment

time consistent

peg

volume

0 5 10 15 20

t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Exchange Rate

0 5 10 15 20

t

0.0

0.2

0.4

0.6

0.8

1.0
Reserves

The time consistency problem is more severe for more persistent shocks. The intuition

for this result is as follows. When the shock is a pure one-off (p = 0), the shock is expected

to go to zero for all future periods, so no intervention is expected in the future, and investors’

expectations about next period’s exchange rate Estet+1 (st+1) are unaffected by the central

bank’s commitment power. Therefore, the central bank solves a simple one-period problem

today, which yields an identical policy in both the full-commitment and time-consistent cases.

When the shock is very persistent (p near 1), it is expected to continue for many periods

and has a higher net present value, so investors’ expectations regarding the central bank’s

future interventions become important. The central bank wishes to preserve reserves to last

throughout a long outflow episode. The central bank with full commitment achieves this by

credibly promising to begin an aggressive intervention strategy later even if reserves thereby

run out. But the time-consistent central bank cannot do this in the presence of the ZLB on

reserves, because it will choose to preserve reserves rather than spend them when reserves
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are about to run out. Correspondingly, investors are skeptical of regarding any promises to

intervene aggressively in the future. Therefore, in a model with a ZLB on reserves, the larger

is the persistence parameter p, the more damaging is a lack of commitment power27.

In subsection 4.3, we argued that simple intervention rules can improve welfare above the

purely discretionary time-consistent case. Now, we can qualify that claim: rules are likely

to achieve welfare gains above discretion when shocks are very persistent, because for such

shocks, commitment power is very valuable. Figure 15 illustrates the welfare levels under full

commitment, time consistency, and simple intervention rules across various levels of κ, for

the cases when p = 1, p = 0.8 and p = 0.6. When the degree of persistence p declines, welfare

under time consistency gets closer to the full-commitment welfare, and there is a reduction in

the range of values of κ for which the simple FX intervention rules yield higher welfare than

the purely discretionary time-consistent solution. Therefore, for more temporary shocks, the

scope for welfare improvements through the use of rules diminishes.

Figure 15. Welfare Comparisons for Various Values of Shock Persistence p
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5.3. Post-shock intervention under full commitment

As promised, for completeness, we next characterize the full-commitment solution without

the restriction that intervention must stop when the shock does. This section may appear es-

oteric at first glance, but actually yields two lessons. First, the unrestricted full-commitment

policy does involve one feature that echoes the finding of Eggertsson and Woodford (2003):

the central bank would like to promise FX intervention after the shock ends in order to

stabilize exchange rates while the shock is underway28. Second, the path thus derived is

27This argument generally applies to other models with different welfare functions and exchange rate
equations, provided that there is a ZLB on reserves and provided that the probability of reserves becoming
fully depleted in the future is above zero if the central bank were to apply the full-commitment policy derived
by ignoring the ZLB.

28Eggertsson and Woodford (2003) show that for a central bank facing a ZLB constraint on interest rates,
welfare can be brought to the constrained-optimal level through commitment to a price-level targeting rule
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rather unrealistic when applied to the FX intervention problem, and would require signif-

icant commitment power to implement. Therefore, the previous subsection’s benchmark,

that intervention is not allowed after the shock has ended, is the more natural one.

Lemma 6 (Post-shock intervention) The full-commitment solution in the stochastic case

involves FX intervention in the period after the shock ends, and not at all thereafter.

Figure 16 illustrates this result. The blue lines plot FX intervention and the exchange

rate in period t conditional on the shock zt (st) = z in period t, while the green dots plot

FX intervention and the exchange rate in period t conditional on the shock stopping in

period t, i.e., zt−1 (st−1) = z and zt (st) = 0. The central bank supports the exchange rate

path during the outflow episode by committing to intervene heavily in the period after the

shock ends (when reserves are no longer valuable for any future use, but when a promised

exchange rate appreciation can help support expectations of investors in the previous period,

while the shock was still occurring)29. From period t = 0 to t = 7, an increasing amount

of intervention is promised in the period right after the shock ends. However, after period

t = 7, so many reserves have been used up during the outflow episode already that the post-

shock intervention cannot be as high as the central bank would like to commit to. Therefore,

there is a kink in the FX intervention and exchange rate functions. The expectation of this

kink in the function at t = 7 then generates a feedback effect onto investors’ expectations in

prior periods, which the central bank must take account of. It turns out that the entire FX

intervention path is no longer flat at z as it used to be in the deterministic case, and instead

exhibits a counter-intuitive (and unrealistic) dip and rise during the intervention period.

Figure 16. Full Commitment Stochastic Case with Post-Shock Intervention

after the ZLB is no longer binding. Notice that the parallel is not exact, however: our model has a ZLB on
reserves, which is a stock variable, not on a flow variable such as the interest rate.

29The central bank will never optimally commit to intervene more than one period after the shock ends:
once the shock ends, there is no need to stabilize the exchange rate any further, so no promises of future FX
interventions are needed.
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6. The Composition of the FX Market

In this section, we show how optimal policy responses depend on the composition of in-

vestors in the FX market. In our baseline model, the only participants in the FX market

were speculators facing limits to arbitrage: beyond the exogenous shock zt (st), these spec-

ulators moved funds between domestic and foreign currencies depending on the expected

depreciation (Estet+1 (st+1)− et (st)) that they calculated using rational expectations, but

they moved funds in finite quantities so that the uncovered interest parity condition did

not hold. As a result, FX intervention always had traction on the exchange rate, and in

designing the optimal policy, the central bank understood that the time path of expected

depreciations affected the endogenous component of capital outflows in every period, and

thereby the FX interventions necessary in every period to stabilize the exchange rate at any

desired level.

However, narrative histories of outflow episodes highlight that EME central banks are

often concerned about other categories of investors in the FX market. Conceptually, we

can rationalize this notion by observing that groups of investors with informational or data-

processing limitations, or with different objective functions, may follow behavioral rules

which diverge from the limited-arbitrage rational-expectations-based capital outflows of our

baseline model. The presence of such groups of investors alters the behavior of both the

speculators and the central bank who already existed in the baseline model. In what follows,

we focus on two kinds of heuristic rules that FX market participants may follow, and we

draw out their implications for the central bank’s optimal policy responses. For purposes of

clarity, throughout this section we focus on the deterministic outflow shock with constant

outflows z̄, but the results carry over to the stochastic outflows case.

Firstly, we consider the possibility of “panickers” in the FX market: foreign investors who

sell the domestic currency or withdraw their FX lending to domestic banks when they observe

the central bank’s reserves being drawn down. If the propensity to panic is severe, large

planned FX intervention can become “counterproductive” at the margin and the exchange

rate can become destabilized as a result (such a behavior may motivate some central banks to

keep their FX interventions non-public in outflow episodes). Secondly, we analyze “Knightian

flight,” when a group of unsophisticated investors based in a foreign country abhor exchange

rate risk, and hold the domestic currency purely because they (incorrectly) think that the

exchange rate will forever be pegged to their own currency; subsequently, they sell all their

holdings as soon as the peg breaks. If the domestic banking system is dependent on such

investors, their exit can cause a banking crisis (such a concern may have been one worry

among several during the global financial crisis). The existence of such investors is a nuisance

in the full-commitment case, but provides commitment power to prevent depreciations in

the time-consistent case, and under some parameter configurations may improve welfare.
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6.1. Panickers

Consider a new group of foreign investors who focus solely on the depletion of central bank

reserves, and withdraw their own lending to the domestic economy when reserves decline.

This behavior may be motivated in two ways. Firstly, speculators without access to the full

set of information available in our baseline model setup, or with a limited ability to process

this information, may instead focus solely on the depletion of central bank reserves as a proxy

for future exchange rate stabilization, based upon the notion that lower reserves at the end

of any period mechanically reduces the capacity for future FX interventions30. Secondly,

foreign investors who provide FX lending to the domestic banking system may believe that

their loans are (explicitly or implicitly) backed by the central bank’s FX reserves, so that a

depletion of those reserves makes it riskier to lend to domestic banks.

We model the capital outflows kPt by these “panickers” as follows:

kPt = α (Rt −Rt+1) +
(Rt −Rt+1)2

2θ
= αft +

f 2
t

2θ
, (39)

which is increasing in the reserves depletion, or in other words the FX intervention, observed

in period t. The linear and quadratic terms reflect different forms of panic: the linear

term represents a constant outflow per unit of reserves depletion, while the quadratic term

represents accelerating panic for larger reserve depletions (perhaps because panickers take

large depletions as a proxy for especially worrying information). Higher α and lower θ

correspond to a higher propensity to panic. In this subsection, for purposes of clarity, we

will consider separately variations in α and θ.

Using equations (1), (2), (3) and (39) in the amended balance of payments identity:

kt + kPt ≡ cat + ft, (40)

we can derive the amended set of equations characterizing the feasible set of the model.

Definition 10 (Model with panickers) The reduced-form version of the model is de-

scribed by the equations for the exchange rate and FX intervention:

et =
1

a+ c
(z̄ − ht + aet+1) (41)

30As shown in sections 4 and 5, this kind of behavior is not optimal under full-information rational
expectations for investors maximizing their returns from exchange rate speculation, because such investors
should ideally based their capital outflow decisions not just on the level of reserves but also on promised
future FX interventions (in the full-commitment case), an understanding of the central bank’s optimization
problem in future periods (in the time-consistent case), and/or the existence of FX intervention rules (in the
partial commitment case).
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ht = (1− α) ft −
f 2
t

2θ
(42)

ft = Rt −Rt+1 ∈ [0, Rt] . (43)

ht represents the FX intervention in period t net of the offsetting effect of the panickers.

Unlike in the baseline model, the existence of panickers generates the possibility of counter-

productive interventions, which is a phenomenon that EME central banks and FX market

commentators have worried about in practice.

Definition 11 (Counterproductive interventions) FX intervention ft is counterpro-

ductive at the margin if an increase in ft causes a decrease in ht. FX intervention is globally

counterproductive if ht < 0 for all ft > 0.

Proposition 9 (Net effect of FX intervention) In the linear-panickers case (i.e., α >

0 and θ =∞):

• Net effect ht decreases as α increases.

• FX intervention is counterproductive both at the margin and globally for α > 1.

In the quadratic-panickers case (i.e., α = 0 and θ ∈ R++):

• Net effect ht, the maximum net effect H∗ (θ) ≡ max
ft

ht = θ
2
, and the level of FX

intervention ft = θ at which the maximum H∗ is achieved, all decrease as θ decreases.

• FX intervention is always effective for small levels of intervention, but is counterpro-

ductive at the margin for ft > θ.

Figure 17. Net Effect of Intervention
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Figure 17 illustrates how ht varies with ft. In the linear-panickers case, the net effect of

FX intervention diminishes as α increases, and as described in proposition 9, intervention
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becomes globally counterproductive when α > 1. In the quadratic-panickers case, the net

effect of FX intervention diminishes as θ decreases, with the maximum net effect H∗ (θ) =
θ
2

occurring at lower values of FX intervention ft = θ. To the right of that peak, FX

intervention becomes counterproductive at the margin.

Lemma 7 (Maximum intervention) An optimizing central bank never chooses a level of

FX intervention that is counterproductive (on the margin or globally).

Theorem 3 (Solution with panickers) Set 1
β

= a+c
a

. In the linear-panickers case:

• α ∈ (0, 1). The full-commitment FX intervention level is equal to z̄
1−α , which is increas-

ing in α, and it stays at this constant value within a non-empty subset of consecutive

periods [t1, T ] ⊂ [0,∞) that shrinks as α increases. Provided that 1
β
≤ (1−α)(a+c)

(1−α)c−αa , the

time-consistent FX intervention follows the policy functions f (R;α) and e (R;α), with

the following properties:

d

dα
eR (0;α) > 0,

d

dα
fR (0;α) = 0 (44)

lim
R→∞

e (R;α) = e∗, lim
R→∞

f (R;α) =
z̄

1− α
. (45)

• For α > 1, optimal FX intervention ft = 0 irrespective of the degree of commitment.

In the quadratic-panickers case:

• The full-commitment FX intervention level is no longer constant during the interven-

tion period [t1, T ] ⊂ [0,∞). Provided that 1
β
≤ a+c

c
, the time-consistent FX intervention

follows the policy functions f (R; θ) and e (R; θ) with the following properties for small

initial reserves:
d

dθ
eR (0; θ) = 0,

d

dθ
fR (0; θ) = 0 (46)

For large initial reserves, both the full-commitment and time-consistent FX intervention

levels satisfy:

lim
Rt→∞

ft =

 min

{
arg solve

ft

(ht = z̄)

}
> z̄ for θ ≥ θt

θ if θ < θt.

(47)

lim
Rt→∞

et

{
= e∗ for θ ≥ θ

> e∗ if θ < θ,
(48)

where θ = arg solve
θ

{H∗ (θ) = z̄} = 2z̄. (49)
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The optimal solution with panickers is presented in the remaining figures of this subsec-

tion. We discuss in turn the linear and quadratic cases.

Figure 18. Full Commitment, Various Values of α
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Figure 19. Time Consistent Policy Functions, Various Values of α
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Figure 20. Time Consistent, Various Values of α
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Figure 18 illustrates the full-commitment solution for the linear-panickers case, setting
1
β

= a+c
a

, e∗ = 0, z̄ = 0.1, and R0 = 5. The higher is α, the more severely that panickers

reduce the net effect of FX intervention, and in response, there is an “offset effect”: the

central bank intervenes more heavily than in the baseline case to offset the panicked outflows,

ft = z̄
1−α > z̄. More aggressive intervention causes a faster depletion of reserves when α > 0

than in the baseline case α = 0. The reduced effectiveness of FX intervention means that

despite the higher intervention, the exchange rate is stabilized less than in the baseline case.

Figures 19 and 20 illustrate the corresponding time-consistent solutions. In figure 19,

the fact that the slope of the FX intervention function f (R;α) is invariant to α close to

R = 0 shows that for small reserves, no matter how much panic there is, the optimal FX

intervention is similar to that in the baseline model solved in subsection 4.2. However, the

gentler slope and higher position for the exchange rate function e (R;α) as α increases shows

that the presence of panickers reduces the exchange rate stabilization that can be achieved

for any level of reserves R. As R → ∞, the time-consistent and full-commitment solutions

converge.

Figure 20 shows that starting with a high level of reserves R0 = 5, FX intervention fully

offsets the presence of panickers to begin with. The higher is α, the faster that reserves are

used up to begin with, followed by slower FX intervention in later periods. The presence of

panickers causes poorer exchange rate stabilization in all periods.

In the linear-panickers case, a central bank with a large level of reserves sets FX interven-

tion to fully offset panickers, irrespective of the degree of commitment (the “offset effect”).

However, in the quadratic-panickers case, the central bank cannot always fully offset panick-

ers: if it tries to do so, there is a possibility of counterproductive interventions: a deluge of

panicked outflows that would actually depreciate the exchange rate. Therefore, the central

bank may actually decide to reduce its FX intervention so as to deter the entry of panickers.

This phenomenon we call the “deterrence effect.”

To explain the quadratic-panickers case, we begin by describing FX intervention at large

reserve levels, which are equal irrespective of the degree of commitment, and then we illus-

trate our findings for lower reserve levels using simulations of optimal time paths. Figure

21 shows how FX intervention at large reserve levels varies with θ, where a reduction in θ

corresponds to a higher propensity to panic. For θ > θ (= 0.2), it is feasible to fully offset

the impact of the panickers and to keep the net effect of intervention ht (≤ H∗ (θ)) equal to

the size of the shock z̄. Indeed, within this region of θ, a higher propensity to panic induces

larger FX intervention to exactly implement such a full offset of the impact of the panickers.

Therefore, the “offset effect” prevails, and the exchange rate is perfectly stabilized at e∗.

However, for θ < θ, the propensity to panic is so high that the maximum net effect

of intervention H∗ (θ) is smaller than the size of the shock z̄. If the central bank inter-

venes more than θ, then instead of supporting the exchange rate more, panicked outflows

would actually depreciate the exchange rate. The central bank finds it optimal to rule out
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such counterproductive interventions by keeping ft ≤ θ, which deters the excessive entry

of panickers. Therefore, the “deterrence effect” prevails, and the consequence of low FX

intervention is that the exchange rate is depreciated above e∗ even if the central bank has

unlimited reserves.

Figure 21. Intervention at Large Reserve Levels
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Figure 22 shows the effect of this constraint on exchange rate stabilization in the full-

commitment case, for a central bank which starts with a high level of reserves R0 = 5. As θ

decreases from ∞ to θ = 0.2, the FX intervention at date 0 increases, reflecting the “offset

effect.” As θ then decreases below θ = 0.2, the FX intervention at date 0 decreases one for

one, reflecting the “deterrence effect.” The central bank becomes unable to fully neutralize

the outflow shock z̄ despite the large volume of reserves in its vault, and the exchange rate

becomes clearly unanchored from the target e∗ = 0. Even with a large reserves stock and

full commitment, for low θ there is a large immediate depreciation as soon as the outflow

episode begins.

Figure 23 shows the effect of the constraint on the time-consistent policy functions e (R; θ)

and f (R; θ). The FX intervention function first shifts up as θ decreases from ∞ to θ = 0.2

(the “offset effect”), and then down as θ decreases below θ = 0.2 (the “deterrence effect”).

The time paths for the exchange rate and FX intervention in figure 24 demonstrate that

when the propensity to panic is high, the time-consistent solution features a bounded FX

intervention level and an exchange rate unanchored from the target e∗ = 0.

Therefore, when the propensity to panic is high, the full-commitment and time-consistent

solutions become closer to each other, featuring a large immediate depreciation irrespec-

tive of the level of reserves. Strikingly, both optimal policy responses look less like the

full-commitment solution of the baseline model in subsection 4.1, and more like the time-

consistent solution in subsection 4.2.
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Figure 22. Full Commitment, Various Values of θ
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Figure 23. Time Consistent Policy Functions, Various Values of θ
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Figure 24. Time Consistent, Various Values of θ
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6.2. Knightian flight

While the previous subsection considered a category of foreign investors which removed

capital from the domestic economy when reserves declined, let us next consider a qualitatively

new category of investors who instead withdraw their investments when the exchange rate

depreciates above their comfort level. In particular, consider a new group of unsophisticated

“Knightian” investors who lend to the domestic banking system despite their lack of ability

to hedge their positions. They abhor even the slightest risk, and their willingness to lend is

underpinned by their (misplaced) confidence that the exchange rate will never be allowed to

depreciate. In the event that a depreciation does in fact occur, these investors change their

expectation of the exchange rate regime, realize that their assets in the domestic economy

are risky, and therefore sell all their domestic holdings immediately.

We assume that Knightian investors start off lending L to the domestic banking system,

and withdraw all of it in the first period t when et > e∗. Inspired by central bank actions

in actual outflow episodes, we assume that the central bank must provide L in reserves

to the banking system during that period in order to ward off a banking system collapse.

Despite this support (which exactly cancels the effect of outflows L on the exchange rate),

the efficient functioning of the financial markets is still hurt by the withdrawal of a segment

of foreign lenders, so in the Knightian flight period, the economy suffers a cost ∆ = ψL.

The baseline model in section 4 is nested within this model by setting the parameters

L = 0 and ψ = 031. It will become clear that we need both of these parameters to be

positive to generate interesting effects: the economy must be exposed to Knightian investors

and their exit must impose deadweight costs32.

Using equations (1), (2), (3) and the above information, we can derive the amended set

of equations characterizing the feasible set of the model. We assume that e∗ = 0.

Definition 12 (Model with Knightians) The reduced-form version of the model is de-

scribed by the equations for the exchange rate and FX intervention:

et =
1

a+ c
(z̄ − ft + aet+1) (= 0 for t < T ) (50)

ft =


Rt −Rt+1 ∈ [0, Rt − L] for t < T

(Rt −Rt+1)− L ∈ [0, Rt] for t = T

Rt −Rt+1 ∈ [0, Rt] for t > T,

(51)

31In appendix subsection 8.3, we provide results for the limiting case L→ 0 and ψL→ ∆ > 0. This case
allows direct comparisons to the exchange rate peg simulations that were solved earlier in subsection 4.3.

32The model in this subsection is too simple to capture more sophisticated alternative stories based on
information asymmetries, e.g., a setting where the preference of the central bank regarding exchange rate
stabilization is unclear, and rational investors study the size of allowed exchange rate depreciations in order
to infer the central bank’s true preferences. We leave such analysis to future research.
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where T is the period in which the peg is broken, and ft is FX intervention net of central

bank support to the banking sector L.

The introduction of Knightian investors partitions the time path {et, ft}∞t=0 into two parts:

first, during t ∈ {0, 1, ..., T − 1}, the exchange rate is maintained at the implicit peg of e∗,

as the central bank delays the period of Knightian flight; next, during t ∈ {T, T + 1, ...}, the

implicit peg is broken and the exchange rate goes above e∗. For the baseline model L = 0

and ψ = 0, the central bank never wishes to maintain a peg, so T = 0. When L > 0 and

ψ > 0, it may be optimal to choose T > 0.

Proposition 10 (Knightians solution) Let i = FC (full commitment) or TC (time con-

sistent). There exists a period T i in which the peg breaks because reserves have run out or

because the central bank chooses to break the peg before reserves have run out. The exchange

rate jumps above e∗ = 0 from T i onwards. FX intervention and the peg-breaking time T i

jointly satisfy:

ft =


z̄ for t < T − 1

z̄ + aei (RT ) for t = T − 1

f i (Rt) for t > T

(52)

RT = R0 − z̄ (T − 1)− aei (RT )− L, (53)

where:

• The functions
{
eFC (Rt) , f

FC (Rt)
}

and the peg-breaking time T FC are derived from

optimization over time-0 welfare under the assumption of commitment.

• The functions
{
eTC (Rt) , f

TC (Rt)
}

are the baseline time-consistent functions solved

in subsection 4.2. The peg-breaking time T TC is the latest time period s in which the

following condition is satisfied:

β
[
vTC

(
Rs − fs − L|T TC = s+ 1

)
− ψL

]
≥ vTC (Rs − L)− ψL. (54)

We explain the above result step by step. Firstly, in the full-commitment case, the

optimal peg-breaking time T FC is chosen to maximize welfare from the perspective of t = 0.

Figure 25 illustrates the full-commitment solution as ψ increases, setting 1
β

= a+c
a

, e∗ = 0,

z̄ = 0.1, R0 = 2 and L = 0.2. Notice that with the deterministic outflow shock z̄, the central

bank knows that it definitely must put aside a quantity L of reserves to support the banks

at some date, so irrespective of T FC , it solves the problem with the understanding that L in

reserves is unusable for exchange rate support at other times. For ψ = 0, the peg is broken

immediately, because no welfare is gained from postponing the cost ∆ = 0 to the economy,

while breaking the peg does provide a benefit because the central bank is able to deliver

46



the welfare-optimizing result of an immediate partial depreciation (which means that it is

preserving reserves for use in future periods instead of today). As ψ increases, there is a

welfare gain in postponing the cost, so the optimal peg-breaking time T FC increases. Right

before the peg breaks, there is a spike in FX intervention to offset the outflows by speculators

who know the exchange rate will depreciate next period. The later is T FC , the greater the

depreciation when the peg breaks, so the larger the necessary spike in intervention.

Figure 25. Full Commitment, Various Values of ψ
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Figure 26. Time Consistent, Various Values of ψ
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Secondly, in the time-consistent case, the optimal peg-breaking time T TC comes not from

an analysis of time-0 welfare, but from an assessment of the temptation in each period to

deviate from the continuation of the implicit peg. Equation (54) establishes the trade-off

between maintaining the peg for one more period and breaking it today: the left hand side

captures the welfare from maintaining the peg in this period, despite the spike in intervention

necessary to offset the speculators who know the peg will break in the next period; the right

hand side captures the welfare from breaking the peg immediately. For ψ = 0, we know

that T TC = 0, because the left hand side is always smaller than the right hand side: in the
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baseline time-consistent solution, which yields the vTC (Rs − L) function used in equation

(54), maintaining the peg may be a feasible option but never the optimal one. For ψ > 0, it

may become optimal not to break the peg in this period. The higher is ψ, the later is T TC .

Figure 26 illustrates the time-consistent solution as ψ increases. Since the baseline

time-consistent solution features worse exchange rate stabilization than the baseline full-

commitment solution, the exchange rate depreciates more when the peg breaks in figure 26

than it does in figure 25. This means that the spike in intervention is larger in the period

before the peg breaks. Therefore, the temptation to deviate from the peg and thereby avoid

the spike in intervention is high in the time-consistent case, so correspondingly, a high cost

ψ is necessary for the peg to be maintained for some periods.

Finally, we assess how the central bank’s welfare depends on ψ, the economic cost of

Knightian flight per unit of withdrawn loans L. The first panel of figure 27 illustrates the

welfare levels under full and zero commitment plotted against ψ, for R0 = 2 and L = 0.2.

Unsurprisingly, the full-commitment welfare declines as ψ increases. However, the effect of

Knightians on the time-consistent welfare is more complicated, because the imperfection of

having Knightians in the FX market may offset the imperfection of lack of commitment. For

ψ = 0, the peg breaks immediately in the time-consistent case. Then as ψ increases to begin

with, the time-consistent welfare declines, because the timing of the break is unchanged but

the cost of the break is increasing. However, for ψ ≥ 3, further increases in ψ are able

to postpone the breaking of the peg. This postponement prevents the large and welfare-

reducing immediate depreciation that occurs in the baseline time-consistent solution, and

therefore from the perspective of t = 0, the time-consistent welfare actually improves. For

every extra period that the peg is maintained, there is an extra step up of the time-consistent

welfare, until it reaches the full-commitment level. The time-consistent welfare with ψ = 5

is higher than the time-consistent welfare with ψ = 0.

Figure 27. Welfare Comparisons with Knightians
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The second panel of figure 27 illustrates the impact of ψ on the time-consistent welfare
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for different values of initial reserves. For small initial reserves, the implicit peg is broken

immediately so an increase in ψ just hurts welfare. For large initial reserves, an increase in

ψ postpones the breaking of the peg, which improves welfare from the perspective of t = 0.

Therefore, a central bank without commitment power, in an economy exposed to Knigh-

tian investors with given total loan size L, may benefit from a high cost of exit ψ of these

investors. Costly exit hurts the economy in the period of Knightian flight, but provides

commitment power to the central bank to implement a temporary peg and thereby avoid a

large immediate depreciation.

7. Conclusion

In this paper, we have used a simple stylized framework to tackle the role of FX intervention

in the face of outflows in a managed float regime. We have explicitly taken into account the

ZLB on reserves, and we have related the optimal policy for an EME central bank to some of

the key assessments that it needs to make in every outflow episode—specifically, the level of

available reserves, the persistence of the shock and the composition of the FX market. While

our optimal solutions for the exchange rate path and FX intervention level depend on the

functional forms for welfare and the exchange rate equation of our stylized framework, the

qualitative effect of the ZLB on the time consistency of the solution, and on the comparative

levels of FX intervention and welfare across different degrees of central bank commitment,

should apply across a wide range of models.

We have shown that the level of available reserves is important for the optimal policy

decision. For EME central banks which start with a level of reserves that is very large

relative to the shock, the optimal FX intervention policy is to fully, or nearly fully, offset

the outflow shock and keep the exchange rate stable around the target, irrespective of the

degree of commitment. However, when the level of reserves is low or moderate to begin

with, the central bank’s commitment power becomes important—and central banks which

build up their commitment power, through clearly-communicated FX intervention strategies

and repeated FX intervention experiences across several outflow episodes, extract significant

welfare benefits. After outflow shocks, a central bank with high commitment power can

engineer a gradual depreciation to the pure float level, while one with low commitment power

can only intervene in a limited manner and must let the exchange rate depreciate nearly to

the pure float level. If a central bank with limited reserves does not have an unbounded

ability to commit to future policies, but can stick to a pre-announced FX intervention rule,

it should commit to such a rule which involves up-front intervention, e.g., a peg or volume

intervention rule, to prevent large immediate depreciations once outflow episodes begin.

EME central banks need to assess the persistence of the shock in designing their optimal

policies. For temporary shocks, for which the ZLB is expected to bind with only low proba-
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bility, it is optimal to offset the outflow shock and keep the exchange rate stable around the

target, irrespective of the degree of commitment. For persistent shocks, the ZLB is expected

to eventually become binding, and the time consistency problem becomes salient. For such

shocks, a central bank with high commitment power should promise aggressive intervention

in the future rather than today, but a central bank with little commitment power finds itself

able to intervene only very little in every period. Therefore, discretionary FX interven-

tion suffices for temporary shocks, while FX intervention rules are valuable for potentially

persistent shocks.

Finally, EME central banks should tailor their FX intervention strategies according to

the composition of the FX market in which they are intervening. If there exist “panickers”

who sell the domestic currency when they observe the central bank’s reserves being drawn

down, a central bank should offset the extra outflows generated by such investors through

aggressive intervention when the propensity to panic is low, but it should be careful to limit

intervention and deter the entry of panickers if the propensity to panic is high, despite the

destabilization of the exchange rate that ensues. If there exist “Knightian flight” investors

who sell all their holdings as soon as the currency depreciates, central banks should maintain

an implicit peg for several periods until reserves are drawn down. A central bank with low

commitment power may find its effective commitment power increased by the presence of

such investors, and in anticipation of this mechanism, it may make sense for such a central

bank to cultivate such investors before outflow shocks even begin.

The general message which emerges from our approach is that the characterization of

optimal policy in a managed float regime, away from the bipolar extremes of free floats and

pegs, is a non-trivial problem. The empirical effectiveness of FX intervention in managing

the exchange rate does not immediately imply an obvious FX intervention approach to be

adopted by all EME central banks, but rather opens the door to a host of additional con-

siderations such as time consistency, the financial market imperfections which may generate

exchange rate shocks, and the heterogeneity of participants within the FX market. Echo-

ing the literature on inflation targeting regimes, the optimal managed float regime requires

investment in communication, reputation, and rules. Finally, we expect that the litera-

ture should increasingly tailor its recommendations regarding the appropriate managed float

regime to the specific market distortions, and associated welfare costs, most salient to each

economy and to each central bank’s mandate.
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8. Appendix

8.1. Proofs of results in the paper

Lemma 1. By inspection. For construction of the feasible set, notice that the most appre-

ciated et feasible in period t is achieved by spending all reserves in period t.

Lemma 2. Take the first order conditions (FOC) of the optimization problem (10) with

respect to et and iterate the formula for Γt backward, assuming e−1 = e∗.

Lemma 3. When {ft}∞t=0 = {0}, {et}∞t=0 = {ē} in equation (11), yielding the desired result.

Lemma 4. Γt < (a+ c) Λ when ft is not in the interior of its feasible set. Therefore,

intervention should occur when Γt is highest according to the lemma 3.

Proposition 1. Take the FOCs of problem (10) with respect to et and ft and rearrange.

Theorem 1. This theorem comes from combining lemma 3 and proposition 1. The hump

shape for the marginal value of intervention means that the optimal solution will feature

first a set of periods [0, t1) where Γt is increasing, then a set of periods [t1, T ] where Γt is

constant, then a set of periods (T,∞) where Γt is decreasing. Intervention is not used in

periods [0, t1) because it is more valuable to preserve reserves in these periods, and reserves

are completely depleted during periods [t1, T ] because reserves are less valuable in periods

after that. The formulae for et, ft, and T follow immediately.

Corollary 1. The envelope condition (EC) establishes that W FC
R0

(R0) = Λ. From concavity

of W FC (R0), we derive that Λ is decreasing in R0. Applying equation (12), the desired

result follows.

Proposition 2. Take the FOCs of the optimization problem (19) with respect to e and R′,

and the EC with respect to R, and rearrange.

Theorem 2. Case I: 1
β
> a+c

c
(left panel of figure 28).

Figure 28. Proof for Time Consistent Case
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β
> a+c

c
e

ē

e∗
R0

slope
− 1
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slope
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e (R)

Case II: 1
β
≤ a+c

c
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ē

e∗
R0

slope
β−1
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slope

− 1
a+c

e (R)

First linear segment. For an interior solution at R = 0 and e (0) = ē, equation (20)

indicates that eR (0) must be equal to β−1
a
< − 1

a+c
, which violates the feasibility constraint
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derived in lemma 1. Therefore, the constraint is binding at R = 0, as the central bank wishes

to spend more than 0. Assuming continuous differentiability of e (R) within a neighborhood

of R = 0, we see that the constraint remains binding for R within some region
[
0, R̂1

]
; within

this region, feasibility and the generalized Euler condition together mean that eR (R) = − 1
a+c

.

R̂1 satisfies the condition that when equations (20) and (21) are evaluated with eR (R) =

− 1
a+c

, we obtain R̂1 − f
(
R̂1
)

= 0. Notice that e
(
R̂1
)
> e∗.

Second linear segment. To the right of R̂1, the feasibility constraint is no longer binding

and the solution for f (R) becomes interior. We consider reserve levelsR such that f (R) < R,

R − f (R) ∈
(

0, R̂1
]
, and eR (R− f (R)) = − 1

a+c
. From equations (20) and (21), the slope

eR (R) to the right of R̂1 must again be constant:

eR (R) = −
β 1
a+c

β +
(

c
a+c

)2 , (55)

which is less negative than − 1
a+c

. The e (R) function does not jump vertically at R̂1 because

R̂1 itself is also defined using the slope eR (R− f (R)) = − 1
a+c

in equations (20) and (21).

Therefore, there exists some region
[
R̂1, R̂2,I

]
for which e (R) has a kink but no jump at R̂1,

with R̂2,I satisfying R̂2,I − f
(
R̂2,I

)
= R̂1 and eR

(
R̂2,I − f

(
R̂2,I

))
= − 1

a+c
. Notice that

e
(
R̂2,I

)
> e∗.

Third linear segment. For R < R̂2,I , we have R− f (R) < R̂1, so eR (R− f (R)) = − 1
a+c

,

but for R > R̂2,I , we have R − f (R) > R̂1, so eR (R− f (R)) = − β 1
a+c

β+( c
a+c)

2 > − 1
a+c

. From

equations (20) and (21), if R̂2,I − f
(
R̂2,I

)
= R̂1 with eR

(
R̂2,I − f

(
R̂2,I

))
= − 1

a+c
, then

there exists some R̂2,II > R̂2,I and e
(
R̂2,II

)
> e∗ satisfying R̂2,II − f

(
R̂2,II

)
= R̂1 and

eR

(
R̂2,II − f

(
R̂2,II

))
> − 1

a+c
:

(
R̂2,I − R̂1

)
= z̄ − (a+ c)

βe
(
R̂1
)

1 + a lim
R→(R̂1)

−
eR

(
R̂1
) + ae

(
R̂1
)

<
(
R̂2,II − R̂1

)
= z̄ − (a+ c)

βe
(
R̂1
)

1 + a lim
R→(R̂1)

+
eR

(
R̂1
) + ae

(
R̂1
)
. (56)

Therefore, the e (R) function has gaps: it is not defined in the region
(
R̂2,I , R̂2,II

)
when
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we restrict ourselves to using the different left and right derivatives at R̂1 when construct

the mapping from R̂2,I and R̂2,II to R̂1. The e (R) function can be “filled in” within the

region
(
R̂2,I , R̂2,II

)
if we allow unrestricted hypothetical derivatives at R̂1 (i.e., unrestricted

off-equilibrium beliefs), but this assumption does not satisfy subgame-perfection: if f (R)

actually deviates from the optimum, e (R− f (R)) deviates according to either the left or

the right derivative at R− f (R), not any other value of the derivative.

Non-existence. Assuming continuous differentiability in a neighborhood of R = 0, the

only possible subgame-perfect solution must be piecewise-linear with kinks and gaps. Kinks

mean that continuous differentiability is violated for the e (R) function, which is undesirable

but not necessarily disqualifying per se. However, kinks eventually lead to gaps in the e (R)

function—so for some values of R, the optimal policy does not exist. We rule out such

solutions. So we rule out solutions for 1
β
> a+c

c
.

Case II: 1
β
≤ a+c

c
(right panel of figure 28). The feasibility constraint is not violated at

R = 0, so a solution may exist. The desired results follow from equations (20) and (21).

Corollary 2. For 1
β
≤ a+c

c
, any time-consistent solution features f (R) < R, which yields

the result.

Proposition 3. This result follows from the exchange rate equation and definition 6.

Proposition 4. This result follows from the exchange rate equation and definition 7.

Proposition 5. The first two bullets are proved by inspection. The third bullet is proved

by construction (see figure 11).

Lemma 5. By inspection.

Proposition 6. Take the FOCs of the optimization problem (32) with respect to et (st) and

ft (st) and rearrange.

Proposition 7. Take the FOCs of the optimization problem (36) with respect to e (R, z̄)

and R′ (R, z̄), and the envelope condition (EC) with respect to R, and rearrange.

Corollary 3. For 1
β
≤ (a+c)p

a(1−p)+c , any time-consistent solution features f (R, z̄) < R by

analogy to the deterministic model. The desired result follows.

Proposition 8. The result for p = 1 is proved by construction. As p decreases below 1,

e (0, z̄) = z
a(1−p)+c decreases and e′ (0, z̄) = βp−1

ap
becomes steeper, both of which increase the

range of reserve values for which the time-consistent intervention level is set equal to z, as it

is in the full-commitment case. The time-consistent solution no longer exists once p declines

so much that 1
β
> (a+c)p

a(1−p)+c ⇔ p < 1
β
a(1−p)+c

(a+c)
.

Lemma 6. Suppose that zt (st) = z̄. Use equation (35) to consider allocations from pe-

riod t onwards, working backwards from the future to the present. Firstly, assuming that

zt+1 (st+1) = 0, {eu (su)}∞u=t+2 diverges above e∗ forever if et+2 (st+2) > e∗, which is not

optimal, and diverges below e∗ forever if et+2 (st+2) < e∗, which is neither optimal nor

feasible. Therefore, at the optimum, if zt+1 (st+1) = 0, then {eu (su)}∞u=t+2 = {e∗} and

{fu (su)}∞u=t+2 = {0}. Secondly, if et+1 (st+1) takes a positive value for zt+1 (st+1) = z̄, as is
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necessary, it must take a negative value for zt+1 (st+1) = 0. The only way that the latter can

be achieved is through ft+1 (st+1) > 0 for zt+1 (st+1) = 0.

Proposition 9. By inspection.

Lemma 7. By definition of optimality.

Theorem 3. For both the linear and quadratic cases, irrespective of the degree of commit-

ment, intervention fully stabilizes the exchange rate for large R provided that h (f) can be

at least as high as z̄; if the latter condition is not satisfied, then consistent with lemma 7,

intervention is set to achieve the maximum exchange rate stabilization possible for large R.

This argument yields the desired results for large R. Regarding the time-consistent policy,

interior solutions satisfy:

(e (R)− e∗) [hf (f (R)) + aeR (R− f (R))] = β (e (R− f (R))− e∗)hf (f (R− f (R))) (57)

e (R) =
1

a+ c
[z − h (f (R)) + ae (R− f (R))] (58)

h (f) = (1− α) f − f 2

2θ
. (59)

Taking the limit as R→ 0 in equation (57) and then differentiating equations (58) and (59),

the desired results follow:

eR (0;α, θ) =
(β − 1) (1− α)

a
(60)

fR (0;α, θ) =
1− β
β

c

a
. (61)

The condition 1
β
≤ (1−α)(a+c)

(1−α)c−αa allows for the existence of the time-consistent solution.

Proposition 10. By inspection. Figure 29 illustrates the peg-breaking decision from equa-

tion (54). The black line plots the welfare given that the peg breaks at T TC = s + 1. The

blue and red lines represent welfare given that the peg breaks at T TC = s.

Figure 29. Incentive to Maintain the Implicit Peg

Welfare

0
fs

f
(
Rs|T TC = s+ 1

)
f
(
Rs|T TC = s

)
vTC (Rs − L)− βψL

(e∗ − e∗) + β
(
vTC (Rs+1)− ψL

) vTC (Rs − L)− ψL
vTC (Rs − L)− ψL

The relative orientation of the black and blue lines is what the comparison from equation
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(54) looks like when ψ is low. The relative orientation of the black and red lines is what the

comparison from equation (54) looks like when ψ is high. The higher is ψ, the greater the

incentive to maintain the peg.

8.2. Taylor series expansions

We present the Taylor series expansion of f (R) and e (R) at R = 0 using equations (20) and

(21) from the deterministic case. As the order of the Taylor series increases, there appears

to be a radius of convergence in the neighborhood of R = 0, but not for large R.

Figure 30. First Order Taylor Expansion

Figure 31. Second Order Taylor Expansion
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Figure 32. Third Order Taylor Expansion

Figure 33. 100th Order Taylor Expansion

8.3. Knightians in the limiting case

Here we present the time-consistent welfare level for the limiting case of the model with

Knightians: L → 0 and ψL → ∆ > 0. The purpose of this exercise is to establish a more

direct comparison between the model with Knightians in subsection 6.2 and the baseline

solutions in section 4: for this limiting case, we can ignore the effect of L so the model is

identical to the baseline one except that there is a cost ∆ of breaking the peg.
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The solution to this limiting case satisfies proposition 10, but with an amended version

of equation (54):

β
[
vTC

(
Rs − fs|T TC = s+ 1

)
−∆

]
≥ vTC (Rs)−∆. (62)

Can the introduction of ∆ > 0 improve time-consistent welfare relative to the baseline

model with L = 0 and ∆ = 0? The answer is yes. Figure 34 illustrates the time-consistent

welfare as a function of initial reserves R. When L = 0 and ∆ = 0, the peg breaks immedi-

ately and the time-consistent welfare is given by the red line. If we set ∆ > 0 and force the

peg to still break at t = 0, then the time-consistent welfare shifts to the green line. If we set

∆ > 0 and allow the peg-breaking time to adjust according to equation (62), then the new

time-consistent welfare is given by the blue line.

Therefore, for this limiting case of the model with Knightians, a central bank with large

initial reserves can improve on the time-consistent welfare calculated in subsection 4.2. For

small initial reserves, the implicit peg is broken immediately so an increase in ∆ just hurts

welfare. For large initial reserves, an increase in ∆ postpones the breaking of the peg, which

improves welfare from the perspective of t = 0.

Figure 34. Time Consistent, Cost ∆ of Breaking the Peg
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