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Abstract

We propose a novel index of short-term endogeneity (or reflexivity) derived
by calibrating the Hawkes self-excited conditional Poisson model on empir-
ical time series of trades. The Hawkes model accounts simultaneously for
the co-existence and interplay between the exogenous impact of news and
the endogenous mechanism by which past trading activity may influence fu-
ture trading activity. Technically known in the mathematical literature on
branching processes as the branching ratio, the reflexivity index is quanti-
fied for several commodity futures markets (corn, oil, soybean, sugar, and
wheat) and also for a benchmark equity futures market (E-mini S&P 500).
Specifically, the reflexivity index is the average ratio of the number of price
moves that are due to endogenous interactions to the total number of all price
changes, which also include exogenous events. We find an overall increase
of the level of short-term endogeneity since the mid-2000s to October 2012,
with a typical value nowadays around 0.6–0.7, implying that at least 60–70
per cent of commodity price changes are now due to self-generated activities
rather than novel information. Our robustness tests show that the branching
ratio provides a ‘pure’ measure of endogeneity that is independent of the rate
of activity, order size, volume or volatility.
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We complement our analysis by relating the endogeneity dynamics of
these futures markets to their price dynamics, particularly around the com-
modity bubble that developed since 2006 and culminated in mid-2008. While
our index does not have a long-term memory, interestingly, we find that it
can still provide some interesting insights when the mechanisms working at
longer time scales cascade down to shorter terms.

Keywords: Commodities, endogeneity, reflexivity, branching processes,
bubble, oil, regime shift, self-excitation

Disclaimer

The opinions expressed in this paper, including designation and termi-
nology, are those of the authors and are not to be taken as the official views
of the UNCTAD Secretariat or its Member States.

Highlights

• We compute the fraction of endogenous trades on highly-traded futures
markets.

• Similar to equity indices, endogeneity on commodity has grown signif-
icantly during the last decade.

• Endogeneity averages 0.6–0.7 in 2012: most price changes are not due
to informative news.

• Our index is independent of the rate of activity, order size, volume or
volatility.
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1. Introduction

Many commodity prices have experienced roller-coaster rides since the
mid-2000s. These price gyrations have fueled an intense debate among aca-
demics, commodity traders and policymakers. In particular, the role of finan-
cial investors has been the subject of considerable controversies. Disagree-
ments relate to whether these new actors have improved the price discovery
process of commodities futures markets or whether they have made the pro-
cess less effective and more unstable.

For the proponents of the so-called financialization of commodity mar-
kets, its benefits are at least threefold. First, it brings the futures prices of
these products closer to their underlying fundamentals. Second, it provides
liquidity. Third, it transfers risks to agents who are better prepared to as-
sume it (see e.g. Stoll and Whaley (2010, 2011); Irwin and Sanders (2012)
and references cited therein). In short, this process supports the efficient
market hypothesis (EMH) (Samuelson, 1965; Fama, 1970, 1991). By con-
trast, other observers argue that financial investors can have negative effects
on commodity markets (see e.g. UNCTAD (2009, 2011); Tang and Xiong
(2010); Bicchetti and Maystre (2012) and references cited therein).

To contribute to this debate, we analyze the microstructure of several
commodity futures markets at short time scales and provide quantitative
dynamic estimates of their significant degree of reflexivity. This provides a
strong counter-example to EMH, which predicts in its ideal limit that the
market absorbs in full and essentially instantaneously the flow of information
by faithfully reflecting it in asset prices. A corollary to this strong version
of EMH states that price variations can only result from exogenous events
that feed instantaneously the price determination process. In contrast, our
findings show that past price changes can trigger subsequent price variations,
as described qualitatively by Soros’ concept of “market reflexivity” (Soros
(1987)).

In this paper, we build on Filimonov and Sornette (2012) and we pro-
pose estimates about the degree of short-term endogeneity (or reflexivity) of
commodity futures markets derived from the Hawkes self-excited conditional
Poisson model. The Hawkes model combines in a natural and parsimonious
way exogenous influences with self-excited dynamics. Indeed, it accounts
simultaneously for the co-existence and interplay between the exogenous im-
pact of news and the endogenous mechanism of trading activity where one
price change triggers subsequent price changes. Thus, the Hawkes model
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allows quantifying the ratio of price changes on commodity futures markets
that are due to endogenous feedbacks, as opposed to exogenous news. Our
research draws on concepts originally developed in the study of earthquake
aftershocks (see e.g. Vere-Jones (1970); Vere-Jones and Ozaki (1982) and
Ogata (1988)), which were first applied by Bowsher (2002) (published later
with corrections in Bowsher (2007)) in the area of high-frequency financial
data. According to the Hawkes model, each event (i.e. price change) may
lead to a whole tree of offspring (i.e. subsequent price changes).

We calibrate the Hawkes model using Thomson Reuters Tick History
(TRTH) data on various front month commodity futures contracts, includ-
ing corn, oil, soybean, sugar, and wheat, as well as on the most-traded futures
contract, the E-mini S&P 500, which we use as a benchmark. Each calibra-
tion amount to estimating the parameter n, which in case of n < 1 equals
to the ratio of price moves that are due to short-term endogenous interac-
tions to the total number of all price changes, which also include the impact
of exogenous events. In the mathematical literature of branching processes
(Harris, 2002), this parameter n is usually called the “branching ratio”. We
shall refer to n using both terms “reflexivity index” (which emphasizes its
conceptual meaning) and “branching ratio” (which emphasizes its technical
meaning).

The reflexivity index n provides a simple and illuminating characteriza-
tion of markets, in particular with respect to their fragility and susceptibility
to shocks. For n < 1, on average, the fraction 1 − n of price changes are
due to exogenous news or surprises while the fraction n of price changes are
endogenous, i.e., can be traced back to the influence of past price changes.
As n approaches 1 from below, the system becomes “critical”, in the sense
that its activity is mostly endogenous or self-fulfilling. More precisely, its
activity becomes hyperbolically sensitive to external influences. The regime
n > 1 corresponds to an unbounded explosion of activity nucleated by just
a few external news and can only realistically occur over a finite time.

For the commodities that we have analyzed, we document the evolution
of the degree of short-term endogeneity for all these markets since the second
half of the 2000s, when the considered commodity exchanges moved from pit
trading to full electronic platforms. Overall, we usually find average levels
of short-term endogeneity above 50 per cent for all considered commodity
markets with episodes well above 85 per cent. This highlights the failures
of the EMH and provides evidence that price dynamics are partly driven by
positive feedback mechanisms. We also discuss why higher level of endo-
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geneity makes the price formation process less efficient and more prone to
instability. Moreover, we show that endogeneity has increased, albeit not
necessarily monotonously, over the considered periods. For instance, when
trading on the oil Brent futures moved to full electronic trading in 2005,
about 35 per cent of the Brent prices changes resulted from previous prices
changes. In late 2008 to early 2009, this figure has increased above 75 per
cent. Afterwards, it has lost some momentum but has stabilized around 60
per cent since the early 2011.

We complement this analysis on the level of reflexivity by relating the
endogeneity dynamics of oil futures markets to their price dynamics, partic-
ularly around the commodity bubble that developed since 2006 and culmi-
nated in mid-2008. At first sight, our reflexivity index is not particularly well
designed to capture longer-term herding mechanisms, which are responsible
for bubble formation on time scales of months to years. This is because the
model has been calibrated in running windows of 10 minutes, which prevents
the model from capturing long term dynamics. However, we surprisingly find
that the mechanisms working at longer time scales sometimes seem to cas-
cade down to the shorter intervals and are thus detectable by our analysis.
Finally, in presenting our estimates, we show that the branching ratio some-
times also exhibits abnormal increases that are concomitant with significant
price swings and/or bubble developments.

Regarding the US equity futures contracts, we compute the branching
ratio since late 1997. The purposes of this digression to the equity markets
are twofold. First, it aims at providing a benchmark of the evolution of
the reflexivity on the most traded financial derivative product since the late
1990s. In fact, the TRTH data does not allow us to compute the branching
ratios prior to the introduction of full electronic trading in the mid-2000s on
the considered commodity exchanges. By considering the US equity futures
market, we find evidence for the growing waves of endogeneity affecting finan-
cial markets. Providing empirical evidence over a longer time scale matters
because it shows that the short-term endogeneity level of highly financial-
ized products had already increased in the early 2000s. In all likelihood, the
levels of endogeneity in commodity markets in the late 1990s were smaller
than in the E-mini S&P 500 futures market. This makes us believe that the
already-high endogeneity level observed in commodity markets mostly in the
second-half of 2000s has not been a permanent feature in the decade that
preceded the availability of reliable tick data on commodity derivatives.

The rest of our paper is organized as follows. In section 2, we first present
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our data and then discuss some recent technological changes that appeared
on exchanges, such as the increasing influence of algorithmic trading, in par-
ticular high frequency trading (HFT) activities. Then, we introduce the
Hawkes self-excited Poisson model and explain why it is well-adapted to the
determination of the endogeneity level coming from discontinuous financial
data at high frequencies. In section 3, we provide our estimates of the reflex-
ivity index. We describe first the calibration process of the Hawkes model to
high frequency data. Then, we present an updated analysis of the evolution
of the reflexivity index for the E-mini S&P 500 futures, which was initially
performed in (Filimonov and Sornette, 2012). Subsequently, based on our
empirical estimates, we confirm both the relevance of the Hawkes model as
an excellent data descriptor and the robustness of our estimation procedure.
In the rest of this section, we present our branching ratio estimates for several
highly traded commodity futures. Then, we discuss the monthly evolutions
of our indices and how these relate to some key events that have influenced
their development since the mid-2000s. In section 4 we conclude.

2. Data and methodology

2.1. Data

2.1.1. Nature and characteristics of the studied data set

We base our analysis on Thomson Reuters Tick History (TRTH) data.
TRTH provides financial data for an extensive range of asset classes with
more than 45 million unique instruments across more than 400 exchanges,
based on the information transmitted by exchanges and market makers.
TRTH contains historical data back to January 1996 at best. It provides
granular tick as well as lower frequency pricing data, up to the microsecond
level. Moreover, TRTH offers intra-day time sales or quotes, and market
depth data. The database provides also over-the-counter (OTC) quotes. To
our knowledge, it offers the most comprehensive pricing and reference data
service, with a record of market behavior of 2 petabytes (2 · 1015 bytes) of
tick data.

In this study, we limit ourselves to a few instruments. We select some
of the most liquid commodity derivatives, namely futures on Brent crude oil
(ICE – Europe), WTI crude oil (NYMEX), corn (CBOT), soybeans (CBOT),
sugar #11 (ICE - US), wheat (CBOT) and white sugar (LIFFE). These
commodity futures contracts represent the commonly used benchmarks for
the world or their respective markets.
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Table 1 summarizes the main characteristics of each future contract. Each
derivative contract has an underlying physical asset described in the “Speci-
fication” column and reaches maturity on specific dates, which we refer to as
“Contract month”. Several futures contracts referring to the same underlying
asset are traded in parallel during the trading sessions but are differentiated
by their maturity dates. The front months for each future contracts usually
have the greatest liquidity. For each considered commodity, TRTH provides
a so-called continuous futures contract by taking the front month and switch-
ing to the next contract at expiration date.

The continuous Front month futures contract (which has suffix “c1” in
the TRTH notation) usually exhibit greater trading volumes than other fu-
tures contracts with subsequent maturities. However, as the expiration date
approach, this is no longer true as financial investors switch to the next ma-
turity contract to avoid delivery. The peak of these rollover processes has
traditionally preceded the expiration date by about one week. For instance,
E-mini S&P 500 futures contracts are traded on a quarterly basis, expire
on the third Friday of March, June, September and December. However,
in our observations, the number of trade on the Front month futures con-
tract become smaller than the ones on the next maturity contract eight days
before the expiration dates, i.e. on the second Thursday of each of these
months. Hence, the liquidity (measured in volume) of the expiring contract
is switched from the expiring contract to the next quarter maturity at these
rollover dates. For Brent and WTI futures, monthly settlements results in
rollover dates closer to the expiration dates as most traders typically roll
their positions two days before the expiration. In order to be consistent in
our analysis of different assets, we have excluded periods between the rollover
and the expiration dates from our analysis. For the Corn, Wheat and Soy-
bean futures contracts, we could not clearly identify rollover dates because,
in some instances, the Second month contracts are more heavily traded than
the Front month. For these contracts we have excluded five trading days
before the expiration.

As can be seen from table 1, different exchanges moved the trading
activities from pit trading to full electronic platforms at different times.
Brent crude oil, which was originally traded on the open outcry Interna-
tional Petroleum Exchange (IPE) in London, was the first oil contract that
fully switched in 2005 to the electronic platform of Intercontinental Exchange
(ICE) based in London. However, the white sugar traded in Europe at LIFFE
moved already in 2000 on a full electronic platform. As discussed below, we
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base our analysis on the so-called mid-quote price, which averages the best
bid price and the best ask price. Due to the specifics of the open outcry
pits, which were mostly driven by designated (official) market makers, the
quotes on the pre-electronic exchanges could not serve as a reliable source
of information because time was not registered precisely. For this reason, in
our analysis, we have considered only time periods starting from the date
of the complete switch to full electronic trading for each contract (indicated
in table 1). For Sugar #11, we have excluded the period prior to March
2, 2008 even though electronic trading started on January 12, 2007 at ICE
US. In fact, pit trading had continued to exist in parallel at NYBOT and,
unfortunately, because of NYBOT feed limitations, the timestamps of quotes
as well as volumes and settlement values are not entirely reliable before the
decommissioning of NYBOT pit trading on February 28, 2008.

Table 2 summarizes the number of annual transactions and volumes for
each considered derivative contract1. The emergence of full electronic trad-
ing in the course of the 2000s on the considered commodity exchanges marks
the beginning of an increase in the amount of transactions. At the same
time, the dynamics of volume (presented at the monthly scale also in fig. 1)
exhibits very moderate growth. As a result, the average volume per trans-
action (A-VPT) decreased significantly between 2005 and 2012 for all con-
sidered contracts: starting at an average of 5–40 contracts per transaction
in 2005, this figure declined below 3 contracts per transaction in 2012 for all
considered commodities. The more striking dynamics are observed on the
median (M-VPT) and other quantiles of the distribution of the volume per
transaction. No later than 2009, M-VPT settles at 1 for all the considered
commodities, which means that at least 50 per cent of all the transactions
involve only one contract. Similarly, the 90%-quantile of volumes per trans-
action (Q90-VPT) have remained equal or below 7 contracts per transaction
from 2009 onwards for commodities. The VPT decline primarily reflects
the increase of HFT on commodity futures markets, whose typical strategies
imply ultra-fast market-making with only a few contracts per limit order.

The beginning of HFT can probably be traced back to 1998 when the U.S.
Securities and Exchange Commission (SEC) authorized electronic exchanges.

1Due to feed limitations, TRTH does not contain reliable information of trading volumes
for Soybean and Sugar #11 contracts prior introduction of electronic trading. Therefore
for these contracts we presented data starting 2006 and 2007 respectively.
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However, in the early 2000s, HFT, defined as the high speed component of
algorithmic trading, was quite rare and accounted for less than 10 per cent of
all equity orders. In subsequent years, its importance grew rapidly (Duhigg,
2009). In 2009, the proportion of high frequency trading in US markets was
estimated as more than 60 per cent by the TABB Group (Sussman et al.,
2009) and the Aite Group (2009), with less conservative early estimates of
the TABB Group of the order of 73% (see Iati (2009)).

Although reliable estimates of algo trading activities on commodity mar-
kets are not systematically available, Reuters quoted the chief executive of-
ficer of the CME Group, saying that 45 per cent of volume exchanged on
the NYMEX—a commodity futures exchange owned and operated by its
group—was computer driven (Sheppard, March 3, 2011). In light of the fig-
ures presented in Table 2 , this probably represents a conservative estimate.
The one-time released report by the CFTC on “Large Trader Net Position
Change” reveals the dominating role of day traders in volatile commodity
markets (CFTC, 2011). In some instance, like WTI crude oil, almost 95
percent of trading volume is generated by day trading2, which suggest that
long-term bets have little effect on the commodity volatility (Meyer, July 5,
2011).

2.1.2. Mid-quote price as informative proxy

The choice of a proxy for the price movements at high frequency (minute,
second and sub-second time scales) matters and depends on the particular
application. At any given moment t, one may distinguish three different
prices: (i) the last transaction price ptr(t), at which the previous transaction
was executed, (ii) the best ask price a(t) and (iii) the best bid price b(t) at
which market participants may immediately correspondingly buy and sell an
asset. Best bid and best ask prices are usually aggregated in the so-called
mid-quote price, which averages the two: pm(t) = (a(t) + b(t))/2 (see fig. 2).
The bid and ask prices reflect demand and supply of the liquidity providers,
respectively. The transaction price reflects actions of liquidity takers. And
mid-quote price changes result from actions of all market participants, both
liquidity providers and takers. The transactions are triggered when a market
order arrives. In case of a buy market order, the transaction is executed at

2defined as trades in and out of the market that are performed within a given day and
whose positions do not roll over to the next day or longer
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the best ask price, while a sell market order triggers a transaction at the
best bid price. Since the sequence of order arrivals is stochastic with the
sign of order being a random variable, the last transaction price will jump
from best bid to best ask price and back even without changes in the balance
between supply and demand. This stochastic behavior, which is called “bid-
ask bounce”, represents a kind of “noise source” to the price.

The idea that the last transaction price in high frequency financial data
is a poor proxy of the unobservable asset’s value, because it is subjected
to the additive “microstructure noise”, is a well established concept in the
market microstructure literature (see for instance, Äıt-Sahalia et al. (2005),
and the concept of “noise traders” by F. Black (1986)). In contrast to the
last transaction price, the mid-quote price is free from the bid-ask bounce
and changes only when the balance between supply (liquidity providers) and
demand (liquidity takers) is modified. Therefore, the mid-quote price can be
argued to be a better proxy for the asset value, given the available information
(Hasbrouck, 1991; Engle, 2000). In the “price impact” literature dedicated
to the question of the price response to an execution of a single (or series of)
market order(s), the mid-quote price has become the “default measure” to
monitor price movements (see, for instance, the extensive review in Bouchaud
et al. (2009)). In the present study, we stick to the mid-quote price as the
best proxy for market movements as a whole. However, we disregard the
direction of the price movements, considering the so-called point process of
the timestamp of events — i.e. mid-quote price changes — as represented
by red squares in Fig. 2.

2.2. The Hawkes self-excited model and endogeneous mechanisms of price
formation

2.2.1. Definition of the self-excited point process (Hawkes) model

The typical null hypothesis in modeling point processes3 is the so-called
Poisson process in which events occur independently of one another with a
constant average arrival rate λ. Having no correlation structure, the Poisson
point process cannot describe the wide range of empirical stylized facts of
real order flows, such as (i) clustering of order arrivals, (ii) long memory in

3Without going into precise mathematical definitions, point processes are special types
of random processes, for which the realization consists of isolated events and the modeled
variable is the timestamp (and coordinate as well as marks if applicable) of each event.
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inter-trade intervals (Ivanov et al., 2004; Jiang et al., 2009), (iii) slower-than-
exponential decay of the distribution of inter-trade intervals (Ivanov et al.,
2004; Eisler and Kertész, 2006; Politi and Scalas, 2008), (iv) long memory
of the signs of successive trades (Bouchaud et al., 2009), and (v) multi-
fractal scaling of inter-trade intervals (Jiang et al., 2009; Oswiecimka et al.,
2005; Perelló et al., 2008). Traditionally, two large classes of self-excited
point processes have been used to account at least partially for these styl-
ized facts that are characteristic of high frequency price data. The first one
is the so-called Autoregressive Conditional Durations (ACD) model (Engle
and Russell, 1997, 1998) and its extensions, which describes the inter-event
durations with a GARCH-type equation. The second one is more parsimo-
nious and flexible and is called the self-excited Hawkes model (Hawkes, 1971),
which was first applied to high frequency financial data in the working pa-
per (Bowsher, 2002) (published later with corrections as (Bowsher, 2007)).
Nowadays, the Hawkes point process has become the “gold standard” of self-
excited models to describe discontinuous financial data. It has a wide range
of applications going from modeling high frequency order flows (Hewlett,
2006; Bauwens and Hautsch, 2009) and the construction process of the or-
der book (Large, 2007; Toke, 2011; Cont, 2011), to modeling extreme events
clustering at daily and hourly scales (Embrechts et al., 2011), estimating
Value-at-Risk (Chavez-Demoulin et al., 2005) or modeling correlated default
times in a portfolio of firms (Errais et al., 2010; Azizpour et al., 2011).

The Hawkes point process can be regarded as the generalization of the
non-homogeneous Poisson process, whose intensity λ(t) (defined such that
λ(t)dt is the expected value of the number of events in the time interval
[t, t+ dt)) not only depends on time t but also on the history of the process.
Within the Hawkes model, the intensity of a process is conditional on history
and has the form

λt(t) = µ(t) +
∑

ti<t

h(t− ti), (1)

where ti are the timestamps of the events of the process, µ(t) is a background
intensity that accounts for exogenous events (not dependent on history) and
h(t) is amemory kernel function that weights how much past events influence
the generation of future events and thus controls the amplitude of the en-
dogenous feedback mechanism. Traditionally, the memory kernel is assumed
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to be exponentially decaying in time:

h(t) = α exp

(

−
t

τ

)

(2)

It is parametrized by two variables α > 0 and τ > 0. Below, we will validate
the choice of the kernel with a goodness-of-fit analysis. Apart from the good
agreement with the data, the choice of a short-memory exponential kernel
reflects the main target of our analysis, namely — the impact of the short-
term speculative mechanisms of reflexivity, that are operated on the scales
of minutes and less (see section section 3.1.2 for the discussions).

2.2.2. Branching ratio and level of endogeneity/reflexivity

For our purposes, the Hawkes model presents two interesting properties.
First, the model clearly isolates the external influences on the system, µ(t),
from the internal feedback mechanisms, h(t), in the conditional intensity
λt(t). Second, the linear structure λt(t) of the Hawkes model allows one to
map it exactly onto a so-called branching process (Daley and Vere-Jones,
2008). This mapping introduces a key parameter called the branching ratio
n, which we define more precisely below. As described in (Filimonov and
Sornette, 2012), the branching ratio n quantifies the degree of self-excitation
(or reflexivity) occurring in the system.

In the language of branching processes (Harris, 2002), all events be-
long to one of two classes: immigrants (zero-order events) and descendants
(first-, second-, and higher order events). The exogenous immigration — de-
scribed by the background intensity µ(t) — triggers clusters of descendants4.
Namely, every zero-order event (mother) can trigger one or more first-order
events (daughters), each of whom becoming mother-event in turn can trigger
several daughters (second-order events or grand-daughters) and so on over
many generations (see Fig. 3). All first-, second-, and higher order events
form the cluster of aftershocks of the main event as a result of the self-excited
(endogenous) generating mechanism of the system.

Applying the Hawkes process to interpret high frequency price dynamics,
each event can be either exogenous or endogenous to the system. In the first
case, its external origin could be interpreted as due to idiosyncratic news,

4In other words, µ(t) is the frequency at which exogenous events impact the system,
and the share of exogenous events are measured by 1− n, described later in the paper.
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which are not anticipated by investors and surprise them, thus providing
genuine new pieces of information forcing them to reassess their investments
and react. We refer to these events as “fundamental” events and, in the lan-
guage of branching processes, as zero-order events (see Fig. 3). In contrast,
endogenous events are triggered by preceding price changes as the result of
internal feedback mechanisms. The existence of triggered events embodies
the mechanism of self-excitation of the system onto itself, i.e., the influence of
past price changes on future price changes. Self-excitation and endogeneity
are related to the concept of reflexivity, which has extensive roots in philos-
ophy and sociology, and has more recently been advocated by Soros (1987)
to provide a useful framework to understand financial markets and beyond.

We can propose the following non-exhaustive list of mechanisms that can
trigger endogeneity/reflexivity.

• Technical analysis, including algorithmic and HFT trading : market
participants send orders that are not based on changes in economic
fundamentals but on technical analysis of price and volumes move-
ments.

• Behavioral mechanisms and herding : changes in fundamentals triggers
an avalanche of new orders based on momentum or market sentiments
that cause prices to over/undershoot.

• Optimal portfolio execution: in order to minimize market impact when
buying/selling large numbers of shares, orders are split into smaller
orders that are traded incrementally;

• Hedging strategies increase cross-excitation and cross-correlation be-
tween markets. When combined with portfolio execution issues, hedg-
ing strategies amplify self-excitation, as for instance in insurance port-
folio (Kyle and Obizhaeva, 2012).

• Margin and leveraged trading occurs when price changes above or below
a certain limit against the initial position triggers a margin call, which,
if not addressed, results into the automatic liquidation of the leveraged
position, exacerbating price movements through a domino effect.

• complex orders such as stop-loss orders, and so on.
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• Finally, a combination of any of the above mechanisms could increase
market reflexivity

All these mechanisms create clusters of first-, second- and higher-order
price changes. To describe such cluster structure, the theory of branching
processes introduces the branching ratio (Harris, 2002), denoted as n. This
key parameter corresponds to the average number of daughter events of first
generation per mother event. When the branching ratio is small (n ≪ 1),
the dynamic is stationary and mostly driven by the external (exogenous)
uncorrelated immigrants in the system, as most of clusters contains only one
or few events. When the average number n of daughters per mother in-
creases, clustering rises and the self-excitation mechanisms play an increas-
ingly important role in the system’s dynamics. When the branching ratio is
close to one (n . 1), the external stimulation of the system by zero-order
(news-driven) events is strongly dominated by the enormous growth in the
clustering of endogenous events. Finally, when the branching ratio is above
one (n > 1), implying that each price change triggers on average more than
one future price change, the dynamic becomes non-stationary. With finite
probability, the system explodes in an infinite number of events without need
for a permanent supply of fundamental (exogenous) events. In the theory of
branching processes (Harris, 2002), these three regimes are called: (i) sub-
critical (n < 1), (ii) critical (n = 1) and (iii) super-critical or explosive
(n > 1).

In the sub-critical regime (n < 1), in the case of a rate of truly informative
(or exogenous) news µ(t) which is constant (µ(t) = µ = const), the branching
ratio n can be shown to be exactly equal to the average fraction of endogenous
events (i.e., due to past price changes) within the whole population of events
(Helmstetter and Sornette, 2003; Filimonov and Sornette, 2012). In other
words, the branching ratio is equal to the fraction of events that are triggered
due to the internal feedback mechanisms described above. This can be seen
as follows. The total average activity (average number of trades per unit
time) is µ + µn + µn2 + µn3 + ... = µ/(1 − n), reflecting the cascade of
triggering over the successive generations (mother → daughter → grand-
daughter → ...). Subtracting the rate µ of immigrants, we get the rate
µ/(1−n)−µ = µn/(1−n) of triggered events of all generations. Their ratio
to the total activity µ/(1− n) is indeed n. To repeat, while by definition n
is the average number of triggered events of first generation per exogenous
event, it is also the average fraction of all triggered events. The number 1−n
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is therefore the fraction of price changes that are due directly to exogenous
surprising news. This means that, as n tends to 1, most of the activity
becomes endogenous (or reflexive) and the total observed activity diverges.
As a quantitative illustration, for n = 0.8, the observed number of trades is
5 times the number of trades that would exist if each trade was only reacting
directly to an incoming unanticipated news.

2.2.3. Implications of high endogeneity for the inefficiency and possible in-
stability of price discovery

A priori, the excess endogenous trading described by the Hawkes process
could be interpreted as reflecting the tatonnement process of convergence of
the price towards the fundamental price, and not taken as a diagnostic of
a potential source of inefficiency or instability. This interpretation must be
tampered by taking into consideration the following facts. First, it can be
shown that the convergence time is also proportional to 1/(1 − n), which
increases without bounds as n increases towards 1. In the mathematical lit-
erature on bifurcations (Sornette, 2006; Scheffer, 2009), this is referred to as
“critical slowing down”: it takes more and more time for the system to adjust
to new immigrants, due to the larger and larger number of triggered descen-
dants and the longer and longer sequences of generations. This means that
the convergence process to any true price becomes longer and longer, in other
words, less and less efficient. Rather than agreeing rapidly on the “correct”
price after the arrival of some unanticipated news, the traders trade longer
and longer as n → 1, not knowing on what price to settle. As the branching
ratio n increases from, say 0.2 to 0.8, not only the activity increases by a
factor of 4 but the convergence time to the true price is multiplied also by
this factor 4. This supports the interpretation that, as n increases, endo-
geneity makes the market less efficient. Moreover, not only the rate of price
changes and the convergence time diverges proportionally to 1/(1 − n), but
the variance of the event rate also diverge as n → 1. The susceptibility to
external shocks diverges similarly. All these singular behaviors (in the math-
ematical sense) point to a growing instability of the system as the branching
ratio increases.

2.2.4. Estimation of the branching ratio (reflexivity index)

Two different methodologies can be used to compute the branching ratio.
The first one involves reverse-engineering the clusters by reconstructing en-
sembles of scenarios for the top structure in Fig. 3 from the known bottom
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timeline and calculating the ensemble average number of direct descendants
from any given event. This can be done using stochastic declustering proce-
dures (see Zhuang et al. (2002); Marsan and Lengline (2008)). This approach
is sophisticated and time consuming, since it provides in principle the full
reconstructed history of the generation process. Moreover, its precision de-
teriorates when the memory τ of the kernel h(t) given by expression (2)
increases (Sornette and Utkin, 2009). If interested only in the determination
of the branching ratio n, it is simpler to estimate the parameters α and τ of
the kernel h(t) (2) by maximum likelihood and use the relation

n =

∫

∞

0

h(t)dt = ατ. (3)

Indeed, the Maximum Likelihood Estimation (MLE) method benefits from
the fact that the log-likelihood function is known in closed form for Hawkes
processes (see Ogata (1978); Ozaki (1979) for an analytical expression of the
likelihood function). Then, the MLE method provides a statistical estimation
of α and τ , and therefore of n, and in addition of µ.

The standard quantification of the goodness-of-fit of the data by the
Hawkes process uses residual analysis (Ogata, 1988), which consists in study-
ing the residual process, defined as the nonparametric transformation of the
initial series of the event time stamps ti into

ξi =

∫ ti

0

λ̂t(t)dt = µti + α
∑

tj<ti

exp

(

−
ti − tj

τ

)

, (4)

where λ̂t(t) is the conditional intensity of the Hawkes process (1) estimated
with the maximum likelihood method. As it was shown by Papangelou
(1972), under the null hypothesis that the data has been generated by the
Hawkes process (1) with kernel (2), the residual process ξi should be Poisson
(memoryless) with unit intensity. The goodness-of-fit can then be verified
both by (i) visual cusum plot or Q-Q plot analysis and (ii) rigorous statistical
tests, such as independence tests applied to the sequence of ξi and/or tests
of the exponential distribution of the transformed inter-event times ξi− ξi−1,
which amounts to testing the uniform distribution of the random variables
Ui = 1− exp[−(ξi − ξi−1)] in the interval [0, 1]).
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3. Calibration of the Hawkes model to high frequency data

3.1. Description of the calibration methodology

3.1.1. Trade-off in choosing the relevant time-windows

The present study is based on the analysis of the reflexivity of the mid-
quote price movements. As discussed above, the branching ratio n estimated
with the Hawkes model (1)-(2) provides a direct quantification of the degree
of reflexivity, but only under three important assumptions: (i) stationarity
of the underlying process, (ii) sub-criticality of the regime (n < 1), and (iii)
constant parameters (µ, n, τ) of the model. As pointed out earlier, trading
activity has been in general increasing over the analyzed period, thus show-
ing a non-stationary behavior. In addition, during any given day, the trading
activity is very low outside trading hours (see table. 1, please note that due
to international venue these hours are different from the so-called Regular
Trading Hours), and exhibits strong intraday seasonality during the active
trading hours, being on average almost twice as large at the beginning and
at the end of the trading session in comparison with lunch time. Under
these circumstances, to ensure that the assumptions of stationarity and con-
stant parameters are approximately met, one needs to consider the smallest
possible intervals that are still compatible with reasonable stable statistical
estimations. However, smaller time intervals imply smaller numbers of events
for the estimation and thus decreased robustness. More importantly, the size
of the time window limits the memory of the endogenous process that can be
recovered from the estimation procedure to about the size of the considered
window. In other words, considering time intervals of just a few minutes
prevents capturing memory effects that may develop over time scale of hours
and longer.

3.1.2. The choice of intervals for analysis

In the present work, we choose a trade-off by considering time intervals
of 10 minutes, such that parameters of the Hawkes model (1)–(2) can be
considered approximately constant. At the same time, these intervals are
wide enough to capture a significant part of the endogenous memory of the
system: indeed, using the exponential kernel, our estimations give a charac-
teristic memory time much smaller than minutes. The number of mid-quote
price changes amounts typically to more than 100–200 events over a typical
10 minute window, which is sufficient to perform a reliable calibration. In
the most active periods it can reach up to several tens of thousands. As
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shown in (Filimonov and Sornette, 2012), the model calibration is robust to
the choice of the interval: an increase of the window size to 20 or 30 minutes
does not result in significant changes of the estimated parameters.

However, ten minutes intervals are not long enough to capture the mem-
ory of long-term herding mechanisms, which are responsible for bubble for-
mation on time scales of months to years (Sornette, 2003). For instance,
the recent oil bubble started approximately in 2004 and developed over sev-
eral years until its burst in summer of 2008. Its detection with the Hawkes
process calibrated in running windows of 10 minutes can only be done if
the mechanisms working at large time scales somehow cascade down to the
minute time scale, so that the branching ratio exhibits abnormal increase
concomitant with the development of the bubble. We shall see that this in-
deed happened, for instance during the oil bubble culminating in July 2008
(see the results discussion on oil in section 3.4). Similarly, optimal portfolio
executions take from tens of minutes to hours and (for extremely large port-
folios) days). Therefore, execution of large orders has a minor impact on the
quantification of the reflexivity index done here at the 10 minute time scale.
The time that clearing houses give retail clients to react to margin call is also
typically one day. This mechanism of reflexivity is thus also negligible at our
time scale of investigation. Hedging usually also involve longer time scales.
In the list of the sources of reflexivity presented in section 2.2, mostly (i)
short-term human reflexivity, (ii) algorithmic and HF trading strategies, (iii)
herding in algorithmic strategies and (iv) complex stop-loss and other orders
are operating at the time scales of 10 minutes or less. As a consequence, only
these mechanism can be captured by the model.

The combination of the use of small time windows of 10 minutes to-
gether with the choice of the short-memory exponential kernel (2) allows us
to investigate the short-term speculative mechanisms of reflexivity. As we
shall see, the short-term reflexivity shows interesting patterns that can be
attributed to the changes in algorithmic and HF trading activity over the
time of our analysis. We will see that self-excitation at short time scales has
been growing steadily in most of the commodity markets in 2005–2009 (and
for sugar markets even until the end of analysis at 2012). Moreover, Fil-
imonov and Sornette (2012) suggests the usage of this short-term reflexivity
for the forecasting of HF instabilities of markets such as “flash-crashes”.
In order to account for long-term behavioral mechanisms described in sec-
tion 2.2.2, one indeed needs considering much longer time windows up to
several months and, as a consequence, power-law kernel (2) that can account
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for long-memory effects. Such analysis performed in Hardiman et al. (2013)
suggests that this long-term self-excitation of financial market has always
been much higher as reflected by the long-term branching ratio being around
the critical value of 1.

To analyze the short-term reflexivity of the market, we used the maxi-
mum likelihood estimator (Ogata, 1978; Ozaki, 1979) to calibrate the Hawkes
model (1)–(2) in time windows of 10 minutes spanning every day from 2005
to 2012 with one minute time step (from 1997 to 2012 for the E-Mini S&P
500 futures contracts). We excluded the days when trading was closed before
the end of hours of active trading (table 1) or with daily volume less than
the 5% quantile of daily volumes for each given year.

Finally, we need to acknowledge that even such small time windows could
be susceptible to some non-stationarity effects. In particular major macro-
economic news announcements (such as FOMC rate decision or EIA weekly
report) clearly results in abrupt change in the dynamics of trading. In par-
ticular, it is no longer possible to assume that the background intensity µ(t)
is constant over the period, if an important announcement falls within the
window of analysis. For this reason, we have excluded the 10-minutes win-
dows that contain announcement of FOMC (eight times per year) and EIA
(weekly). However, since our analysis is based on monthly averages, the
presence in our estimations of some small number of “outliers” due to news
announcements do not change the overall statistics. The tight quantile ranges
around the monthly average that we observe for all of commodities support
this hypothesis.

3.1.3. Dealing with the TRTH uncertainties of timestamp recording

Despite the fact that ticks in Thomson Reuters Tick History (TRTH)
are stamped with microsecond resolution, a rather large number of quote
changes have identical timestamps. In the most recent years, we can observe
up to several hundreds quote changes during active trading hours for the
same timestamp. The origin of this phenomenon lies in the nature of the
data feed from the exchange, which is obtained by the FAST/FIX protocol.
The protocol bundles multiple updates of multiple instruments within a single
message by an algorithm designed by the exchange. Then, the package is sent
to the Thomson Reuters collection system, and TRTH timestamps relate to
the time when the messages reach the collection system, but not to the time
when the transactions were actually executed and recorded by the exchange.
Since the exchange time, coded in the FAST/FIX protocol, is stamped with

19



a resolution of seconds, the actual time of any tick is uncertain within a range
that is larger than or equal to the time between two consecutive FAST/FIX
packages. This range varies from tens of milliseconds in recent years to several
hundreds of milliseconds or even seconds in early 2000–2005.

An additional source of uncertainty to the timestamps is introduced by
the latency of the message traveling from the exchange to Thomson Reuters
collection system and by the overhead brought by processing the FAST/FIX
protocol on both sides. However, both factors introduce a shift to the times-
tamp, which is constant when the latency does not fluctuate. Such constant
time shift would not change the analysis and could be omitted in principle.
In reality however, both actors may vary in time, but the order of magnitude
of these variations is much smaller than the time between consecutive pack-
ages and thus could be neglected. The typical time for package processing is
of the order of tens microseconds. The latency is usually also of the order of
tens of milliseconds. This suggests a rough estimate of their variations, typi-
cally of the order of milliseconds, which is much smaller than the uncertainty
introduced by the bundling of updates to a single message.

Two possibilities can be considered to deal with the uncertainty in the
timestamps resulting from FAST/FIX protocol. One is to consider only the
timestamps provided by the exchange (with resolution of seconds) as a re-
liable source of data. The other is to use enriched millisecond timestamps
of TRTH, while accounting for the uncertainty due to bundling updates in
FAST/FIX packages. In this paper, for the sake of caution, we follow the
second option by relying on the non-zero difference of timestamps between
consecutive transactions or updates of quotes as the proxy for the uncer-
tainty in arrival times. Table 3A and B provide respectively the annual
average and median uncertainties of the event timestamps for our different
considered instruments. Starting in the range of 200–300 milliseconds in mid
2000s, the average timestamp uncertainties have decreased progressively over
the years. In 2012, the average and median durations between two consec-
utive FAST/FIX packages that were recorded with different timestamps by
TRTH reached a relatively low range of 103–242 milliseconds and 22–135
milliseconds, respectively.

In order to make the data compatible with the Hawkes model for which
the probability of having multiple events with identical timestamps is equal
to zero, we follow the methodology developed by Filimonov and Sornette
(2012). Specifically, we randomly redistribute the TRTH timestamps around
their recorded values within an interval of duration ∆. In doing so, we
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implicitely assume that each event occurring within the interval of width ∆
is independent of all the others within the same interval (but not between
different intervals). This processing step tends to lead to underestimations
of the endogeneity levels presented below.

The intuition, that ∆ should be chosen to be of the order of the typical
duration between consecutive FAST/FIX packages, has been validated by
numerical tests. Similarly to (Filimonov and Sornette, 2012), we have veri-
fied the procedure on synthetic time series obtained by numerical synthesis
of the Hawkes process (1) with parameters (µ, n, τ) close to the calibrated
values of the real data. The results of such synthetic tests and comparisons
with the estimation on real data has revealed quantitative limitations of the
proposed method. In particular, the distortion of the distribution of inter-
event times becomes significant and, as a consequence, the estimation of the
parameters of the Hawkes process becomes unreliable when ∆ is chosen to
be significantly smaller than the typical waiting time between consecutive
FAST/FIX packages. As a rule of thumb, ∆ should be chosen to be more
than the median duration (table 3B). As seen from table 3B, for most years,
the median timestamp uncertainty is of the order or below 100 milliseconds,
while its average value is of the order or below 200 milliseconds. This sug-
gests that a reasonable value for ∆ is 200 milliseconds. In order to check the
robustness of the method applied to real data, we have also used the values
∆ = 50 milliseconds, ∆ = 100 milliseconds and ∆ = 300 milliseconds, where
the last value corresponds to the upper bound of the average uncertainty (ta-
ble 3A). As an extreme case, we have also considered ∆ = 1 second, which
corresponds to the resolution of the exchange time.

3.1.4. Testing the goodness-of-fit of our calibration

The goodness-of-fit tests are essential to quantify the agreement between
the model and the data. As goodness-of-fit tests, we have used residual
analysis, described in section 2.2. In a nutshell, after performing a calibration
of the Hawkes model (1)–(2), we performed the non-parametric transform (4)
to obtain the residual process and then obtained the transformed inter-event
intervals Ui = 1− exp(ξi−1 − ξi). Under the null hypothesis that the data is
generated by the Hawkes model, these transformed inter-event intervals Ui

should be iid uniformly distributed in the interval [0, 1]. We have used the
Kolmogorov-Smirnov test in order to test the uniformity of the distribution
of Ui’s.

Each 10-minute data interval is characterized by the estimated parameters
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(µ, n, τ) and a p-value of the goodness-of-fit. We reject the null hypothesis
if the p-value is smaller than the confidence level of 0.05. Table 4 presents
the fraction of time-windows for which the null hypothesis was rejected, for
a set of future contracts, at different years and for different values of ∆. We
also exclude from the analysis the years prior to the introduction of electronic
trading for each analyzed commodity (see table 1), due to the weak reliability
of the corresponding quote timestamps when the open pit still existed. As
discussed above, for Sugar #11 we have additionally excluded the time period
before March 6, 2008, when electronic trading on the ICE platform coexisted
with pit trading at NYBOT. Those years are marked with dash lines (—
). The reliability of timestamp (∆) should be comparable with the typical
inter-package times. We have excluded from the analysis time periods where
the median inter-package times (table 3B) was larger than ∆. Those time
intervals are marked in the table 4 with stars (***).

As seen from the tables 4A to 4E, the quality-of-fit is usually good. In
total, for all the analyzed commodities over the years of 2005–2012 for 10-
minutes intervals and with ∆ = 200 milliseconds (msec), we reject 452’514
estimations out of a total of 3’332’016 estimations, corresponding to a re-
jection rate of 13.6 per cent. For smaller ∆’s, the agreement of the Hawkes
model with the data worsens: for ∆ = 100 msec, we reject 576’532 out of
2’605’129 estimations, a rejection rate of 22.1 per cent; for ∆ = 50 msec,
we reject 434’662 out of 1’165’761 estimations, a rejection rate of 37.3 per
cent. By contrast, for ∆ = 300 msec, we reject 303’420 out of 3’375’079
estimations, a rejection rate of 9.0 per cent; for ∆ = 1 second, we reject only
70’126 out of 3’375’079 estimations, a rejection rate of 2.1 per cent. Due
to the strong distortion of the statistics of inter-event intervals occurring for
small ∆’s and the generally poor agreement of the Hawkes model with the
data (as quantified by the Kolmogorov-Smirnov test), we have not presented
results for ∆ < 100 msec. However, we must acknowledge that the results
obtained for ∆ = 50 msec agree within the confidence intervals with those
obtained for larger ∆’s. Despite very good agreement between model and
data for ∆ = 1 second, we will see that use of such large ∆ (which lasts
3–10 times more than the typical waiting time between packages) results in
a significant overestimation of the reflexivity index n.

The good results of our tests support our use of the exponential kernel (2)
in the specification of the Hawkes model (1). We need to mention that the
results of the analysis at 10 minutes intervals are robust to the choice of the
kernel. In particular, our tests have shown that using long memory (power
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law) kernel results in small bias in the estimations of the reflexivity index n,
but does not change the overall secular dynamics presented in the following
sections.

In order to characterize the possible long-term evolution of the parame-
ters over the whole investigated period, we have taken averages of the esti-
mates of the parameters (µ, n, τ) over all 10 minutes windows within a one
month period. In the following subsections, we report these average estimates
together with quantile ranges. Interestingly, when considering either all es-
timates within one month period, or only the estimates that could not be
rejected with the Kolmogorov-Smirnov test, the averages and the quantile in-
tervals remain similar. However, to be consistent, we have excluded from the
averages those estimates for which the null hypothesis of the Hawkes model
as the generating process for the data could be rejected (corresponding to
estimates with p-value below 0.05).

3.2. Financial markets: E-mini S&P 500 futures

Before analyzing commodity market, we revisit the analysis initially per-
formed until August 29, 2010 in (Filimonov and Sornette, 2012) of the E-mini
S&P 500 futures contracts, which are traded on the Chicago Mercantile Ex-
change (CME). Being introduced in 1997 as a supplement to the regular S&P
500 futures contracts with a reduced size of 50 times the value of the index,
the E-mini has attracted many small investors and has become one of the
most actively traded derivatives in the world.

Fig. 4(a) and (b) present, respectively, two-month volume and trading
activity (measured in number of mid-quote price changes) as well as daily
volatility and price dynamics for the E-mini S&P 500 futures contracts be-
tween 1998–2012. Together with the dynamics of these traditional measures
of activity, Fig. 4(c) and (d) show, respectively, the dynamics of the estimated
background intensity (µ̂) and branching ratio (n̂) over the same time period.
The estimates for each different ∆ (100, 200, 300 milliseconds) are practi-
cally undistinguishable. This observation together with the narrowness of the
25%-75% quantile range confirm both the relevance of the Hawkes model as
an excellent data descriptor and the robustness of our estimation procedure.
Both observations will be later verified with the data analysis performed on
commodities futures. Finally, let us note that considering ∆ = 1 sec, which
corresponds to the uncertainty of exchange timestamps, results in slightly
higher branching ratios, but does not change its overall dynamics.
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Fig. 4 shows that the number of mid-price changes in panel (a); the daily
volatility in panel (b); and the background intensity µ̂(t) in panel (c) exhibit
synchronized peaks that coincide with major episodes of market instabilities.
Indeed, one of the first peak coincides with the burst of the ICT dot-com bub-
ble (Johansen and Sornette, 2000). Note the synchronized behavior during
the following bearish bearish regime as well as during the financial crisis that
started in 2007, including its culmination with Lehman Brothers bankruptcy
(Sornette and Woodard, 2010). Note that the increase of trading activity
from 1998 to 2012, as proxied by volume in Fig. 4(a), is not accompanied by
an increase of the background intensity µ̂ of exogenous events in the market.
This makes intuitive sense since µ should reflect the genuine news impacting
the market.

In contrast with Fig. 4(a), (b) and (c), the time evolution of the branching
ratio n̂ presented in Fig. 4(d) exhibits a very different behavior5. Importantly,
one should note that the branching ratio is not simply another measure of
trading activity or the frequency of price changes. Indeed, Fig. 4 illustrates
the existence of completely different dynamics of the branching ratio com-
pared with measures of activity such as volume or mid-quote price changes.
We address this point in greater details when we discuss several robustness
tests in section 3.6. For now, we only highlight the following findings.

(i) Between 1998 and 2004, the monthly trading volume6 increased almost
36 times (from 316’401 contracts in February 1998 to 11’428’371 con-
tracts in February 2004). However the branching ratio increased only
slightly from 0.35 to 0.4 during this period.

(ii) Similarly, despite an almost doubling of the volume from 25’890’923 in
June 2007 to 55’251’608 in August 2007, the branching ratio decreased
from 0.6 to 0.45.

(iii) The same period a year later, June–August 2008, could be consid-
ered as another example illustrating the decoupling between trading
activity and branching ratio. The number of transactions increased
3 times (from 1’346’928 to 4’191’227) and the number of mid-quote
price changes doubled (from 230’022 to 580’220) over the same period

5Note that the present analysis slightly differs from the one presented in (Filimonov
and Sornette, 2012).

6Note that here and after we discuss monthly volume and number of transactions, and
average branching ratios over one month interval, however for the sake of clarity in fig. 4
we plot dynamics of two-months values.
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of time. Nevertheless, this did not lead to an increase of the branch-
ing ratio, which, by definition, is estimated based on mid-quote price
changes.

(iv) On the opposite, the dramatic surge of the branching ratio from 0.5
in September 2009 to 0.75 in March 2010 coincided with a moderate
increase of volume (from 31’574’403 to 43’320’946) and of mid-quote
price changes (from 219’918 to 266’014).

(v) Finally, one could observe that the spike in volume and background
activity in June 2010 did not affect the branching ratio at all, and even
a similar spike in September 2011 is associated with a sharp decline of
the ratio.

The branching ratio, measuring the level of endogeneity, increased reg-
ularly from 2002 onwards and peaked first with the beginning of the bear
market on the E-mini in 2007/2008. The successive policy interventions led
to a decrease in the level of endogeneity until August 2009. Afterwards,
the branching ratio rapidly rose again to reach a high plateau from the be-
ginning of 2010 onwards with a small transient decline at the end of 2011,
which coincides with the discussion on the debt ceiling in the US and a deep-
ening of the eurozone crisis. The decline of endogeneity level between 2008
and mid-2009 coincides with a series of financial and economic interventions,
when fundamentals, like liquidity provision to avert a credit freeze on finan-
cial capital markets and stimulus packages to revive aggregate demand, were
prevalent features. Although it is beyond this paper to explain the effect
of quantitative easing policies on endogeneity, one notes that the sharp rise
of the endogeneity level coincides with the first hints of a possible second
round of easy liquidity in August 20097. In parallel, animated discussions
about the shape of the economic recovery, either V, U, L or W, from summer
2009, added to economic uncertainties as characterized by the risk-on/risk-off
behaviors. These economic uncertainties as well as the quantitative easing
policies have remained prevalent in the subsequent years until today, while
risks of credit freeze in financial capital markets have receded substantially.
The combination of economic uncertainties and unlimited liquidity could ra-
tionalize the high plateau of the endogeneity level measured on the E-mini
S&P 500 futures.

7c.f. “QE2: Will the Fed Surprise the Markets?” http://www.thestreet.com/story/

10909094/qe2-will-the-fed-surprise-the-markets.html
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3.3. The evolution of endogeneity in commodity futures markets
In Fig. 5–9, we report our estimates of the branching ratio for several

commodities. Similar to the endogeneity level of the E-mini S&P 500 fu-
tures, we usually find the average levels of endogeneity above 50 per cent
for all considered commodity markets since the mid-2000s. Moreover, we
observe that endogeneity levels are greater in 2012 than when our estimates
start. Nevertheless, these increases have not necessarily been monotonous.
In the case of oil, both series, Brent and WTI, show a gradual increase before
reaching a peak in late-2008 to early-2009. Afterwards, they have partly re-
ceded. By contrast, the level of endogeneity of the soft commodities exhibit
a marked oscillating pattern around a upward-sloped or constant long-term
trend.

In addition, when our data can go back to 2005 or 2006, we usually observe
a period of about half a year in the course of 2006 or 2007 when the branching
ratio escalates sharply to higher levels from which it does not recede anymore.
In particular, we observe this phenomenon for the Brent crude oil in Fig 5(a)
during 2006, when the monthly averages of its branching ratio move from
roughly 0.4 to 0.6, and for the White Sugar futures market in Europe in
Fig. 7(a) in the course of 2007, when this figure rose sharply from about 0.3
to 0.55. These phenomena are similar to the pattern on the E-mini S&P
500 futures markets over 2005 and 2006. Nevertheless, for the commodities,
these episodes seem to have taken place over a shorter time span.

As mentioned above, we cannot compute the branching ratios prior to the
introduction of full electronic trading and of sufficient liquidity in the mid-
2000s. Nevertheless, in all likelihood, the levels of endogeneity in commodity
markets in late 1990s and in the first-half of 2000s were not greater than the
one of the E-mini S&P 500 futures market at that time. This conjecture
makes us believe that the already-high endogeneity levels that we observe
for all commodity markets in the second-half of the 2000s have not been a
permanent feature in the period prior to the introduction of full electronic
trading and the availability of reliable tick data on commodity derivatives.

It should also be recalled that, at first sight, our reflexivity indices are not
particularly designed to capture longer-term herding mechanisms, which are
responsible for bubble formation on time scales of months to years. Since we
need to calibrate the model in running windows of 10 minutes, our branching
ratio does not have by definition a long-term memory. However, we surpris-
ingly find that the mechanisms working at longer time scales sometimes seem
to cascade down to the shorter intervals on which we compute our indices.
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In specific cases discussed below, we show in fact that growing average levels
of endogeneity during several months sometimes coincide with bubble-bust
cycles.

In addition, some common shocks seem to impact commodity markets
simultaneously. For example:

• Among the commodities examined in this paper, many US commodities
exhibit a decline of the branching ratio for the period around June/July
2011 (WTI, Wheat, Corn and Soybean). This period coincides with
discussion on the US debt ceiling and fears that no agreement could
trigger a worldwide new economic downturn. It relates also to oil re-
serve releases by the IEA Members and better than expected weather
conditions in the US.

• Interestingly, the second half of 2012 exhibits a sharp and synchronized
increase of the branching ratio for all US traded commodities here
examined, possibly on expectation of QE3.

• Oil, including Brent and WTI, seem to follow the same pattern as the
E-mini from their endogeneity peak of 2008 to the low of 2009, which
coincides with the August 2009 hint of further quantitative easing (see
discussion above in section 3.2)

• For the WTI, Corn and Wheat, one can observe a slight decline in
the branching ratio early 2008 before the bubble bursts. In the USA,
ethanol is mostly produced from corn and some substitution effects
(oil/corn and corn/wheat) could explain this common feature in the
branching ratio.

After these general observations, we concentrate on each different com-
modity market specifically.

3.4. Crude oil: Brent and WTI

We start our analysis of commodity futures with oil prices, which exhib-
ited a record rise followed by a spectacular crash in 2008. The peak of Brent
daily close prices at USD 146.08 (daily high of USD 146.69) per barrel was
observed on July 3, 2008. Six months later, Brent prices reached a trough
of USD 44 (daily low of USD 43.03) on December 19, 2008, a level not seen
since 2004.
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Fig. 5 presents the dynamics of the price and of the daily volatility (esti-
mated with the Garman&Klass open-high-low-close estimator (Garman and
Klass, 1980) for two major futures contracts on light sweet crude oil: Brent
Crude (fig. 5(a)) and WTI (fig. 5(b)). Along with the price dynamics and
the price volatility, the evolution of the estimated branching ratio (effective
degree of reflexivity) is presented. Different symbols on the plots correspond
to different values of ∆: 100, 200, 300 milliseconds and 1 second.

Fig. 5 documents the following regimes for both Brent Crude (Europe)
and WTI (US):

• The branching ratio has shown an upward trend over the whole bub-
ble period until early 2009, having an intermediate peak in July 2008
coinciding with the end of the oil bubble.

• The branching ratio exhibited three large periods of stabilization, which
were preceded by a small drop: in Q1-2007, Q1-2008 and from mid-2008
to the end of 2008.

• In the last period of the run-up (December 2007—April 2008), the
branching ratio showed a pronounced drawdown for the WTI.

• The branching ratio started accelerating again until the price peak in
July 2008.

• The branching ratio stayed high (at values of 0.7 for WTI and 0.75–0.78
for Brent) during the whole period of the price fall until the bottom in
December 2008, even exhibiting a maximum at the price bottom higher
than its previous peak reached on July 2008. This illustrates that the
branching ratio is also independent from price trajectory, in addition
to being unrelated to volume or mid-quotes changes (see the discussion
on the E-mini in section 3.2).

• Thereafter, the branching ratio starts decreasing until mid-2009. After-
wards, the dynamics of the branching ratio for Brent and WTI slightly
diverged:

(i) The branching ratio for Brent was falling until December 2010 (see
the note below on the sharp fall) and then changed to a sideway
trend.
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(ii) The branching ratio for WTI was falling until mid-2009, and
started rising again, peaked on April–May 2010, before a sharp
(but small) fall in May 2010 occurred. This is similar to the pat-
tern observed on the E-mini between mid 2009 to mid 2010 (see
the discussion on the E-mini in section 3.2).

• The branching ratio sharply decreased for the Brent at the end of 2010
(also visible on the WTI) although the price increased. This might
be attributed to the unusual cold weather in Europe that lift up oil
demand unexpectedly and reduced herding mechanism temporarily.

• Beginning 2011, the branching ratio increased sharply for the WTI and
also for the Brent following the start of the Arab Spring and specula-
tion on oil output of some producing countries like Libya. While the
cross-market correlations between these commodity futures and the US
equity markets collapsed during that period and suggested a growing
role of the fundamentals (Bicchetti and Maystre, 2012), the endogeneity
levels on each specific market grew during that period.

The most remarkable result obtained from the calibration of the branching
ratio is its very large increase during the period when oil prices started to
accelerate. The fact that our methodology identifies a growing reflexivity
during the ascent of the price and, even more so, during its collapse, is
particularly interesting in view of other analyses that documented strong
evidence for the existence of a bubble during that period. Since the beginning
of 2008, a growing number of specialists8, bankers9 and academics10 were
considering the possibility that oil may have entered a bubble regime. The
tormenting question was: how to justify the quadrupling of oil prices since
2003? Some attributed it mainly to the growing demand from the emergent
China and India markets, a claim that former Chinese President Jiang Ze-
Min himself debunked at least for China (see Fig. 3 with caption in English
in Jiang (2008)). Comparing the values on World liquid fuel supply and

8See e.g. Zumbrun, J., Soros tells congress to pop an oil bubble, Forbes, 3 June 2008.
9Credit Suisse, The Investment Committee Meeting of May 27, 2008.

10See e.g. Siegel, J. and W. Henisz, What’s Behind the Flare-ups in Oil Prices? Jeremy
Siegel and Witold Henisz Weigh In, Knowledge@Wharton, May 28, 2008; also see Krug-
man, P., More on oil and speculation (The Conscience of a Liberal), The New York Times,
May 13, 2008.
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demand reported by the International Energy Agency (IEA) and by the US
Energy Information Administration (EIA), Sornette et al. (2009) noted that,
until the end of 2005, both agencies reported consistent numbers showing
that supply was systematically exceeding demand. Since 2006, there was a
significant discrepancy between the numbers presented by the two agencies,
ushering a period of uncertainty or opaque reporting, with no clear conclusion
on whether an excess demand versus supply was the cause of the appreciation
of oil prices. One can argue that the lack of clarity of the oil supply versus
demand during that period ushered a period of growing speculation both in
the literary sense of “forming conjectures” and in the financial sense, based on
the general fact that the more imprecise is the estimation of the fundamental
value of an asset, the more room there is for “stories” and “new economy”
thinking that can justify speculative bubble prices (Kindleberger and Aliber,
2005; Sornette, 2003).

Sornette et al. (2009) further support the hypothesis that the 2007-2008
oil price run-up was amplified by speculative behaviors of the type found
during a bubble-like expansion. They analyzed oil prices in USD and in
other major currencies and found clear diagnostics of speculation. Based
on the mechanism of positive feedbacks and the concept of emergent phase
transitions (or bifurcation) to another regime using analogies with statistical
physics and complexity theory, Sornette et al. (2009) used an approach that
diagnoses bubbles as transient super-exponential regimes Sornette (2003).
In a nutshell, the methodology aims at detecting the transient phases where
positive feedbacks operating on some markets or asset classes create local
unsustainable price run-ups. The mathematical signature of these bubbles
is a log-periodic power law (LPPL, see e.g. Sornette and Johansen (1998);
Johansen and Sornette (1999); Johansen et al. (2000); Sornette and Johansen
(2001)). The power law finite-time singular process models the faster-than-
exponential growth culminating in finite time at some critical time tc. The
log-periodic oscillations reflect hierarchical structures (Johansen and Sor-
nette, 1999; Johansen et al., 2000) as well as competition between the trading
dynamics of fundamental value and momentum investors (Ide and Sornette,
2002). Reproduced from Fig. 5 in (Sornette et al., 2009), Fig. 6 shows the
calibration of the LPPL model to the oil price (NYMEX Light Sweet Crude,
Contract 1, from the Energy Information Administration of the U.S. Gov-
ernment). The shaded box shows the 80 per cent confidence interval of the
critical time tc indicating the end of the bubble. Note that this analysis
was performed ex-ante before the oil price did peak and was presented as a
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genuine real-time prediction, which turned out to be successful, as recounted
by Sornette et al. (2009). The overall conclusion of this analysis is that the
geopolitical events unfolded in 2007 and 2008 have participated in raising the
level uncertainty, which worked as a fertilizer for speculation, leading to oil
prices increasingly decoupled from fundamental valuation (the hallmark of a
bubble).

Our present analysis summarized in Fig. 5 of the effective degree of reflex-
ivity estimated with high frequency data has shown that, during the bubble
period, the herding between investors existed not only at scales of years but
was also accompanied with short-term herding of the algorithmic trading
strategies. Combining the evidence of Fig. 5 and Fig. 6, we conclude that
the positive feedback mechanisms working at large time scales, which are at
the origin of the oil bubble, cascaded down to the minute time scales and were
reflected in the abnormal increase of the branching ratio that occurred con-
comitantly with the development of the bubble and its burst. Such cascade
processes (Arneodo et al., 1998) are captured by the concept of multifrac-
tality that has been found to provide a remarkably powerful description and
predictor of asset return dynamics (Muzy et al., 2001; Calvet and Fisher,
2008; Sornette et al., 2003; Lux, 2008).

3.5. Soft commodities: Soybean, Sugar, Corn and Wheat

3.5.1. Sugar (Europe and US)

One can distinguish four main regimes in the dynamics of the branching
ratio for Sugar (Europe) shown of Fig. 7(a):

• Before 2007, the branching ratio is hovering around 0.3, with a rather
large standard deviation due to the limited size of the data set resulting
from relatively low trading activity.

• Starting at the beginning of 2007, the branching ratio increases rapidly
and doubles in less than three quarters, stabilizing around the value
0.5-0.6 in the third quarter of 2007.

• From the fourth quarter of 2007 till mid 2011, the branching ratio is
practically stable and remains in the range 0.5-0.6 with some excursions
higher up.

• From mid-2011 to the end of 2011, the branching ratio increases and
passes over 0.75. Thereafter, it decreases but remains in the range
0.6-0.7.
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The rough pattern is similar for Sugar #11 shown in Fig. 7(b), except that
(i) the story is shorter, (ii) there is a divergence in endogeneity dynamics with
respect to Sugar (Europe) in spring 2009: sugar (US) experiences a spike in
endogeneity levels from around 0.55 to 0.7. The peak of the branching ratio
observed for Sugar (Europe) at the very end of 2011 is absent for Sugar #11
and its dynamics in 2012 is characterized by a monotonous increase of the
branching ratio in the second part of 2012 to the extreme high level of 0.8
(possibly on expectations of QE3 discussed above).

The volatility of the branching ratio in 2009 possibly owes a lot to specu-
lation on government intervention and on sugar supply deficit in usually net
exporter countries like India and Brazil. The fluctuation of the branching ra-
tio in 2010–2012, which is not synchronized between European and American
sugar, may be rationalized by divergent internal discussions on both sides of
the Atlantic regarding quotas affecting sugar imports and production.

3.5.2. Corn (US), Soybean (US) and Wheat (US)

The dynamics of the prices and volatilities of Corn (US), Soybean (US)
and Wheat (US) shown of Fig. 8(b), Fig. 8(a) and Fig. 9 share many similar
features. They exhibit a very large peak in mid-2008, only surpassed by very
recent price surges for Corn and Soybean, followed by a deflating price until
mid-2010. These peaks in mid-2008 are coincident with the peak of oil price
previously discussed and are symptomatic of the commodity bubble that
developed in 2007 and 2008. One can also notice a precursory peak in the
first quarter of 2008, which is especially pronounced for Soybean (US) and
is actually a dominant price feature for Wheat.

Interestingly, in contrast with the behavior of the branching ratio for
oil, which accompanied by its increase the growth of the oil price bubble,
the branching ratios for these commodities remained in the range 0.5–0.6,
with some spikes before the price peak and spikes associated with the price
correction following the peak in mid-2008. However, since the branching ratio
could not be computed prior to the end of 2006 for these commodities, one
can reasonably assume based on the branching ratio measured on the E-mini
S&P 500 and Sugar (Europe) that the reflexivity level is likely to be around
0.3–0.4 for the earlier years. Therefore, the level measured just before the
commodity bubble burst is already relatively high and does not exhibit the
jump seen on the Brent or the E-mini in early 2006.

The branching ratios of Corn, Soybean and Wheat remained approxi-
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mately constant after this bubble episode, in the range 0.40–0.6 from mid-
2009 to mid-2010 for Soybean and Wheat and in the range 0.5–0.65 for Corn
from mid-2008 to mid-2010. The branching ratios of both Soybean and Corn
exhibited a sharp increase from 0.5 to 0.6 for Soybean and even to 0.7 for
Corn and Wheat, in the third quarter of 2010, which can be associated with
a change to a phase of rising prices. In fact, in the summer of 2010, Russia
announced an export ban for wheat and Ukraine followed by announcing ex-
port restriction11. As wheat, soybean and corn are substitutes for feed grain,
the export restrictions created a shock that impacted simultaneously these
markets. The substitutability between these commodities through their use
as feedstock creates correlation between them.

Thereafter, the branching ratio for Soybean showed a steady decline from
0.6 to slightly above 0.5 in October 2012. In contrast, the branching ratio
for Corn exhibited much larger volatility with drops down to 0.4 and peaks
up to 0.6 from 2011 to September 2012.

3.6. Robustness tests

The branching ratio represents a standalone measure of reflexivity, which
is not affected by a simple increase or decrease of trading activity (measured
in the number of transactions or volume) or by price changes. As discussed
in sections 2.2 and 3.1, the input for the calibration of the Hawkes model
is the series of timestamps of mid-quote price changes, independently of
their directions. Thus, the branching ratio is insensitive to the presence and
direction of trends, whether the price is rising, falling or moving sideway. An
increase of the branching ratio qualifies an increase of self-excitation in the
price formation mechanisms and, as explained in section 2.2.2, could signal
the development of short-term instabilities and of incoming crises.

Similarly to the effect of the direction of price moves, neither transactions
nor volume enter directly into the formulation of the Hawkes model, since
individual transactions do not necessary result in a change of the mid-price.
As an example, doubling the number of transactions by splitting each of
them into two independent transactions (to keep the daily volume constant)

11See Reuters article “Snap analysis — Race for Russia’s grain busi-
ness after export ban” (http://www.reuters.com/article/2010/08/05/
uk-russia-grain-export-ban-idUKTRE6744E720100805) and BBC article “Ukraine
sets grain export quotas following drought” (http://www.bbc.co.uk/news/
business-11495369).
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does not affect the dynamics of the mid-price at all. Similarly, keeping the
number of transactions constant and doubling the volume of each of them
(doubling the volume of each incoming market order) while simultaneously
doubling the volume of all incoming limit orders again would not change the
dynamics of the mid-price. The number of events (mid-quote price changes)
also does not directly affect the parameters of the model except for the back-
ground intensity parameter µ. For instance, doubling the number of events
by superimposing two identical clusters from fig. 3 (or two clusters generated
with identical parameter set (n, τ)) will result in doubling the background
intensity µ that quantifies the rate of exogenous (zero-order) events in the
system, but the branching ratio n will not be changed.

The above is theory, but does it hold in practice, in particular in the sta-
tistical estimation of the branching ratio with limited data and for different
parameters? In order to reject the possibility that the observed dynamics
of the branching ratio could reflect an increase of trading activity, we per-
formed the following test. Fixing the number of mid-quote price changes
per day, we redistributed these events in time such that, within one day,
their dynamics was described by a Poisson process. This “redistribution” of
the time series amounts to keeping the price trajectories, the daily volume,
the number of price and mid-quote price changes per day unchanged, i.e.,
keeping the same trajectories as shown in Fig. 5–9 while distorting time such
that the intervals between consecutive mid-quote price changes within one
day become uncorrelated and exponentially distributed. Then, we performed
exactly the same procedure as described in section 2.2 and 3.1. Namely, we
divided each day in 10 minutes intervals, rounded timestamps to nearest end
of sub-interval of size ∆ of 100, 200, 300 milliseconds and 1 second (which
would correspond to introducing uncertainty in timestamps), implemented
the procedure described in section 3.1 and estimated the parameters (µ, n, τ)
of the Hawkes process (1) with an exponential kernel (2) within each of these
intervals. Fig. 10 presents the results of this robustness test. Despite the
increase of activity (measured, for instance, in the number of transactions)
and the increase of trading volume (see table 2), as well as the existence of
a highly nontrivial seasonal volume dynamics (see fig. 1), the random shuf-
fling of the time stamps have completely erased the self-excited structure of
the time series. Indeed, the estimated branching ratio in the randomized
time series is consistently found very small, as it should. Its average and
median values are always n̂ . 0.08 and the 75%-quantile is below 0.1. One
can thus clearly reject the hypothesis that the branching ratio is sensitive
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to, or equivalently provides another measure of, trading activity and trading
volume. This quantitative result supports the key property of the Hawkes
model, which is that the branching ratio is not determined by the average
rate of events but by the degree of self-excitation of the system.

4. Conclusion

Using the Hawkes self-excited conditional Poisson process, we have quan-
tified the degree of endogeneity in the price dynamical generating process of
a number of highly-traded commodity futures markets. For all analyzed mar-
kets, we have found high levels of endogeneity. On average, our conservative
estimates show that more than one out of two price changes is due to another
preceding price change since the second-half of the 2000s, and not due to an
exogenous piece of news. In other words, price dynamics on these commodity
markets are partly driven by self-reinforcing mechanisms. In our view, this
evolution partly reflects the development of algorithmic trading and of high
frequency trading in particular. Using the insights obtained from the proper-
ties of the Hawkes self-excited conditional Poisson process calibrated to the
commodity futures markets, we infer that these high levels of endogeneity
are likely to make the price formation process less efficient, because higher
endogeneity implies a longer convergence process. Moreover, it also points
to a growing instability of the system, as we explained in section 2.2.

Our robustness tests show that our measure of endogeneity is independent
of other factors that have also experienced significant changes over the last
decade. More importantly, it is also independent of the background intensity
of exogenous events in these markets. Interestingly, we do not observe a long-
term increase of this variable in parallel of the developments that we observe
for the other variables, like transactions volumes. This suggests that the rate
of genuine news impacting the market, reflected in our measure of background
intensity, has remained relatively constant over the analyzed period. Our
results also do not support the view that the financialization of commodity
markets has allowed to process a greater set of relevant information than
what previous market participants considered before the rise of electronic
trading.

While our index does not have a long-term memory, interestingly, we
find that it can still provide some interesting insights when the mechanisms
working at longer time scales cascade down to shorter terms, as occurred
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for during the Oil bubble that culminated in July 2008 and crashed until
December 2008.

Acknowledgments

We would like to thank Dr. Mika Kastenholz for fruitful discussions.
We also would like to thank Dr. Heiner Flassbeck, former Director of the
Division on Globalization and Development Strategies, UNCTAD, without
whom this research would have not been possible.

References
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Table 1: Description of the selected instruments.

Abbrevations
and TRTH

RIC
Specification

Exchange
and trading
platform

Contract
month

Introduction
of electronic

trading

Hours of
active trading

Brent Crude
(LCOc1)

1,000 barrels
of light sweet
crude oil

ICE Europe /
ICE

electronic
platform

Every month April 7, 2005
BST

15:15–19:45a;
14:00–19:45b

WTI
(CLc1)

1,000 barrels
of light sweet
crude oil

NYMEX /
CME Globex

Every month
September 4,

2006

EST
10:00–14:45a;
9:00–14:45b

Soybean
(Sc1)

5,000 bushels
(∼136 metric

tons)

CBOT /
CME Globex

January,
March, May,
July, August,
September,
November

August 1,
2006

CDT
9:45–13:30

Sugar #11
(SBc1)

112,000
pounds

ICE US /
ICE

electronic
platform

March, May,
July, October

January 12,
2007c

EST
8:15–13:45

Corn
(Cc1)

5,000 bushels
(∼127 metric

tons)

CBOT /
CME Globex

March, May,
July,

September,
December

August 1,
2006

CDT
9:45–13:30

Wheat
(Wc1)

5,000 bushels
(∼136 metric

tons)

CBOT /
CME Globex

March, May,
July,

September,
December

August 1,
2006

CDT
9:30–13:30

Sugar
(LSUc1)

50 metric
tons

LIFFE /
NYSE

Euronext

March, May,
August,
October,
December

November 27,
2000

BST
9:30–17:30d;
8:30–17:30e;

E-mini
S&P 500
(ESc1)

50 x E-mini
S&P 500

futures price

CME / CME
Globex

March, June,
September,
December

September 9,
1997

EST
9:30–16:15;

abefore January 22, 2007
bafter January 22, 2007
cHowever before the March 2, 2008 data was disaggregated into RICs “SBc1” and “1SBc1” for pit

and electronic trading and real time bid, ask, volume, and settlement values are not provided due to feed
limitations.

dbefore June 29, 2009
eafter June 29, 2009
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Table 2: Number of transactions, annual volume (in contracts) and volume per transaction
(VPT): average (A), median (M) and 90%-quantile (Q90) of analyzed contracts.

Year Transactions Volume
VPT

Transactions Volume
VPT

A M Q90 A M Q90

Brent Crude (Europe) WTI (US)

2005 2’266’953 12’324’431 5.4 1 10 919’941 24’431’479 26.6 2 13
2006 5’723’522 17’543’910 3.1 1 5 2’468’946 29’541’698 12.0 2 8
2007 8’619’436 22’091’574 2.6 1 3 11’960’866 58’268’584 4.9 1 6
2008 13’413’832 26’408’342 2.0 1 2 21’429’745 66’766’312 3.1 1 4
2009 12’789’309 28’241’439 2.2 1 3 21’104’592 66’833’089 3.2 1 4
2010 17’690’209 38’581’454 2.2 1 3 31’570’311 79’334’457 2.5 1 3
2011 25’033’310 46’720’379 1.9 1 3 41’855’040 78’088’015 1.9 1 2
2012∗ 18’875’419 36’397’876 1.9 1 3 27’420’055 47’640’155 1.7 1 2

Soybean (US) Sugar #11 (US)

2006 437’313 7’389’376 16.9 2 10
2007 1’512’818 11’886’079 7.9 2 10 853’963 11’082’111 13.0 3 14
2008 3’218’183 13’443’592 4.2 1 5 2’884’089 13’010’845 4.5 2 10
2009 2’870’535 13’365’613 4.7 1 6 2’167’801 12’424’883 5.7 1 7
2010 5’522’405 13’385’860 2.4 1 2 4’572’232 12’767’545 2.8 1 4
2011 7’023’025 16’435’216 2.3 1 2 4’513’119 10’867’352 2.4 1 4
2012∗ 5’043’826 11’191’303 2.2 1 2 3’244’271 8’864’245 2.7 1 5

Corn (US) Wheat (US)

2005 919’941 24’431’479 26.6 2 13 116’059 4’540’024 39.1 2 10
2006 2’468’946 29’541’698 12.0 2 8 306’472 6’296’176 20.5 2 10
2007 11’960’866 58’268’584 4.9 1 6 1’126’338 7’897’908 7.0 2 10
2008 21’429’745 66’766’312 3.1 1 4 2’060’348 8’120’508 3.9 1 5
2009 21’104’592 66’833’089 3.2 1 4 1’765’353 8’123’123 4.6 1 6
2010 31’570’311 79’334’457 2.5 1 3 3’887’485 9’447’008 2.4 1 3
2011 41’855’040 78’088’015 1.9 1 2 5’099’530 10’128’749 2.0 1 2
2012∗ 27’420’055 47’640’155 1.7 1 2 3’677’335 8’582’026 2.3 1 2

Sugar (Europe) E-mini S&P 500

2005 58’524 849’928 14.5 8 30 11’439’420 183’667’226 16.1 2 35
2006 82’688 891’134 10.8 5 23 11’095’507 223’402’685 20.1 2 48
2007 148’815 1’217’541 8.2 4 20 22’183’920 362’881’400 16.4 2 31
2008 158’151 925’481 5.9 3 12 49’488’715 551’544’452 11.1 2 23
2009 294’445 919’343 3.1 1 6 41’655’339 492’581’685 11.8 2 21
2010 400’850 977’312 2.4 1 5 107’143’664 497’545’699 4.6 1 9
2011 485’522 870’938 1.8 1 3 120’700’428 540’010’834 4.5 1 9
2012∗ 350’957 686’958 2.0 1 3 72’728’681 316’597’629 4.4 1 9

∗ Year-To-Date: Datasets of Brent Crude, WTI, Soybean, Sugar #11 (US), Corn
and E-mini S&P 500 contained data until September 30, 2012. Datasets of

Wheat (US) and Sugar (Europe) contained data until May 30, 2012.44



Table 3: Average and median uncertainty of the timestamps of events resulting from the
nature of the FAST/FIX feed. Dash lines (—) correspond to the time periods before the
introducing of electronic trading for the given contract (see table 1).

(A) Average uncertainty (in milliseconds)

Contract 2005 2006 2007 2008 2009 2010 2011 2012

Brent (EU) 332 222 105 98 107 115 165 167

WTI (US) — 326 208 133 144 137 141 110

Soybean (US) — 267 240 174 192 146 125 141

Sugar #11 (US) — — — 235 199 183 243 242

Corn (US) — 268 267 186 207 164 142 144

Wheat (US) — 287 281 211 213 146 147 141

Sugar (EU) 309 272 303 344 230 212 200 185

E-mini S&P 500 173 195 168 112 129 87 92 103

(B) Median uncertainty (in milliseconds)

Contract 2005 2006 2007 2008 2009 2010 2011 2012

Brent (EU) 227 118 35 26 24 30 65 68

WTI (US) — 199 80 62 61 62 59 22

Soybean (US) — 149 130 71 77 32 22 23

Sugar #11 (US) — — — 112 58 43 127 135

Corn (US) — 151 174 75 106 45 32 26

Wheat (US) — 174 179 91 86 29 30 22

Sugar (EU) 223 197 190 245 119 85 84 69

E-mini S&P 500 127 121 79 51 60 31 32 41
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Table 4: Fraction of total calibrations (per year) of the Hawkes model that could be
rejected with 95% confidence on the basis of the Kolmogorov-Smirnov test (see text).
Dash lines (—) correspond to the years before the introduction of electronic trading for
the given contract (see table 1). Stars (***) denote the years when the corresponding
reliability of timestamps (∆) is not applicable (see text).

(A) ∆ = 50 milliseconds

Contract
Fraction of rejected estimates per year

Total
2005 2006 2007 2008 2009 2010 2011 2012

Brent (EU) *** *** 32.60% 41.28% 31.35% 31.40% *** *** 34.16%

WTI (US) — *** *** *** *** *** *** 34.26% 34.26%

Soybean (US) — *** *** *** *** 33.20% 28.17% 31.03% 30.75%

Sugar #11 (US) — — — *** *** 34.53% *** *** 34.53%

Corn (US) — *** *** *** *** 33.39% 48.87% 29.92% 38.45%

Wheat (US) — *** *** *** *** 33.50% 32.78% 28.42% 31.93%

Sugar (EU) *** *** *** *** *** *** *** *** ***

E-mini S&P 500 *** *** *** *** *** 45.52% 60.78% 36.97% 48.97%

Total *** *** 32.60% 41.28% 31.35% 35.96% 45.64% 32.96% 37.29%

(B) ∆ = 100 milliseconds

Contract
Fraction of rejected estimates per year

Total
2005 2006 2007 2008 2009 2010 2011 2012

Brent (EU) *** *** 15.11% 18.94% 20.52% 20.06% 14.71% 13.17% 17.24%

WTI (US) — *** 10.09% 6.81% 7.57% 17.63% 9.91% 22.41% 11.96%

Soybean (US) — *** *** 13.99% 25.73% 23.77% 19.65% 21.97% 21.01%

Sugar #11 (US) — — — *** 16.50% 25.69% *** *** 21.48%

Corn (US) — *** *** 28.29% *** 22.85% 35.41% 23.93% 28.16%

Wheat (US) — *** *** 26.46% 30.28% 25.72% 24.86% 20.67% 26.24%

Sugar (EU) *** *** *** *** *** 36.10% 38.10% 42.70% 38.08%

E-mini S&P 500 *** *** 9.81% 9.11% 9.30% 39.56% 51.66% 27.99% 24.75%

Total *** *** 11.62% 15.62% 16.85% 27.37% 29.01% 24.50% 22.13%
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Table 4: (continued).

(C) ∆ = 200 milliseconds

Contract
Fraction of rejected estimates per year

Total
2005 2006 2007 2008 2009 2010 2011 2012

Brent (EU) *** 24.28% 6.27% 12.06% 14.97% 13.00% 5.33% 5.19% 11.38%

WTI (US) — 6.42% 3.75% 3.11% 3.17% 8.65% 5.87% 14.24% 6.14%

Soybean (US) — 3.38% 8.30% 8.77% 13.56% 14.09% 11.65% 12.13% 10.98%

Sugar #11 (US) — — — 12.04% 9.86% 16.77% 29.98% 26.50% 19.20%

Corn (US) — 5.72% 7.36% 16.04% 10.24% 11.82% 18.24% 15.51% 13.14%

Wheat (US) — 3.27% 8.35% 15.98% 16.59% 15.79% 14.51% 11.80% 13.42%

Sugar (EU) *** 25.72% 13.90% *** 13.38% 22.43% 26.07% 32.98% 23.60%

E-mini S&P 500 1.15% 9.97% 7.05% 4.12% 4.54% 30.66% 34.34% 19.53% 14.36%

Total 1.15% 13.17% 6.70% 9.27% 10.26% 17.55% 18.85% 17.79% 13.58%

(D) ∆ = 300 milliseconds

Contract
Fraction of rejected estimates per year

Total
2005 2006 2007 2008 2009 2010 2011 2012

Brent (EU) 11.11% 16.42% 3.90% 8.30% 11.14% 9.10% 3.03% 3.41% 8.02%

WTI (US) — 3.48% 2.45% 1.90% 1.98% 5.85% 3.60% 9.70% 4.01%

Soybean (US) — 2.61% 5.90% 6.27% 7.58% 9.18% 7.30% 7.64% 7.06%

Sugar #11 (US) — — — 7.10% 6.75% 10.71% 19.13% 18.74% 12.52%

WTI (US) — 3.48% 2.45% 1.90% 1.98% 5.85% 3.60% 9.70% 4.01%

Wheat (US) — 2.29% 5.59% 10.01% 9.47% 10.05% 8.65% 7.40% 8.27%

Sugar (EU) 16.92% 24.63% 10.54% 7.84% 9.48% 14.12% 18.73% 28.47% 16.33%

E-mini S&P 500 0.91% 8.76% 6.67% 2.47% 2.67% 23.64% 32.68% 14.10% 12.38%

Total 5.99% 9.37% 4.45% 5.16% 6.03% 11.46% 13.06% 12.90% 8.99%

(E) ∆ = 1 second

Contract
Fraction of rejected estimates per year

Total
2005 2006 2007 2008 2009 2010 2011 2012

Brent (EU) 2.44% 2.03% 0.85% 1.33% 2.18% 1.21% 0.58% 0.77% 1.36%

WTI (US) — 0.85% 0.43% 0.33% 0.30% 0.71% 0.45% 1.18% 0.56%

Soybean (US) — 0.93% 1.41% 1.72% 1.45% 1.94% 1.61% 1.31% 1.55%

Sugar #11 (US) — — — 1.29% 1.34% 1.68% 2.13% 2.95% 1.84%

Corn (US) — 1.09% 1.42% 2.19% 1.42% 1.97% 2.41% 2.70% 1.99%

Wheat (US) — 0.61% 1.06% 1.14% 1.54% 1.84% 1.37% 1.18% 1.33%

Sugar (EU) 10.60% 15.14% 2.72% 1.65% 2.12% 1.75% 4.63% 16.84% 4.57%

E-mini S&P 500 0.28% 1.84% 2.19% 0.49% 0.32% 6.03% 7.98% 3.97% 3.10%

Total 1.41% 1.93% 1.25% 1.15% 1.29% 2.23% 3.00% 3.81% 2.08%
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Figure 1: Evolution of monthly volume (measured in number of contracts) of the Brent
Crude (Europe), WTI (US), Soybean (US), Sugar #11 (US), Corn (US), Wheat (US) and
Sugar (Europe) future contracts over the period 2005–2012.

48



Time

Price Last transaction price
Best bid price
Best ask price
Mid-quote price
Transaction
Mid-quote price change

Figure 2: Illustration of the high frequency price dynamics. The black line corresponds
to the last transaction price, the red and blue lines correspond to best ask and best bid
prices respectively and the dashed green line corresponds to the mid-quote price. Black
circles denote transactions and red squares denote timestamps of mid-quote price changes

Time

0 0 01 1 1 1 1 1 1 12 2 2 22 22 2 23 3 3 34

Figure 3: Illustration of the branching structure of the Hawkes process (top) and events on
the time axis (bottom). Different colors of markers correspond to different clusters. The
numbers below an event denotes its order within the cluster. This picture corresponds to
the branching ration n = 0.88.
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Figure 4: Dynamics of (a) volume and activity measured in number of mid-quote price
changes, (b) daily closing price and daily volatility, (c) estimated background intensity (µ̂,
see text) and (d) branching ratio (n̂, see text) for the E-mini S&P 500 futures over the
period 1998–2012. Each point in panels (c) and (d) represents averaged estimates over
two months interval prior to the point in time windows of 10 minutes for ∆ = 100 msec
(squares), ∆ = 200 msec (crosses with black line), ∆ = 300 msec (circles) and ∆ = 1 sec
(dots with blue line). The shaded area gives the 25%–75% quantile range obtained with
the same two months estimates for ∆ = 200 msec. In the analysis we have considered only
estimates performed within hours of active trading (see table 1).
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(a) Brent Crude (Europe)
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Figure 5: (i) Daily closing price and daily volatility estimated with the Garman&Klass
estimator and (ii) estimation of the branching ratio (n̂) of the flow of mid-quote price
changes of the (a) Brent Crude and (b) WTI futures on light sweet oil. Each point at a
given time t in the panels showing the branching ratio represents an averaged over one
month prior totime t of windows of 10 minutes for ∆ = 100 msec (squares), ∆ = 200 msec
(crosses with black line), ∆ = 300 msec (circles) and ∆ = 1 sec (dots with blue line). The
shaded area indicates the 25%–75% quantile range obtained with the same one month
estimates for ∆ = 200 msec. In the analysis we have considered only estimates performed
within hours of active trading (see table 1).
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Figure 6: Price time series of NYMEX Light Sweet Crude (front month contract) and sim-
ple log-periodic power law (LPPL) fits (see Sornette et al. (2009) for details). The shaded
box shows the 80% confidence interval of the forecast performed at the time indicated by
the vertical dashed line.
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(a) Sugar (Europe)
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Figure 7: (i) Daily closing price and daily volatility estimated with the Garman&Klass
estimator and (ii) estimation of the branching ratio (n̂) of the flow of mid-quote price
changes of the (a) European Sugar and (b) Sugar #11 (US) futures. Each point at a given
time t in the panels showing the branching ratio represents an averaged over one month
prior to time t of windows of 10 minutes for ∆ = 100 msec (squares), ∆ = 200 msec
(crosses with black line), ∆ = 300 msec (circles) and ∆ = 1 sec (dots with blue line). The
shaded area delineates the 25%–75% quantile range obtained with the same one month
estimates for ∆ = 200 msec. In the analysis we have considered only estimates performed
within hours of active trading (see table 1).
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(a) Soybean (US)

0

0.02

0.04

0.06

0.08

V
ol

at
ili

ty

 

 

0

200

400

600

800

P
ric

e

Daily volume
Daily closing price

Year

B
ra

nc
hi

ng
 r

at
io

2005 2006 2007 2008 2009 2010 2011 2012

0.4

0.5

0.6

0.7

0.8

(b) Corn (US)

Figure 8: (i) Daily closing price and daily volatility estimated with the Garman&Klass
estimator and (ii) estimation of the branching ratio (n̂) of the flow of mid-quote price
changes of the (a) Soybean and (b) Corn futures. Each point at a given time t at the
plot of branching ratio represents an averaged over one month interval prior to time t of
windows of 10 minutes for ∆ = 100 msec (squares), ∆ = 200 msec (crosses with black line),
∆ = 300 msec (circles) and ∆ = 1 sec (dots with blue line). The shaded area corresponds
to 25%–75% quantile range obtained with the same 2 months of estimates for ∆ = 200
msec. In the analysis we have considered only estimates performed within hours of active
trading (see table 1).

54



0

0.05

0.1

V
ol

at
ili

ty

 

 

0

500

1000

1500

P
ric

e

Daily volume
Daily closing price

Year

B
ra

nc
hi

ng
 r

at
io

2005 2006 2007 2008 2009 2010 2011 2012
0.3

0.4

0.5

0.6

0.7

(a) Wheat (US)

Figure 9: (i) Daily closing price and daily volatility estimated with the Garman&Klass
estimator and (ii) estimation of the branching ratio (n̂) of the flow of mid-quote price
changes of the Wheat futures. Each point at a given time t in the panels showing the
branching ratio represents an averaged over one month prior to time t of windows of 10
minutes for ∆ = 100 msec (squares), ∆ = 200 msec (crosses with black line), ∆ = 300
msec (circles) and ∆ = 1 sec (dots with blue line). The shaded area shows the 25%–75%
quantile range obtained with the same one month estimates for ∆ = 200 msec. In the
analysis we have considered only estimates performed within hours of active trading (see
table 1).
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Figure 10: Estimation of the branching ratio (n̂) of the flow of randomly redistributed mid-
quote price changes (see text) of the Brent Crude (Europe), WTI (US), Soybean (US),
Sugar #11 (US), Corn (US), Wheat (US) and Sugar (Europe) future contracts. Each
point at a given time t in the panel showing the branching ratio represents an average
over one month prior to time t of windows of 10 minutes for ∆ = 100 msec (squares),
∆ = 200 msec (crosses with black line) and ∆ = 300 msec (circles). The shaded area gives
the 25%–75% quantile range obtained with the same one month estimates for ∆ = 200
msec. In the analysis we have considered only estimates performed within hours of active
trading (see table 1).
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