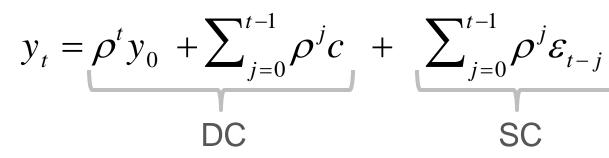


Demographics and the behavior of interest rates

(C. Favero, A. Gozluklu and H. Yang)

Discussion by

Michele Lenza European Central Bank and ECARES-ULB


> Firenze 18-19 June 2015

- Interest rates are very persistent, characterized by a relevant share of low frequency fluctuations
- This poses challenges to modeling, in particular by using VAR techniques
- Sims (1992, 1996) identified a set of pathologies for VARs which turn out to be very relevant for interest rates (and other very persistent variables).
- I will highlight the importance of the empirical contribution, in the context of this debate on how to address "persistence" in empirical models
- Then, I will have a few remarks

Pathologies of VAR (Sims, 1992 and 1996). A simple example

• AR(1):
$$y_t = c + \rho y_{t-1} + \varepsilon_t$$

Iterate backwards:

- Model separates observed variation of the data into
 - DC: deterministic component, predictable from data at time 0
 - SC: unpredictable/stochastic component

• If $\rho = 1$, DC is a simple linear trend: $DC = y_0 + c \cdot t$

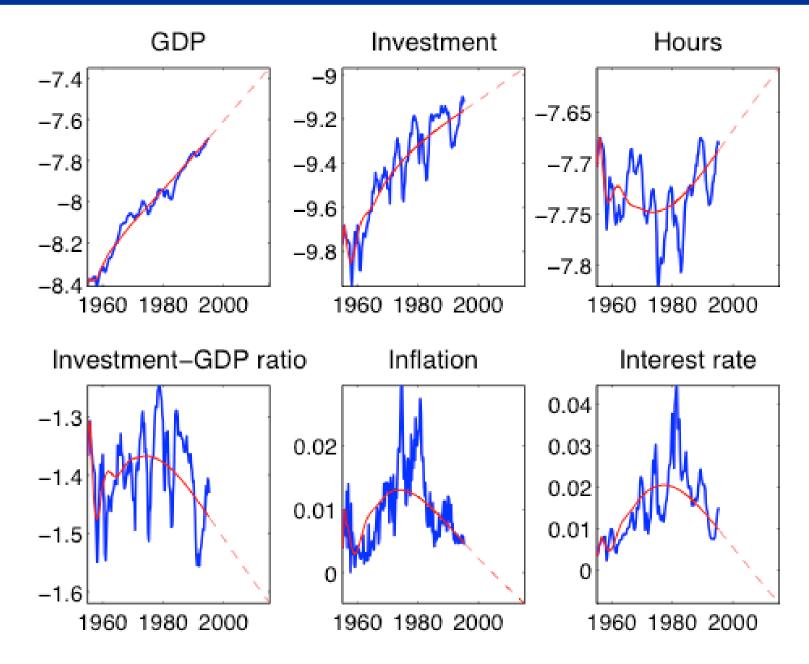
• Otherwise more complex:

$$DC = \frac{c}{1-\rho} + \rho^t \left(y_0 - \frac{c}{1-\rho} \right)$$
www.ecb.

europa.eu ©

Pathologies of VAR (Sims, 1992 and 1996): Giannone, Lenza and Primiceri (2014)

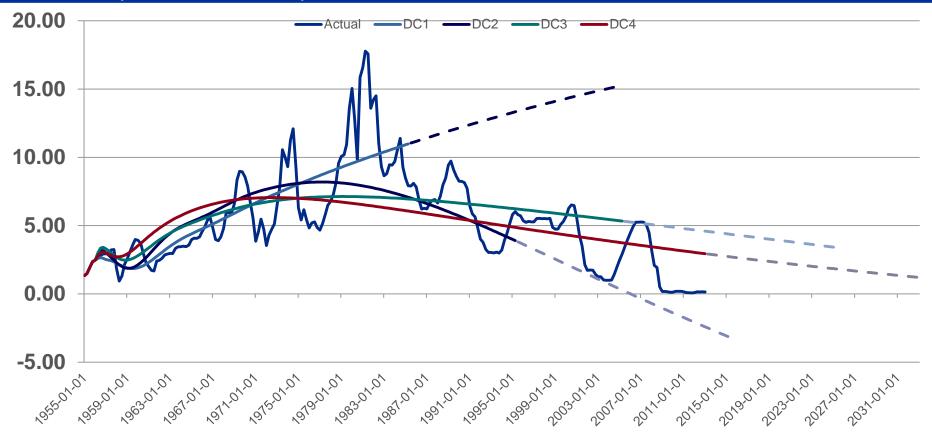
• Simulate sample paths from


$$y_t = c + y_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma^2)$$

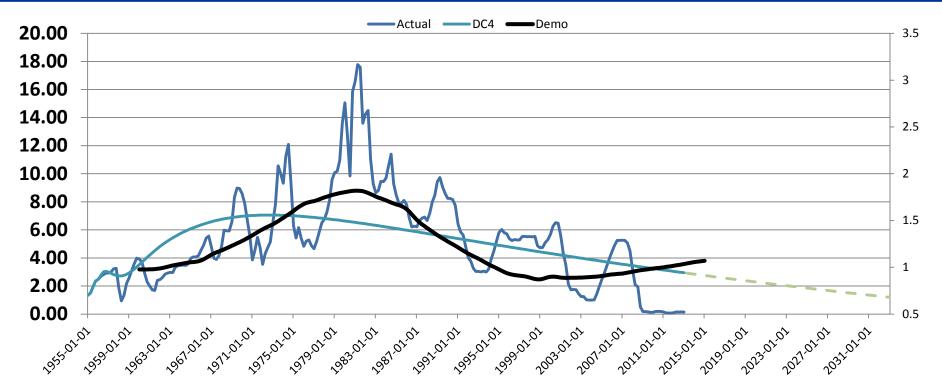
Compute OLS estimates of parameters and plot implied deterministic component

Main lessons:

- Flat-prior estimates imply that the average growth rate <u>in the next T periods</u> is likely to be <u>quite different from the last T periods</u>
- > Deterministic components tend to explain too much sample variability
- Problem more severe with VARs
 - Implied deterministic component is much more complex than in AR(1) case
 - A VAR with k variables and n lags has k*n roots and can perfectly fit an arbitrary collection of k*nth order polynomials
 - Example: 7-variable VAR(5) with quarterly data (1955:I 1994:IV)
 - Flat prior


Deterministic components in flat prior VARs (Giannone, Lenza and Primiceri, 2014)

Pathology of (flat-prior) VARs (Sims, 1996 and 1998)


- OLS/MLE has a tendency to "use" the complexity of deterministic components to fit the low frequency variation in the data
- Possible because inference is typically conditional on y_0
 - No penalization for parameter estimates that make initial conditions as highly implausible draws from the unconditional distribution of the variables
 - Parameter estimates may, then, imply steady states or trends very far away from the initial conditions!
- Flat-prior VARs attribute an (implausibly) large share of the low frequency variation in the data to deterministic components
- Typically a problem: the estimated model provides very inaccurate out-of-sample forecasts

Example of out-of-sample forecasts of short-term interest rates - deterministic

Deterministic components and forecasts: generally, poor out-of-sample accuracy of models which assign this importance to deterministic components

Demographic variable in this paper

Several solutions have been devised in the literature to address this issue.

For example, use priors centered on non-stationarity

This paper: model the low frequency component by means of demographic variable (black solid line, inverted) and exclude if from the VAR analysis

• Model similar to a "Factor" model for short and long-term interest rates (i_t)

 $i_t = a + b^*X_t + b^*MY_t$ $X_t = d + f^*X_{t-1} + e_t$

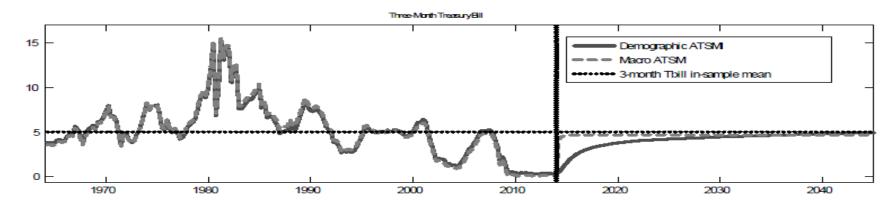
 X_t : two observed macroeconomic factors (real and nominal) and three unobserved "term-structure" factors

MY_t: <u>exogenous</u> demographic variable (middle age/young). Captures the ratio of savers over dissavers. When high, interest rates have to be low to balance saving flows (and viceversa)

Effectively, the variable MY_t is an exogenous permanent factor meant to capture the low frequency component of interest rates

Persistent component of interest rates: "equilibrium rate"

Cyclical component: <u>Taylor type rule</u>


- Evaluation of the out-of-sample forecast accuracy
 - Forecast conditional on actual future demographic variable

How would these forecasts look by using the real-time "future paths" of the demographic variable?

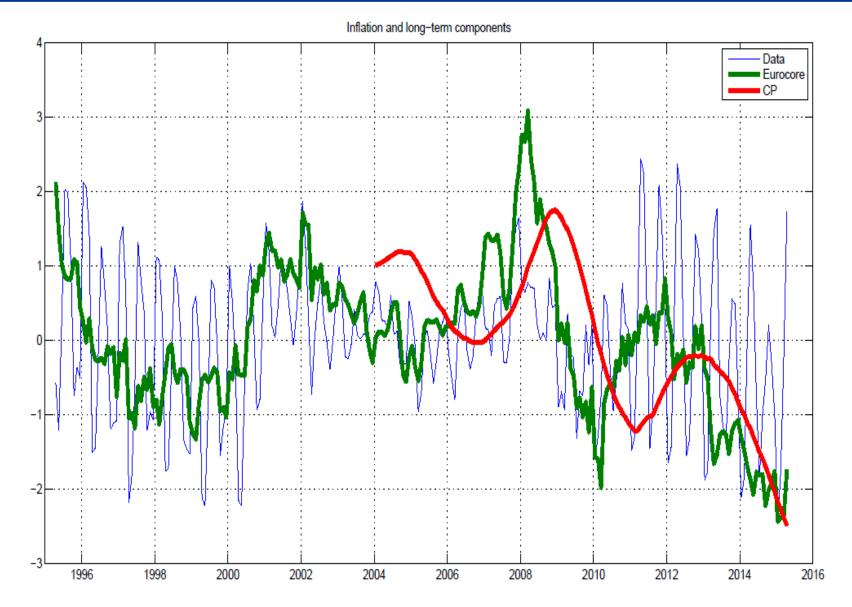
- Better than model without deterministic component (Macro ATSM)
 - Model excluding demographic variable; in theory persistence in rates captured by persistent unobserved level factor
- The demographic variable provides an accurate estimate of the low frequency fluctuations of the interest rates
- Implication for secular stagnation? Can do pretty accurate long-run forecasts of demographic variables! This model can potentially be used to project the path of interest rates, conditional exclusively on demographic variable, far in the future (stationary VAR)

Comment 1: how good a benchmark is the Macro ATSM?

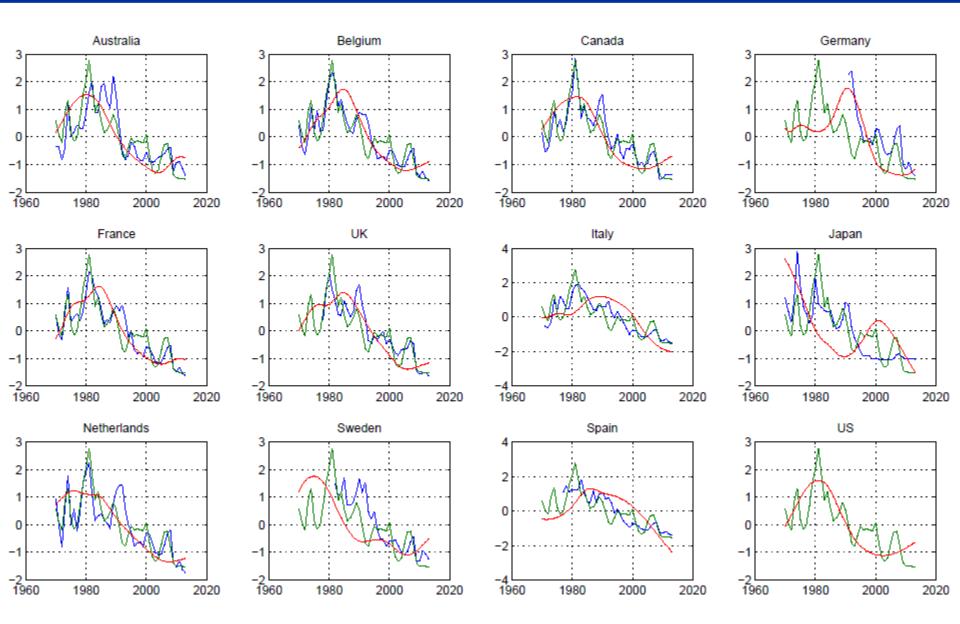
- Out-of-sample analysis is a crucial part of this study: validate the characterization of the low frequency of interest rates by means of the demographic variable
- But, is the Macro ATSM a good enough benchmark? (level factor to capture persistence)

- Virtually no persistence captured in Macro ATSM. Maybe benchmark should be a better model, with more chance of capturing persistence/low frequency
- In the literature, other solutions to address the issues raised by the pronounced low frequency fluctuations of interest rates
 - Imposition of priors, centered on non-stationarity (sum-of-coefficients priors) or "Priors for the long-run" (Giannone, Lenza and Primiceri, 2014: favoring "common trends"); allows also to include more lags.
 - Can also add the "arbitrage restrictions" as priors

- The paper discusses also alternative explanations for the long-run component of interest rates
 - In particular, long-run component of "core" inflation (Cieslak and Povala, 2015): very long discounted sum
 of past inflation
- To see that the low frequency component of inflation is a valid benchmark, let's look at a standard NK-DSGE model
 - low frequency component of inflation modeled by means of a persistent inflation targeting shock (sample 1982-2006, Cogley, Primiceri and Sargent, 2010)
- Standard three equations model, fits the data well
- What happens if we zero-out all the shocks apart from the inflation targeting shock?


Comment 2: alternative interpretations for long-run components of interest rates?

Comment 2: alternative interpretations for long-run components of interest rates?


- The paper discusses also alternative explanations for the long-run component of interest rates
 - In particular, long-run component of "core" inflation (Cieslak and Povala, 2015): very long discounted sum
 of past inflation
 - In "forecasting" equation, significantly loaded but slightly "less good" than demographic
- However, this inflation component is a discounted moving average of past inflation.
- Lagging signal for current permanent component of inflation. Ideal would be a moving average including also future inflation, but unfeasible!
- The literature on Dynamic Factor Models (Cristadoro et al. 2005) has suggested how to address this issue
- Idea: use variables leading inflation in order to proxy for missing "future" inflation in average over past, present and future inflation
- Example on euro area data (dataset: 150 sub-components of Harmonized Index of Consumer Prices)

Comment 2: alternative interpretations for long-run components of interest rates?

- Very strong global correlation of interest rates
- To what extent does this correlation reflect the correlation in demographics?
- Panel regression in the paper. Evidence of (statistically significant) negative relationship, on average across countries
- Let's "open the black-box" of the panel regression to see if there is some recognizable pattern
- Plot country (short-term) nominal interest rates (blue), (inverted) demographic variable (red) and US short-term interest rate (green)
- Standardized/centered

Comment 3: what about other countries?

- Perfect alignment in some countries
- In many European countries, seems that the tightest relationship is not with the demographic variable, but the US interest rate (US demographic)
- Demographic variable inappropriate for Europe?
- Policy implication: for monetary policy in the euro area, don't look at euro area demographics, but at US demographics?

- I like this paper
- It models the low frequency component of interest rates in an innovative way, grounded on economic theory
- It conducts serious out-of-sample validation exercises in order to support empirically the use of the demographic variable
- In my comments I have highlighted some potential extensions, but I think that the idea is robust and will survive also after further analysis