Bubbles, Money and Liquidity Traps: an Analytical Perspective

Vladimir Asriyan, Luca Fornaro, Alberto Martin and Jaume Ventura

CREI, UPF and Barcelona GSE

18th June, 2015

Facts and Questions

- Key features of the last two decades:
 - large fluctuations in net worth
 - large fluctuations in money holdings
 - ▶ low nominal and real interest rates: liquidity trap
 - macro aggregates correlated with net worth

Net Worth, 1980-2015

Source: Board of Governors of the Federal Reserve System

Figure 1: Net worth of US households and nonprofit organizations divided by GDP

Money, 1980-2015

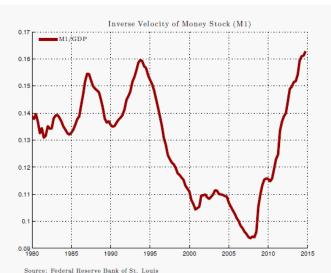
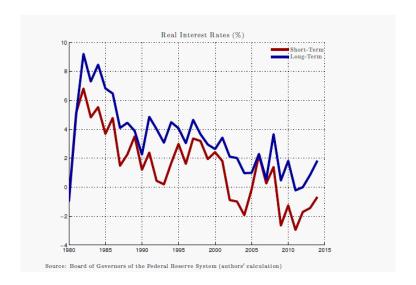
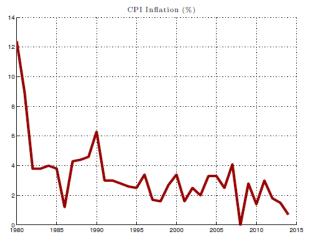
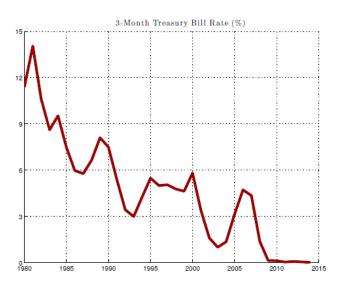




Figure 2: Ratio of the money stock M1 to nominal GDP

Real Interest Rates, 1980-2015


Inflation Rate, 1980-2015

Source: US. Bureau of Labor Statistics

Figure 4

Nominal Interest Rates, 1980-2015

Source: Board of Governors of the Federal Reserve System

Figure 5: Nominal 3-month treasury bill rate (secondary market)

7 / 29

Macro aggregates, 1980-2015

Source: Bureau of Economic Analysis (authors' calculation)

Facts and questions

- Key features of the last two decades:
 - large fluctuations in net worth
 - large fluctuations in money holdings
 - low nominal and real interest rates: liquidity trap
 - macro aggregates correlated with net worth
- Key questions
 - why have fluctuations in net worth and money holdings become so large?
 - how are they connected to low interest rates?
 - what are their effects on output, consumption and investment?

9 / 29

This paper

- Model of bubbles, money and investment
- Theoretical framework with the following features:
 - liquidity traps appear when there is a shortage of stores of value
 - money holdings expand at the expense of investment in capital
 - bubbles raise collateral, crowd out money and crowd in investment

This paper

- Model of bubbles, money and investment
- Theoretical framework with the following features:
 - liquidity traps appear when there is a shortage of stores of value
 - money holdings expand at the expense of investment in capital
 - bubbles raise collateral, crowd out money and crowd in investment
- Application to recent events:
 - several factors have put downward pressure on interest rates
 - dot.com and housing bubbles temporarily alleviated these pressures
 - ▶ after their collapse the economy entered into a liquidity trap

11 / 29

Related literature

- Rational bubbles
 - ► Samuelson (1958), Tirole (1985)
- Bubbles and financial frictions
 - Caballero and Krishnamurthy (2006), Farhi and Tirole (2010), Miao and Wang (2011), Aoki and Nikolov (2011), Kraay and Ventura (2007), Kocherlakota (2010), Martin and Ventura (2011, 2012, forthcoming), Ventura (2011)
- Liquidity traps
 - Krugman (1998), Eggertson and Woodford (2003), Werning (2011), Eggertson and Mehrotra (2014), Buera and Nicolini (2014), Benigno and Fornaro (2015)

Model

- Two-period OLG structure
- ullet All individuals maximize: $U_t^i = E_t C_{t,t+1}^i$
- Savers:
 - ightharpoonup Supply one unit of labor when young and receive wage W_t
 - ightharpoonup Save by leding to entrepreneurs F_t and by holding money M_t
- Entrepreneurs (or bankers?):
 - lacktriangle Supply one unit of labor when young and receive wage W_t
 - ightharpoonup Construct portfolios of capital and bubbles, K_t and B_t
 - \blacktriangleright Finance their activities by selling credit contracts, F_t

Capital and bubbles

Capital:

- Investment by entrepreneurs, full depreciation
- ▶ Production: $F(K_t, N_t) = K_t^{\alpha} \cdot (\gamma^t \cdot N_t)^{1-\alpha}$, where $\gamma \geq 1$

Bubbles:

- ▶ Intrinsically useless assets only held for resale
- Initiated and traded by entrepreneurs
- ▶ Law of motion: $B_{t+1} = g_{t+1} \cdot B_t + N_{t+1}$
 - \star g_{t+1} is growth in the value of old bubbles
 - \star N_{t+1} value of new bubbles

Money

- Used to facilitate transactions and as store of value
- Rate of money growth set by government

$$M_{t+1} = \mu \cdot M_t$$
 and $T_{t+1} = rac{M_{t+1} - M_t}{p_{t+1}}$

seignorage rebated lump-sum

• Savers subject to cash-in-advance constraint

$$M_t \geq \frac{1}{\nu} \cdot p_{t+1} \cdot C_{t+1}^S$$

Credit

- Entrepreneurs sell credit contracts to savers
 - Promise a contingent gross return R_{t+1}
 - $ightharpoonup E_t R_{t+1}$ is the real interest rate
- Credit contracts need to be collateralized:

$$R_{t+1} \cdot F_t \le \phi \cdot r_{t+1} \cdot K_{t+1} + B_{t+1}$$

where r_{t+1} denotes the rental price of capital

One constraint for each possible future

Market equilibria

- Factor markets: $w_t = (1-\alpha) \cdot k_t^{\alpha}$ and $r_t = \alpha \cdot k_t^{\alpha-1}$
- Market for bubbles: $E_t g_{t+1} = E_t R_{t+1}$
- Money market clears:

$$\frac{1}{\pi_{t+1}} \geq R_{t+1} \cdot \frac{(1-\varepsilon) \cdot (1-\alpha) \cdot k_t^{\alpha} - m_t}{(\nu - \mu) \cdot m_t} \quad \text{and} \quad E_t \left\{ \frac{1}{\pi_{t+1}} \right\} \leq E_t R_{t+1}$$

where π_{t+1} denotes the inflation rate

• Credit market clears:

$$R_{t+1} = \frac{\gamma \cdot \left[\phi \cdot \alpha \cdot k_{t+1}^{\alpha} + b_{t+1}\right]}{(1 - \varepsilon) \cdot (1 - \alpha) \cdot k_{t}^{\alpha} - m_{t}}$$

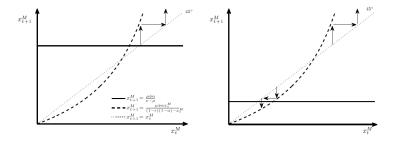
where the borrowing constraint binds

Equilibrium dynamics

• From aggregate resource constraint:

$$\gamma \cdot k_{t+1} = (1-\alpha) \cdot k_t^{\alpha} - m_t - b_t$$

- Existence of bubbles requires low interest rates: possible sources
 - Inefficient investment (traditional view)
 - Financial frictions (this paper)
 - here, low rates can also give rise to liquidity traps
- Finding equilibria:
 - ullet Propose process $\{g_t, n_t, \pi_t\}$ such that $E_t g_{t+1} = E_t R_{t+1}$ and $n_t \geq 0$
 - ▶ Determine all possible sequences for state variables $\{k_t, b_t, m_t\}$
 - ▶ Check that all sequences satisfy $k_t \geq 0$, $b_t \geq 0$ and $m_t \geq 0$

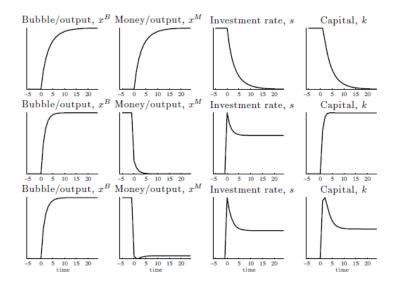

Case 1: Bubbleless Economy

• If $b_t = 0$ for all t,

$$\begin{array}{rcl} m_t & = & \max \left\{ \underbrace{\frac{\mu \cdot \phi \cdot \alpha}{\nu - \mu}}, \underbrace{(1 - \varepsilon) \cdot (1 - \alpha) - \mu \cdot \phi \cdot \alpha} \right\} \cdot k_t^{\alpha} \\ & & \text{CIA Regime} & \text{Liquidity Trap} \end{array} \right\}$$

- The economy is in a liquidity trap if:
 - lacktriangle Transaction needs are low: high u
 - lacktriangle Credit supply is high relative to credit demand: low arepsilon and ϕ
 - Inflation tax is low and return on money is high: low μ

Case 1: Bubbleless Economy


Case 2: Bubbly Economy

• If $b_0 = 0$ and $n_t = x \cdot k_t^{\alpha}$ for all t, then the bubble grows and the economy transitions to a steady state $\{b, m\}$, where

$$m = \max \left\{ \underbrace{\frac{\mu \cdot \left(\phi \cdot \alpha + x^{B}\right)}{\nu - \mu}}_{\text{CIA Regime}}, \underbrace{\left(1 - \varepsilon\right) \cdot \left(1 - \alpha\right) - \mu \cdot \left(\phi \cdot \alpha + x^{B}\right)}_{\text{Liquidity Trap}} \right\} \cdot k^{\alpha}$$

where $b = x^B \cdot k^{\alpha}$.

Case 2: Bubbly Economy

Facts and questions

- Key features of the last two decades:
 - ▶ large fluctuations in net worth
 - large fluctuations in money holdings
 - ▶ low nominal and real interest rates: liquidity trap
 - macro aggregates correlated with net worth

Facts and questions

- Key features of the last two decades:
 - large fluctuations in net worth
 - large fluctuations in money holdings
 - low nominal and real interest rates: liquidity trap
 - macro aggregates correlated with net worth
- Key questions:
 - why have fluctuations in net worth and money holdings become so large?
 - how are they connected to low interest rates?
 - what are their effects on output, consumption and investment?

24 / 29

General narrative

- Declining real and nominal interest rates:
 - financial globalization (increase in 1ε)
 - lacktriangleright improvement in transactions technology (increase in u)
 - decline of inflation (fall in μ)
- Conditions for liquidity traps, but also for bubbles, to arise

Factors that have put downward pressure on interest rates

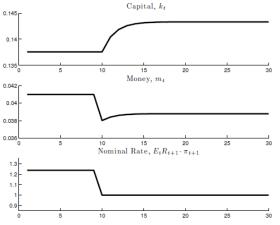


Figure 11: Transition from CIA to LT with no bubbles

Dot.com, housing bubbles hid these pressures

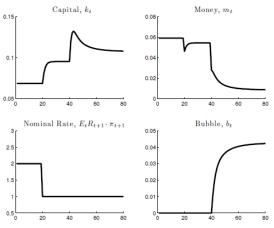
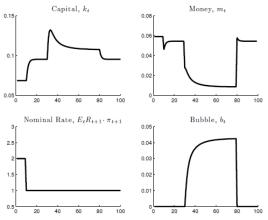
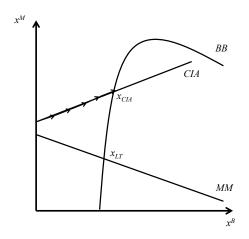
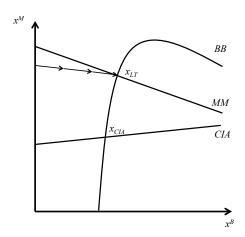


Figure 12: Transition from CIA to LT with bubbles

When bubble bursts, economy enters liquidity trap


Figure 13: Transition from CIA to LT with a bubble that crashes

Conclusions

- Model of bubbles, money and investment
- Theoretical framework with the following features:
 - liquidity traps appear when there is a shortage of stores of value
 - money holdings expand at the expense of investment in capital
 - bubbles raise collateral, crowd out money and crowd in investment
- Application to recent events:
 - several factors have put downward pressure on interest rates
 - dot.com and housing bubbles temporarily alleviated these pressures
 - after their collapse the economy entered into a liquidity trap

29 / 29

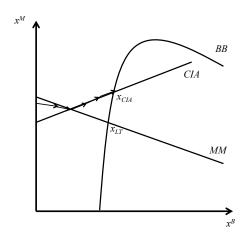


Figure 9