The Tail that Wags the Economy: Belief-Driven Business Cycles and Persistent Stagnation

Kozlowski, Veldkamp \& Venkateswaran

Discusion by Franck Portier

"Secular Stagnation, Growth and Real Interest Rates" June 18, 2015, Firenze

Roadmap

1.

Roadmap

Roadmap

1. A Mog Model

- Small economy with integrated capital market
- Risk neutral international investors
- Hand-to-Mouth domestic consumer-workers
- Aggregate shocks to capital quality
- Modigliani-Miller holds
- Small economy with integrated capital market
- Risk neutral international investors
- Hand-to-Mouth domestic consumer-workers
- Aggregate shocks to capital quality
- Modigliani-Miller holds
- Small economy with integrated capital market
- Risk neutral international investors
- Hand-to-Mouth domestic consumer-workers
- Aggregate shocks to capital quality
- Modigliani-Miller holds
- Small economy with integrated capital market
- Risk neutral international investors
- Hand-to-Mouth domestic consumer-workers
- Aggregate shocks to capital quality
- Modigliani-Miller holds
- Small economy with integrated capital market
- Risk neutral international investors
- Hand-to-Mouth domestic consumer-workers
- Aggregate shocks to capital quality
- Modigliani-Miller holds
- The dynamics will be driven by

> The dynamics of shocks
> The dynamics of learning/believes

- The dynamics will be driven by
\times The dynamics of shocks
The dynamics of learning/believes
- The dynamics will be driven by
\times The dynamics of shocks
\times The dynamics of learning/believes

Foreign investors

- Risk-neutral
- Require a expected return r^{\star}
- Supply as much capital K as demanded for a return r^{\star}

Foreign investors

- Risk-neutral
- Require a expected return r^{\star}
- Supply as much capital K as demanded for a return r^{\star}
- Risk-neutral
- Require a expected return r^{\star}
- Supply as much capital K as demanded for a return r^{\star}

Households

- Preferences

$$
U_{t}=\log C_{t}-\frac{B}{1+\gamma} L_{t}^{1+\gamma}
$$

- Budget constraint

$$
C_{t}=w_{t} L_{t}+E
$$

- Note: Final consumption good is the numéraire
- E is period exogenous endowment of consumption good
- Labor supply:

$$
L_{t}=\frac{1}{B}-\frac{E}{w_{t}}
$$

Households

- Preferences

$$
U_{t}=\log C_{t}-\frac{B}{1+\gamma} L_{t}^{1+\gamma}
$$

- Budget constraint

$$
C_{t}=w_{t} L_{t}+E
$$

- Note: Final consumption good is the numéraire
- E is period exogenous endowment of consumption good
- Labor supply:

Households

- Preferences

$$
U_{t}=\log C_{t}-\frac{B}{1+\gamma} L_{t}^{1+\gamma}
$$

- Budget constraint

$$
C_{t}=w_{t} L_{t}+E
$$

- Note: Final consumption good is the numéraire
- E is period exogenous endowment of consumption good
- Labor supply:

Households

- Preferences

$$
U_{t}=\log C_{t}-\frac{B}{1+\gamma} L_{t}^{1+\gamma}
$$

- Budget constraint

$$
C_{t}=w_{t} L_{t}+E
$$

- Note: Final consumption good is the numéraire
- E is period exogenous endowment of consumption good
- Labor supply:

- Preferences

$$
U_{t}=\log C_{t}-\frac{B}{1+\gamma} L_{t}^{1+\gamma}
$$

- Budget constraint

$$
C_{t}=w_{t} L_{t}+E
$$

- Note: Final consumption good is the numéraire
- E is period exogenous endowment of consumption good
- Labor supply:

$$
L_{t}=\frac{1}{B}-\frac{E}{w_{t}}
$$

Firms

- Firms operate along a Leontiev production function

$$
Y_{t}=\min \left(v_{t} K_{t}^{\alpha}, L_{t}\right)
$$

> v_{t} is an aggregate capital quality shock

- Timing of decisions within period t :

Firms

- Firms operate along a Leontiev production function

$$
Y_{t}=\min \left(v_{t} K_{t}^{\alpha}, L_{t}\right)
$$

- v_{t} is an aggregate capital quality shock
- Timing of decisions within period t :
- Firms operate along a Leontiev production function

$$
Y_{t}=\min \left(v_{t} K_{t}^{\alpha}, L_{t}\right)
$$

- v_{t} is an aggregate capital quality shock
- Timing of decisions within period t :

Capital market opens and capital allocation is decided v_{t} is realized
 Labor and final good markets open

Model

- Firms operate along a Leontiev production function

$$
Y_{t}=\min \left(v_{t} K_{t}^{\alpha}, L_{t}\right)
$$

- v_{t} is an aggregate capital quality shock
- Timing of decisions within period t :
\times Capital market opens and capital allocation is decided
v_{t} is realized
Labor and final good markets open

Model

- Firms operate along a Leontiev production function

$$
Y_{t}=\min \left(v_{t} K_{t}^{\alpha}, L_{t}\right)
$$

- v_{t} is an aggregate capital quality shock
- Timing of decisions within period t :
\times Capital market opens and capital allocation is decided
$\times v_{t}$ is realized
Labor and final good markets open

Model

- Firms operate along a Leontiev production function

$$
Y_{t}=\min \left(v_{t} K_{t}^{\alpha}, L_{t}\right)
$$

- v_{t} is an aggregate capital quality shock
- Timing of decisions within period t :
\times Capital market opens and capital allocation is decided
$\times v_{t}$ is realized
\times Labor and final good markets open

Deterministic benchmark

- $v_{t}=v$ for all t
> $V=\min \left(v K^{\alpha}, L\right)$
- Firms optimal capital demand is such that

$$
v a K^{\alpha-1}=r^{*}
$$

- Then, given the Leontief assumption, labor demand and production are

$$
Y=L=v K^{\alpha}=v v^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{r^{\star}}\right)^{\frac{\alpha}{1-\alpha}}
$$

- and wage is determined on the labor market:

$$
W=\frac{E}{\frac{1}{B}-V V^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{r^{*}}\right)^{\frac{\alpha}{1-\alpha}}}
$$

Deterministic benchmark

- $v_{t}=v$ for all t
- $Y=\min \left(v K^{\alpha}, L\right)$
- Firms optimal capital demand is such that

- Then, given the Leontief assumption, labor demand and production are

$$
Y=L=v K^{\alpha}=v v^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{r^{\star}}\right)^{\frac{\alpha}{1-\alpha}}
$$

- and wage is determined on the labor market:

$$
W=\frac{E}{\frac{1}{B}-V V^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{r^{*}}\right)^{\frac{\alpha}{1-\alpha}}}
$$

Deterministic benchmark

- $v_{t}=v$ for all t
- $Y=\min \left(v K^{\alpha}, L\right)$
- Firms optimal capital demand is such that

$$
v \alpha K^{\alpha-1}=r^{\star}
$$

> Then, given the Leontief assumption, labor demand and production are

- and wage is determined on the labor market:

Deterministic benchmark

- $v_{t}=v$ for all t
- $Y=\min \left(v K^{\alpha}, L\right)$
- Firms optimal capital demand is such that

$$
v \alpha K^{\alpha-1}=r^{\star}
$$

- Then, given the Leontief assumption, labor demand and production are

$$
Y=L=v K^{\alpha}=v v^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{r^{\star}}\right)^{\frac{\alpha}{1-\alpha}}
$$

> and wage is determined on the labor market:

Model

Deterministic benchmark

- $v_{t}=v$ for all t
- $Y=\min \left(v K^{\alpha}, L\right)$
- Firms optimal capital demand is such that

$$
v \alpha K^{\alpha-1}=r^{\star}
$$

- Then, given the Leontief assumption, labor demand and production are

$$
Y=L=v K^{\alpha}=v v^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{r^{\star}}\right)^{\frac{\alpha}{1-\alpha}}
$$

- and wage is determined on the labor market:

$$
w=\frac{E}{\frac{1}{B}-v v^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{r^{\star}}\right)^{\frac{\alpha}{1-\alpha}}}
$$

Deterministic benchmark

$$
Y=v v^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{r^{\star}}\right)^{\frac{\alpha}{1-\alpha}}
$$

$\checkmark Y$ is increasing in v

- Y is decreasing in r^{\star}
- r^{\star} and v move L and w in the same direction
- B moves w but not L

Deterministic benchmark

$$
Y=v v^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{r^{\star}}\right)^{\frac{\alpha}{1-\alpha}}
$$

- Y is increasing in v
- Y is decreasing in r^{\star}
- r^{\star} and v move L and w in the same direction
- B moves w but not L

Deterministic benchmark

$$
Y=v v^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{r^{\star}}\right)^{\frac{\alpha}{1-\alpha}}
$$

- Y is increasing in v
- Y is decreasing in r^{\star}
- r^{\star} and v move L and w in the same direction
- B moves w but not L

- Y is increasing in v
- Y is decreasing in r^{\star}
- r^{\star} and v move L and w in the same direction
- B moves w but not L

$$
Y=v v^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{r^{\star}}\right)^{\frac{\alpha}{1-\alpha}}
$$

- Y is increasing in v
- Y is decreasing in r^{\star}
- r^{\star} and v move L and w in the same direction
- B moves w but not L

Stochastic Model with Perfect Information

- Assume v is i.i.d.
* v uniformly distributed on $[\underline{v} \quad \bar{V}]$
\triangleright denote $E(v)=\frac{\bar{v}-\underline{v}}{2}$
- Now firms install capital according to $E(V)$, and then demand labor according to installed K and realized v_{t}
- Capital demand

$$
E(v) \alpha K_{t}^{\alpha-1}=r^{\star}
$$

- Production

$$
Y_{t}=v_{t} E(v)^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{r^{\star}}\right)^{\frac{\alpha}{1-\alpha}}
$$

Stochastic Model with Perfect Information

- Assume v is i.i.d.
- v uniformly distributed on $\left[\begin{array}{ll}\underline{v} & \bar{v}]\end{array}\right.$
- denote $E(v)=\frac{v-v}{2}$
- Now firms install capital according to $E(v)$, and then demand labor according to installed K and realized v_{t}
- Capital demand

- Production

$$
Y_{t}=v_{t} E(v)^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{r^{\star}}\right)^{\frac{\alpha}{1-\alpha}}
$$

Stochastic Model with Perfect Information

- Assume v is i.i.d.
- v uniformly distributed on $\left[\begin{array}{ll}\underline{v} & \bar{v}]\end{array}\right.$
- denote $E(v)=\frac{\bar{v}-\underline{v}}{2}$
- Now firms install capital according to $E(v)$, and then demand labor according to installed K and realized v_{t}
- Capital demand

- Production

$$
Y_{t}=v_{t} E(v)^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{r^{\star}}\right)^{\frac{\alpha}{1-\alpha}}
$$

- Assume v is i.i.d.
- v uniformly distributed on $\left[\begin{array}{ll}\underline{v} & \bar{v}]\end{array}\right.$
- denote $E(v)=\frac{\bar{v}-\underline{v}}{2}$
- Now firms install capital according to $E(v)$, and then demand labor according to installed K and realized v_{t}
- Capital demand

- Production

- Assume v is i.i.d.
- v uniformly distributed on $\left[\begin{array}{ll}\underline{v} & \bar{v}]\end{array}\right.$
- denote $E(v)=\frac{\bar{v}-\underline{v}}{2}$
- Now firms install capital according to $E(v)$, and then demand labor according to installed K and realized v_{t}
- Capital demand

$$
E(v) \alpha K_{t}^{\alpha-1}=r^{\star}
$$

- Production

- Assume v is i.i.d.
- v uniformly distributed on $\left[\begin{array}{ll}\underline{v} & \bar{v}]\end{array}\right.$
- denote $E(v)=\frac{\bar{v}-\underline{v}}{2}$
- Now firms install capital according to $E(v)$, and then demand labor according to installed K and realized v_{t}
- Capital demand

$$
E(v) \alpha K_{t}^{\alpha-1}=r^{\star}
$$

- Production

$$
Y_{t}=v_{t} E(v)^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{r^{\star}}\right)^{\frac{\alpha}{1-\alpha}}
$$

$$
\begin{aligned}
& v_{t<0}=E(v) \\
& v_{t=0}=E(v)-\delta \\
& v_{t>0}=E(v)
\end{aligned}
$$

$$
\begin{aligned}
& v v_{t<0}=E(v) \\
& v_{t=0}=E(v)-\delta
\end{aligned}
$$

$$
v_{t>0}=E(v)
$$

Impulse Response

$$
\begin{aligned}
& \text { v} v_{t<0}=E(v) \\
& v_{t=0}=E(v)-\delta \\
& v_{t>0}=E(v)
\end{aligned}
$$

$A \underset{H}{9 \rho}$ Model
Impulse Response

Impulse Response

- Y inherits the properties of v
- Y is proportional to v
- The dynamics of the model comes fully from the shocks
- Boring...
- Y inherits the properties of v
- Y is proportional to v
- The dynamics of the model comes fully from the shocks
- Boring...
- Y inherits the properties of v
- Y is proportional to v
- The dynamics of the model comes fully from the shocks
- Boring...
- Y inherits the properties of v
- Y is proportional to v
- The dynamics of the model comes fully from the shocks
- Boring...

Stochastic Model with Learning

- As in KVV, I assume that agents must estimate the aggregate shock distribution
- Their common information set includes all aggregate and shocks observed up to time- t.
- At each point in time, they use the empirical distribution of v_{t} up to that point to construct an estimate of v
- With uniform distribution, that problem is super simple (analytic)...
- ... but conveys the main intuition of the paper

- As in KVV, I assume that agents must estimate the aggregate shock distribution
- Their common information set includes all aggregate and shocks observed up to time- t.
- At each point in time, they use the empirical distribution of v_{t} up to that point to construct an estimate of v
- With uniform distribution, that problem is super simple (analytic)...
but conveys the main intuition of the paper
- As in KVV, I assume that agents must estimate the aggregate shock distribution
- Their common information set includes all aggregate and shocks observed up to time- t.
- At each point in time, they use the empirical distribution of v_{t} up to that point to construct an estimate of v
- With uniform distribution, that problem is super simple (analytic)
but conveys the main intuition of the paper
- As in KVV, I assume that agents must estimate the aggregate shock distribution
- Their common information set includes all aggregate and shocks observed up to time- t.
- At each point in time, they use the empirical distribution of v_{t} up to that point to construct an estimate of v
- With uniform distribution, that problem is super simple (analytic)...
but conveys the main intuition of the paper
- As in KVV, I assume that agents must estimate the aggregate shock distribution
- Their common information set includes all aggregate and shocks observed up to time- t.
- At each point in time, they use the empirical distribution of v_{t} up to that point to construct an estimate of v
- With uniform distribution, that problem is super simple (analytic)...
- ... but conveys the main intuition of the paper

Stochastic Model with Learning

- I assume that it is common knowledge that shocks are uniformly distributed on $[\underline{v} \quad \bar{v}]$...
but \underline{v} and \bar{v} are not known, but agent can learn about them.
- Given an history up to $t=0$, the estimates of v and \bar{v} are

$$
\begin{aligned}
& v_{0}=\min \left\{v_{t<0}\right\} \\
& \bar{v}_{0}=\max \left\{v_{t<0}\right\}
\end{aligned}
$$

- and

- $E_{0}(v)$ is directly affected by a measure of dispersion of the shocks \rightsquigarrow tails matter.

Stochastic Model with Learning

- I assume that it is common knowledge that shocks are uniformly distributed on $[\underline{v} \quad \bar{v}]$...
- ... but \underline{v} and \bar{v} are not known, but agent can learn about them.
- Given an history up to $t=0$, the estimates of \underline{v} and \bar{v} are

$$
\begin{aligned}
& v_{0}=\min \left\{v_{t<0}\right\} \\
& \bar{v}_{0}=\max \left\{v_{t<0}\right\}
\end{aligned}
$$

- and

- $E_{0}(v)$ is directly affected by a measure of dispersion of the shocks \rightsquigarrow tails matter.
- I assume that it is common knowledge that shocks are uniformly distributed on $\left[\begin{array}{ll}\underline{v} & \bar{v}\end{array}\right]$...
- ... but \underline{v} and \bar{v} are not known, but agent can learn about them.
- Given an history up to $t=0$, the estimates of \underline{v} and \bar{v} are

$$
\begin{aligned}
& \underline{v}_{0}=\min \left\{v_{t<0}\right\} \\
& \bar{v}_{0}=\max \left\{v_{t<0}\right\}
\end{aligned}
$$

- and

- $E_{0}(v)$ is directly affected by a measure of dispersion of the shocks \rightsquigarrow tails matter.

Stochastic Model with Learning

- I assume that it is common knowledge that shocks are uniformly distributed on $\left[\begin{array}{ll}\underline{v} & \bar{v}\end{array}\right]$...
- ... but \underline{v} and \bar{v} are not known, but agent can learn about them.
- Given an history up to $t=0$, the estimates of \underline{v} and \bar{v} are

$$
\begin{aligned}
& \underline{v}_{0}=\min \left\{v_{t<0}\right\} \\
& \bar{v}_{0}=\max \left\{v_{t<0}\right\}
\end{aligned}
$$

- and

$$
E_{0}(v)=\frac{\max \left\{v_{t<0}\right\}-\min \left\{v_{t<0}\right\}}{2}
$$

$E_{0}(v)$ is directly affected by a measure of dispersion of the shocks \rightsquigarrow tails matter.

Model

- I assume that it is common knowledge that shocks are uniformly distributed on $[\underline{v} \quad \bar{v}]$...
- ... but \underline{v} and \bar{v} are not known, but agent can learn about them.
- Given an history up to $t=0$, the estimates of \underline{v} and \bar{v} are

$$
\begin{aligned}
& \underline{v}_{0}=\min \left\{v_{t<0}\right\} \\
& \bar{v}_{0}=\max \left\{v_{t<0}\right\}
\end{aligned}
$$

- and

$$
E_{0}(v)=\frac{\max \left\{v_{t<0}\right\}-\min \left\{v_{t<0}\right\}}{2}
$$

- $E_{0}(v)$ is directly affected by a measure of dispersion of the shocks \rightsquigarrow tails matter.

A $\stackrel{\text { q. }}{ } \mathrm{p}$ Model

Stochastic Model with Learning

Stochastic Model with Learning

A

Stochastic Model with Learning

A

Stochastic Model with Learning
t
$t+1$

A

Stochastic Model with Learning

t_{+1}

Stochastic Model with Learning

- The model dynamics is now given by

$$
\begin{aligned}
E_{t}(v) & =\frac{\max \left\{v_{\tau<t}\right\}-\min \left\{v_{\tau<t}\right\}}{2} \\
Y_{t} & =v_{t} E_{t}(v)^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{r^{\star}}\right)^{\frac{\alpha}{1-\alpha}}
\end{aligned}
$$

- Depending on the size of the current shock with respect to past ones, shocks will have temporary or permanent effect.

Model

Stochastic Model with Learning

- The model dynamics is now given by

$$
\begin{aligned}
E_{t}(v) & =\frac{\max \left\{v_{\tau<t}\right\}-\min \left\{v_{\tau<t}\right\}}{2} \\
Y_{t} & =v_{t} E_{t}(v)^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{r^{\star}}\right)^{\frac{\alpha}{1-\alpha}}
\end{aligned}
$$

- Depending on the size of the current shock with respect to past ones, shocks will have temporary or permanent effect.

Stochastic Model with Learning

- Note the analogy with the

Stochastic Model with Learning

Stochastic Model with Learning

- Add idiosyncratic risk anf fixed costs

$$
Y_{t}=\min \left(u_{i t} v_{t} K_{t}^{\alpha}, L_{t}\right)-F
$$

- Firms that draw a too low $u_{i t}$ are not profitable ex post
- They give back their capital (the collateral of their loan) before producing
- At the steady state, there is always a fraction of firms that default and close.
- That fraction will be larger permanently after a big shock
- Shocks are also amplified on impact by an extensive margin adjustment : not only firms produce less and revise downward $E(v)$, but more capital is ex post idle.

- Add idiosyncratic risk anf fixed costs

$$
Y_{t}=\min \left(u_{i t} v_{t} K_{t}^{\alpha}, L_{t}\right)-F
$$

- Firms that draw a too low $u_{i t}$ are not profitable ex post
- They give back their capital (the collateral of their loan) before producing
- At the steady state, there is always a fraction of firms that default and close.
- That fraction will be larger permanently after a big shock
- Shocks are also amplified on impact by an extensive margin adjustment: not only firms produce less and revise downward $E(v)$, but more capital is ex post idle.

- Add idiosyncratic risk anf fixed costs

$$
Y_{t}=\min \left(u_{i t} v_{t} K_{t}^{\alpha}, L_{t}\right)-F
$$

- Firms that draw a too low $u_{i t}$ are not profitable ex post
- They give back their capital (the collateral of their loan) before producing
- At the steady state, there is always a fraction of firms that default and close.
- That fraction will be larger permanently after a big shock
- Shocks are also amplified on impact by an extensive margin adjustment : not only firms produce less and revise downward $E(v)$, but more capital is ex post idle.

- Add idiosyncratic risk anf fixed costs

$$
Y_{t}=\min \left(u_{i t} v_{t} K_{t}^{\alpha}, L_{t}\right)-F
$$

- Firms that draw a too low $u_{i t}$ are not profitable ex post
- They give back their capital (the collateral of their loan) before producing
- At the steady state, there is always a fraction of firms that default and close.
- That fraction will be larger permanently after a big shock
- Shocks are also amplified on impact by an extensive margin adjustment : not only firms produce less and revise downward $E(v)$, but more capital is ex post idle.

- Add idiosyncratic risk anf fixed costs

$$
Y_{t}=\min \left(u_{i t} v_{t} K_{t}^{\alpha}, L_{t}\right)-F
$$

- Firms that draw a too low $u_{i t}$ are not profitable ex post
- They give back their capital (the collateral of their loan) before producing
- At the steady state, there is always a fraction of firms that default and close.
- That fraction will be larger permanently after a big shock
- Shocks are also amplified on impact by an extensive margin adjustment : not only firms produce less and revise downward $E(v)$, but more capital is ex post idle.

Model

Including "Finance" and Default

- Add idiosyncratic risk anf fixed costs

$$
Y_{t}=\min \left(u_{i t} v_{t} K_{t}^{\alpha}, L_{t}\right)-F
$$

- Firms that draw a too low $u_{i t}$ are not profitable ex post
- They give back their capital (the collateral of their loan) before producing
- At the steady state, there is always a fraction of firms that default and close.
- That fraction will be larger permanently after a big shock
- Shocks are also amplified on impact by an extensive margin adjustment : not only firms produce less and revise downward $E(v)$, but more capital is ex post idle.

Roadmap

2. The
3. The

A serious model

- A fully G.E. model with intertemporal decisions
- Finance introduced, gives nice amplification ...
- ... but is not at the core of the mechanism
- Nice way to discipline the exercice by measuring the $\phi(v)$ shock
- The story is not one of the effect of a disaster that we have never observed, but that of an observed disaster.

2. The

A serious model

- A fully G.E. model with intertemporal decisions
- Finance introduced, gives nice amplification ...
- ... but is not at the core of the mechanism
- Nice way to discipline the exercice by measuring the $\phi(v)$ shock
- The story is not one of the effect of a disaster that we have never observed, but that of an observed disaster.

2. The

A serious model

- A fully G.E. model with intertemporal decisions
- Finance introduced, gives nice amplification ...
- ... but is not at the core of the mechanism
- Nice way to discipline the exercice by measuring the $\phi(v)$ shock
- The story is not one of the effect of a disaster that we have never observed, but that of an observed disaster.

A serious model

- A fully G.E. model with intertemporal decisions
- Finance introduced, gives nice amplification ...
- ... but is not at the core of the mechanism
- Nice way to discipline the exercice by measuring the $\phi(v)$ shock
- The story is not one of the effect of a disaster that we have never observed, but that of an observed disaster.
- A fully G.E. model with intertemporal decisions
- Finance introduced, gives nice amplification ...
- ... but is not at the core of the mechanism
- Nice way to discipline the exercice by measuring the $\phi(v)$ shock
- The story is not one of the effect of a disaster that we have never observed, but that of an observed disaster.

2. The

Model

The need for a big impulse

- Clearly something happened in 2008 and 2009
- Is $\phi(v)$ the primitive shock?
- Where do we read about a 15% drop of the capital quality?
- What could it be?

2. The

The need for a big impulse

- Clearly something happened in 2008 and 2009
- Is $\phi(v)$ the primitive shock?
- Where do we read about a 15% drop of the capital quality?
- What could it be?

2. The

Model

The need for a big impulse

- Clearly something happened in 2008 and 2009
- Is $\phi(v)$ the primitive shock?
- Where do we read about a 15% drop of the capital quality?
- What could it be?

2. The

Model

The need for a big impulse

- Clearly something happened in 2008 and 2009
- Is $\phi(v)$ the primitive shock?
- Where do we read about a 15% drop of the capital quality?
- What could it be?

2. The

Modeling the drop in $\phi(v)$

- Do I understand well that a drop in the observed q will be measured as a drop in $\phi(v)$
- Perception revisions of the the type: "I realize that my investment will not be as profitable as I thought" can be seen as an explanation for recessions
- "News Driven Business Cycles: Insights and Challenges", Beaudry and Portier, Journal of Economic Literature (2015).
- Do such expectation-driven booms and busts create variations in measured $\phi(v)$?

2. The

Modeling the drop in $\phi(v)$

- Do I understand well that a drop in the observed q will be measured as a drop in $\phi(v)$
- Perception revisions of the the type: "I realize that my investment will not be as profitable as I thought" can be seen as an explanation for recessions
- "News Driven Business Cycles: Insights and Challenges", Beaudry and Portier, Journal of Economic Literature (2015).
- Do such expectation-driven booms and busts create variations
in measured $\phi(v)$?

Modeling the drop in $\phi(v)$

- Do I understand well that a drop in the observed q will be measured as a drop in $\phi(v)$
- Perception revisions of the the type: "I realize that my investment will not be as profitable as I thought" can be seen as an explanation for recessions
- "News Driven Business Cycles: Insights and Challenges", Beaudry and Portier, Journal of Economic Literature (2015).
- Do such expectation-driven booms and busts create variations
in measured $\phi(v)$?

Modeling the drop in $\phi(v)$

- Do I understand well that a drop in the observed q will be measured as a drop in $\phi(v)$
- Perception revisions of the the type: "I realize that my investment will not be as profitable as I thought" can be seen as an explanation for recessions
- "News Driven Business Cycles: Insights and Challenges", Beaudry and Portier, Journal of Economic Literature (2015).
- Do such expectation-driven booms and busts create variations in measured $\phi(v)$?

2. The

What do we observe?

- What is an observation?
a quarter? 220 observations since 1960
a cycle? 7 observations
- In the former case, we may have still a lot to learn, and therefore a lot of mistakes to make

2. The

What do we observe?

- What is an observation?
\times a quarter? 220 observations since 1960
a cycle? 7 observations
- In the former case, we may have still a lot to learn, and therefore a lot of mistakes to make

2．The定言気通 Model

What do we observe？

－What is an observation？
\times a quarter？ 220 observations since 1960
\times a cycle？ 7 observations
－In the former case，we may have still a lot to learn，and therefore a lot of mistakes to make

Model

What do we observe?

- What is an observation?
\times a quarter? 220 observations since 1960
\times a cycle? 7 observations
- In the former case, we may have still a lot to learn, and therefore a lot of mistakes to make

