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Abstract

The “great recession,”was a deep downturn with long-lasting effects on credit markets,
labor markets and output. In the wake of this recession, many economists explored new
sources of business cycle fluctuations, such as news, sentiment, disaster risk or uncertainty
shocks. But these theories have difficulty explaining why post-recession output would
remain persistently low. We propose a business cycle model where firms do not know
the true distribution of economic shocks. Each period, they observe a new shock and
re-estimate its distribution, using standard econometric tools. Once observed, a shock
remains forever in an agent’s data set. That observation alters beliefs about the probability
of future shocks, which permanently shifts credit spreads, hiring and output. Highly
leveraged firms, which are sensitive to tail risk, amplify this effect. Because data on tail
risk is scarce, one extreme observation can “wag the tail”of the distribution. One negative
shock that permanently increases estimated tail risk can stifle investment, hiring and
output for years to come.
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1 Introduction

The recent “great recession” was a deep recession with long-lasting effects on the real economy.
After observing that event, many economists began to look beyond standard theories of business
cycles. New theories explore shocks to news, sentiment, disaster risk or uncertainty shocks.
While these theories have provided new insights about the depth of the recession, most do not
explain the length. They lack internal propagation mechanisms that would deliver persistent
effects1. If a model’s predictions are only as persistent as the shocks are assumed to be, then
the theory does not teach us anything about why this downturn had longer-lasting effects than
others. So, if beliefs matter for business cycles, why did output remain below trend, long after
the bad news had passed?

We propose a quantitative, belief-driven business cycle model where transitory shocks have
large, persistent effects on real output. In our model, firms do not know the true distribution
of shocks to capital quality. Each period, they observe a new shock realization, add it to their
data set, use a standard kernel-density estimator to re-estimate the shock distribution, and
then choose investment, labor and debt. The reason shocks have persistent effects is that once
a shock is observed, it is in the agents’ data set forever after. The direct effect of the shock may
pass quickly. But the observation of that event permanently alters the estimated probability
of future events. Some types of shocks have small permanent effects and others have large
permanent effects on beliefs. When the permanent effect on beliefs is large relative to the
transitory direct effect of the shock, the business cycle effect is more persistent.

When capital investments are financed with defaultable debt, the effect of belief revisions is
amplified. Debt is an asset whose payoffs are insensitive to output in most of the state space,
but are very sensitive in the case of a left-tail outcome that triggers default. Thus, firms’ use
of debt financing makes the economy sensitive to changes in estimated tail risk. The fact that
we have so few tail observations makes estimates of tail risk particularly sensitive to new data.
Therefore, the cost of issuing debt depends on perceived tail risk, which in turn, is sensitive to
new observed shocks. Since real investment depends on the cost of credit, the combination of
debt financing and re-estimating tail risks amplifies small shocks and allows them to generate
large fluctuations in investment and output.

Our theory of time-varying disaster risk builds on existing models that trace out the macro
consequences of an exogenous increase in disaster risk, e.g. Gourio (2012) and is similar in
many respects to the existing theories of shocks to beliefs that drive business cycles2. Our

1See Backus et al. (2015) for a formal analysis of propagation in business cycle models with belief shocks.
2Papers on news driven business cycles include papers on news shocks, such as, Beaudry and Portier (2004),

Lorenzoni (2009), Veldkamp and Wolfers (2007), papers on uncertainty shocks, such as Jaimovich and Rebelo
(2006), Bloom et al. (2014), Nimark (2014) and papers on higher-order belief shocks, such as Angeletos and
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approach based on re-estimating tails risks offers two advantages. First, our belief shocks are not
exogenous. Without any discipline on the possible time-series of beliefs, many macroeconomic
outcomes are rationalizable. Our agents’ beliefs are the outcome of a standard kernel-density
estimation using actual macroeconomic data. The second advantage is that our model offers
an explanation for why some shocks are more persistent than others - events that trigger larger
revisions in our perception of tail risk will have more persistent effects. This can help us
understand why many recessions have rapid recoveries and yet, some do not.

The model features a continuum of firms that produce output with capital and labor. Each
period, the firms’ capital is hit by aggregate shocks to the capital quality as well as idiosyncratic
shocks. Because the complete distribution of idiosyncratic shocks is observed every period, it
is easy to learn and is therefore assumed to be common knowledge to our agents. But, only
one realization of the aggregate shock is observed each period. As a result, agents re-estimate
the distribution for aggregate shocks, adding one observation each time. Given an estimated
distribution of future capital quality shocks, each firm chooses its capital investment. That
capital investment can be financed with debt, which yields a a tax advantage to the firm,
but also subjects it to bankruptcy costs if it defaults. We calibrate model parameters to match
average leverage, including operating leverage, investment and default rates. The cost of issuing
debt (the credit spread or risk premium) depends on the probability of default, which in turn,
depends on the probability of adverse aggregate shocks. Thus, when the probability of a left tail
event rises, the credit spread rises, debt issuance and real investment fall, and output declines.
We explore the magnitude and persistence of this effect both with and without risk aversion.
This mechanism is not novel - see, for example, Gourio (2013). The contribution of the paper
lies in the way in which it gets tail risks to fluctuate, by tying these fluctuations to observable
data, thereby generating endogenous persistence of such fluctuations.

We estimate the subjective distribution of capital quality shocks at each point in time using
historical data on replacement and market value of the non-financial capital stock from the
Flow of Funds report. Following the large negative shock to capital in 2008-’09, agents revise
their estimates of the probability of similar shocks. This increase in tail risk triggers a decline
in investment, hiring and output. Between 2009 and 2014, the model predicts a cumulative
drop in capital of 15-20% and in output of about 12%. These effects are economically large,
but perhaps more importantly, persistent. In fact, the model predicts that the long-run fall in
output from the change in beliefs is about 13%.

These predicted effects of the financial crises, are similar in magnitude to the real effects
observed in the data. Hall (2014) estimates that the U.S. capital stock and U.S. real GDP are
each 13% lower than they would be if the economy had continued to grow at its pre-crisis rate

La’O (2013) or Huo and Takayama (2015).
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of trend growth. Our model, which is calibrated to capital quality, default and leverage data,
but not to GDP data, matches the size of the output drop. Hall also argues that the depressed
rate of business capital formation was the single largest contributor to the persistent depressed
output (often referred to as secular stagnation) in the post-crisis period. We use our model
output to do the same decomposition as Hall does. We show that the symptoms of secular
stagnation, as seen in changes in investment and labor between 2008 and 2015, resemble those
in the data.

Our findings reveal that belief-driven theories of business cycles are capable of explaining
both deep and long-lasting recessions. The missing ingredient is relaxing the assumption that
agents know the distribution of aggregate economic shocks. Allowing agents to estimate this
shock distribution in real time can add persistence to any model where beliefs play an important
role. In a model of debt-financed firms, learning about the probability distribution of capital
quality shocks delivers a quantitatively plausible theory of secular stagnation. It suggests that
the recovery from the great recession has been slow because we learned that financial crises
are still possible in the U.S. and this new knowledge permanently changed our assessment of
macroeconomic risk.

Comparison to the literature A small number of uncertainty-based theories of business
cycles also deliver persistent effects from transitory shocks. In Straub and Ulbricht (2013)
and Van Nieuwerburgh and Veldkamp (2006), a negative shock to output raises uncertainty,
which feeds back to lower output, which in turn creates more uncertainty. To get even more
persistence, Fajgelbaum et al. (2014) combine this mechanism with an irreversible investment
cost, a combination which can generate multiple steady-state investment levels.

These uncertainty-based explanations leave two questions unanswered. First, why were
credit markets and investment the hardest hit and the most persistently impaired after the
crisis? Second, why did the depressed level of economic activity continue long after the VIX
and other measures of uncertainty had recovered? Our theory is based on tail risk. Like
uncertainty, tail risk is a moment of the perceived distribution of outcomes. But the value
of debt is particularly sensitive to this moment. While a rise in tail risk will often increase
conditional variance (uncertainty), the two do not always move in lock step. Figure 1 plots
the values of the VIX and the SKEW indices from 1990-2014. These are an implied volatility
index and a 2-standard-deviation tail risk index, both constructed using option prices by the
Chicago Board of Options. The indices show that while post-crisis uncertainty measures (VIX)
recovered quickly, the tail risk (SKEW) index did not. It started rising as the VIX was peaking
and continued to rise throughout the post-crisis period. Thus, financial data suggests that
the effects of uncertainty-based theories should have dissipated by now. Even if some initial
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shocks had persistent effects, if those effects work through uncertainty, when the uncertainty
has passed, the effects should have as well. The same is true of our tail risk effects. The
difference is that the data reveal that tail risk has lingered, making it a better candidate for
explaining continued depressed output.
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Figure 1: Post-2007, tail risk remained persistently high. Volatility did not.

This belief formation process in our model is similar to the parameter learning models by
Johannes et al. (2015), Cogley and Sargent (2005) and Orlik and Veldkamp (2014), but none
of these papers has a production economy or considers persistent shocks to output. This paper
adds a story about how parameter learning can generate large and persistent real effects in a
standard macroeconomic setting with production and investment.

Finally, the paper is related to many popular theories of the great recession, such as Gertler
et al. (2010), Gertler and Karadi (2011), Brunnermeier and Sannikov (2014) and Gourio (2012).
Moriera and Savov (2015) is similar to our model in that agents learn and it changes their
demand for shadow banking (debt) assets. But their agents learn about a hidden two-state
Markov process, which has persistence built in. While this literature has taught us an enormous
amount about the mechanisms that triggered declines in lending and output in the financial
crisis, it also hard-wired in persistent shocks. Our model aims to complement these theories
by describing a simple mechanism that is compatible with many existing frameworks, is easy
to implement, and delivers persistence. Rather than substituting for these existing narratives
about the mechanics of financial crisis, our belief-formation mechanism adds another layer to
the story, by explaining why some shocks deliver more persistent responses than others.
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2 Model

We explore the quantitative implications of parameter learning for persistence in a standard
business cycle framework widely used in recent work on the financial crisis and the Great
Recession. We begin by laying out a general model along the lines of Gertler and Karadi (2011)
and Gourio (2012). Firms finance investment and payroll expenses using a combination of
debt and equity financing and are subject to aggregate and idiosyncratic shocks. Our main
innovation is to introduce real-time model estimation - specifically, agents in the model use
the observed shocks and standard econometric tools (kernel density estimators) to estimate the
shape of the distribution of aggregate shocks.

Preferences and technology: An infinite horizon, discrete time economy has a representa-
tive household, with preferences over consumption and labor supply, following

Ut =

[
(1− β)

(
Ct −

ζL1+γ
t

1 + γ

)1−ψ

+ βEt
(
U1−η
t+1

) 1−ψ
1−η

] 1
1−ψ

(1)

where ψ is the inverse of the intertemporal elasticity of substitution, η indexes risk-aversion
and γ is inversely related to the elasticity of labor supply.

The economy is also populated by a unit measure of firms, indexed by i and owned by the
representative household. Firms produce output with capital and labor, according to a standard
Cobb-Douglas production function Akαitl

1−α
it , where A is total factor productivity (TFP), which

is the same for all firms and constant over time. Firms are subject to an aggregate shock to
capital quality φt. A firm that enters the period with capital k̂it and is hit by a shock φt has
effective capital kit = φtk̂it.

Our focus on capital quality shocks as the source of aggregate fluctuations is in the tradition
of a number of recent papers on financial frictions, crises and the Great Recession - for example,
Gertler et al. (2010), Gertler and Karadi (2011), Brunnermeier and Sannikov (2014) and Gourio
(2012). These shocks work to permanently scale up or down the effective capital stock. However,
such shocks by themselves are not enough to generate long-lived output responses. An adverse
quality shock creates incentives to invest rapidly and return to a steady state level of capital.
To deter this investment boom, Gertler and Karadi (2011), Gourio (2012) and others add
persistence to the shock process - a bad shock not only wipes out a fraction of today’s capital,
but also makes it more likely that any investments today will be hit by bad shocks tomorrow.
This persistence then spills over to aggregate outcomes, allowing them to generate long-lived
output responses.

Importantly, we assume that the shock φt is i.i.d. The independence assumption ensures
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our persistence arises endogenously, from changes to beliefs, and distinguishes our results from
those with exogenous persistence (autocorrelated φt). The distribution of these shocks G is
unknown to agents. Learning about G is the key novel feature of our setup and is the focus of
the paper. The following subsection will describe how agents use the observed history of φt to
update their beliefs about G.

Firms are also subject to an idiosyncratic shock vit . These shocks scale up and down the
total resources available to each firm (before paying debt, equity or labor):

Πit = vit
[
Akαitl

1−α
it + (1− δ)kit

]
(2)

where δ is the rate of capital depreciation. The shocks vit are i.i.d across time and firms and
are drawn from a known distribution3, F . The mean of the idiosyncratic shock is normalized
to be one:

∫
vit di = 1

Information Sets: The key innovation in the model is the assumption that agents must
estimate the aggregate shock distributionG. Their common information set is It, which includes
all aggregate and idiosyncratic variables observed up to and including time-t. At each point in
time, they use the empirical distribution of φt up to that point to construct an estimate Ĝt of
the true distribution G. Formally, at every date t, agents construct the following kernel density
estimator of the pdf g 4:

ĝt (φ) =
1

ntκ

nt−1∑
s=0

Ω

(
φ− φt−s

κ

)
where Ω (·) is the standard normal density function, κ is the bandwidth parameter and nt is
the number of available observations of at date t. As new data arrives, agents update their
estimates, generating a sequence of beliefs

{
Ĝt

}
.

To keep our problem tractable, we follow most previous work on learning (Cogley and
Sargent (2005), Piazzesi et al. (2015), Johannes et al. (2015)) in using anticipated utility (Kreps,
1998). Under this notion, agents are myopic with respect to changes in their future beliefs
but otherwise make optimal decisions. In other words, at each date t, agents act as if the
true distribution is Ĝt. While the alternative of acknowledging and adjusting actions for the
possibility of future changes in beliefs may be appealing, it adds considerable opacity and
computational complexity and typically generates similar dynamics.

3This is a natural assumption - with a continuum of firms and a stationary shock process, firms can learn
the complete distribution of any idiosyncratic shocks after one period.

4In our numerical implementation, we fit a smooth density function to the empirical distribution. We also
studied a handful of flexible parametric specifications, which yielded similar results.
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Labor, credit markets and default: Firms hire labor in advance, i.e. before observing the
realizations of the aggregate and idiosyncratic shocks. Importantly, wages are non-contingent -
in other words, workers are promised a non-contingent payment and face default risk.

Firms have access to a competitive non-contingent debt market, where lenders offer bond
price (or equivalently, interest rate) schedules as a function of all relevant aggregate and id-
iosyncratic states.

In order to characterize these schedules, we need to analyze the firm’s default decision. A
firm enters the period with an obligation, bit+1 to bondholders and a promise of wit+1lit+1 to
its workers. The shocks are then realized and the firm (i.e. its shareholders) decide whether to
repay their obligations or default. A firm that defaults makes no payments to equity holders.
Formally, default is optimal for shareholders if

Πit+1 − bit+1 − wit+1lit+1 + Γt+1 < 0

where Γt+1 is the present value of continued operations (we characterize this object later in this
section - specifically, we will show that, since idiosyncratic shocks are iid, this is the same for all
firms and, in equilibrium, equal to 0). Thus, the default decision is a function of the resources
available to the firm (Πit+1) and the total obligations of the firm to both bondholders and
workers (bit+1 + wit+1lit+1 ≡ Bit+1). The former is a function of the capital and labor choices,
as well as the realizations of shocks. Let rit (Πit+1, Bit+1, St) ∈ {0, 1} denote the default decision
of the firm, where we make explicit the dependence on the aggregate state St. Importantly, St
includes the estimated distribution function Ĝt.

In the event of default, the workers and bondholders take over the firm. The productive
resources of a defaulting firm are sold to an identical new firm at a discounted price, equal to a
fraction θ < 1 of the value of the defaulting firm. The proceeds are distributed pro-rata among
the creditors (both bondholders and unpaid workers). Note that the claims of both bondholders
and workers have equal seniority5.

Let q
(
k̂it+1, lit+1, wit+1, bit+1, St

)
denote the bond price schedule faced by a firm in period

t. In other words, the firm receives q (·) in exchange for a promise to pay one unit of output
at date t + 1. Note that the bond price is determined before the next period’s capital quality
shocks are known. So, the price depends on the amount of capital invested k̂it+1, but it cannot
be made contingent on the effective capital that will be available for production kit+1 or the
profit shock vit+1. The dependence on the other variables follows from the discussion on the

5Note also that this means that default does not destroy resources - the penalty is purely private.
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default decision,

q
(
k̂it+1, lit+1, wit+1, bit+1, St

)
= EMt+1

[
r (Πit+1, Bit+1) + (1− r (Πit+1, Bit+1))

θṼ (Πit+1, St+1)

Bit+1

]
.

(3)
where Ṽ (Πit+1, St+1) is the value of the assets of the firm (to be characterized later) and Mt+1

is the stochastic discount factor of the representative household, which, given our Epstein-Zin
specification takes the form

Mt+1 =

(
dUt
dCt

)−1
dUt
dCt+1

= β
[
Et
(
U1−η
t+1

)] η−ψ
1−η Uψ−η

t+1

(
u (Ct+1, Lt+1)

u (Ct, Lt)

)−ψ
(4)

We assume that debt is associated with a tax advantage, which creates incentives for firms
to borrow. A firm which issues debt at price qit and promises to repay bit+1 in the following
period, receives a total date-t payment of χqitbit+1, where χ > 1. This subsidy to debt issuance
along with the cost of default introduces a trade-off in the firm’s capital structure decision,
breaking the Modigliani-Miller theorem6.

For a firm that does not default, the dividend payout is its total available resources times
output shock, minus its payments to debt and labor, minus the cost of building next period’s
capital stock (the undepreciated current capital stock is included in Πit), plus the revenue
earned from issuing new debt, including its tax subsidy:

dit = Πit −Bit − k̂it+1 + χqitbit+1 (5)

Importantly, we do not restrict dividends to be positive, with negative dividends interpreted
as (costless) raising of equity. Thus, firms are not financially constrained, ruling out another
potential source of persistence.

Workers, who are also members of the representative family, evaluate their wage claims
using the stochastic discount factor, Mt+1. This implies that the present value of a promise of
wagewit+1 is given by

wit+1EMt+1

[
r (Πit+1, Bit+1) + (1− r (Πit+1, Bit+1))

θṼ (Πit+1, St+1)

Bit+1

]
= wit+1qit

where the expectation is taken over aggregate and idiosyncratic shocks. From the household’s
6The subsidy is assumed to be paid by a government that finances it through a lumpsum tax on the

representative household.
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problem, we can derive the following optimality condition for labor supply:

wit+1qit
dUt
dCt

=
dUt
dLt+1

wit+1q =

(
dUt
dCt

)−1
dUt
dLt+1

≡ Wt (6)

In other words, the expected value of wages, weighted by the economy-wide stochastic
discount factor Mt+1 is the same for all firms and is equal to the marginal rate of substitution
of the representative household. The wage promise,wit+1, must offer workers compensation for
default risk. Since the risk is identical for bonds and wage payments, this risk adjustment
involves simply multiplying the promised wage by the equilibrium bond price. In other words,
the workers are essentially paid through bonds.

Timing, value functions and equilibrium: The timing of events in each period t is as
follows:

1. Firms enter the period with a capital stock k̂it, labor lit, outstanding debt bit, and a wage
obligation witlit.

2. The aggregate capital quality shock φt and the firm-specific profit shock vit are realized.
Production takes place.

3. The firm decides whether to default or repay (rit ∈ {0, 1}) its bond and labor claims.

4. The firm makes capital k̂it+1, debt bit+1 choices for the following period, along with
wage/employment contracts wit+1 and lit+1. Workers commit to next-period labor supply
lit+1. Note that all these choices are made concurrently.

Value functions: In recursive form, the expected value of a firm is

V (Πit, Bit, St) = max

[
0, max

dit,k̂it+1,bit+1,wit+1,lit+1

dit + EtMt+1V (Πit+1, Bit+1, St+1)

]
(7)

where dit is the dividend payment given by (5) and the realized effective capital stock is kt+1 =

φtk̂t+1. The first max operator in (7) captures the firm’s option to default if the value of the
firm is negative. The expectation is taken over the idiosyncratic and aggregate shocks, taking
the estimated aggregate shock distribution St as given. Substituting for dit from (5), the second
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expression inside the square brackets can be written as

max
k̂it+1, bit+1,wit+1,lit+1

Πit −Bit − k̂it+1 + χqitbit+1 + EMt+1V (Πit+1, Bit+1, St+1)

= Πit −Bit + max
k̂t+1, bt+1,wt+1,lt+1

−k̂it+1 + χqitbit+1 + EtMt+1V (Πit+1, Bit+1, St+1)

≡ Πit −Bit + Γt

Finally, the value of the assets of a defaulting firm Ṽ (Πit, St) is simply the value of a firm
with no external obligations, i.e. V (Πit, 0, St) = Ṽ (Πit, St).

For a given Ĝt, a recursive equilibrium is a set of (i) functions for aggregate consumption and
labor that maximize (1) subject to a budget constraint, (ii) firm value functions and associated
policy functions that solve (7) , taking the bond price and wage functions (3) , and (6) and the
stochastic discount factor (4) as given. (iii) aggregate consumption and labor are consistent
with individual choices.

3 Solving the Model

We now characterize the equilibrium and explore how tail events and the subsequent changes
in beliefs affect the persistence and level of macro and financial outcomes. We present only the
key equations here and relegate the detailed derivations to Appendix A.

We first note that, for any given aggregate capital shock φt, we can represent the optimal
repayment policy as a threshold rule in the idiosyncratic output shock vit,

r (Πit, Bit, St) =

{
0 if vit < v (St)

1 if vit ≥ v (St)

Working from the first-order condition for the firm’s capital choice, we find that the optimal
k̂t+1 choice solves7

1 + χWt
lt+1

k̂t+1

= E
[
Mt+1R

k
t+1J

k(v)
]

(8)

where Rk
t+1 = Aφαt+1

(
k̂t+1

lt+1

)α−1

+ (1− δ)φt+1

Jk(v) = 1 + h (v) (θχ− 1) + v (1− F (v)) (χ− 1)

h (v) ≡
∫ v

−∞
vf(v)dv

7Since all firms are identical, they make symmetric choices and accordingly, we suppress the i subscript.
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The term Rk
t+1 is related to the return on capital, augmented with the capital quality shock,

φt+1. The term Jk(v) reflects the net effect of distortions induced by the tax advantage and
default penalties associated with debt. In the absence of any these distortions (e.g. if χ = 1),
Jk(v) = 1, reducing (8) to a standard Euler equation. In general, however, the wedge Jk(v)

distorts the equilibrium choice of capital away from the choices of a planner.
The optimality condition for labor looks quite similar. Just like with capital, firms equate

the marginal cost of an additional unit of labor, namelyWt, with the expected marginal product
of labor, adjusted for the effect of additional promised wages on the cost of default:

χWt = E

[
Mt+1 (1− α)Aφαt+1

(
k̂t+1

lt+1

)α

J l(v)

]
(9)

where J l(v) = 1 + h (v) (θχ− 1)− v2f (v)χ (θ − 1)

Finally, the firm’s optimality condition with respect to leverage

(1− θ)Et [Mt+1vf (v)] =

(
χ− 1

χ

)
Et [Mt+1 (1− F (v))] (10)

The left hand side is the marginal cost of increasing leverage - it raises the expected losses
from the default penalty (a fraction (1 − θ) of the firm’s value). The right hand side is the
marginal benefit - the tax advantage times the value of debt issued.

The three optimality conditions, (8) − (10) , along with those from the household side - in
particular, the labor supply condition (6) - characterize the equilibrium of this economy and
can be solved numerically.

In our numerical analysis, we solve two variants of the model

1. Version 1: Epstein-Zin preferences, fixed leverage The first maintains the EZ
specification for preferences, but, for tractability, exogenously fixes leverage (defined as
the ratio of total obligations to capital). This is equivalent to replacing (10) with

Bit+1

k̂it+1

= levTarget

2. Version 2: Quasi-linear preferences, endogenous leverage The second variant
preserves the endogenous choice of leverage i.e. uses (10) but sets the utility parameters
ψ = η = 0, reducing the utility function (1) to a quasi-linear specification:

(1− β)Et

[
∞∑
s=0

Ct+s −
ζ

1 + γ
L1+γ
t+s

]
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This eliminates consumption smoothing incentives and therefore, any time variation in the
discount factor, i.e. Mt+1 = β. This isolates the effect coming from changes in expected
returns to investing.

4 Measurement and Calibration

One of the key strengths of our belief-driven theory is that, by assuming that agents form
beliefs as an econometrician would, we allow the data to discipline beliefs. In this section,
we parameterize the model to match key features of the US economy. We then subject the
model economy to the realized time series of capital quality shocks from US post-war data and
evaluate the predictions for aggregates that we did not calibrate to, such as investment, output
and consumption.

4.1 Measuring capital quality shocks

The next step is to construct a time series of {φt}. We use annual data on non-financial assets
of non-financial corporations in the US economy. The Flow of Funds reports published by
the Federal Reserve contain two such series - one evaluated at historical cost and the other at
replacement cost or market value. We interpret the latter as corresponding to effective capital.
Letting P k

t denote the nominal price of capital in t, we can then map these two series into
model objects as follows:

NFAHCt = Historical cost of non-financial assets in t = P k
t−1Xt−1 + (1− δ)NFAHCt−1

NFARCt = Replacement cost of non-financial assets in t = P k
t Kt

where Xt−1 is investment in period t− 1. Now,

NFARCt
NFARCt−1

− 1 ≈ ln NFARCt − ln NFARCt−1

= ln P k
t − ln P k

t−1 + ln Kt − ln Kt−1

Thus, the change in the NFARCt series reflects both changes in effective capital (Kt) as well
as price changes. We then use the change in price index for non-residential investment from the
National Income and Product Accounts (denoted ln PINDXInv

t ) to control for the latter8:

ln P k
t − ln P k

t−1 = ln PINDXInv
t − ln PINDXInv

t−1

8Our results are robust to alternative measures of price changes.
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Substituting and rearranging, we get

Kt

Kt−1
≈ 1 + ln Kt − ln Kt−1 = 1 + ln

NFARCt
NFARCt−1

− ln
PINDXInv

t

PINDXInv
t−1

(11)

Finally, from the law of motion for Kt = φt (Xt−1 +Kt−1 (1− δ)) ,

Kt

Kt−1
= φt

(
Xt−1

Kt−1
+ 1− δ

)
= φt

(
P k
t−1Xt−1

P k
t−1Kt−1

+ 1− δ
)

= φt

(
NFAHCt − (1− δ)NFAHCt−1

NFARCt−1
+ 1− δ

)
Combining with (11), we get

φt =

Kt
Kt−1

NFAHCt −(1−δ)NFAHCt−1

NFARCt−1
+ 1− δ

=
1 + ln

NFARCt
NFARCt−1

− ln
PINDXInv

t

PINDXInv
t−1

NFAHCt −(1−δ)NFAHCt−1

NFARCt−1
+ 1− δ

(12)

Using (12) as a measurement equation, we construct an annual time series for capital quality
shocks for the US economy over the last few decades. The left panel of Figure 2 plots the
resulting series. For most of the sample period, the shock realizations are in a relatively tight
range around 1, but at the onset of the recent Great Recession, we saw two large adverse
realizations: 0.93 in 2008 and 0.84 in 2009. We will use the model to simulate the responses of
the economy over time to negative shocks of this magnitude.
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Figure 2: Distribution of capital quality shocks. The left tail shows the effect of the Great
Recession.

We then apply a standard kernel density estimation procedure to this time series to construct
a sequence of beliefs {ĝt}. The resulting estimates for 2007 and 2009 are shown in the right panel
of Figure 2. They show a significant increase in the perceived tail risk post–2007. The density
function for 2007 implies almost zero mass below 0.95. After the great recession, agents revise
their estimates and now attach a non-trivial probability to significantly worse realizations.
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4.2 Calibration

We first choose parameter values/targets that are common for the two versions of our model.
A period is interpreted as a year and the discount factor β is set to 0.9. The share of capital
in the production, α, is set to 0.40. The recovery rate upon default, θ, is set to 0.70, following
Gourio (2013). The distribution for the idiosyncratic shocks, vit is assumed to be lognormal,
i.e. ln vit ∼ N

(
− σ̂2

2
, σ̂2
)
with σ̂2 chosen to target a default rate9 of 0.02. The labor supply

parameter, γ, is set to 0.5, in line with Midrigan and Philippon (2011), corresponding to a
Frisch elasticity of 2. The labor disutility parameter ζ and the TFP term in production are
normalized to 1.

Next, we turn to the version-specific parameters.
Version 1 (EZ preferences, fixed leverage): For this version, we use preference pa-

rameters from the asset pricing literature10 and set ψ = 0.5 (or equivalently, an intertemporal
elasticity of substitution of 2) and η = 10. Our target for steady state leverage is 0.70, ob-
tained by adding the wage bill (approximately 0.2 of the steady state capital stock) to a target
for financial leverage (the ratio of external debt to capital of 0.5- from Gourio (2013)). Since
leverage is exogenous, the tax advantage χ is a free parameter. We set it to a baseline value of
1.06 and verified numerically that our results are not particularly sensitive to this choice.

Version 2 (Quasi-linear preferences, endogenous leverage): In this version, ψ = η =

0, but leverage is chosen optimally. We now choose the tax advantage parameter χ to generate
a leverage of 0.7. This leads to a value of 1.06 for χ.

Table 1 summarizes all parameter choices.

5 Quantitative Results

Our main goal in the quantitative exercise is to explore the size and persistence of the macroe-
conomic response to large, transitory negative shocks. We want to understand how belief
updating, debt and risk aversion each contribute to this response. With this goal in mind,
we perform the following experiment using historical data on φt realizations from 1950-2009,
measured using the strategy outlined in Section 4. We begin by estimating Ĝ2007 using the
data through 2007. Then, starting from the steady state associated with this estimate11, we
subject the model economy to a sequence of two adverse realizations - 0.93 and 0.84, which
correspond to the shocks that we observed in 2008 and 2009. This leads to a revised estimate

9This is in line with the target in Khan et al. (2014), though higher than the one in Gourio (2013). We
verified that our quantitative results are not sensitive to this target.

10See discussion in Gourio (2013).
11The steady state is obtained by simulating the model for 1000 periods using the Ĝ and the associated

policy functions, discarding the first 500 observations and time-averaging across the remaining periods.

15



Parameter Value Description
β 0.91 Discount factor
η 10 Risk aversion
ψ 0.50 1/Intertemporal elasticity of substitution
γ 0.50 1/Frisch elasticity
ζ 1 Labor disutility
α 0.40 Capital share
δ 0.03 Depreciation rate
A 1 TFP
χ 1.06 Tax advantage of debt
θ 0.70 Recovery rate
σ̂ (version 1) 0.33 Idiosyncratic volatility
σ̂ (version 2) 0.26 Idiosyncratic volatility
levTarget 0.70 Leverage ratio

Table 1: Parameters

for the distribution, Ĝ2009. We solve the model using this revised estimate and use those policy
functions to generate a time path for aggregate variables, under the assumption that the shock
realizations from 2010 onward are equal to their average value.

We then compare these paths to an otherwise identical economy without learning, i.e. one
where agents are assumed to know the final distribution Ĝ2009 from the very beginning and so,
do not revise their beliefs. In other words, we generate the same impulse response functions
starting from the steady state associated with Ĝ2009 and holding beliefs constant throughout.
This corresponds to a standard rational expectations approach, where agents are assumed
to know the true distribution. The econometrician estimates this distribution using all the
available data.

We perform these exercises for both versions of our model. This allows us to analyze
the interaction of belief revisions with risk aversion (which creates consumption-smoothing
incentives) and endogenous leverage choice. We also compare our baseline predictions (from
the version with risk averse preferences) to predictions from a model with the same belief
updating process, but without debt.

5.1 Results: Risk aversion, fixed leverage

The impulse response functions for the first version are shown in Figure 3. The first panel shows
the time path for φt (as deviations from its average value of 1). The solid and dashed lines
in the remaining panels show the response of aggregate variables with and without learning
respectively. In the absence of belief revisions, a negative capital quality shock prompts the
firm to increase investment to replenish the lost effective capital. While the curvature in the
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utility function moderates the speed of this transition to an extent, the overall pattern of
a steady recovery back to the original steady state is clear. Under learning, however, the
new information leads firms to permanently adjust their estimates of the expected return to
investment and labor. As a result, the shocks induce a prolonged stagnation, with the economy
trending towards a new, lower steady state level. Output in the new steady state is about 13%
lower than the original one. The corresponding drops in capital and labor are about 19% and
9%. Thus, even though the φt shocks were transitory, they were so large that the resulting
change in beliefs permanently reduces economic activity12.
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Figure 3: Re-estimating shock distribution creates persistent responses in output,
investment and labor. Impulse responses with Epstein-Zin preferences and fixed leverage. Solid
line (learning) is the model with belief updating. Dashed line (no learning) is an identical model where agents
believe that shocks are drawn from the distribution estimated on the full sample of data and never revise those
beliefs. Zero is the steady state level in each economy.

Figure 3 also plots the actual data on the deviations of output, capital stock and labor
for the US economy from pre-crisis trends13. As the graph shows, the model’s predictions for
the drop in output line up remarkably well with the data. The predicted path for capital

12In levels, the no learning and learning economies converge at the end. But they start at different steady
states and we are normalizing each series’ steady state to zero here.

13We use data on output, capital and labor input from Fernald (2014). Each series is adjusted for growth in
working age population and then detrended using a log-linear trend estimated using data from 1950-2007.
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and labor, however, show some divergence with the data, though they are both in the right
ballpark. The former exhibits a sharper drop than the observed drop in capital input - which
is not particularly surprising, given that our model abstracted from adjustment costs and other
frictions that could induce a more sluggish response of capital. Similarly, the model’s predictions
for labor underpredict the actual change in employment. In the data, employment dropped
sharply in 2008-’09, almost contemporaneously with the negative shocks and then recovered
slowly. In the model, however, the drop occurs later, but that is largely due to the assumption
that labor is chosen in advance. Bringing the model closer to the data along these dimensions is
no doubt important and will require a richer model with additional features and frictions, but
the considerable improvement in performance that learning brings in a very standard business
cycle setting is apparent from the figure.

Isolating the Role of Debt: A No-Debt Benchmark Next, we focus on the role of debt
by comparing our results to an identical economy where all investment is financed through
equity but beliefs are updated over time. Formally, we set the tax advantage parameter χ to
1 and the leverage target to 0. This implies that Jk(v) = J l(v) = 1, i.e. the debt-related
distortions in capital and labor choice disappear.

Figure 4 plots the time path for aggregate variables for this variant of our model, along
with our baseline version from Figure 3. The graph shows that the effects of belief revisions are
similar in both cases - the economy converges to a new steady state with lower output, capital
and employment. The drop in aggregates is smaller in the model without debt - for example,
a 10% reduction in output (compared to 13% in the baseline version with debt). In this sense,
the presence of debt amplifies the effects of changes in tail risk.

Thus, in the absence of debt, the effect of the great recession shock cannot be more persistent
than the shock itself. In Figure 4, the time series of output and capital look just like the capital
quality shock itself. The reason for this lack of additional persistence is that most of the revisions
in beliefs occur in the tails. Without debt, real economic variables are not very sensitive to
tail probabilities. So, even though there are permanent changes in tail probabilities, they have
small effects on the real economy, which are swamped by the transitory direct effect of the
capital quality shock. This exercise reveals why increases in perceived tail risk alone cannot
generate large, persistent contractions of the sort that we saw in the US economy over the last
6 years- for that, we need both belief revisions and debt financing.

5.2 Results: Quasi-linear utility, endogenous leverage

Next, we repeat the experiment from the previous section in the second version of the model,
with quasi-linear utility and endogenous leverage. This eliminates the desire for consumption
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Figure 4: Debt amplifies the effects of belief revisions on output, investment and
labor.Impulse responses with Epstein-Zin preferences and fixed leverage. Solid line (debt) is the model in
section 2. Dashed line (no debt) is an identical model with χ = 0, where firms choose zero debt. Zero is the
steady state level in each economy.

smoothing, which was responsible for the relatively smooth and slow transitions in the previous
version. While such smoothing effects may well be an important part of reality, suppressing
it allows us to gain a clearer understanding of how much persistence belief updating, by itself,
can produce. This is a simpler framework, computationally, which allows leverage to be chosen
endogenously.

The impulse-response exercise is the same as before, starting the economy in its steady state,
shocking it with two large, negative capital quality shocks and then returning the shock process
to its average level. Figure 5 presents the time path for aggregate variables in this version, both
with and without learning. As we would expect, the absence of curvature in consumption means
that the economy transitions immediately to the new steady state. However, belief revisions
still have substantial, permanent effects on the level of economic activity. For example, they
lead to a drop in steady state output of about 7%. Recall that, under risk aversion, learning
led to a bigger drop in steady state output, about 13%. The difference stems from the fact,
with risk aversion, the return to capital (and labor) includes a risk premium. Changes in
beliefs, and in particular tail risk, lead to an increase in this risk premium, further dampening
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firms’ incentives to invest (and hire). These results indicate that this effect is quite strong and
accounts for a significant portion of the long-run drop in output.
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Figure 5: Impulse responses with quasi-linear preferences, endogenous leverage:
Effect of learning.Without curvature, transitions are starker, but the effect of learning is still substantial.

6 Conclusion

No one knows the true distribution of shocks to the economy. Economists typically assume that
agents in their models do know this distribution as a way to discipline beliefs. But assuming
that agents do the same kind of real-time estimation that an econometrician would do is equally
disciplined and more plausible. For many applications, assuming full knowledge has little effect
on outcomes and offers tractability. But for outcomes that are sensitive to tail probabilities, the
difference between knowing these probabilities and estimating them with real-time data can be
large. The estimation error can be volatile and can introduce new, persistent dynamics into a
model with otherwise transitory shocks. The essence of the persistence mechanism is this: Once
observed, a shock (a piece of data) stays in one’s data set forever and therefore permanently
affects belief formation.

When firms finance investments with debt, they make investment and output sensitive to
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tail risk. Debt is an asset whose payoffs are flat throughout most of the state space, but
very sensitive to the state for left-tail, default events. Therefore, the cost of debt depends
precisely on the probabilities of a tail event, which are hardest to estimate and whose estimates
fluctuate greatly. When debt (leverage) is low, the economy is not very sensitive to tail risk, and
economic shocks will be more transitory. The combination of high debt levels and a shock that
is a negative outlier makes tail risk surge, investment fall and depresses output in a persistent
way.

When we quantify this mechanism and use capital price and quantity data to directly
estimate beliefs, our model’s predictions resemble observed macro outcomes in the wake of the
great recession. These results suggests that perhaps persistent stagnation arose because, after
seeing how fragile our financial sector is, market participants will never think about tail risk in
the same way again.
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Appendix

A Optimality conditions from firm’s problem
The firm’s optimization problem is

V (kit, lit, wit, bit, St) = max [0, Πit −Bit + Γit]

Γit = max
k̂it+1, bit+1,wit+1,lit+1

−k̂it+1 + χqbit+1 + EMt+1V (kit+1, lit+1, wit+1, bit+1, St+1)

Πit = vit
(
A(φtkit)

αl1−αit + (1− δ)φtkit
)

Bit+1 = bit+1 + wit+1lit+1

q
(
k̂it+1, lit+1, wit+1, bit+1, St

)
= EMt+1

[
r (Πit+1, Bit+1) + (1− r (Πit+1, Bit+1))

θV (kit, lit, 0, 0, St)

Bit+1

]
wit+1q =Wt

r (Πit, Bit, St) =

{
0 if vit < v (St)

1 if vit ≥ v (St)
.

First, note that we can write the firm’s problem in term of leverage and labor capital ratio, defined as levit+1 ≡
Bit+1

k̂it+1
and lit+1

k̂it+1
. Then,

Rk
(
lit+1

k̂it+1

, φt+1

)
≡ Πit+1

k̂it+1

= vit

(
A(φt+1

α

(
lit+1

k̂it+1

)1−α

+ (1− δ)φt+1

)
.

This implies that

Γit = max
k̂it+1, levit+1,

lit+1

k̂it+1

k̂it+1

(
−1− χWt

lit+1

k̂it+1

+ χqlevit+1 + EMt+1rt+1

(
vitR

k
t+1 − levit+1 +

Γit+1

k̂it+1

))

q

(
lit+1

k̂it+1

, levit+1, St

)
= EMt+1

rt+1 + (1− rt+1) θ
vitR

k
t+1 + Γit+1

k̂it+1

levit+1

 .
We guess and then verify that Γit+1 = 0.14 Replacing the debt price schedule and rearranging terms yields

Γit = max
k̂it+1, levit+1,

lit+1

k̂it+1

k̂it+1

(
−1− χWt

lit+1

k̂it+1

+ EMt+1J̃
k
t+1

)
J̃kt+1 = Rkt+1 + levit+1 (χ− 1) rt+1 + (χθ − 1) (1− rt+1) vitR

k
t+1.

The expectation with respect to the idiosyncratic shock implies Ert+1 = (1− F (v)). Also, note that the default
threshold becomes v = levit+1

Rk
t+1

. Hence

J̃kt+1 = Rkt+1 (1 + v (χ− 1) (1− F (v)) + (χθ − 1)h (v))

14As the firm has constant returns to scale the problem will be linear in capital and in equilibrium Γit = 0.
See Navarro (2014).
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where h (v) =
∫ v
−∞ vdF (v). Finally, the problem is

Γit = max
k̂it+1, levit+1,

lit+1

k̂it+1

k̂it+1

(
−1− χWt

lit+1

k̂it+1

+ EMt+1R
k
t+1J

k(v)

)
Jk(v) = 1 + (χ− 1) v (1− F (v)) + (χθ − 1)h (v)

v =
levit+1

Rkt+1

First, note that the problem is linear in k̂it+1 therefore in equilibrium we must have that

1 + χWt
lit+1

k̂it+1

= EMt+1R
k
t+1J

k(v),

which implies equation 8 in the main text and in turn it verifies the guess, Γit = 0.
Next, the first order condition with respect to lt+1

k̂it+1
is

χWt = EMt+1R
k ∂J

k(v)

∂ lt+1

k̂it+1

+ EMt+1
∂Rk

∂ lt+1

k̂it+1

Jk(v),

where

Rkt+1

∂Jk(v)

∂ lt+1

k̂it+1

= Rkt+1

∂v

∂ lt+1

k̂it+1

(
(χ− 1) (1− F (v))− v (χ− 1) f (v) + (χθ − 1)

∂h (v)

∂v

)
∂v

∂ lt+1

k̂it+1

= − levit+1

(Rk)
2

∂Rk

∂ lt+1

k̂it+1

= − v2

levit+1

∂Rk

∂ lt+1

k̂it+1

dh (v)

dv
= vf (v)

∂Rkt+1

∂ lt+1

k̂it+1

= vitA (1− α)φt+1
α

(
lit+1

k̂it+1

)−α
.

Rearranging terms yields

χWt = EMt+1
∂Rk

∂ lt+1

k̂it+1

J l(v)

J l(v) = 1 + v2f (v)χ (1− θ)− (1− χθ)h (v) ,

which is (9) in the main text.
Finally, the first order condition with respect to leverage is

EMt+1R
k
t+1

∂Jkt+1

∂levit+1
= 0,
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where

∂Jkt+1

∂levit+1
=

∂v

∂levit+1
((χ− 1) (1− F (v))− (χ− 1) vf (v) + (χθ − 1) vf (v))

=
1

Rkt+1

((χ− 1) (1− F (v))− χ (1− θ) vf (v))

hence
(1− θ)Et [Mt+1vf (v)] =

(
χ− 1

χ

)
Et [Mt+1 (1− F (v))] ,

which is (10) in the main text.
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