The Tail that Wags the Economy: Belief-driven Business Cycles and Persistent Stagnation

Julian Kozlowski	Laura Veldkamp	Venky Venkateswaran
NYU	NYU Stern	NYU Stern

June 2015

Introduction

The "Great Recession" spawned two major lines of business cycle research

- Belief shocks: News, sentiments, disaster risk, uncertainty...
- Secular stagnation: Long-lived adverse effects from large shocks

Introduction

The "Great Recession" spawned two major lines of business cycle research

- Belief shocks: News, sentiments, disaster risk, uncertainty...
- Secular stagnation: Long-lived adverse effects from large shocks

These two agendas have largely remained separate

- Most belief-driven theories have no internal propagation
- Effects only as persistent as exogenous persistence of belief shocks
- Cannot explain why some cycles are more persistent than others.

Introduction

The "Great Recession" spawned two major lines of business cycle research

- Belief shocks: News, sentiments, disaster risk, uncertainty...
- Secular stagnation: Long-lived adverse effects from large shocks

These two agendas have largely remained separate

- Most belief-driven theories have no internal propagation
- Effects only as persistent as exogenous persistence of belief shocks
- Cannot explain why some cycles are more persistent than others.

Can belief changes explain persistent responses to transitory shocks ? *Yes, when agents are learning about distributions (as opposed to hidden states)* A new approach to beliefs in business cycles

Agents estimate the distribution of aggregate shocks using real time data

- Empirical discipline on belief formation
- Delivers large, persistent responses to transitory shocks

A new approach to beliefs in business cycles

Agents estimate the distribution of aggregate shocks using real time data

- Empirical discipline on belief formation
- Delivers large, persistent responses to transitory shocks

Results:

- Tail events have a large, permanent effect on beliefs
- Leverage amplifies belief revisions from left-tail shocks
- A calibrated model predicts a permanent 13% drop in US GDP

Contribution to the Literature

Secular stagnation: Summers (2014), Eggertsson and Mehrotra (2014), Gordon (2015)

• We add : new mechanism, acting through belief revisions

Belief-driven business cycles

- Belief shocks: Gourio (2012), Angeletos and La'O (2013), Bloom (2009)...
 - We add: endogenous belief revisions, persistence
- Learning models: Johannes et. al. (2012), Cogley and Sargent (2005)...
 - We add: production, flexible non-parametric distributions
- Endogenous uncertainty: Fajgelbaum et.al. (2014), Straub and Ulbricht (2013)...
 - We add: empirical discipline, larger effects

Preferences: Representative household

$$U_t = \left[\left(1 - \beta\right) \left(C_t - \zeta \frac{L_t^{1+\gamma}}{1+\gamma}\right)^{1-\psi} + \beta \mathbb{E}_t \left(U_{t+1}^{1-\eta}\right)^{\frac{1-\psi}{1-\eta}} \right]^{\frac{1}{1-\psi}}$$

•
$$M_{t+1} \equiv \left(\frac{dU_t}{dC_t}\right)^{-1} \frac{dU_t}{dC_{t+1}}$$
: Stochastic discount factor

Preferences: Representative household

$$U_t = \left[(1-\beta) \left(C_t - \zeta \frac{L_t^{1+\gamma}}{1+\gamma} \right)^{1-\psi} + \beta \mathbb{E}_t \left(U_{t+1}^{1-\eta} \right)^{\frac{1-\psi}{1-\eta}} \right]^{\frac{1}{1-\psi}}$$

•
$$M_{t+1} \equiv \left(rac{dU_t}{dC_t}
ight)^{-1} rac{dU_t}{dC_{t+1}}$$
: Stochastic discount factor

Technology: A continuum of firms, indexed by i

• Production:
$$y_{it} = Ak_{it}^{\alpha} I_{it}^{1-\alpha}$$

- Aggregate capital quality shocks: $k_{it} = \phi_t \hat{k}_{it} \qquad \phi_t \sim G(\cdot)$ iid
- Idiosyncratic shocks, $\Pi_{it} = v_{it} \left[y_{it} + (1 \delta) k_{it} \right]$
- $v_{it} \sim F(\cdot)$, common knowledge, *iid* $\int v_{it} di = 1$

Preferences: Representative household

$$U_t = \left[(1-\beta) \left(C_t - \zeta \frac{L_t^{1+\gamma}}{1+\gamma} \right)^{1-\psi} + \beta \mathbb{E}_t \left(U_{t+1}^{1-\eta} \right)^{\frac{1-\psi}{1-\eta}} \right]^{\frac{1}{1-\psi}}$$

•
$$M_{t+1} \equiv \left(rac{dU_t}{dC_t}
ight)^{-1} rac{dU_t}{dC_{t+1}}$$
: Stochastic discount factor

Technology: A continuum of firms, indexed by i

• Production:
$$y_{it} = Ak_{it}^{\alpha} I_{it}^{1-\alpha}$$

- Aggregate capital quality shocks: $k_{it} = \phi_t \hat{k}_{it} \qquad \phi_t \sim G(\cdot)$ iid
- Idiosyncratic shocks, $\Pi_{it} = v_{it} \left[y_{it} + (1 \delta) k_{it} \right]$

•
$$v_{it} \sim F(\cdot)$$
, common knowledge, *iid* $\int v_{it} di = 1$

Beliefs:

•
$$\mathbb{E}_{t}\left(\cdot\right) \equiv \mathbb{E}\left[\cdot | \mathcal{I}_{t}
ight]$$
 : More on \mathcal{I}_{t} later

Labor markets

- Hired in advance, i.e. before observing aggregate/idiosyncratic shocks
- \bullet Non-contingent wages $\ \rightarrow \$ workers subject to default risk
- Economy-wide wage rate (in period t consumption) $W_t \equiv \left(\frac{dU_t}{dC_t}\right)^{-1} \frac{dU_t}{dL_{t+1}}$

Labor markets

- Hired in advance, i.e. before observing aggregate/idiosyncratic shocks
- \bullet Non-contingent wages $\ \rightarrow \$ workers subject to default risk
- Economy-wide wage rate (in period t consumption) $\mathcal{W}_t \equiv \left(\frac{dU_t}{dG}\right)^{-1} \frac{dU_t}{dL_{t+1}}$

Credit markets

- Competitive lenders offer price schedules $q(\cdot)$ for 1-period bonds
- Total proceeds: $\chi q b_{it+1}$ where $\chi > 1$ reflects tax advantage of debt

Labor markets

- Hired in advance, i.e. before observing aggregate/idiosyncratic shocks
- \bullet Non-contingent wages $\ \rightarrow \$ workers subject to default risk
- Economy-wide wage rate (in period t consumption) $\mathcal{W}_t \equiv \left(\frac{dU_t}{dG}\right)^{-1} \frac{dU_t}{dL_{t+1}}$

Credit markets

- Competitive lenders offer price schedules $q(\cdot)$ for 1-period bonds
- Total proceeds: $\chi q b_{it+1}$ where $\chi > 1$ reflects tax advantage of debt

Default

- Firm assets sold to a identical new firm at a discount of 1- heta
- · Proceeds distributed pro-rata among bondholders and workers

$$V(\Pi_{it}, B_{it}, S_t) = \max\left[0, \max_{d_{it}, \hat{k}_{it+1}, b_{it+1}, w_{it+1}, l_{it+1}} d_{it} + \mathbb{E}_t M_{t+1} V(\Pi_{it+1}, B_{it+1}, S_{t+1})\right]$$

- Dividends *d_{it}* can be negative, i.e. no financing constraints
- Default policy $r_{it+1} \in \{0,1\}$ and value $ilde{V}_{it+1} \equiv V\left(\mathsf{\Pi}_{it}, 0, S_t
 ight)$
- Aggregate state: S_t (includes information)

Information and learning

- Distribution G of aggregate shocks unknown to agents
 - \mathcal{I}_t : (Finite) History of aggregate variables $\rightarrow \{\phi_{t-s}\}_{s=0}^T$
- Agents construct an estimate \hat{G}_t from observed data
 - Use a standard Gaussian kernel density estimator

Information and learning

- Distribution G of aggregate shocks unknown to agents
 - \mathcal{I}_t : (Finite) History of aggregate variables $\rightarrow \{\phi_{t-s}\}_{s=0}^T$
- Agents construct an estimate \hat{G}_t from observed data
 - Use a standard Gaussian kernel density estimator
- Equilibrium concept: anticipated utility
 - Agents myopic with respect to belief changes, but otherwise rational

The mechanism

$$\max_{\hat{k}_{t+1}, l_{t+1}, lev_{t+1}} - \hat{k}_{t+1} - \chi \mathcal{W}_t l_{t+1}$$

$$+ \underbrace{\mathbb{E}_t \left[M_{t+1} \prod_{t+1} \right]}_{\text{Output + Undep capital}} + \underbrace{(\chi - 1) q_t \cdot lev_{t+1} \cdot \hat{k}_{t+1}}_{\text{Tax advantage of debt}} - \underbrace{(1 - \theta) \mathbb{E}_t \left[M_{t+1} (1 - r_{t+1}) \prod_{t+1} \right]}_{\text{Cost of default}}$$

The mechanism

_

$$\max_{\hat{k}_{t+1}, l_{t+1}, lev_{t+1}} - \hat{k}_{t+1} - \chi \mathcal{W}_t l_{t+1}$$

$$+ \underbrace{\mathbb{E}_t \left[\mathcal{M}_{t+1} \prod_{t+1} \right]}_{\text{Output + Undep capital}} + \underbrace{(\chi - 1) q_t \cdot lev_{t+1} \cdot \hat{k}_{t+1}}_{\text{Tax advantage of debt}} - \underbrace{(1 - \theta) \mathbb{E}_t \left[\mathcal{M}_{t+1} (1 - r_{t+1}) \prod_{t+1} \right]}_{\text{Cost of default}}$$

A negative shock \rightarrow More pessimistic beliefs

- $\mathbb{E}_t [M_{t+1} \Pi_{t+1}]$ declines (also present without debt)
- Tax advantage goes down (because q_t declines)
- Default costs rise

\Rightarrow Lower incentives to invest and hire

Strategy: Match aggregate and cross-sectional moments of the US economy

Parameter	Value	Description
β	0.91	Discount factor
η	10	Risk aversion
ψ	0.50	1/Intertemporal elasticity of substitution
γ	0.50	1/Frisch elasticity
ζ	1	Labor disutility
α	0.40	Capital share
δ	0.03	Depreciation rate
A	1	TFP
χ	1.06	Tax advantage of debt
θ	0.70	Recovery rate
$\hat{\sigma}$	0.33	Idiosyncratic volatility
lev^{Target}	0.70	Leverage ratio

Measuring capital quality shocks

$$\phi_t = \frac{K_t}{\hat{K}_t} = \frac{\text{value of capital}}{\text{yesterday's capital} + \text{investment}}$$

Observables

$$NFA_t^{RC}$$
 = Replacement cost of non-financial assets (Flow of Funds)
 NFA_t^{HC} = Historical cost of non-financial assets (Flow of Funds)

$$PINDX_t^k$$
 = Investment price index (BEA)

Model objects

$$P_t^k K_t = NFA_t^{RC}$$

$$P_{t-1}^k \hat{K}_t = (1-\delta)NFA_{t-1}^{RC} + P_{t-1}^k X_{t-1}$$

$$= (1-\delta)NFA_{t-1}^{RC} + NFA_t^{HC} - (1-\delta)NFA_{t-1}^{HC}$$

$$\Rightarrow \phi_t = \left(\frac{P_t^k K_t}{P_{t-1}^k \hat{K}_t}\right) \left(\frac{PINDX_{t-1}^k}{PINDX_t^k}\right)$$

Capital quality shocks

- Between 1950-2007, ϕ_t in a relatively tight range around 1
- Large negative shocks in 2008-09 \rightarrow significant rise in tail risk

Effect of a transitory shock

Experiment:

- Start with beliefs estimated on 1950-2007 data, add '08 and '09 shocks
- Simulate aggregate variables, holding beliefs fixed
- (For now, leverage is also held fixed relaxed later).

Effect of a transitory shock

Experiment:

- Start with beliefs estimated on 1950-2007 data, add '08 and '09 shocks
- Simulate aggregate variables, holding beliefs fixed
- (For now, leverage is also held fixed relaxed later).

Baseline results:

• Compare to de-trended data GDP close to the data, overshoot on capital and undershoot on labor

Effect of a transitory shock

Experiment:

- Start with beliefs estimated on 1950-2007 data, add '08 and '09 shocks
- Simulate aggregate variables, holding beliefs fixed
- (For now, leverage is also held fixed relaxed later).

Baseline results:

• Compare to de-trended data GDP close to the data, overshoot on capital and undershoot on labor

Decomposition:

- Role of shock size: Contrast 2008-09 shocks (5σ) to 2001 shock (1σ). Small shocks have transitory effects
- Role of learning: Use distribution implied by full sample throughout Without learning, initial impact similar, but less persistence
- Role of leverage: Assume no debt (χ = 1, Lev = 0)
 Debt accounts for a third of the long-run effects
- Role of higher moments: Assume
 \mathbb{E}(\phi_t) = 1
 throughout
 Higher moments account for more than half of total effect
- Role of risk-aversion: Assume $\psi = \eta = 0$, i.e. preferecnes are quasi-linear Risk aversion doubles effects, both in the short run and long run

• A permanent drop in output of 13%

Results: Model vs Data

• Data: Deviations from log-linear, pre-crisis trend

What would temper our long-run effects?

What would temper our long-run effects?

Answer: if long-run beliefs differ significantly from current, e.g. because of

- New data, e.g. a long period without crises or with very good shocks
- Agents discount (or forget) past data
- Agents perceive regime changes (the distribution g changes over time)

Results: Role of shock size

• Small shocks \rightarrow small belief revisions \rightarrow negligible long-run effects

Results: Role of learning

• No learning \rightarrow effects are transitory

Results: Role of debt

• Debt accounts for one-third of long-run effects

Results: Role of higher moments

· Higher moments account for half of the long-run effects

Results: Role of risk aversion

· Risk aversion amplifies effects of belief revisions

- A simple, tractable framework of investment and hiring under learning
- Debt and large belief changes combine to generate significant and *persistent* - declines in economic activity
- A potential explanation for the recent prolonged stagnation ?

•
$$\psi = \eta = 0 \qquad \Rightarrow \qquad M_{t+1} = \beta$$

- Isolates the effect of belief revisions on returns
- Results presented for endogenous leverage

$$(1-\theta) \mathbb{E}_{t} \left[M_{t+1} \underline{\nu} f(\underline{\nu}) \right] = \left(\frac{\chi - 1}{\chi} \right) \mathbb{E}_{t} \left[M_{t+1} \left(1 - F(\underline{\nu}) \right) \right]$$

$$1 = \mathbb{E}_{t} \left[M_{t+1} R_{t+1}^{k} J^{k}(\underline{\nu}) \right] - \chi \mathcal{W}_{t} \frac{l_{t+1}}{\hat{k}_{t+1}}$$

$$\chi \mathcal{W}_{t} = \mathbb{E}_{t} \left[M_{t+1} \left(1 - \alpha \right) A \phi_{t+1}^{\alpha} \left(\frac{\hat{k}_{t+1}}{l_{t+1}} \right)^{\alpha} J^{l}(\underline{\nu}) \right]$$

where

$$R_{t+1}^{k} = \frac{A\phi_{t+1}^{\alpha}\hat{k}_{t+1}^{\alpha}l_{t+1}^{1-\alpha} + (1-\delta)\phi_{t+1}\hat{k}_{t+1}}{\hat{k}_{t+1}}$$
$$J^{k}(\underline{\nu}) = 1 + \underline{\nu}(\chi-1)(1-F(\underline{\nu})) + (\theta\chi-1)h(\underline{\nu})$$
$$J'(\underline{\nu}) = 1 + h(\underline{\nu})(\theta\chi-1) - \underline{\nu}^{2}f(\underline{\nu})\chi(\theta-1)$$

Now,

$$\chi = 1 \qquad \Rightarrow \qquad \underline{v} = 0 \qquad \Rightarrow \qquad J^k = J^l = 1$$

With belief revisions post-2009

