China's Imbalances: Trade Integration in a DSGE Model

George Alessandria Horag Choi Dan Lu

Rochester Monash Rochester

June 2016

https://sites.google.com/site/georgealessandria2/ACL-201606.pdf

Introduction

- China's growth & integration definitive economic event of last twenty-five years
- Uneven process characterized by swings in real exchange rate, trade balance, and accumulation of substantial foreign assets and trade integration.
 - Additionally, pace of trade integration has slowed.

Introduction

- China's growth & integration definitive economic event of last twenty-five years
- Uneven process characterized by swings in real exchange rate, trade balance, and accumulation of substantial foreign assets and trade integration.
 - Additionally, pace of trade integration has slowed.
- Build unified model to account for borrowing/lending, trade integration, and growth.
 - ► Emphasize the role of changes in various trade barriers in the accumulation of assets.

Preview of Main Findings

- Persistent trade cost "shocks" key to China's foreign assets
 - ightharpoonup Symmetric Δ in trade barriers lead to lending
 - lacktriangle Asymmetric Δ in trade barriers lead to lending
- Trade integration (% of gdp): fall common barriers (49%), Chinese export barriers (19%), and China growth (18%)
- Trade slowdown primarily reflects lack of additional integration shocks rather than reversals
 - Current expectations about future trade cost path similar to when China joined WTO.

Outline

- Model
- Estimation
- Results decomposition of
 - ▶ Net Foreign Assets
 - ► Trade Integration
 - ▶ Trade Slowdown

Model

- Two countries, final NT consumption good, non-contingent bond
- Heterogeneous producers with dynamic exporting decision (sunk cost)
 - SR/LR trade adjustment (Alessandria/Choi 07, 15)
- Pricing-to-market: exporter's demand elasticity depends on RER and relative income.
- Aggregate shocks: productivity, trade costs, and discount factor (China-specific & global)

Consumers

$$\max E_0 \sum_{t=0}^{\infty} \Theta_t \frac{\left[C^{\gamma} \left(1-L\right)^{1-\gamma}\right]^{1-\sigma}}{1-\sigma},$$

subject to

$$P_t C_t + P_t Q_t B_t = W_t P_t L_t + P_t B_{t-1} + \Pi_t,$$

$$\ln (\Theta_{t+1}/\Theta_t) = \ln \beta_t = (1 - \rho_b) \ln \overline{\beta} + \rho_b \ln \beta_{t-1} + \varepsilon_{\beta},$$

Discount factor shocks capture "savings glut" story

Aggregators and Prices

Final good produced by competitive retail sector/aggregator

$$egin{array}{lcl} C_t &=& \left(Y_{Ht}^{rac{
ho-1}{
ho}} + a^{rac{1}{
ho}}Y_{Ft}^{rac{
ho-1}{
ho}}
ight)^{rac{
ho}{
ho-1}}, \ Y_{Ht} &=& \left(\int_0^1 Y_{hit}^{rac{ ho-1}{ heta}} di
ight)^{rac{ ho}{ ho-1}}, \ Y_{Ft} &=& \left(\int_{i\in\mathcal{E}_t^*} Y_{fit}^{rac{ ho_t-1}{ ho_t}} di
ight)^{rac{ ho_t}{ ho_t-1}}. \end{array}$$

• $\theta_t = \theta (q, y/y^*)$ captures pricing-to-market

Producers - standard sunk cost model (Dixit, 89)

$$V_{t}(\eta, m) = \max_{m', p, p^{*}} pc_{t}(p) + m'p^{*}c_{t}(\xi^{*}p^{*}) - WI$$
$$-m'Wf_{m, t} + Q_{t}EV_{t+1}(\eta', m')$$

- m_{it} : exporting status
- $y_{it} = e^{z_t + \eta_{it}} I_{it}$, $\eta_{it} \stackrel{iid}{\sim} N\left(0, \sigma_{\eta}^2\right)$
- $\xi_t^* > 1$: variable trade costs for home exporters
- $W_t f_{0,t}$: sunk cost to start
- $W_t f_{1,t}$: sunk cost to continue.

Export Entry and Exit Thresholds

$$W_{t}f_{0,t} - \pi_{t}^{*}(\eta_{0t}) = Q_{t}E_{t}\Delta V_{t+1}(\eta')$$

$$W_{t}f_{1,t} - \pi_{t}^{*}(\eta_{1t}) = Q_{t}E_{t}\Delta V_{t+1}(\eta')$$

$$\Delta V_{t}(\eta) = V_{t}(\eta, 1) - V_{t}(\eta, 0)$$

- ullet Endogenous entry/exit & hysteresis $(\eta_{1t} < \eta_{0t}$ when $\mathit{f}_1 < \mathit{f}_0)$
- Distribution of exporters is state variable & gradual entry
- With iid shocks,

$$\mathit{N}_{t+1} = \mathsf{Pr}\left(\eta \geq \eta_{1t}
ight) \mathit{N}_{t} + \mathsf{Pr}\left(\eta \geq \eta_{0t}
ight) (1 - \mathit{N}_{t})$$

Aggregate Shocks - Productivity

$$\begin{aligned} & \ln z_t^* &= & \rho_z^* \ln z_{t-1}^* + \varepsilon_{zt}^*, \ \varepsilon_{zt} \overset{iid}{\sim} N\left(0, \sigma_z^*\right) \\ & \ln z_{dt} &= & \rho_z^d \ln z_{dt-1} + \varepsilon_{zt}^d, \ \varepsilon_{zt}^d \overset{iid}{\sim} N\left(0, \sigma_z^d\right) \\ & \ln z_t &= & \ln z_t^* + \ln z_{d,t} - \bar{z} \end{aligned}$$

- z_t*: Global productivity
- $z_{d,t}$: China-specific productivity
- \bar{z} : China's productivity disadvantage.

Aggregate Shocks - Variable Trade Costs

$$\begin{split} & \ln \xi_t \ = \ \ln \xi_{ct} + \frac{1}{2} \ln \xi_{dt}, \\ & \ln \xi_t^* \ = \ \ln \xi_{ct} - \frac{1}{2} \ln \xi_{dt}. \\ & \ln \xi_{ct} \ = \ \left(1 - \rho_{\xi_c} \right) \ln \bar{\xi}_c + \rho_{\xi_c} \ln \xi_{ct-1} + \ln \xi_{gt-1} + \varepsilon_{\xi_c t}, \\ & \ln \xi_{gt} \ = \ \rho_{\xi_g} \ln \xi_{gt-1} + \varepsilon_{\xi_g t}, \\ & \ln \xi_{dt} \ = \ \left(1 - \rho_{\xi_d} \right) \ln \bar{\xi}_d + \rho_{\xi_d} \ln \xi_{dt-1} + \varepsilon_{\xi_d t}. \end{split}$$

- ξ_{ct} : common shock
- Transitory and trend shocks. Trend shocks have news aspect
- ξ_{dt} : differential shocks

Aggregate Shocks - Fixed Trade Costs

$$\begin{array}{lcl} \ln f_{0t} & = & (1-\rho_{f0}) \ln f_0 + \rho_{f0} \ln f_{0t-1} + \varepsilon_{f0,t}, \\ \\ \ln f_{1t} & = & (1-\rho_{f1}) \ln f_1 + \rho_{f1} \ln f_{1t-1} + \varepsilon_{f1,t}. \end{array}$$

Calibration/Estimation

Fixed Parameters

$\overline{\beta}$	ζ_b	γ	<i>a</i> ₁	θ
0.96	0.0001	0.30	0.16	5

Estimate

- Shock process: z_c , z_d , ξ_c , ξ_g , ξ_d , f_0 , f_1 , b
- ullet Level of trade costs $\left(ar{\xi}_c\,ar{\xi}_d,\,f_0,\,f_1
 ight)$ and technology $\left(ar{z},\,\sigma_\eta
 ight)$
- Preferences $(\sigma, \rho, \zeta_q, \zeta_y)$

Estimation - Data

- Ratio of China-ROW real income
- Nominal export/import ratio
- Real trade share in China
- Real exchange rate
- Real world output detrended
- 6 Chinese exporters participation

Figure: Historical and Smoothed Series

Figure: Deviations from Steady State of State Variables

Estimated Persistence of Shocks

	prior	posterior		90% HPD - interval	prior	prior
	mean	mean	mode			std.dev.
ρ_{z_d}	0.95	0.996	0.999	0.9905 - 1	unif	0.5
$ ho_{z_c}^{a}$	0.7	0.747	0.731	0.5586 - 0.954	unif	0.5
$ ho_{ar{\xi}_c}$	0.79	0.917	0.962	0.8099 - 0.9981	unif	0.5
$ ho_{oldsymbol{\xi}_d}^{\mathfrak{z}_c}$	0.95	0.978	0.992	0.9578 - 0.9998	unif	0.5
ρ_b	0.945	0.948	0.953	0.9158 - 0.98	norm	0.025
$ ho_{oldsymbol{\xi}_{oldsymbol{g}}}$	8.0	0.895	0.975	0.7423 - 0.9978	unif	0.5
ρ_f	0.9	0.820	0.853	0.666 - 0.9939	unif	0.5

Notes: Based on annual data from 1990 to 2014.

Shocks are persistent but not permanent - rationale for borrowing/lending

Figure 7: Decomposition of China Net Foreign Assets (Model)

Contribution to Change in NFA

Assets-GDP Ratio and Shocks

Consider 1 standard deviation shock

- Productivity shocks (≈unit root): minor impact on assets
- Discount factor: increase assets

Assets-GDP Ratio and Trade cost shocks

Consider 1 standard deviation shock

- Persistent trade cost shocks Δ assets.
- Common shocks to trade costs affect China more since it is more open.
 - ▶ + transitory →borrowing
 - + trend shock →savings
- Differential shocks, temporarily cheaper for ROW to consume—savings

Growth in Trade between China and ROW

Focus on nominal trade share

$$tr = \frac{P_x X + P_m M}{P_y Y}$$

- Consider contribution of shocks to change
 - over whole period (90 to 14)
 - ▶ slow-down compare 11-14 to 97-07

Source of Change in ROW Trade-GDP (1990 to 2014)

	ROW	China
Initial	15.0%	38.7%
Productivity	18.1%	-45.0%
Trade		
Common	23.3%	70.1%
Difference	19.0%	-38.5%
Trend	25.7%	77.0%
Fixed	-1.2%	-2.1%
Total	22.8%	23.8%

Each entry measures the share of the total change in nominal trade to GDP from 1990 to 2014 from that shock alone

Source of the slow-down in 11-14 (comparing to 97-07)					
	ROW	China			
Initial	6.4%	6.6%			
Productivity	-10.6%	10.3%			
Trade					
Common	80.9%	98.4%			
Difference	14.9%	-14.0%			
Trend	7.5%	-3.7%			
Fixed	7.5%	6.6%			
Total	-0.94%	-2.43%			

Each entry measures the share of the difference in the average annual contribution from 2011 to 2014 minus that from 1997 to 2007

Summary

- Decline in trade barriers matter for China's savings
- Chinese trade integration attributed equally to trend, common, differential and productivity.
- Trade slow-down mostly reflects lack of barrier reductions, rather than reversal, and waning influence of past reforms.
 - Expectations for integration haven't diminished much.

Estimated Preferences and Technology

	prior	post	erior	90% HPD - interval	prior	prior
	mean	mean	mode			std.dev.
$\overline{\rho}$	2	1.6964	1.7364	1.4745 - 1.9236	invg	1
σ	5	4.7231	4.3826	3.3182 - 5.9365	invg	1
Ī	2.42	2.3378	2.368	2.1776 - 2.4633	norm	0.1
$ar{ar{\xi}}_c$	0.5	0.4926	0.5026	0.4113 - 0.5683	norm	0.05
$ar{\xi}_c$	0.1	0.1197	0.1	-0.0286 - 0.2856	norm	0.1
ζ_q	-0.3	-0.3067	-0.2923	-0.50410.0797	norm	0.15
ζ_y	-0.15	-0.156	-0.1633	-0.28270.034	norm	0.15
f_0	0.37	0.387	0.3728	0.3087 - 0.473	invg	0.05
f_1	0.039	0.0427	0.0407	0.031 - 0.0536	invg	0.01
σ_{η}	0.235	0.1959	0.1824	0.1662 - 0.2269	invg	0.05

Notes: Based on annual data from 1990 to 2014.

Estimated Shock Std. Deviation

	prior	posterior		90% HPD - interval	prior	prior
	mean	mean	mode			std.dev.
σ_{z_d}	0.07	0.0699	0.0678	0.0527 - 0.0871	invg	0.025
σ_{z_c}	0.033	0.0355	0.0333	0.0267 - 0.043	invg	0.025
σ_{ξ_c}	0.2	0.1602	0.1549	0.1209 - 0.1984	invg	0.05
σ_{ξ_d}	0.124	0.1653	0.1531	0.1276 - 0.2018	invg	0.05
σ_{ξ_g}	0.016	0.0339	0.0118	0.0052 - 0.0692	invg	0.02
σ_{f_0}	0.01	0.007	0.0047	0.0025 - 0.0119	invg	0.05
σ_{f_1}	0.22	0.2213	0.2193	0.2075 - 0.2378	invg	0.01
σ_b	0.005	0.0055	0.0044	0.0029 - 0.0082	invg	0.01

Notes: Based on annual data from 1990 to 2014.