Discussion of "International Inflation Spillovers Through Input Linkages", by Auer, Levchenko, and Saure

Ariel Burstein (UCLA)

Conference on Exchange Rates and External Adjustment Zurich, June 2016

Accounting for international comovement of producer prices

- ▶ Price = Markup x (Interm. inputs + value added costs)
- International comovement of prices through:
 - 1. correlated costs
 - a. value added (e.g. wage, productivity, etc)
 - b. large share of traded intermediate inputs
 - similar intuition to CPI-based RER smoother than ToT
 - correlated markups

Accounting for international comovement of producer prices

- Price = Markup x (Interm. inputs + value added costs)
- International comovement of prices through:
 - 1. correlated costs
 - a. value added (e.g. wage, productivity, etc)
 - b. large share of traded intermediate inputs
 - similar intuition to CPI-based RER smoother than ToT
 - 2. correlated markups
- This paper: tease out a. from b.
 - without using information on cost changes
 - ▶ data for 30 countries, 17 tradeable industries

Simple representative industry example

▶ Log changes in marginal costs in producer currency:

$$w_{in} = w_i = \gamma_i^c c_i + (1 - \gamma_i^c) \sum_{i'} [\gamma_{i'i}^m p_{i'i}]$$

Changes in prices in importer's currency

$$p_{in} = \beta_{in} (w_i + e_{in})$$

Simple representative industry example

▶ Log changes in marginal costs in producer currency:

$$w_{in} = w_i = \gamma_i^c c_i + (1 - \gamma_i^c) \sum_{i'} [\gamma_{i'i}^m p_{i'i}]$$

Changes in prices in importer's currency

$$p_{in} = \beta_{in} (w_i + e_{in})$$

► Combining:

$$w_n = \gamma_n^c c_n + (1 - \gamma_n^c) \sum_i \left[\gamma_{in}^m \beta_{in} \left(w_i + e_{in} \right) \right]$$

implies

$$w_n = \sum_i \left[\alpha_{in} \left(c_i + e_{in} \right) \right]$$

Simple representative industry example

▶ Log changes in marginal costs in producer currency:

$$w_{in} = w_i = \gamma_i^c c_i + (1 - \gamma_i^c) \sum_i [\gamma_{i'i}^m p_{i'i}]$$

Changes in prices in importer's currency

$$p_{in} = \beta_{in} (w_i + e_{in})$$

► Combining:

$$w_n = \gamma_n^c c_n + (1 - \gamma_n^c) \sum_i \left[\gamma_{in}^m \beta_{in} \left(w_i + e_{in} \right) \right]$$

implies

$$w_n = \sum_i \left[\alpha_{in} \left(c_i + e_{in} \right) \right]$$

- ▶ Given $\{\gamma_i^c, \gamma_{in}^m\}$, β_{in} , spillover $c_i \rightarrow w_n$ (Johnson & Noguera)
- ▶ Suppose $ppi_i = \beta_{ii} w_i$, given $\{ppi_i, e_{in}\}$, back out $\{c_i\}$
 - ▶ Finding: correlation btw ppi_i, ppi_n < correlation btw c_i, c_n

International comovement of local currency prices?

- Key object of interest in this paper:
 - correlation between prices in local currency ppi_i, ppi_n
- Key object of interest in international macro:
 - real exchange rates: $ppi_i + e_{in} ppi_n$
 - RERs very different to ratio of nominal prices (e.g. Mussa 86)

International comovement of local currency prices?

- Key object of interest in this paper:
 - correlation between prices in local currency ppi_i, ppi_n
- Key object of interest in international macro:
 - real exchange rates: $ppi_i + e_{in} ppi_n$
 - RERs very different to ratio of nominal prices (e.g. Mussa 86)
- Many models (e.g. IRBC) pin down RERs
 - ▶ nominal P (similarly, exch. rates) pinned down by e.g. M policy
- Redo analysis focusing on prices measured in common currency
 - "Exchange rate movements play no role in synchronizing inflation across countries"?

Cost and exchange rate pass-through

Changes in prices in importer's currency

$$p_{in} = \beta_{in} (w_i + e_{in})$$

- $\beta_{in} = 1$ simple benchmark but clearly violated in data
 - large deviations from relative PPP
 - terms of trade less volatile than PPI-based RER
- ▶ Sensitivity to $\beta_{in} = \beta$. Low β reduces importance of intermediate inputs for PPI correlation

Cost and exchange rate pass-through

Changes in prices in importer's currency

$$p_{in} = \beta_{in}(w_i + e_{in})$$

- $ightharpoonup eta_{in} = 1$ simple benchmark but clearly violated in data
 - ► large deviations from relative PPP
 - terms of trade less volatile than PPI-based RER
- Sensitivity to $\beta_{in} = \beta$. Low β reduces importance of intermediate inputs for PPI correlation
- ▶ In a class of pricing models, log change in mkup

$$mkup_{in} = -\Gamma_{in}(p_{in} - p_n)$$

implies

$$p_{in} = \frac{w_i + e_{in}}{1 + \Gamma_{in}} + \frac{\Gamma_{in}}{1 + \Gamma_{in}} p_n$$

▶ ERPT depends on p_n , supported in data (e.g. Auer and Schoenle, Amiti et. al)

Incomplete pass-through and PPI

- Key assumption:
 - change in PPI = β_{ii} × change in marginal cost
- Implicit assumption: PPI includes only prices of goods sold domestically
- ▶ But in some countries (e.g. US), PPI include export prices
 - Link between PPI and change in marginal cost depends on all exchange rate movements

Data on marginal costs

- Changes in markups difficult to measure in general (central I.O. question)
- Complement analysis with available international (imperfect) measures of marginal costs
 - e.g. unit labor costs (wage / productivity)
- Back of the envelope calculation
 - ▶ correlation $(ppi_i + e_{iUS} ppi_{US}, ulc_i + e_{iUS} ulc_{US})$
 - ▶ stdev $(ppi_i + e_{iUS} ppi_{US})$ / stdev $(ulc_i + e_{iUS} ulc_{US})$

PPI and unit-labor-cost based US-bilateral RER

	Australia	Belgium*	Canada	Denmark	France	Germany*
Time Period	1991-2011	1981-2011	1981-2011	1986-2011	1996-2011	1981-2011
Correlation	0.95	0.96	0.86	0.94	0.93	0.90
Ratio of Standard Deviations	0.92	1.09	0.97	0.89	0.99	0.92

	Italy*	Netherlands	Norway*	Spain	Sweden	United Kingdom*
Time Period	1992-2011	1991-2011	1981-2011	1981-2011	1983-2011	1997-2011
Correlation	0.94	0.96	0.87	0.93	0.82	0.89
Ratio of Standard Deviations	0.94	1.09	0.99	1.16	1.07	0.92

^{*} Domestic PPI