Exchange Rate Disconnect in General Equilibrium

OLEG ITSKHOKI itskhoki@Princeton.edu

DMITRY MUKHIN mukhin@Princeton.edu

IMF and Swiss National Bank June 2016

Motivation

- Exchange Rate Disconnect (ERD) is one of the most pervasive and challenging puzzles in macroeconomics
 - exchange rates are present in all international macro models
 - yet, we do not have a satisfactory theory of exchange rates
- Broader ERD combines five exchange-rate-related puzzles:
 - 1 Meese-Rogoff (1983) puzzle

 NER follows a volatile RW, uncorrelated with macro fundamentals
 - PPP puzzle (Rogoff 1996) RER is as volatile and persistent as NER, and the two are nearly indistinguishable at most horizons (also related Mussa puzzle)
 - 3 LOP/Terms-of-Trade puzzle (Engel 1999, Atkeson-Burstein 2008) LOP violations for tradables account for nearly all RER dynamics ToT is three times less volatile than RER
 - 4 Backus-Smith (1993) puzzle Consumption is high when prices are high (RER appreciated) Consumption is five times less volatile than RER
 - Forward-premium puzzle (Fama 1984)
 High interest rates predict nominal appreciations (UIP violations)

Our Approach

- The literature has tried to address one puzzle at a time, often at the expense of aggravating the other puzzles
- We provide a unifying theory of exchange rates, capturing simultaneously all stylized facts about their properties

Our Approach

- The literature has tried to address one puzzle at a time, often at the expense of aggravating the other puzzles
- We provide a unifying theory of exchange rates, capturing simultaneously all stylized facts about their properties
- A theory of exchange rate (disconnect) must specify:
 - 1 The exogenous shock process driving the exchange rate
 - little empirical guidance here; we adopt a general approach and select from a variety of candidate shocks
 - we prove that only the financial shock (in the exchange rate market) satisfies the necessary condition for ER disconnect
 - 2 The transmission mechanism muting the response of the macro variables to exchange rate movements relies on:
 - strategic complementarities in price setting resulting in PTM
 - low elasticity of substitution between home and foreign goods
 - home bias in consumption

all admitting tight empirical discipline

ightarrow incomplete markets are important, but not nominal stickiness

MODELING FRAMEWORK

Model setup

- Two countries: home (Europe) and foreign (US, denoted w/*)
- Nominal wages W_t in euros and W_t^* in dollars, the numeraires
- \mathcal{E}_t is the nominal exchange rate (price of one dollar in euros)
- Baseline model:
 - representative households
 - representative firms
 - o one internationally-traded foreign-bond
- We allow for all possible shocks/CKM-style wedges:

$$\mathbf{\Omega}_t = (\mathbf{w}_t, \chi_t, \kappa_t, \mathbf{a}_t, \mathbf{g}_t, \mu_t, \eta_t, \xi_t, \psi_t)$$

and foreign counterparts

Equilibrium conditions

- 1 Households:

 - - γ expenditure share on foreign goods
 - θ elasticity of substitution between home and foreign goods
- 2 Firms:
 - (i) production and profits show
 - (ii) price setting show
 - $-\alpha$ strategic complementarity elasticity in price setting
- 4 Foreign: symmetric show

DISCONNECT IN THE LIMIT

Disconnect in the Autarky Limit

- Consider an economy in autarky = complete ER disconnect
 - (i) NER is not determined and can take any value
 - (ii) this has no effect on domestic quantities, prices or interest rates
 - (iii) as price levels are determined independently from NER, RER moves one-to-one with NER
- Definition: Exchange rate disconnect in the autarky limit

$$\lim_{\gamma \to 0} \frac{\mathrm{d} \mathbf{Z}_{t+j}}{\mathrm{d} \varepsilon_t} = \mathbf{0} \quad \forall j \qquad \text{and} \qquad \lim_{\gamma \to 0} \ \frac{\mathrm{d} \mathcal{E}_t}{\mathrm{d} \varepsilon_t} \neq \mathbf{0},$$

- **Proposition 1**: The model cannot exhibit exchange rate disconnect in the limit with zero weight on:
 - (i) LOP deviation shocks: η_t
 - (ii) Foreign-good demand shocks: ξ_t
 - (iii) Financial (international asset demand) shocks: ψ_t
- A pessimistic result for IRBC and NOEM models

Admissible Shocks

Intuition: two international conditions

— risk sharing:
$$\mathbb{E}_t \left\{ R_{t+1}^* \left[\Theta_{t+1}^* - \Theta_{t+1} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} e^{\psi_t} \right] \right\} = 0$$

- budget constraint: $B_{t+1}^* R_t^* B_t^* = NX^*(Q_t; \eta_t, \xi_t)$
- In the limit, shocks to these conditions have a vanishingly small effect, while other shocks still have a direct effect

Admissible Shocks

Intuition: two international conditions

— risk sharing:
$$\mathbb{E}_t \left\{ R_{t+1}^* \left[\Theta_{t+1}^* - \Theta_{t+1} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} e^{\psi_t} \right] \right\} = 0$$

- budget constraint: $B_{t+1}^* R_t^* B_t^* = NX^*(Q_t; \eta_t, \xi_t)$
- In the limit, shocks to these conditions have a vanishingly small effect, while other shocks still have a direct effect
- **Proposition 2**: In the limit, ψ_t is the only shock that simultaneously and robustly produces:
 - (i) positively correlated ToT and RER (Obstfeld-Rogoff moment)
 - (ii) negatively correlated relative consumption growth and real exchange rate depreciations (Backus-Smith correlation)
 - (iii) deviations from the UIP (negative Fama coefficient).
- $\Rightarrow \psi_t$ is the prime candidate shock for a **quantitative** model of ER disconnect

BASELINE MODEL

OF EXCHANGE RATE DISCONNECT

Ingredients

▶ microfoundations

$$\psi_t = i_t - i_t^* - \mathbb{E}_t \Delta e_{t+1}$$

— persistent ($\rho \lesssim 1$, e.g. $\rho = 0.97$) w/small innovations ($\sigma_{\varepsilon} \gtrsim 0$):

$$\psi_t = \rho \psi_{t-1} + \varepsilon_t, \qquad \beta \rho < 1$$

- important limiting case: $\beta \rho \rightarrow 1$
- 2 Transmission mechanism
 - (i) Strategic complementarities: $\alpha = 0.4$ (AIK 2015)
 - (ii) Elasticity of substitution: $\theta = 1.5$ (FLOR 2014)
 - (iii) Home bias: $\gamma = 0.07 = \frac{1}{2} \frac{\text{Imp+Exp}}{\text{GDP}} \frac{\text{GDP}}{\text{Prod-n}}$ (for US, EU, Japan)
- Other parameters:

$$\beta = 0.99, \quad \sigma = 2, \quad \nu = 1, \quad \phi = 0.5, \quad \zeta = 1 - \phi$$

Roadmap

- 1 Equilibrium exchange rate dynamics
- 2 Real and nominal exchange rates
- 3 Exchange rate and prices
- 4 Exchange rate and quantities
- 5 Exchange rate and interest rates

Exchange Rate Dynamics

1 The international risk sharing condition:

$$\begin{split} \mathbb{E}_t \left\{ e^{\psi_t} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} \Theta_{t+1} - \Theta_{t+1}^* \right\} &= 0 \quad \Rightarrow \quad \psi_t = -d_1 \cdot \mathbb{E}_t \Delta e_{t+1}, \\ \text{with } d_1 > 1 \text{ and } \lim_{\gamma \to 0} d_1 &= 1 \end{split}$$

2 Intertemporal budget constraint:

$$\beta b_{t+1}^* - b_t^* = nx_t, \quad nx_t = \gamma d_2 \cdot e_t, \quad d_2 > 0$$

Exchange Rate Dynamics

1 The international risk sharing condition:

$$\begin{split} \mathbb{E}_t \left\{ e^{\psi_t} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} \Theta_{t+1} - \Theta_{t+1}^* \right\} &= 0 \quad \Rightarrow \quad \psi_t = -d_1 \cdot \mathbb{E}_t \Delta e_{t+1}, \\ \text{with } d_1 > 1 \text{ and } \lim_{\gamma \to 0} d_1 &= 1 \end{split}$$

2 Intertemporal budget constraint:

$$\beta b_{t+1}^* - b_t^* = nx_t, \quad nx_t = \gamma d_2 \cdot e_t, \quad d_2 > 0$$

Proposition

When $\psi_t \sim AR(1)$, the equilibrium exchange rate follows ARIMA:

$$\Delta e_t = \frac{\rho}{\Delta} e_{t-1} + \frac{\beta/d_1}{1 - \beta\rho} \left(\varepsilon_t - \frac{1}{\beta} \varepsilon_{t-1} \right).$$

This process becomes arbitrary close to a random walk as $\beta
ho o 1$. This is the unique equilibrium solution, non-fundamental solutions do not exist.

Exchange Rate Dynamics

1 The international risk sharing condition:

$$\begin{split} \mathbb{E}_t \left\{ e^{\psi_t} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} \Theta_{t+1} - \Theta_{t+1}^* \right\} &= 0 \quad \Rightarrow \quad \psi_t = -d_1 \cdot \mathbb{E}_t \Delta e_{t+1}, \\ \text{with } d_1 > 1 \text{ and } \lim_{\gamma \to 0} d_1 &= 1 \end{split}$$

2 Intertemporal budget constraint:

$$\beta b_{t+1}^* - b_t^* = nx_t, \quad nx_t = \gamma d_2 \cdot e_t, \quad d_2 > 0$$

Proposition

When $\psi_t \sim AR(1)$, the equilibrium exchange rate follows ARIMA:

$$(1 - \rho L)\Delta e_t = \frac{\beta/d_1}{1 - \beta\rho} \left(1 - \frac{1}{\beta}L\right) \varepsilon_t.$$

This process becomes arbitrary close to a random walk as $\beta \rho \to 1$. This is the unique equilibrium solution, non-fundamental solutions do not exist.

RER and the PPP Puzzle

Proposition

RER and NER are tied together by the following relationship:

$$q_t = rac{1}{1 + rac{1}{1-\phi}rac{2oldsymbol{\gamma}}{1-2\gamma}}e_t.$$

• Intuition:
$$p_t = w_t + \frac{1}{1-\phi} \frac{\gamma}{1-2\gamma} q_t \\ p_t^* = w_t^* - \frac{1}{1-\phi} \frac{\gamma}{1-2\gamma} q_t$$

- $(q_t e_t) \xrightarrow[\gamma \to 0]{} 0$
- Relative volatility: $\frac{\operatorname{std}(\Delta q_t)}{\operatorname{std}(\Delta e_t)} = \frac{1}{1 + \frac{1}{1 \phi} \frac{2\gamma}{1 2\gamma}} = 0.75$
- Heterogenous firms and/or LCP sticky prices can further increase volatility of RER

Exchange Rates and Prices

Three closely related variables:

$$\mathcal{Q}_t = rac{P_t^* \mathcal{E}_t}{P_t}$$
 $\mathcal{Q}_t^P = rac{P_{Ft}^* \mathcal{E}_t}{P_{Ht}}$ $\mathcal{S}_t = rac{P_{Ft}}{P_{Ht}^* \mathcal{E}_t}$

Two relationships:

$$q_t = (1 - \gamma)q_t^P - \gamma s_t$$
$$s_t = q_t^P - 2\alpha q_t$$

- In the data: $q_t^P \approx q_t$, $\operatorname{std}(\Delta q_t) \gg \operatorname{std}(\Delta s_t)$, $\operatorname{corr}(\Delta s_t, \Delta q_t) > 0$
- Proposition:

$$q_t^P = rac{1-2lpha\gamma}{1-2\gamma}q_t$$
 and $s_t = rac{1-2lpha(1-\gamma)}{1-2\gamma}q_t$

- conventional models with $\alpha = 0$ cannot do the trick
- α needs to be positive, but not too large

Exchange Rates and Prices

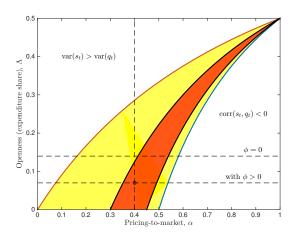


Figure: Terms of trade and Real exchange rate

Exchange Rate and Quantities

Static relationship between consumption and RER:

- (i) labor supply
- (ii) labor demand
- (iii) goods market clearing
- Proposition: Static expenditure switching implies:

$$c_t-c_t^*=-rac{2 heta(1-lpha)rac{1-\gamma}{1-2\gamma}+
u+rac{2\gamma}{1-2\gamma}rac{
u+\phi}{1-\phi}}{(\sigma
u+1)(1-\phi)+rac{2\gamma}{1-2\gamma}\sigma
u}rac{2oldsymbol{\gamma}}{1-2\gamma}q_t$$

Exchange Rate and Quantities

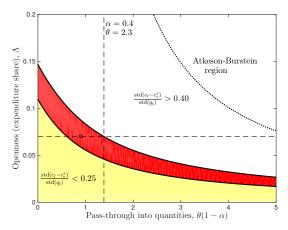


Figure: Exchange rate disconnect: relative consumption volatility

Exchange Rate and Interest rates

Two interest rate conditions:

$$\psi_t = (i_t - i_t^*) - \mathbb{E}_t \Delta e_{t+1}$$
 and $i_t - i_t^* = \frac{d_1 - 1}{d_1} \psi_t$

Proposition

Fama-regression coefficient:

$$\mathbb{E}\{\Delta e_{t+1}|i_{t+1}-i_{t+1}^*\} = \beta_F(i_{t+1}-i_{t+1}^*), \qquad \beta_F \equiv -\frac{1}{d_1-1} < 0.$$

In the limit $\beta \rho \rightarrow 1$:

- (i) Fama-regression $R^2 \rightarrow 0$
- (ii) $\operatorname{var}(i_t i_t^*) / \operatorname{var}(\Delta e_{t+1}) \to 0$
- (iii) $ho(\Delta e_t)
 ightarrow 0$, while $ho(i_t i_t^*)
 ightarrow 1$
- (iv) the Sharpe ratio of the carry trade: $SR_C \to 0$ *carry trade return: $r_{t+1}^C = x_t \cdot (i_t - i_i^* - \Delta e_{t+1})$ with $x_t = i_t - i_i^* - \mathbb{E}_t \Delta e_{t+1}$

ER Disconnect: Summary

		Data	Baseline	Robustness				
		Data	Daseille	$\theta = 2.5$	$\alpha = 0$	$\gamma = .15$	$\rho = 0.9$	$\sigma = 1$
1.	$ ho(\Delta e)$	0.00	-0.02 (0.09)				-0.05	
2.	$\rho(q)$	0.94	0.93* (0.04)				0.87	
	HL(q)	12.0	9.9* (6.4)				4.9	
	$\sigma(\Delta q)/\sigma(\Delta e)$	0.88	0.75			0.54		
3.	$\sigma(\Delta s)/\sigma(\Delta q)$	0.34	0.30		1.16	0.46		
	$\sigma(\Delta q^P)/\sigma(\Delta q)$	0.95	1.10		1.16	1.26		
4.	$\sigma(\Delta c - \Delta c^*)/\sigma(\Delta q)$	-0.25	-0.31	-0.42	-0.42	-0.81		-0.48
5.	Fama β_F	$\lesssim 0$	-8.1* (4.7)					
	Fama R ²	0.02	0.04 (0.02)				0.07	
	$\sigma(i-i^*)/\sigma(\Delta e)$	0.10	0.03 (0.01)					
	Carry SR	0.20	0.21 (0.04)				0.29	

Note: Baseline parameters: $\gamma=0.07, \ \alpha=0.4, \ \theta=1.5, \ \rho=0.97, \ \sigma=2, \ \nu=1, \ \phi=0.5, \ \mu=0, \ \beta=0.99.$ Results are robust to changing $\nu, \ \phi, \ \mu$ and β . *Asymptotic values: $\rho(q)=1, \ HL(q)=\infty, \ \beta_F=-4.6.$

EXTENSIONS

Extensions

- Monetary model with sticky prices
 - different transmission mechanism
 - similar quantitative conclusions for ψ_t shock
 - gives half of the Mussa puzzle
- 2 Multiple shocks:
 - productivity, monetary, foreign good and asset demand
- 3 Limits-to-arbitrage model of the financial sector
 - multiple foreign assets, non-zero NFA, and valuation effects
- 4 Heterogeneous firms (following AIK 2015)
 - small local firms (α =0, ϕ *=0) vs large exporters (α =0.5, ϕ *=0.3)
 - → further mutes the transmission mechanism (Switzerland model)
 - mix of LCP and PCP → International Price System

Monetary model

- Standard New Keynesian Open Economy model
- Baseline: LCP sticky prices with strategic complements (α)
- Taylor rule: $i_t = \rho_i i_{t-1} + (1 \rho_i) \delta_{\pi} \pi_t + \varepsilon_t^m$
- New transmission: i_t does not respond directly to the ψ_t shock, but instead through inflation it generates
- Results:
 - 1 monetary shock alone results in numerous ER puzzles
 - 2 financial shock ψ_t has quantitative similar properties, with two exceptions:
 - + RER becomes more volatile and more persistent and NER becomes closer to a random walk
 - RER is negatively correlated with ToT

Multishock model

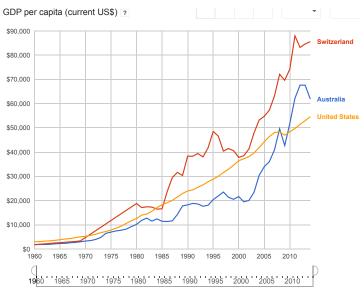
	Data	One shock	Multiple shocks		
	Data	ψ	$\xi + a$	$\xi + a + m$	
$\sigma(\Delta q)/\sigma(\Delta e)$	0.88	0.75	0.79	1.01	
$ ho(\Delta q, \Delta e)$	0.98	1	0.96	1.00	
$\sigma(\Delta c - \Delta c^*)/\sigma(\Delta q)$	0.25	0.31	0.30	0.23	
$ \rho(\Delta c\!-\!\Delta c^*,\Delta q) $	-0.28	-1	-0.22	-0.17	
$\sigma(\Delta nx)/\sigma(\Delta q)$	0.12	0.25	0.30	0.28	
$ ho(\Delta nx, \Delta q)$	$\gtrsim 0$	1	-0.01	0.01	
Fama β_F	≲ 0	-8.1	-0.6	0.2	
Fama R^2	0.02	0.04	0.01	0.00	
Carry <i>SR</i>	0.20	0.21	0.16	0.19	
Decomposition of $\mathrm{var}(\Delta q_t)$					
ψ -shock		100%	53%	61%	
ξ -shock		_	39%	31%	
a-shock		_	8%	5%	
<i>m</i> -shock		_	_	2%	

Conclusion

- Exchange rates have been very puzzling for macroeconomists
- We propose a unifying theory of exchange rates, in which:
 - 1 Nominal exchange rate follows a near random walk and correlates little with other macro variables
 - 2 RER tracks closely NER, with very long half-lives
 - 3 ToT respond weakly to RER due to LOP deviations
 - 4 Consumption is higher when RER is appreciated, yet the relationship between the two is weak
 - **5** High interest rates predict nominal appreciations, yet with a very low R^2 , and the Sharpe ratios on the carry trades are low
- An empirically successful theory of ER must rely on:
 - 1 a financial shock in the exchange rate market
 - 2 a transmission mechanism that mutes the response to ER

APPENDIX

Motivation



Data from World Bank Last updated: Jan 12, 2016

Horserace: Single-shock models

♦ back to slides

		ψ_t s	ψ_t shock		m _t shock			
Moment	Data	Baseline	Monetary	IRBC	NOEM			
1-2. PPP Puzzle and Meese-Rogoff:								
$\rho(q)$	0.94	0.93 (0.04)	0.92 (0.05)	0.92 (0.04)	0.65 (0.07)			
$ ho(\Delta e)$	0.00	-0.02 (0.09)	-0.04 (0.09)	0.55 (0.15)	-0.15 (0.08)			
$rac{\sigma(\Delta q)}{\sigma(\Delta e)}$	0.88	0.75	1.00	38.7	0.94			
3. Terms of trade:								
$rac{\sigma(\Delta s)}{\sigma(\Delta q)}$	0.34	0.30	-0.80	1.16	-0.91			
4. Backus-Smith:								
$rac{\sigma(\Delta c - \Delta c^*)}{\sigma(\Delta q)}$	-0.25	-0.31	-0.19	0.64	0.50			
5. Forward premium puzzle:								
Fama β	$\lesssim 0$	-8.1 (4.7)	-2.0 (1.7)	1.06 (0.07)	1.1 (0.3)			
Fama R ²	0.02	0.04 (0.02)	0.02 (0.02)	0.75 (0.07)	0.10 (0.04)			
$\frac{\sigma(i-i^*)}{\sigma(\Delta e)}$	0.10	0.03 (0.01)	0.08 (0.03)	0.83 (0.09)	0.29 (0.03)			
Carry SR	0.20	0.21 (0.04)	0.21 (0.04)	0	0			

New Mechanisms

- 1 Exchange rate dynamics:
 - near random-walk behavior emerging from the intertemporal budget constraint under incomplete markets
 - small but persistent expected appreciations require a large unexpected devaluation on impact
- PPP puzzle
 - no wedge between nominal and real exchange rates, unlike IRBC and NOEM models
- 3 Violation of the Backus-Smith condition:
 - we demote the dynamic risk-sharing condition from determining consumption allocation
 - → instead static market clearing determination of consumption
- 4 Violation of UIP and Forward premium puzzle:
 - small persistent interest rate movements support consumption allocation, disconnected from volatile exchange rate
 - $\,\longrightarrow\,$ negative Fama coefficient, yet small Sharpe ratio on carry trade

Households

◆ back to slides

Representative home household solves:

$$\max \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} e^{\chi_{t}} \left(\frac{1}{1-\sigma} C_{t}^{1-\sigma} - \frac{e^{\kappa_{t}}}{1+1/\nu} L_{t}^{1+1/\nu} \right)$$
s.t.
$$P_{t} C_{t} + \frac{B_{t+1}}{R_{t}} + \frac{B_{t+1}^{*} \mathcal{E}_{t}}{e^{\psi_{t}} R^{*}} \leq B_{t} + B_{t}^{*} \mathcal{E}_{t} + W_{t} L_{t} + \Pi_{t} + T_{t}$$

Household optimality (labor supply and demand for bonds):

$$\begin{split} e^{\kappa_t} C_t^{\sigma} L_t^{1/\nu} &= \frac{W_t}{P_t}, \\ R_t \mathbb{E}_t \left\{ \Theta_{t+1} \right\} &= 1, \\ e^{\psi_t} R_t^* \mathbb{E}_t \left\{ \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} \Theta_{t+1} \right\} &= 1, \end{split}$$

where the home nominal SDF is given by:

$$\Theta_{t+1} \equiv \beta e^{\Delta \chi_{t+1}} \left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} \frac{P_t}{P_{t+1}}$$

• Consumption expenditure on home and foreign goods:

$$P_t C_t = P_{Ht} C_{Ht} + P_{Ft} C_{Ft}$$

arises from a homothetic consumption aggregator:

$$\begin{split} C_{Ht} &= (1 - \gamma) e^{-\gamma \xi_t} h(\frac{P_{Ht}}{P_t}) C_t, \\ C_{Ft} &= \gamma e^{(1 - \gamma) \xi_t} h(\frac{P_{Ft}}{P_t}) C_t \end{split}$$

• The foreign share and the elasticity of substitution:

$$\gamma_t \equiv \frac{P_{Ht}C_{Ht}}{P_tC_t} \Big|_{\substack{P_{Ht} = P_{Ft} = P_t \\ \xi_t = 0}} = \gamma$$

$$\theta_t \equiv -\frac{\partial \log h(x_t)}{\partial \log x} \Big|_{x_t = 1} = \theta$$

Production and profits

◆ back to slides

Production function with intermediates:

$$\begin{split} Y_t &= e^{a_t} L_t^{1-\phi} X_t^\phi \\ MC_t &= e^{-a_t} \big(\frac{W_t}{1-\phi}\big)^{1-\phi} \big(\frac{P_t}{\phi}\big)^\phi \end{split}$$

• Profits:

$$\Pi_t = (P_{Ht} - MC_t)Y_{Ht} + (P_{Ht}^*\mathcal{E}_t - MC_t)Y_{Ht}^*,$$
 where $Y_t = Y_{Ht} + Y_{Ht}^*$

Labor and intermediate goods demand:

$$W_t L_t = (1 - \phi) M C_t Y_t$$

$$P_t X_t = \phi M C_t Y_t$$

and fraction γ_t of P_tX_t is allocated to foreign intermediates

We postulate the following price setting rule:

$$\begin{split} P_{Ht} &= e^{\mu t} M C_t^{1-\alpha} P_t^{\alpha} \\ P_{Ht}^* &= e^{\mu t + \eta_t} \big(M C_t / \mathcal{E}_t \big)^{1-\alpha} P_t^{*\alpha} \end{split}$$

LOP violations:

$$\mathcal{Q}_{Ht} \equiv rac{P_{Ht}^* \mathcal{E}_t}{P_{Ht}} = e^{\eta_t} \mathcal{Q}_t^{lpha}$$

where the real exchange rate is given by:

$$Q_t \equiv \frac{P_t^* \mathcal{E}_t}{P_t}$$

 Government runs a balanced budget, using lump-sum taxes to finance expenditure:

$$P_t G_t = P_t e^{\mathbf{g}_t},$$

where fraction γ_t of P_tG_t is allocated to foreign goods

• The transfers to the households are given by:

$$T_t = \left(e^{-\psi_t} - 1\right) \frac{B_{t+1}^* \mathcal{E}_t}{R_t^*} - P_t e^{\mathbf{g}_t}$$

Foreign households and firms are symmetric, subject to:

$$\{\chi_t^*, \kappa_t^*, \xi_t^*, a_t^*, \mu_t^*, \eta_t^*, g_t^*\}$$

 Foreign households only differ in that they do not have access to the home bond, which is not internationally traded.
 As a result, their only Euler equation is for foreign bonds:

$$R_t^* \mathbb{E}_t \left\{ \Theta_{t+1}^* \right\} = 1, \qquad \Theta_{t+1}^* \equiv \beta e^{\Delta_{X_{t+1}^*}^*} \left(\frac{C_{t+1}^*}{C_t^*} \right)^{-\sigma} \frac{P_t^*}{P_{t+1}^*}$$

- 1 Labor market clearing
- 2 Goods market clearing, e.g.:

$$Y_{Ht}^* = \gamma e^{(1-\gamma)\xi_t^*} h(\frac{P_{Ht}^*}{P_t^*})[C_t^* + X_t^* + G_t^*]$$

3 Bond market clearing:

$$B_t = 0$$
 and $B_t^* + B_t^{*F} = 0$

4 Country budget constraint:

$$\frac{B_{t+1}^*\mathcal{E}_t}{R_t^*} - B_t^*\mathcal{E}_t = NX_t, \quad NX_t = P_{Ht}^*\mathcal{E}_tY_{Ht}^* - P_{Ft}Y_{Ft},$$

and we define the terms of trade:

$$S_t \equiv \frac{P_{Ft}}{P_{Ht}^* \mathcal{E}_t}$$

Microfoundations for ψ_t shock

Risk premium shock: $\psi_t = i_t - i_t^* - \mathbb{E}_t \Delta e_{t+1}$

- International asset demand shocks (in the utility function)
 e.g., Dekle, Jeong and Kiyotaki (2014)
- 2 Noise trader shocks and limits to arbitrage
 - e.g., Jeanne and Rose (2002)
 - noise traders can be liquidity/safety traders
 - arbitrageurs with downward sloping demand
 - multiple equilibria → Mussa puzzle
- 3 Heterogenous beliefs or expectation shocks
 - e.g., Bacchetta and van Wincoop (2006)
 - huge volumes of currency trades (also order flows)
 - ullet ψ_t are disagreement or expectation shocks
- 4 Financial frictions (e.g., Gabaix and Maggiori 2015)
- **5** Risk appetite (e.g., Brunnermeier, Nagel and Pedersen 2009)

Properties of the Exchange Rate

◆ back to slides

• Near-random-walk behavior (as $\beta \rho \rightarrow 1$)

$$rac{ ext{corr}ig(\Delta e_{t+1}, \Delta e_{t}ig) o 0}{ ext{var}(\Delta_k e_{t+k} - \mathbb{E}_t \Delta_k e_{t+k})} o 1 \qquad rac{ ext{std}(\Delta e_{t})}{ ext{std}(\psi_t)} o \infty$$

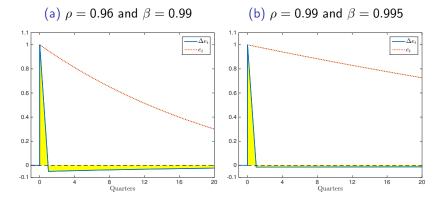


Figure : Impulse response of the exchange rate Δe_t to ψ_t

Properties of the Exchange Rate

◆ back to slides

• Near-random-walk behavior (as $\beta \rho \rightarrow 1$)

$$\operatorname{corr}(\Delta e_{t+1}, \Delta e_t) o 0 \qquad rac{\operatorname{var}(\Delta_k e_{t+k} - \mathbb{E}_t \Delta_k e_{t+k})}{\operatorname{var}(\Delta_k e_{t+k})} o 1 \qquad rac{\operatorname{std}(\Delta e_t)}{\operatorname{std}(\psi_t)} o \infty$$

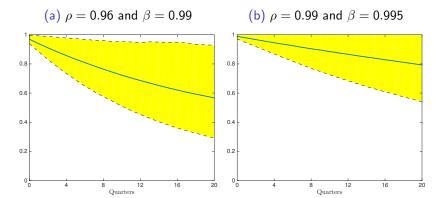


Figure : Contribution of the unexpected component (in small sample)

RER Persistence

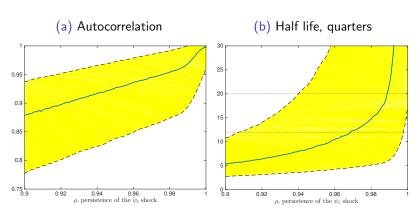


Figure : Persistence of the real exchange rate q_t in small samples

Exchange Rate and Quantities

◆ back to slides

Labor Supply:

$$\sigma ilde{c}_t + rac{1}{
u} ilde{\ell}_t = -rac{1}{1-\phi} rac{\gamma}{1-2\gamma} q_t$$

— recall that:
$$p_t = w_t + \frac{1}{1-\phi} \frac{\gamma}{1-2\gamma} q_t$$

Labor Demand:

$$ilde{\ell}_t = ilde{y}_t + rac{\phi}{1-\phi} rac{\gamma}{1-2\gamma} q_t.$$

Goods market clearing:

$$ilde{y}_t = rac{\zeta}{\zeta + rac{2\gamma}{1-2\gamma}} ilde{c}_t + rac{2 heta(1-lpha)rac{1-\gamma}{1-2\gamma} - (1-\zeta)}{\zeta + rac{2\gamma}{1-2\gamma}} rac{\gamma}{1-2\gamma} q_t$$

Exchange Rate and Interest Rate

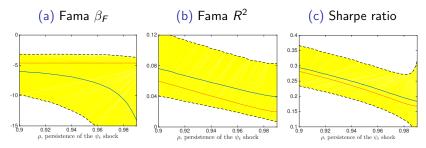


Figure: Deviations from UIP (in small samples)

Mechanism

- **1** An international asset demand shock $\varepsilon_t > 0$ results in an immediate sharp ER depreciation to balance the asset market
- 2 Exchange rate then gradually appreciates (as the ψ_t shock wears out) to ensure the intertemporal budget constraint
- Nominal and real devaluations happen together, and the real wage declines
- 4 Devaluation is associated with a dampened deterioration of the terms of trade and the resulting expenditure switching towards home goods
- 6 Consumption falls to ensure equilibrium in labor and goods markets
- 6 Consumption fall is supported by an increase in the interest rate, which balances out the fall in demand for domestic assets