The Case for Flexible Exchange Rates in a Great Recession

Giancarlo Corsetti, Keith Kuester, Gernot Müller

SNB/IMF/IMFER conference on "Exchange Rates and External Adjustment" Zurich, June 24-25, 2016

GDP during the Great Recession: four economies

Exchange rates: up means depreciation vis-à-via euro

The question

Consider small open economy

- Exposed to Great Recession in rest of the world
- Global output and inflation decline, global interest rates stuck at zero lower bound (ZLB)
- External demand falls

Can flexible exchange rates insulate the economy from the Great Recession?

- Depreciation may make up for collapse of external demand
- Yet scope for depreciation may be limited in ZLB environment

Scope for depreciation appears to be limited at ZLB...

Uncovered interest rate parity

$$r_t - r_t^* = E_t e_{t+1} - e_t$$

Interating forward

$$e_t = E_t \sum_{k=0}^{\infty} (r_{t+k}^* - r_{t+k}) + \lim_{k \to \infty} E_t e_{t+k}$$

Depreciation requires expectations of

- either interest rate in home below foreign level (at some point)
- or weaker long-run exchange rate

Framework

New Keynesian two-country model

- Focus on small open economy and possible repercussions of Great Recession in rest of the world
- ► Stylized framework: closed-form results and analytical insights

Alternative policy scenarios for domestic economy

- ► Constraints on monetary policy: ZLB or exchange rate peg
- Government spending as substitute for monetary policy
- Sovereign risk (see paper)

Some relevant literature

Modelling framework

► Galí-Monacelli (2005), De Paoli (2009), Corsetti et al. (2012)

Exchange rate flexibility

► Friedman (1953), Schmitt-Grohé-Uribe (2015)

Zero lower bound in open economies

Cook-Devereux (2011,2013,2014), Erceg-Lindé (2014),
 Fahri-Werning (2012)

New Keyensian model

Two-country setup

- Monopolistically competitive environment and sticky prices
- Countries specialize in production of a set of varieties
- Size of domestic economy negligible: "Home"; rest of the world consolidated in "Foreign"
- Goods market integration incomplete due to home bias
- Complete financial markets

Exposition

- Approximate equilibrium conditions around deterministic and symmetric steady state
- Parametric restriction on home bias and trade-price elasticity

Foreign operates like a closed economy

Dynamic IS-equation with discount-factor shock ξ_t^*

$$y_t^* = E_t y_{t+1}^* - (r_t^* - E_t \pi_{t+1}^* + E_t \Delta \xi_{t+1}^*)$$

Phillips curve

$$\pi_t^* = \beta E_t \pi_{t+1}^* + \kappa (\varphi + 1) y_t^*$$

Monetary policy

$$r_t^* = \max\{\phi_\pi \pi_t^* - E_t \Delta \xi_{t+1}^*, 0\}$$

Home: a small open economy

Dynamic IS-equation ($v \in [0,1]$: import share)

$$y_t = E_t y_{t+1} - v E_t \Delta y_{t+1}^* - E_t \Delta g_{t+1} - (1-v)(r_t - E_t \pi_{H,t+1})$$

Phillips curve

$$\pi_{Ht} = \beta E_t \pi_{Ht+1} + \kappa \left\{ \left[\varphi(1-v) + 1 \right] y_t + g_t - v y_t^* \right\}$$

Risk sharing

$$y_t = (1 - v)(e_t + p_t^* - p_{H,t} - \xi_t^*) + g_t + y_t^*$$

And: monetary and fiscal policy

Great-Recession scenario

Saving shock in Foreign

- ξ_t^* drops to $\xi_L^* < 0$
- lacktriangle Remains at same level for another period with probability μ
- Monetary policy does not lower policy interest rates for as long shock lasts

Solution for Foreign: output and inflation decline more strongly, the longer expected duration of shock (assuming determinacy)

$$y_{L}^{*} = \frac{(1-\beta\mu)(1-\mu)}{(1-\beta\mu)(1-\mu) - \mu\kappa(1+\varphi)} \xi_{L}^{*} < 0$$

$$\pi_{L}^{*} = \frac{\kappa(1+\varphi)(1-\mu)}{(1-\beta\mu)(1-\mu) - \mu\kappa(1+\varphi)} \xi_{L}^{*} < 0$$

Adjustment of Home: results

Natural rate in Home falls with external demand

$$r_L^n = \frac{(1-\mu)\varphi}{1+\varphi(1-\upsilon)} v y_L^*$$

Monetary policy

- 1. Flexible exchange rates, unconstrained monetary policy ensures price stability ($\pi_{Ht} = 0$)
- 2. Flexible exchange rates, constant policy rate (price stability afterwards)
- 3. Fixed exchange rates

Home government spending (on local goods only, financed by lump-sum transfers) may be adjusted for as long as shock lasts

4. Simulation

1. Flexible exchange rates, unconstrained policy

External-demand multiplier below unity; natural output:

$$y_{L} = \frac{1}{1 + \varphi(1 - v)} \left(v y_{L}^{*} + g_{L} \right)$$

Terms of trade depreciate, as external demand declines

$$s_L = -\left[rac{1-\chi}{v} + rac{arphi}{1+arphi(1-v)}
ight]vy_L^*$$

Nominal exchange rate

$$\Delta e_t = \Delta s_t - \pi_t^*$$

- Jumps to stabilize external demand and continues to depreciate to absorb deflationary drift abroad
- ► Exchange rate depreciates in the long run

2. Constant policy rates/ZLB

External-demand multiplier above unity

$$y_L = \Xi \left(v y_L^* + g_L
ight)$$
 , where $1 < \Xi < rac{1}{v}$

Terms of trade response muted relative to unconstrained case

- Even though home inflation declines
- Less currency depreciation

$$\Delta e_t = \Delta s_t + \pi_{Ht} - \pi_t^*$$

Yet there is a "benign coincidence"

Fiscal multiplier = external-demand multiplier

3. Exchange-rate peg

External-demand multiplier above unity

$$y_t = (1-v)s_t + \alpha v y_t^* + g_t$$
, where $\alpha > 1$

Terms of trade appreciate in response to a drop of world output

$$s_t = \sum_{k=0}^t \delta^{t-k} \left(\Phi y_k^* - \Gamma g_k
ight)$$
 , where $\Phi, \Gamma > 0$

No "benign coincidence"

► Fiscal multiplier smaller than unity, because higher spending appreciates terms of trade

Quantitative relevance

Solve model numerically assuming perfect foresight

- ▶ Assume that interest rates are constant for 10 quarters
- Relax parametric restriction on home bias and trade-price elasticity
- Allow for trade in nominally non-contingent bonds only

Fix parameters at conventional values

- ▶ $\beta = 0.99$, $\varphi = 1$, $\sigma = 2/3$, v = 0.3, Calvo parameter: 0.75, government-spending-to-GDP ratio in steady-state: 20%
- ► Foreign saving shock is autocorrelated with persistence parameter 0.5

Home: adjustment to Great Recession in rest of the world

Home: adjustment to higher government spending

Conclusion

Small open economy facing Great Recession in rest of the world

Can flexible exchange rates insulate the economy?

Case for flexible exchange rates particularly strong

- Unconstrained domestic monetary policy: output fully stabilized at natural level—exchange rate stabilizes demand and absorbs deflationary drift abroad
- External-demand multiplier large at ZLB; yet there is still some depreciation and a benign coincidence
- Peg: real appreciation and large external-demand multiplier (no benign coincidence as fiscal multiplier small)