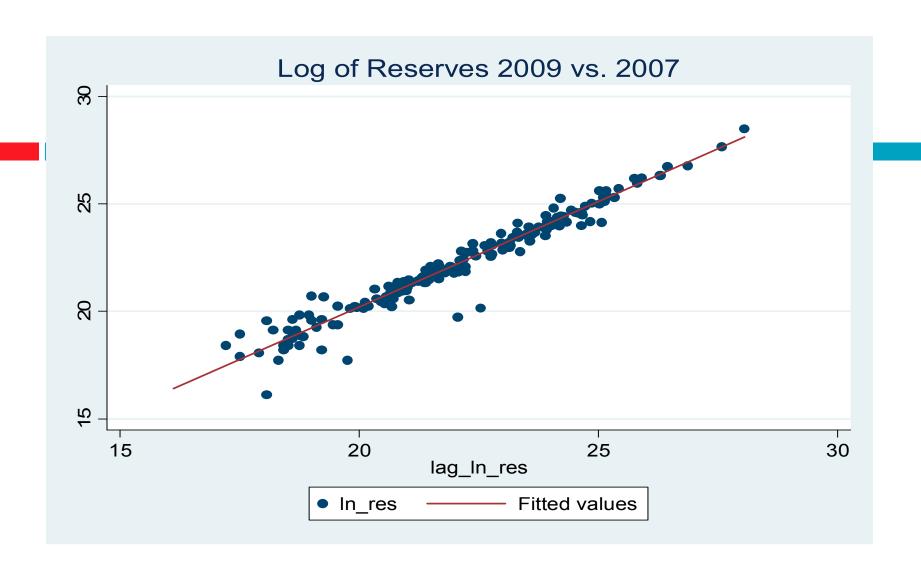
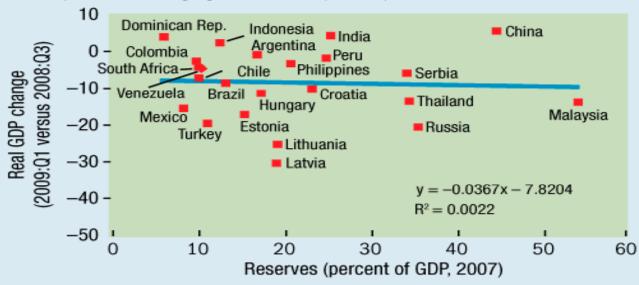

COUNTRY INSURANCE THROUGH INTERNATIONAL RESERVES


Romain Ranciere

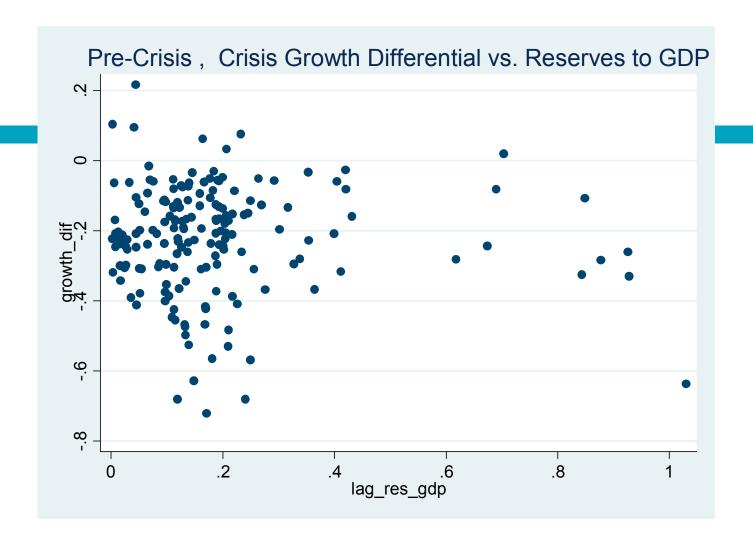
International reserves: topical issues

- International Reserves became the prime vehicle of country insurance in the emerging and developing world.
 - But this form of self-insurance has been criticized as inefficient, costly, and partly responsible for global imbalances.
 - □ Should we move from self-insurance to insurance? How?
 - Global financial architecture
 - Private Solution: Invested Reserves in Derivatives.
- International Reserves have been suggested to have cushioned the impact of the global crisis
 - Direct evidence is hard to find.
 - Counterfactual is hard to build

Level of International Reserves to GDP



How much cushion?


Larger reserves did not lead to lower declines in economic activity at the peak of the crisis.

(selected emerging countries, in percent)

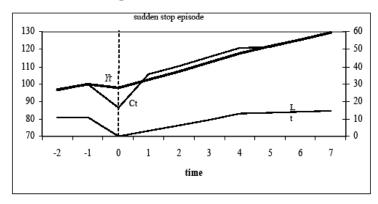
Sources: IMF, Global Data Source database and staff estimates.

Blanchard-Faruquee-Klyev (2010)

Roadmap

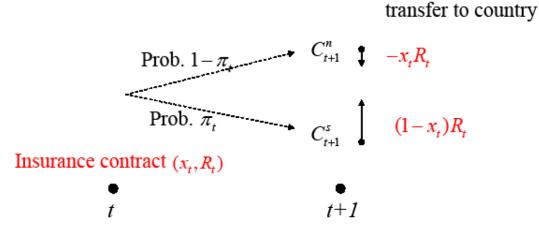
- Modeling Optimal Reserves.
 - Crisis Mitigation.
 - Crisis Prevention.
- What do we really know:
 - Cost of Reserves.
 - Benefits of Reserves.
 - How to use reserves.
- Alternative to self-insurance.
 - Generalized Flexible Credit Lines.
 - Global Reserves Fund

Modeling Optimal Reserves

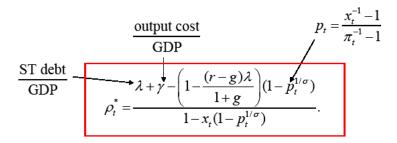

- Rule of Thumbs
 - Imports coverage
 - Short-term debt coverage (Greenspan-Guidotti Rule)
- Precautionary Savings Models
 - □ Caballero-Panageas (2007), Durdu-Mendoza-Terrones (2009)
 - Comprehensive but no analytical solutions.
- Small Scale Models.
 - Assumption necessary but analytical solutions.
 - Jeanne-Ranciere (2009): Emerging Market [substitute for Greespan-Guidotti)
 - Barnichon (2009): Low Income Countries [substitue for import coverages)
- Reserve Pooling Models
 - Basu-Bi-Kannan (2010)

A model for emerging market economies: Jeanne-Ranciere (2009)

- Large increase in EMEs international reserves since 2000.
- "Insurance view": after crises of the late 1990s, reserves were accumulated as self-insurance against capital flow volatility
 - (Aizenman and Marion, 2003; Stiglitz, 2006).
- An "insurance model" of the optimal level of reserves to deal with sudden stops in capital flows
 - closed-form expression for the optimal level of reserves.
- □ Calibration:
 - can explain the reserves build-up in some EMEs (Latin America)
 - suggests Asian build-up excessive.


Infinite Horizon Economy

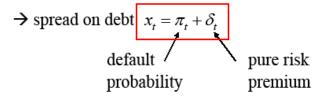
- Constant output growth g but with proba. π_t the economy can be hit by a "sudden stop" with:
 - > loss of access to external borrowing
 - ➤ fall in domestic output.


Reserves as insurance contracts

• The domestic consumer can smooth consumption with "reserves insurance contracts" with the ROW:

Formula for Optimal level of Reserves

Formula for the optimal ratio of reserves to GDP


- Optimal level of reserves increasing with short-term debt λ , output cost of sudden stop γ , risk aversion σ , probability of sudden stop π_t .
- The optimal level of reserves could be higher or lower than Greenspan-Guidotti rule,

$$\rho_t^* - \lambda$$
.

The opportunity cost of reserves

The opportunity cost of reserves

The reserves insurance contract can be replicated by
 issuing debt with default contingent on sudden stop
 accumulating proceeds as reserves

- The opportunity cost of holding reserves is measured, in the literature (Edwards, 1985; Rodrik, 2006, etc.) as the spread x_{\star} .
- This is an overestimate: the cost of insurance is δ_t , not $\pi_t + \delta_t$.

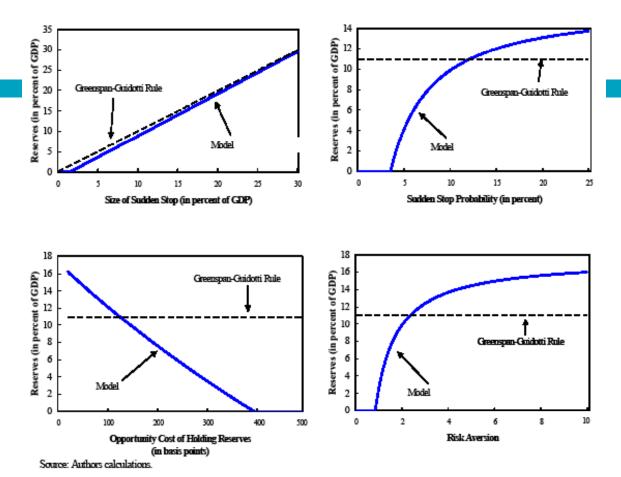
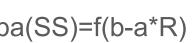
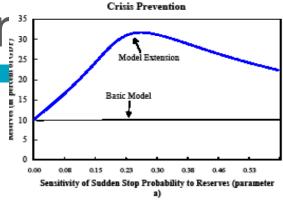
Calibration

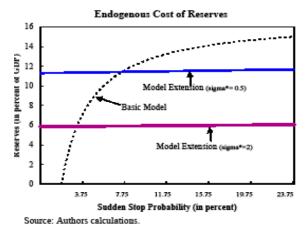
Parameter	Baseline	Range of variation
Size of sudden stop (% of GDP)	λ = 11 %	[0,30%]
Prob. of sudden stop	$\pi = 10 \%$	[0,25%]
Output loss (% of GDP)	$\gamma = 6.5 \%$	[0,20%]
Premium	<i>δ</i> = 1.5 %	[0, 5%]
Risk aversion	$\sigma = 2$	[1,10]

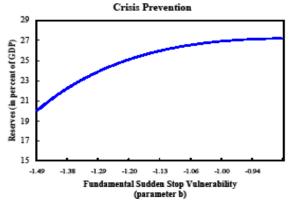
$$\Rightarrow \rho^* = 10.1 \% \text{ of GDP}$$
= 92 % of ST debt

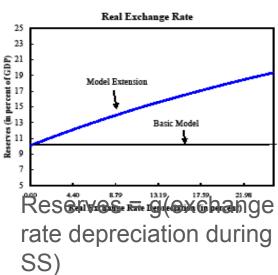
Figure 4. Optimal Ratio of Reserves to GDP: Basic Model

Baseline


Figure 5. Optimal Ratio of Reserves to GDP: Model Extensions





es=f(Proba(SS))

Puzzle

- High Reserves to GDP Ratio in East Asia
- How to explain it?
- Problem of "over" insurance
- Need:
 - Higher Output Cost
 - Ouput Cost Uncertainty+loss avoidance preference.
 - Robust Control model.
 - Lower Cost of Reserve Accumulation
 - Combined endogenous probability of reserves and endogenous cost.
 - Alternative Motive for Reserve Accumulation: Mercantilist.

A model for low income countries: Barnichon (2009)

- Have limited access to private foreign capital
- Different from sudden stop in capital flows.
- International reserves to self-insure against
- terms of trade shocks
- natural disasters

Economic impact of hurricanes in the Caribbean

- One major hurricane every 25 years
- Output growth falls by 3 percentage points
- Exports growth falls by 5 percentage points
- Imports growth does not fall

Economic impact of droughts in the Sahel

- One major drought every 12 years
- Output growth is roughly constant
- Exports growth falls by 8 percentage points
- Imports growth does not fall

Terms of trade shocks

Caribbean:

- One major shock every 17 years
- Average tot loss of 10% and no significant effect on output growth or exports growth

Sahel

- One major shock every 10 years
- Average tot loss of 15%, output growth falls by 0.5% and exports growth by 5%

2. A model of optimal FX reserves

- Two countries: Home and Foreign
- Home is a small open economy consisting of a representative agent that consumes two types of goods:
 - home goods c_H
 - foreign goods c_F
- With probability $1-\pi^{nd}$, Home is in a "normal" state and receives an endowment Y^n and exports a fraction of output $c_F^{*n} = \delta Y^n$.
- With probability π^{nd} , Home is hit by a shock that affects production, exports capacities and the real exchange rate:

$$Y^d = \eta_y Y$$

$$X^d = \eta_X X \qquad \text{with } \eta_{..} \le 1.$$

$$\varepsilon^d = \eta_\varepsilon \varepsilon$$

FX constraint

To purchase foreign goods, the country needs to pay in foreign currency

(similar to a "cash-in-advance" constraint)

- · Can buy imports goods through
 - Exports: c_F^*
 - Foreign capital: Tr (includes foreign loans and grants)
 - FX reserves: R
- $\bullet \quad c_{F,t} \leq \varepsilon_t \, c_{F,t}^* \left(R_{t+1} R_t\right) + T r_t \qquad \text{(in US\$)}$
- However, opportunity cost of holding FX reserves: $\frac{rR}{\varepsilon}$

A closed-form solution for R*

(the level of reserves in good times)

 Using r<<1, log-utility and assuming that the Home uses all of its reserve the period the disaster hits (only an approximation, plausible if shock has little persistence):

$$\frac{R}{c_F}^* \approx \left[\frac{\beta \pi^{nd}}{\beta r \left(1 - \pi^{nd}\right) \frac{\varepsilon \delta}{1 - \delta} + \left(1 - \beta \left(1 - \pi^{nd}\right)\right) \frac{1 - \theta}{\theta}} - \eta_X \eta_{\varepsilon} \right] \frac{1}{1 + \frac{Tr}{\varepsilon \delta Y^n}}$$

- Probability of disaster $\pi^{nd} \uparrow \Rightarrow R/M \uparrow$
- FX earnings loss $\eta_X, \eta_\varepsilon \uparrow \Rightarrow R/M \uparrow$
- Size of export sector δ↑ => R/M ↑
- Preference for Home goods θ↑ => R/M ↓
- Higher steady-state transfers Tr↑ => R/M ↓

Reserves Pooling

- Risk-Sharing Argument.
 - Pool should be as large as possible.
 - Like the IMF but with Prices and Quantity.
- Restriction on the number of countries in the insurance pool.
 - Mauro-Imbs (2008)
- Trade Externalities (Basu, Bi, Kannan (2010)
 - Self-insurance ignores externalities.
 - Terms of Trade Shock
 - Intra-Regional Trade Linkage is stronger; case for reserves

ssue 1: Cost of Reserves

Balance-Sheet Approach.

- Term Premium?
- Reserves Invested in Long Term Bonds.
 - Excess Returns compensate.

Growth Approach.

- Opportunity of Foregone Investment
- Average vs. Marginal Product of Capital (Caselli)

Cost of Sterilization.

- Degree of Integration of Domestic vs. Capital Markets.
- Cost in Merchantilist Approach: Asymetry between China and Rest of Asia
 - "Trade-War" (Aizenman, 2007)

ssue 2. Benefits of Reserves

- Crisis Prevention and Crisis Mitigation Benefits.
 - Hard to identify in data for sudden stops (in contrast with currency crises)
 - Endogeneity Issue: Countries with higher fundamental risks will have higher reserves. (currency crisis less fundamental)
 - Output Cost of Crises and Benefits of Reserves.
 - Counterfactual Peso Problem.

ssue 3: when to use the eserves.

- Uncertainty on the duration of the event.
- Time-varying probability of a disaster.
 - □ A small crisis → update probability of a complete meltdown.
- Signaling Issue. Asymmetric information.
- Rule-based Reserve Policy
 - Tranquil times: Ex. Chile.
 - Crisis Times.

Reserves and the Global Financial Architecture I

- Globalized Flexible Credit Lines.
- **Implementability**
- Eligibility
 - Rules.
 - Risk of losing eligiblity
- Sovereignty Issue
 - A country can use its reserves even if policy framework needs to deviate from model.

Reserves and the Global Financial Architecture II

IMF: A Global Bank for Reserves.

Issue Reserve Deposits (aka. Voluntary Reserves)

Pooling of Reserves: Liquidity Management.

- Higher Interest Rate on Reserve Deposits
- No Liquidity Risk.

Trade of Reserve Deposits: Insurance Role.

- Short Sale of Reserve Deposits i.e. borrowing.
- Discipline. You need to save (deposit reserves) in order to borrow.
 - Multiple of voluntary reserves

Thank you