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15.   Basic Index Number Theory 

A.   Introduction 

The answer to the question what is the Mean of a 
given set of magnitudes cannot in general be 
found, unless there is given also the object for 
the sake of which a mean value is required. 
There are as many kinds of average as there are 
purposes; and we may almost say, in the matter 
of prices as many purposes as writers. Hence 
much vain controversy between persons who are 
literally at cross purposes. (F.Y. Edgeworth, 
1888, p. 347) 

15.1 The number of physically distinct goods 
and unique types of services that consumers can 
purchase is in the millions. On the business or pro-
duction side of the economy, there are even more 
products that are actively traded. The reason is that 
firms not only produce products for final consump-
tion, they also produce exports and intermediate 
products that are demanded by other producers. 
Firms collectively also use millions of imported 
goods and services, thousands of different types of 
labor services, and hundreds of thousands of spe-
cific types of capital. If we further distinguish 
physical products by their geographic location or 
by the season or time of day that they are produced 
or consumed, then there are billions of products 
that are traded within each year in any advanced 
economy. For many purposes, it is necessary to 
summarize this vast amount of price and quantity 
information into a much smaller set of numbers. 
The question that this chapter addresses is the fol-
lowing: How exactly should the microeconomic in-
formation involving possibly millions of prices and 
quantities be aggregated into a smaller number of 
price and quantity variables? This is the basic in-
dex number problem. 

15.2 It is possible to pose the index number 
problem in the context of microeconomic theory; 
that is, given that we wish to implement some eco-
nomic model based on producer or consumer the-
ory, what is the best method for constructing a set 
of aggregates for the model? However, when con-
structing aggregate prices or quantities, other 

points of view (that do not rely on economics) are 
possible. Some of these alternative points of view 
will be considered in this chapter and the next 
chapter. Economic approaches will be pursued in 
Chapters 17 and 18. 

15.3 The index number problem can be framed 
as the problem of decomposing the value of a well-
defined set of transactions in a period of time into 
an aggregate price multiplied by an aggregate 
quantity term. It turns out that this approach to the 
index number problem does not lead to any useful 
solutions. Therefore, in Section B, the problem of 
decomposing a value ratio pertaining to two peri-
ods of time into a component that measures the 
overall change in prices between the two periods 
(this is the price index) multiplied by a term that 
measures the overall change in quantities between 
the two periods (this is the quantity index) is con-
sidered. The simplest price index is a fixed-basket 
index. In this index, fixed amounts of the n quanti-
ties in the value aggregate are chosen, and then this 
fixed basket of quantities at the prices of period 0 
and period 1 are calculated. The fixed-basket price 
index is simply the ratio of these two values, where 
the prices vary but the quantities are held fixed. 
Two natural choices for the fixed basket are the 
quantities transacted in the base period, period 0, 
or the quantities transacted in the current period, 
period 1. These two choices lead to the Laspeyres 
(1871) and Paasche (1874) price indices, respec-
tively.  

15.4 Unfortunately, the Paasche and Laspeyres 
measures of aggregate price change can differ, 
sometimes substantially. Thus, Section C considers 
taking an average of these two indices to come up 
with a single measure of price change. Section C.1 
argues that the best average to take is the geomet-
ric mean, which is Irving Fisher’s (1922) ideal 
price index. In Section C.2, instead of averaging 
the Paasche and Laspeyres measures of price 
change, taking an average of the two baskets is 
considered. This fixed-basket approach to index 
number theory leads to a price index advocated by 
Walsh (1901, 1921a). However, other fixed-basket 
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approaches are also possible. Instead of choosing 
the basket of period 0 or 1 (or an average of these 
two baskets), it is possible to choose a basket that 
pertains to an entirely different period, say, period 
b. In fact, it is typical statistical agency practice to 
pick a basket that pertains to an entire year (or 
even two years) of transactions in a year before pe-
riod 0, which is usually a month. Indices of this 
type, where the weight reference period differs 
from the price reference period, were originally 
proposed by Joseph Lowe (1823), and in Section D 
indices of this type will be studied. They will also 
be evaluated from the axiomatic perspective in 
Chapter 16 and from the economic perspective in 
Chapter 17.1 

15.5 In Section E, another approach to the de-
termination of the functional form or the formula 
for the price index is considered. This approach, 
devised by the French economist Divisia (1926), is 
based on the assumption that price and quantity 
data are available as continuous functions of time. 
The theory of differentiation is used to decompose 
the rate of change of a continuous time value ag-
gregate into two components that reflect aggregate 
price and quantity change. Although Divisia’s ap-
proach offers some insights,2 it does not offer 
much guidance to statistical agencies in terms of 
leading to a definite choice of index number  
formula. 

15.6 In Section F, the advantages and disadvan-
tages of using a fixed-base period in the bilateral 
index number comparison are considered versus 
always comparing the current period with the pre-
vious period, which is called the chain system. In 
the chain system, a link is an index number com-
parison of one period with the previous period. 
These links are multiplied to make comparisons 
over many periods.  

                                                        
1Indices of this type will not appear in Chapter 19, where 

most of the index number formulas exhibited in Chapters 
15–18 will be illustrated using an artificial data set.  How-
ever, indices where the weight reference period differs 
from the price reference period will be illustrated numeri-
cally in Chapter 22, where the problem of seasonal prod-
ucts will be discussed. 

2In particular, it can be used to justify the chain system of 
index numbers, which will be discussed in Section E.2. 

B.   Decomposition of Value  
Aggregates into Price and  
Quantity Components 

B.1 Decomposition of value  
aggregates and the product test 

15.7 A price index is a measure or function that 
summarizes the change in the prices of many 
products from one situation 0 (a time period or 
place) to another situation 1. More specifically, for 
most practical purposes, a price index can be re-
garded as a weighted mean of the change in the 
relative prices of the products under consideration 
in the two situations. To determine a price index, it 
is necessary to know 

(i)  Which products or items to include in the  
index, 

(ii)  How to determine the item prices, 
(iii)  Which transactions that involve these items to 

include in the index, 
(iv)  How to determine the weights and from 

which sources these weights should be drawn, 
and 

(v)  Which formula or mean should be used to av-
erage the selected item relative prices. 

 
All the above price index definition questions ex-
cept the last can be answered by appealing to the 
definition of the value aggregate to which the 
price index refers. A value aggregate V for a given 
collection of items and transactions is computed as 
 

(15.1) 
1

n

i i
i

V p q
=

= ∑ , 

 
where pi represents the price of the ith item in na-
tional currency units, qi represents the correspond-
ing quantity transacted in the time period under 
consideration, and the subscript i identifies the ith 
elementary item in the group of n items that make 
up the chosen value aggregate V. Included in this 
definition of a value aggregate is the specification 
of the group of included products (which items to 
include) and of the economic agents engaging in 
transactions involving those products (which 
transactions to include), as well as the valuation 
and time of recording principles motivating the 
behavior of the economic agents undertaking the 
transactions (determination of prices). The in-
cluded elementary items, their valuation (the pi), 
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the eligibility of the transactions, and the item 
weights (the qi) are all within the domain of defini-
tion of the value aggregate. The precise determina-
tion of the pi and qi was discussed in more detail in 
Chapter 5 and other chapters.3 
 
15.8 The value aggregate V defined by equa-
tion (15.1) referred to a certain set of transactions 
pertaining to a single (unspecified) time period. 
Now, consider the same value aggregate for two 
places or time periods, periods 0 and 1. For the 
sake of definiteness, period 0 is called the base pe-
riod and period 1 is called the current period. As-
sume that observations on the base-period price 
and quantity vectors, p0 ≡ [p1

0,…,pn
0] and q0 ≡ 

[q1
0,…,qn

0], respectively, have been collected.4 
The value aggregates in the two periods are de-
fined in the obvious way as 

 

(15.2) 0 0 1 10 1
; .

1 1

  
n n

i i i i

i i

V p q V p q
= =

≡ ≡∑ ∑  

 
15.9 In the previous paragraph, a price index 
was defined as a function or measure that summa-
rizes the change in the prices of the n products in 
the value aggregate from situation 0 to situation 1. 
In this paragraph, a price index P(p0,p1,q0,q1) along 
with the corresponding quantity index (or volume 
index) Q(p0,p1,q0,q1) is defined as two functions of 
the 4n variables p0,p1,q0,q1 (these variables de-
scribe the prices and quantities pertaining to the 
value aggregate for periods 0 and 1), where these 
two functions satisfy the following equation:5 

(15.3) 1 0 0 1 0 1  ( ) V / V P p , p ,q ,q =  
0 1 0 1( ) Q p , p ,q ,q× . 

 

                                                        
3Ralph Turvey and others (1989) have noted that some 

values may be difficult to decompose into unambiguous 
price and quantity components.  Some examples of values 
difficult to decompose are bank charges, gambling expendi-
tures, and life insurance payments. 

4Note that it is assumed that there are no new or disap-
pearing products in the value aggregates.  Approaches to 
the “new goods problem” and the problem of accounting 
for quality change are discussed in Chapters 7, 8, and 21. 

5The first person to suggest that the price and quantity in-
dices should be jointly determined to satisfy equation 
(15.3) was Irving Fisher (1911, p. 418).  Frisch (1930, p. 
399) called equation (15.3) the product test. 

If there is only one item in the value aggregate, 
then the price index P should collapse to the  
single-price ratio p1

1/p1
0, and the quantity index Q 

should collapse to the single-quantity ratio q1
1/q1

0. 
In the case of many items, the price index P is to 
be interpreted as some sort of weighted average of 
the individual price ratios, p1

1/p1
0,…, pn

1/pn
0. 

 
15.10 Thus, the first approach to index number 
theory can be regarded as the problem of decom-
posing the change in a value aggregate, V1/V0, into 
the product of a part that is due to price change, 
P(p0,p1,q0,q1), and a part that is due to quantity 
change, Q(p0,p1,q0,q1). This approach to the de-
termination of the price index is the approach 
taken in the national accounts, where a price index 
is used to deflate a value ratio to obtain an estimate 
of quantity change. Thus, in this approach to index 
number theory, the primary use for the price index 
is as a deflator. Note that once the functional form 
for the price index P(p0,p1,q0,q1) is known, then the 
corresponding quantity or volume index 
Q(p0,p1,q0,q1) is completely determined by P; that 
is, by rearranging equation (15.3): 

(15.4) ( )0 1 0 1 1 0   ( )Q p , p ,q ,q V /V=  
0 1 0 1( )/ P p , p ,q ,q . 

 
Conversely, if the functional form for the quantity 
index Q(p0,p1,q0,q1) is known, then the correspond-
ing price index P(p0,p1,q0,q1) is completely deter-
mined by Q. Thus, using this deflation approach to 
index number theory, separate theories for the de-
termination of the price and quantity indices are 
not required: if either P or Q is determined, then 
the other function is implicitly determined by the 
product test, equation (15.4). 
 
15.11 In the next subsection, two concrete 
choices for the price index P(p0,p1,q0,q1) are con-
sidered, and the corresponding quantity indices 
Q(p0,p1,q0,q1) that result from using equation 
(15.4) are also calculated. These are the two 
choices used most frequently by national income 
accountants. 

B.2 Laspeyres and Paasche  
indices 

15.12 One of the simplest approaches determin-
ing the price index formula was described in great 
detail by Joseph Lowe (1823). His approach to 
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measuring the price change between periods 0 and 
1 was to specify an approximate representative 
product basket,6 which is a quantity vector q ≡ 
[q1,…,qn] that is representative of purchases made 
during the two periods under consideration, and 
then to calculate the level of prices in period 1 
relative to period 0 as the ratio of the period 1 cost 

of the basket, 1

1

n

i i
i

p q
=
∑ , to the period 0 cost of the 

basket, 0

1

n

i i
i

p q
=
∑ . This fixed-basket approach to the 

determination of the price index leaves open the 
following question: How exactly is the fixed-
basket vector q to be chosen?  

15.13 As time passed, economists and price stat-
isticians demanded a bit more precision with re-
spect to the specification of the basket vector q. 
There are two natural choices for the reference 
basket: the base period 0 product vector q0 or the 
current period 1 product vector q1. These two 
choices led to the Laspeyres (1871) price index7 PL 
defined by equation (15.5) and the Paasche (1874) 
price index8 PP defined by equation (15.6):9 

                                                        
6Joseph Lowe (1823, Appendix, p. 95) suggested that the 

product basket vector q should be updated every five years.  
Lowe indices will be studied in more detail in Section D.  

7This index was actually introduced and justified by 
Drobisch (1871a, p. 147) slightly earlier than Laspeyres.  
Laspeyres (1871, p. 305) in fact explicitly acknowledged 
that Drobisch showed him the way forward. However, the 
contributions of Drobisch have been forgotten for the most 
part by later writers because Drobisch aggressively pushed 
for the ratio of two unit values as being the best index 
number formula. While this formula has some excellent 
properties, if all the n products being compared have the 
same unit of measurement, the formula is useless when, 
say, both goods and services are in the index basket.   

8Again, Drobisch (1871b, p. 424) appears to have been 
the first to explicitly define and justify this formula.  How-
ever, he rejected this formula in favor of his preferred for-
mula, the ratio of unit values, and so again he did not get 
any credit for his early suggestion of the Paasche formula.  

9Note that PL(p0,p1,q0,q1) does not actually depend on q1, 
and PP(p0,p1,q0,q1) does not actually depend on q0. How-
ever, it does no harm to include these vectors, and the nota-
tion indicates that the reader is in the realm of bilateral in-
dex number theory; that is, the prices and quantities for a 
value aggregate pertaining to two periods are being com-
pared. 

(15.5) 

n
1 0

0 1 0 1 1
n

0 0

1

( ) ;
i i

i
L

i i
i

p q
P p , p ,q ,q

p q

=

=

≡
∑

∑
 

 

(15.6) 

n
1 1

0 1 0 1 1
n

0 1

1

( ) .
i i

i
P

i i
i

p q
P p , p ,q ,q

p q

=

=

≡
∑

∑
 

 
15.14 The above formulas can be rewritten in a 
manner that is more useful for statistical agencies. 
Define the period t revenue share on product i as 
follows: 

(15.7) 
1

/
n

t t t t t
i i i j j

j
s p q p q

=

≡ ∑ for i = 1,...,n  

and t = 0,1. 
 
Then, the Laspeyres index, equation (15.5), can be 
rewritten as follows:10 
 

(15.8) 0 1 0 1 1 0 0 0

1 1
( , , , ) /

n n

L i i j j
i j

P p p q q p q p q
= =

= ∑ ∑  

1 0 0 0 0 0

1 1

1 0 0

1

( / ) /

( / ) ,

n n

i i i i j j
i j

n

i i i
i

p p p q p q

p p s

= =

=

=

=

∑ ∑

∑
 
using definitions in equation (15.7). 
 
Thus, the Laspeyres price index, PL can be written 
as a base-period revenue share-weighted arithmetic 
average of the n price ratios, pi

1/pi
0. The Laspeyres 

formula (until the very recent past) has been 
widely used as the intellectual base for PPIs 
around the world. To implement it, a statistical 
agency needs only to collect information on reve-
nue shares sn

0 for the index domain of definition 
for the base period 0 and then collect information 
on item prices alone on an ongoing basis. Thus, the 
Laspeyres PPI can be produced on a timely basis 
without current-period quantity information.  
 
                                                        

10This method of rewriting the Laspeyres index (or any 
fixed-basket index) as a share-weighted arithmetic average 
of price ratios is due to Irving Fisher (1897, p. 517; 1911, p. 
397; 1922, p. 51) and Walsh (1901, p. 506; 1921a, p. 92). 



 Producer Price Index Manual 
 

374 
 

15.15 The Paasche index can also be written in 
revenue share and price ratio form as follows:11 

(15.9) 0 1 0 1 0 1 1 1

1 1

( , , , ) 1
n n

P i i j j
i j

P p p q q p q p q
= =

 
=  

 
∑ ∑  

 

( )

( )

( )

0 1 1 1 1 1

1 1

11 0 1

1

1
11 0 1

1

1

1

,

n n

i i i i j j
i j

n

i i i
i

n

i i i
i

p p p q p q

p p s

p p s

= =

−

=

−
−

=

 
=  

 
 

=  
 

 
=  

 

∑ ∑

∑

∑

 

using definitions in equation (15.7). 
 
Thus, the Paasche price index PP can be written as 
a period 1 (or current-period) revenue share-
weighted harmonic average of the n item price ra-
tios pi

1/pi
0.12 The lack of information on current-

period quantities prevents statistical agencies from 
producing Paasche indices on a timely basis. 
 
15.16 The quantity index that corresponds to the 
Laspeyres price index using the product test, equa-
tion (15.3), is the Paasche quantity index; that is, if 
P in equation (15.4) is replaced by PL defined by 
equation (15.5), then the following quantity index 
is obtained: 

(15.10) 

1 1

0 1 0 1 1

1 0

1

( ) .

n

i i
i

P n

i i
i

p q
Q p , p ,q ,q

p q

=

=

≡
∑

∑
 

 
Note that QP is the value of the period 1 quantity 

vector valued at the period 1 prices, 1 1

1

n

i i
i

p q
=
∑ , di-

vided by the (hypothetical) value of the period 0 
quantity vector valued at the period 1 prices, 

1 0

1

n

i i
i

p q
=
∑ . Thus, the period 0 and 1 quantity vectors 

                                                        
11This method of rewriting the Paasche index (or any 

fixed-basket index) as a share-weighted harmonic average 
of the price ratios is due to Walsh (1901, p. 511; 1921a, p. 
93) and Irving Fisher (1911, pp. 397–98).  

12Note that the derivation in equation (15.9) shows how 
harmonic averages arise in index number theory in a very 
natural way. 

are valued at the same set of prices, the current-
period prices, p1. 
 
15.17 The quantity index that corresponds to the 
Paasche price index using the product test, equa-
tion (15.3), is the Laspeyres quantity index; that is, 
if P in equation (15.4) is replaced by PP defined by 
equation (15.6), then the following quantity index 
is obtained: 

(15.11) 

0 1

0 1 0 1 1

0 0

1

( ) .

n

i i
i

L n

i i
i

p q
Q p , p ,q ,q

p q

=

=

≡
∑

∑
 

 
Note that QL is the (hypothetical) value of the pe-
riod 1 quantity vector valued at the period 0 prices, 

0 1

1

n

i i
i

p q
=
∑ , divided by the value of the period 0 

quantity vector valued at the period 0 prices, 
0 0

1

n

i i
i

p q
=
∑ . Thus, the period 0 and 1 quantity vectors 

are valued at the same set of prices, the base-
period prices, p0. 
 
15.18 The problem with the Laspeyres and 
Paasche index number formulas is that they are 
equally plausible, but, in general, they will give 
different answers. For most purposes, it is not sat-
isfactory for the statistical agency to provide two 
answers to this question:13 what is the best overall 
summary measure of price change for the value 
aggregate over the two periods in question? Thus, 
in the following section, it is considered how best 
averages of these two estimates of price change 
can be constructed. Before doing this, we ask what 
is the normal relationship between the Paasche and 
Laspeyres indices? Under normal economic condi-
tions, when the price ratios pertaining to the two 
situations under consideration are negatively corre-
lated with the corresponding quantity ratios, it can 
be shown that the Laspeyres price index will be 

                                                        
13In principle, instead of averaging the Paasche and 

Laspeyres indices, the statistical agency could think of pro-
viding both (the Paasche index on a delayed basis). This 
suggestion would lead to a matrix of price comparisons be-
tween every pair of periods instead of a time series of com-
parisons. Walsh (1901, p. 425) noted this possibility: “In 
fact, if we use such direct comparisons at all, we ought to 
use all possible ones.” 
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larger than the corresponding Paasche index.14 In 
Appendix 15.1, a precise statement of this result is 
presented.15 This divergence between PL and PP 
suggests that if a single estimate for the price 
change between the two periods is required, then 
some sort of evenly weighted average of the two 
indices should be taken as the final estimate of 
price change between periods 0 and 1. This strat-
egy will be pursued in the following section. How-
ever, it should be kept in mind that, usually, statis-
tical agencies will not have information on current 
revenue weights and, hence, averages of Paasche 
and Laspeyres indices can be produced only on a 
delayed basis (perhaps using national accounts in-
formation) or not at all. 

C.   Symmetric Averages of 
Fixed-Basket Price Indices 

C.1 Fisher index as an average of 
the Paasche and Laspeyres indices 

15.19 As was mentioned in the previous para-
graph, since the Paasche and Laspeyres price indi-
ces are equally plausible but often give different 
estimates of the amount of aggregate price change 
between periods 0 and 1, it is useful to consider 
taking an evenly weighted average of these fixed-
basket price indices as a single estimator of price 
change between the two periods. Examples of such 

                                                        
14Peter Hill (1993, p. 383) summarized this inequality as 

follows: “It can be shown that relationship (13) [that is, that 
PL is greater than PP] holds whenever the price and quantity 
relatives (weighted by values) are negatively correlated. 
Such negative correlation is to be expected for price takers 
who react to changes in relative prices by substituting 
goods and services that have become relatively less expen-
sive for those that have become relatively more expensive. 
In the vast majority of situations covered by index num-
bers, the price and quantity relatives turn out to be nega-
tively correlated so that Laspeyres indices tend systemati-
cally to record greater increases than Paasche with the gap 
between them tending to widen with time.” 

15There is another way to see why PP will often be less 
than PL. If the period 0 revenue shares si

0 are exactly equal 
to the corresponding period 1 revenue shares si

1, then by 
Schlömilch's (1858) Inequality (see Hardy, Littlewood, and 
Polyá, 1934, p. 26), it can be shown that a weighted har-
monic mean of n numbers is equal to or less than the corre-
sponding arithmetic mean of the n numbers and the ine-
quality is strict if the n numbers are not all equal. If revenue 
shares are approximately constant across periods, then it 
follows that PP will usually be less than PL under these 
conditions; see Section D.3. 

symmetric averages16 are the arithmetic mean, 
which leads to the Drobisch (1871b, p. 425) Sidg-
wick (1883, p. 68) Bowley (1901, p. 227)17 index, 
PDR ≡ (1/2)PL + (1/2)PP, and the geometric mean, 
which leads to the Irving Fisher18 (1922) ideal in-
dex, PF, defined as 

(15.12)
1 20 1 0 1 0 1 0 1( , , , ) ( , , , )F LP p p q q P p p q q ≡    

1 20 1 0 1( , , , ) .PP p p q q ×    
At this point, the fixed-basket approach to index 
number theory is transformed into the test ap-
proach to index number theory; that is, to deter-
mine which of these fixed-basket indices or which 
averages of them might be best, desirable criteria 
or tests or properties are needed for the price in-
dex. This topic will be pursued in more detail in 
the next chapter, but an introduction to the test ap-
proach is provided in the present section because a 
test is used to determine which average of the 
Paasche and Laspeyres indices might be best. 
 
15.20 What is the best symmetric average of PL 
and PP to use as a point estimate for the theoretical 
cost-of-living index? It is very desirable for a price 
index formula that depends on the price and quan-
tity vectors pertaining to the two periods under 
consideration to satisfy the time reversal test.19 An 

                                                        
16For a discussion of the properties of symmetric aver-

ages, see Diewert (1993c).  Formally, an average m(a,b) of 
two numbers a and b is symmetric if m(a,b) = m(b,a). In 
other words, the numbers a and b are treated in the same 
manner in the average.  An example of a nonsymmetric av-
erage of a and b is (1/4)a + (3/4)b. In general, Walsh (1901, 
p. 105) argued for a symmetric treatment if the two periods 
(or countries) under consideration were to be given equal 
importance.  

17Walsh (1901, p. 99) also suggested this index. See 
Diewert (1993a, p. 36) for additional references to the early 
history of index number theory. 

18Bowley (1899, p. 641) appears to have been the first to 
suggest the use of this index. Walsh (1901, pp. 428–29) 
also suggested this index while commenting on the big dif-
ferences between the Laspeyres and Paasche indices in one 
of his numerical examples: “The figures in columns (2) 
[Laspeyres] and (3) [Paasche] are, singly, extravagant and 
absurd.  But there is order in their extravagance; for the 
nearness of their means to the more truthful results shows 
that they straddle the true course, the one varying on the 
one side about as the other does on the other.”  

19See Diewert (1992a, p. 218) for early references to this 
test. If we want the price index to have the same property 
as a single-price ratio, then it is important to satisfy the 
time reversal test. However, other points of view are possi-

(continued) 
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index number formula P(p0,p1,q0,q1) satisfies this 
test if 

(15.13) 1 0 1 0 0 1 0 1 ( ) 1 ( ) ;P p , p ,q ,q   /  P p , p ,q ,q =   
 
that is, if the period 0 and period 1 price and quan-
tity data are interchanged and the index number 
formula is evaluated, then this new index 
P(p1,p0,q1,q0) is equal to the reciprocal of the 
original index P(p0,p1,q0,q1). This is a property that 
is satisfied by a single price ratio, and it seems de-
sirable that the measure of aggregate price change 
should also satisfy this property so that it does not 
matter which period is chosen as the base period. 
Put another way, the index number comparison be-
tween any two points of time should not depend on 
the choice of which period we regard as the base 
period: if the other period is chosen as the base pe-
riod, then the new index number should simply 
equal the reciprocal of the original index. It should 
be noted that the Laspeyres and Paasche price in-
dices do not satisfy this time reversal property.  
 
15.21 Having defined what it means for a price 
index P to satisfy the time reversal test, then it is 
possible to establish the following result:20 the 
Fisher ideal price index defined by equation 
(15.12) above is the only index that is a homoge-
neous21 symmetric average of the Laspeyres and 
Paasche price indices, PL and PP, and satisfies the 
time reversal test in equation (15.13) above. Thus, 
the Fisher ideal price index emerges as perhaps the 
best evenly weighted average of the Paasche and 
Laspeyres price indices. 

15.22  It is interesting to note that this symmetric 
basket approach to index number theory dates 
back to one of the early pioneers of index number 
theory, Arthur L. Bowley, as the following quota-
tions indicate: 

If [the Paasche index] and [the Laspeyres index] 
lie close together there is no further difficulty; if 

                                                                                   
ble.  For example, we may want to use our price index for 
compensation purposes, in which case satisfaction of the 
time reversal test may not be so important. 

20See Diewert (1997, p. 138). 
21An average or mean of two numbers a and b, m(a,b), is 

homogeneous  if when both numbers a and b are multiplied 
by a positive number λ, then the mean is also multiplied by 
λ; that is, m satisfies the following property:  m(λa,λb) = 
λm(a,b). 

they differ by much they may be regarded as in-
ferior and superior limits of the index number, 
which may be estimated as their arithmetic mean 
… as a first approximation. (Arthur L. Bowley, 
1901, p. 227) 

When estimating the factor necessary for the cor-
rection of a change found in money wages to ob-
tain the change in real wages, statisticians have 
not been content to follow Method II only [to 
calculate a Laspeyres price index], but have 
worked the problem backwards [to calculate a 
Paasche price index] as well as forwards. … 
They have then taken the arithmetic, geometric 
or harmonic mean of the two numbers so found. 
(Arthur L. Bowley, 1919, p. 348)22 

15.23 The quantity index that corresponds to the 
Fisher price index using the product test, equation 
(15.3), is the Fisher quantity index; that is, if P in 
equation (15.4) is replaced by PF defined by equa-
tion (15.12), the following quantity index is  
obtained: 

(15.14) 
1 20 1 0 1 0 1 0 1( , , , ) ( , , , )F LQ p p q q Q p p q q ≡    

  
1 20 1 0 1( , , , ) .PQ p p q q ×   

 
Thus, the Fisher quantity index is equal to the 
square root of the product of the Laspeyres and 
Paasche quantity indices. It should also be noted 
that QF(p0,p1,q0,q1) = PF(q0,q1,p0,p1); that is, if the 
role of prices and quantities is interchanged in the 
Fisher price index formula, then the Fisher quan-
tity index is obtained.23 
 
15.24 Rather than take a symmetric average of 
the two basic fixed-basket price indices pertaining 
to two situations, PL and PP, it is also possible to 
return to Lowe’s basic formulation and choose the 
basket vector q to be a symmetric average of the 
base- and current-period basket vectors, q0 and q1. 
The following subsection pursues this approach to 
index number theory. 

                                                        
22Irving Fisher (1911, pp. 417–18; 1922) also considered 

the arithmetic, geometric, and harmonic averages of the 
Paasche and Laspeyres indices. 

23Irving Fisher (1922, p. 72) said that P and Q satisfied 
the factor reversal test if Q(p0,p1,q0,q1) = P(q0,q1,p0,p1) and 
P and Q satisfied the product test in equation (15.3) as well. 
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C.2 Walsh index and theory  
of “pure” price index 

15.25 Price statisticians tend to be very comfort-
able with a concept of the price index based on 
pricing out a constant representative basket of 
products, q ≡ (q1,q2,…,qn), at the prices of period 0 
and 1, p0 ≡ (p1

0,p2
0,…,pn

0) and p1 ≡ (p1
1,p2

1,…,pn
1), 

respectively. Price statisticians refer to this type of 
index as a fixed-basket index or a pure price in-
dex,24 and it corresponds to Knibbs’s (1924, p. 43) 
unequivocal price index.25 Since Joseph Lowe 
(1823) was the first person to describe systemati-
cally this type of index, it is referred to as a Lowe 
index. Thus, the general functional form for the 
Lowe price index is 

(15.15) 0 1 1 0

1 1

( , , ) /
n n

Lo i i i i
i i

P p p q p q p q
= =

≡ ∑ ∑  

    1 0

1

( / ),
n

i i i
i

s p p
=

= ∑  

 
where the (hypothetical) hybrid revenue shares si

26 
corresponding to the quantity weights vector q are 
defined by 
 

                                                        
24See Section 7 in Diewert (2001).    
25“Suppose, however, that for each commodity, Q′ = Q, 

the fraction, ∑(P′Q) / ∑(PQ), viz., the ratio of aggregate 
value for the second unit-period to the aggregate value for 
the first unit-period is no longer merely a ratio of totals, it 
also shows unequivocally the effect of the change in price. 
Thus, it is an unequivocal price index for the quantitatively 
unchanged complex of commodities, A, B, C, etc. 

“It is obvious that if the quantities were different on 
the two occasions, and if at the same time the prices 
had been unchanged, the preceding formula would be-
come ∑(PQ′) / ∑(PQ). It would still be the ratio of the 
aggregate value for the second unit-period to the aggre-
gate value for the first unit-period.  But it would be also 
more than this.  It would show in a generalized way the 
ratio of the quantities on the two occasions. Thus it is 
an unequivocal quantity index for the complex of 
commodities, unchanged as to price and differing only 
as to quantity. 

 “Let it be noted that the mere algebraic form of these 
expressions shows at once the logic of the problem of 
finding these two indices is identical” (Sir George H. 
Knibbs, 1924, pp. 43–44). 

26Irving Fisher (1922, p. 53) used the terminology 
“weighted by a hybrid value,” while Walsh (1932, p. 657) 
used the term “hybrid weights.” 

(15.16) 0 0

1
/ for 1,2,..., .

n

i i i j j
j

s p q p q i n
=

≡ =∑  

 
15.26 The main reason why price statisticians 
might prefer a member of the family of Lowe or 
fixed-basket price indices defined by equation 
(15.15) is that the fixed-basket concept is easy to 
explain to the public. Note that the Laspeyres and 
Paasche indices are special cases of the pure price 
concept if we choose q = q0 (which leads to the 
Laspeyres index) or if we choose q = q1 (which 
leads to the Paasche index).27 The practical prob-
lem of picking q remains to be resolved, and that is 
the problem addressed in this section. 

15.27 It should be noted that Walsh (1901, p. 
105; 1921a) also saw the price index number prob-
lem in the above framework: 

Commodities are to be weighted according to 
their importance, or their full values. But the 
problem of axiometry always involves at least 
two periods. There is a first period, and there is a 
second period which is compared with it. Price 
variations have taken place between the two, and 
these are to be averaged to get the amount of 
their variation as a whole. But the weights of the 
commodities at the second period are apt to be 
different from their weights at the first period. 
Which weights, then, are the right ones—those 
of the first period? Or those of the second? Or 
should there be a combination of the two sets? 
There is no reason for preferring either the first 
or the second. Then the combination of both 
would seem to be the proper answer. And this 
combination itself involves an averaging of the 
weights of the two periods. (Correa Moylan 
Walsh, 1921a, p. 90) 

Walsh’s suggestion will be followed, and thus the 
ith quantity weight, qi, is restricted to be an aver-
age or mean of the base-period quantity qi

0 and the 
current-period quantity for product i qi

1, say, 
m(qi

0,qi
1), for i = 1,2,…,n.28 Under this assump-

                                                        
27Note that the ith share defined by equation (15.16) in 

this case is the hybrid share 0 1 0 1

1
,

n

i i i i i
i

s p q p q
=

= Σ  which uses 

the prices of period 0 and the quantities of period 1. 
28Note that we have chosen the mean function m(qi

0,qi
1) 

to be the same for each item i.  We assume that m(a,b) has 
the following two properties: m(a,b) is a positive and con-
tinuous function, defined for all positive numbers a and b, 
and m(a,a) = a for all a > 0. 
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tion, the Lowe price index in equation (15.15)  
becomes 
 

(15.17)

1 0 1

0 1 0 1 1

0 0 1

1

( , )
( , , , ) .

( , )

n

i i i
i

Lo n

j j j
j

p m q q
P p p q q

p m q q

=

=

≡
∑

∑
  

 
15.28 To determine the functional form for the 
mean function m, it is necessary to impose some 
tests or axioms on the pure price index defined by 
equation (15.17). As in Section C.1, we ask that 
PLo satisfy the time reversal test, equation (15.13) 
above. Under this hypothesis, it is immediately 
obvious that the mean function m must be a sym-
metric mean;29 that is, m must satisfy the following 
property: m(a,b) = m(b,a) for all a > 0 and b > 0. 
This assumption still does not pin down the func-
tional form for the pure price index defined by 
equation (15.17) above. For example, the function 
m(a,b) could be the arithmetic mean, (1/2)a + 
(1/2)b, in which case equation (15.17) reduces to 
the Marshall (1887) Edgeworth (1925) price index 
PME, which was the pure price index preferred by 
Knibbs (1924, p. 56): 

(15.18) 
( ){ }
( ){ }

1 0 1

0 1 0 1 1

0 0 1

1

/ 2
( , , , ) .

/ 2

n

i i i
i

ME n

j j j
j

p q q
P p p q q

p q q

=

=

+
≡

+

∑

∑
 

 
15.29 On the other hand, the function m(a,b) 
could be the geometric mean, (ab)1/2, in which case 
equation (15.17) reduces to the Walsh (1901, p. 
398; 1921a, p. 97) price index, PW:30 

 

                                                        
29For more on symmetric means, see Diewert (1993c, p. 

361). 
30Walsh endorsed PW as being the best index number for-

mula: “We have seen reason to believe formula 6 better 
than formula 7. Perhaps formula 9 is the best of the rest, but 
between it and Nos. 6 and 8 it would be difficult to decide 
with assurance” (C.M. Walsh, 1921a, p. 103). His formula 
6 is PW defined by equation (15.19), and his 9 is the Fisher 
ideal defined by equation (15.12) above. The Walsh quan-
tity index, QW(p0,p1,q0,q1),  is defined as PW(q0,q1,p0,p1); 
that is, prices and quantities in equation (15.19) are inter-
changed.  If the Walsh quantity index is used to deflate the 
value ratio, an implicit price index is obtained, which is 
Walsh’s formula 8. 

(15.19) 

1 0 1
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0 0 1

1

( , , , ) .

n

i i i
i

W n

j j j
j

p q q
P p p q q

p q q

=

=
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∑

∑
 

 
15.30 There are many other possibilities for the 
mean function m, including the mean of order r, 
[(1/2)ar + (1/2)br ]1/r for r ≠ 0. To completely de-
termine the functional form for the pure price in-
dex PLo, it is necessary to impose at least one addi-
tional test or axiom on PLo(p0,p1,q0,q1). 

15.31 There is a potential problem with the use 
of the Marshall-Edgeworth price index, equation 
(15.18), that has been noticed in the context of us-
ing the formula to make international comparisons 
of prices. If the price levels of a very large country 
are compared with the price levels of a small coun-
try using equation (15.18), then the quantity vector 
of the large country may totally overwhelm the in-
fluence of the quantity vector corresponding to the 
small country.31 In technical terms, the Marshall- 
Edgeworth formula is not homogeneous of degree 
0 in the components of both q0 and q1. To prevent 
this problem from occurring in the use of the pure 
price index PK(p0,p1,q0,q1) defined by equation 
(15.17), it is asked that PLo satisfy the following 
invariance to proportional changes in current 
quantities test:32 

(15.20) 0 1 0 1 0 1 0 1( , , , ) ( , , , )Lo LoP p p q q P p p q qλ =  
0 1 0 1for all , , , and all 0p p q q λ > . 

 
The two tests, the time reversal test in equation 
(15.13) and the invariance test in equation (15.20), 
enable one to determine the precise functional 
form for the pure price index PLo defined by equa-
tion (15.17) above: the pure price index PK must be 
the Walsh index PW defined by equation (15.19).33 
 
15.32 To be of practical use by statistical agen-
cies, an index number formula must be able to be 
expressed as a function of the base-period revenue 
shares, si

0; the current-period revenue shares, si
1; 

                                                        
31This is not likely to be a severe problem in the time-

series context where the change in quantity vectors going 
from one period to the next is small. 

32This is the terminology used by Diewert (1992a,  
p. 216). Vogt (1980) was the first to propose this test.  

33See Section 7 in Diewert (2001).  
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and the n price ratios, pi
1/pi

0. The Walsh price in-
dex defined by equation (15.19) above can be re-
written in this format: 

(15.21) 

1 0 1

0 1 0 1 1

0 0 1

1

( , , , )

n

i i i
i

W n

j j j
j

p q q
P p p q q

p q q

=

=

≡
∑

∑
 

1 0 1 0 1

1

0 0 1 0 1

1

( / )

( / )

n

i i i i i
i
n

j j j j j
j

p p p s s

p p p s s

=

=

=
∑

∑  

0 1 1 0

1

0 1 0 1

1

n

i i i i
i
n

j j j j
j

s s p p

s s p p

=

=

=
∑

∑
. 

 
C.3 Conclusions 

15.33 The approach taken to index number the-
ory in this section was to consider averages of 
various fixed-basket price indices. The first ap-
proach was to take an evenhanded average of the 
two primary fixed-basket indices: the Laspeyres 
and Paasche price indices. These two primary indi-
ces are based on pricing out the baskets that per-
tain to the two periods (or locations) under consid-
eration. Taking an average of them led to the 
Fisher ideal price index PF defined by equation 
(15.12) above. The second approach was to aver-
age the basket quantity weights and then price out 
this average basket at the prices pertaining to the 
two situations under consideration. This approach 
led to the Walsh price index PW defined by equa-
tion (15.19) above. Both these indices can be writ-
ten as a function of the base-period revenue shares, 
si

0; the current-period revenue shares, si
1; and the n 

price ratios, pi
1/pi

0. Assuming that the statistical 
agency has information on these three sets of vari-
ables, which index should be used? Experience 
with normal time-series data has shown that these 
two indices will not differ substantially, and thus it 
is a matter of choice which of these indices is used 
in practice.34 Both these indices are examples of 
                                                        

34Diewert (1978, pp. 887–89) showed that these two indi-
ces will approximate each other to the second order around 
an equal price and quantity point. Thus, for normal time-
series data where prices and quantities do not change much 

(continued) 

superlative indices, which will be defined in Chap-
ter 17. However, note that both these indices treat 
the data pertaining to the two situations in a sym-
metric manner. Hill commented on superlative 
price indices and the importance of a symmetric 
treatment of the data as follows: 

Thus economic theory suggests that, in general, a 
symmetric index that assigns equal weight to the 
two situations being compared is to be preferred 
to either the Laspeyres or Paasche indices on 
their own. The precise choice of superlative in-
dex—whether Fisher, Törnqvist or other superla-
tive index—may be of only secondary impor-
tance as all the symmetric indices are likely to 
approximate each other, and the underlying theo-
retic index fairly closely, at least when the index 
number spread between the Laspeyres and 
Paasche is not very great. (Peter Hill, 1993,  
p. 384)35 

 
D.   Annual Weights and Monthly 
Price Indices 

D.1 Lowe index with monthly 
prices and annual base-year  
quantities 

15.34 It is now necessary to discuss a major 
practical problem with the theory of basket-type 
indices. Up to now, it has been assumed that the 
quantity vector q ≡ (q1,q2,…,qn) that appeared in 
the definition of the Lowe index, PLo(p0,p1,q) de-
fined by equation (15.15), is either the base-period 
quantity vector q0 or the current-period quantity 
vector q1 or an average of the two. In fact, in terms 
of actual statistical agency practice, the quantity 
vector q is usually taken to be an annual quantity 
vector that refers to a base year b, say, that is be-
fore the base period for the prices, period 0. Typi-
cally, a statistical agency will produce a PPI at a 
monthly or quarterly frequency, but, for the sake of 
definiteness, a monthly frequency will be assumed 
in what follows. Thus, a typical price index will 
have the form PLo(p0,pt,qb), where p0 is the price 
vector pertaining to the base-period month for 
prices, month 0; pt is the price vector pertaining to 
the current-period month for prices, month t, say; 
                                                                                   
going from the base period to the current period, the indices 
will approximate each other quite closely.   

35See also Peter Hill (1988). 
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and qb is a reference basket quantity vector that re-
fers to the base year b, which is equal to or before 
month 0.36 Note that this Lowe index PLo(p0,pt,qb) 
is not a true Laspeyres index (because the annual 
quantity vector qb is not equal to the monthly 
quantity vector q0 in general).37 

15.35 The question is this: why do statistical 
agencies not pick the reference quantity vector q in 
the Lowe formula to be the monthly quantity vec-
tor q0 that pertains to transactions in month 0 (so 
that the index would reduce to an ordinary 
Laspeyres price index)? There are two main  
reasons: 

• Most economies are subject to seasonal fluc-
tuations, and so picking the quantity vector of 
month 0 as the reference quantity vector for all 
months of the year would not be representative 
of transactions made throughout the year. 

• Monthly household quantity or revenue 
weights are usually collected by the statistical 
agency using an establishment survey with a 
relatively small sample. Hence, the resulting 
weights are usually subject to very large sam-
pling errors, and so standard practice is to av-
erage these monthly revenue or quantity 
weights over an entire year (or in some cases, 
over several years), in an attempt to reduce 
these sampling errors. In other instances, 
where an establishment census is used, the re-
ported revenue weights are for an annual  
period. 

 
The index number problems that are caused by 
seasonal monthly weights will be studied in more 
detail in Chapter 22. For now, it can be argued that 
the use of annual weights in a monthly index num-
ber formula is simply a method for dealing with 
the seasonality problem.38 

                                                        
36Month 0 is called the price reference period, and year b 

is called the weight reference period. 
37Triplett (1981, p. 12) defined the Lowe index, calling it 

a Laspeyres index, and calling the index that has the weight 
reference period equal to the price reference period a pure 
Laspeyres index. Triplett also noted the hybrid share repre-
sentation for the Lowe index defined by equation (15.15) 
and equation (15.16). Triplett noted that the ratio of two 
Lowe indices using the same quantity weights was also a 
Lowe index. 

38In fact, using the Lowe index PLo(p0,pt,qb) in the con-
text of seasonal products corresponds to Bean and Stine’s 
(1924, p. 31) Type A index number formula. Bean and 

(continued) 

15.36 One problem with using annual weights 
corresponding to a perhaps distant year in the con-
text of a monthly PPI must be noted at this point. If 
there are systematic (but divergent) trends in prod-
uct prices, and consumers or businesses increase 
their purchases of products that decline (relatively) 
in price and decrease their purchases of products 
that increase (relatively) in price, then the use of 
distant quantity weights will tend to lead to an up-
ward bias in this Lowe index compared with one 
that used more current weights, as will be shown 
below. This observation suggests that statistical 
agencies should get up-to-date weights on an on-
going basis. 

15.37 It is useful to explain how the annual 
quantity vector qb could be obtained from monthly 
revenues on each product during the chosen base 
year b. Let the month m revenue of the reference 
population in the base year b for product i be vi

b,m , 
and let the corresponding price and quantity be 
pi

b,m and qi
b,m , respectively. Value, price, and 

quantity for each product are related by the follow-
ing equations: 

(15.22) , , , ;b m b m b m
i i iv p q= i = 1,...,n; m = 1,...,12. 

 
For each product i, the annual total qi

b can be ob-
tained by price-deflating monthly values and 
summing over months in the base year b as  
follows: 
 

(15.23) 
,12 12

,
,

1 1

;
b m

b b mi
i ib m

m mi

vq q
p= =

= =∑ ∑ i = 1,...,n, 

 
where equation (15.22) was used to derive equa-
tion (15.23). In practice, the above equations will 
be evaluated using aggregate revenues over closely 
related products, and the price pi

b,m will be the 
month m price index for this elementary product 
group i in year b relative to the first month of year 
b. 
 
15.38 For some purposes, it is also useful to 
have annual prices by product to match the annual 
quantities defined by equation (15.23). Following 
national income accounting conventions, a reason-

                                                                                   
Stine made three additional suggestions for price indices in 
the context of seasonal products. Their contributions will 
be evaluated in Chapter 22. 
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able39 price pi
b to match the annual quantity qi

b is 
the value of total revenue for product i in year b 
divided by qi

b. Thus, we have  

(15.24)
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where the share of annual revenue on product i in 
month m of the base year is 
 

(15.25) 
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Thus, the annual base-year price for product i, pi

b, 
turns out to be a monthly revenue-weighted har-
monic mean of the monthly prices for product i in 
the base year, pi

b,1, pi
b,2,…, pi

b,12. 
 
15.39 Using the annual product prices for the 
base year defined by equation (15.24), a vector of 
these prices can be defined as pb ≡ [p1

b,…,pn
b]. Us-

ing this definition, the Lowe index can be ex-
pressed as a ratio of two Laspeyres indices where 
the price vector pb plays the role of base-period 
prices in each of the two Laspeyres indices: 
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39 Hence, these annual product prices are essentially unit-

value prices. Under conditions of high inflation, the annual 
prices defined by equation (15.24) may no longer be rea-
sonable or representative of prices during the entire base 
year because the revenues in the final months of the high-
inflation year will be somewhat artificially blown up by 
general inflation. Under these conditions, the annual prices 
and annual product revenue shares should be interpreted 
with caution. For more on dealing with situations where 
there is high inflation within a year, see Peter Hill (1996). 
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where the Laspeyres formula PL was defined by 
equation (15.5) above. Thus, the above equation 
shows that the Lowe monthly price index compar-
ing the prices of month 0 with  those of month t us-
ing the quantities of base year b as weights, 
PLo(p0,pt,qb), is equal to the Laspeyres index that 
compares the prices of month t with those of year 
b, PL(pb,pt,qb), divided by the Laspeyres index that 
compares the prices of month 0 with those of year 
b, PL(pb,p0,qb). Note that the Laspeyres index in 
the numerator can be calculated if the base-year 
product revenue shares, si

b, are known along with 
the price ratios that compare the prices of product i 
in month t, pi

t, with the corresponding annual aver-
age prices in the base year b, pi

b. The Laspeyres 
index in the denominator can be calculated if the 
base-year product revenue shares, si

b, are known 
along with the price ratios that compare the prices 
of product i in month 0, pi

0, with the corresponding 
annual average prices in the base year b, pi

b.  
 
15.40 Another convenient formula for evaluat-
ing the Lowe index, PLo(p0,pt,qb), uses the hybrid 
weights formula, equation (15.15). In the present 
context, the formula becomes  
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where the hybrid weights si

0b using the prices of 
month 0 and the quantities of year b are defined by 
 

(15.28) 
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Equation (15.28) shows how the base-year reve-
nues, pi

bqi
b, can be multiplied by the product price 

indices, pi
0/pi

b, to calculate the hybrid shares. 
 
15.41 One additional formula for the Lowe in-
dex, PLo(p0,pt,qb), will be exhibited. Note that the 
Laspeyres decomposition of the Lowe index de-
fined by the third line in equation (15.26) involves 
the very long-term price relatives, pi

t/pi
b, that com-

pare the prices in month t, pi
t, with the possibly 

distant base-year prices, pi
b. Further, the hybrid 

share decomposition of the Lowe index defined by 
the third line in equation (15.27) involves the long-
term monthly price relatives, pi

t/pi
0, which com-

pare the prices in month t, pi
t, with the base month 

prices, pi
0. Both these formulas are not satisfactory 

in practice because of the problem of sample attri-
tion: each month, a substantial fraction of products 
disappears from the marketplace, and thus it is use-
ful to have a formula for updating the previous 
month’s price index using just month-over-month 
price relatives. In other words, long-term price 
relatives disappear at a rate that is too large in 
practice to base an index number formula on their 
use. The Lowe index for month t + 1, 
PLo(p0,pt+1,qb), can be written in terms of the Lowe 
index for month t, PLo(p0,pt,qb), and an updating 
factor as follows: 

(15.29) 
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where the hybrid weights si

tb are defined by 
 

(15.30) 
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Thus, the required updating factor, going from 
month t to month t + 1, is the chain-linked index 

( )1

1

n
tb t t
i i i

i

s p p+

=
∑ , which uses the hybrid share 

weights si
tb corresponding to month t and base  

year b. 
 
15.42 The Lowe index PLo(p0,pt,qb) can be re-
garded as an approximation to the ordinary 
Laspeyres index, PL(p0,pt,q0), that compares the 
prices of the base month 0, p0, with those of  
month t, pt, using the quantity vector of month 0, 
q0, as weights. There is a relatively simple formula 
that relates these two indices. To explain this for-
mula, it is first necessary to make a few defini-
tions. Define the ith price relative between month 
0 and month t as  

(15.31) 0/ ;t
i i ir p p≡ i =1,...,n. 

 
The ordinary Laspeyres price index, going from 
month 0 to t, can be defined in terms of these price 
relatives as follows: 
 

(15.32) 
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where the month 0 revenue shares si

0 are defined 
as follows: 
  

(15.33) 
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15.43 Define the ith quantity relative ti as the ra-
tio of the quantity of product i used in the base 
year b, qi

b, to the quantity used in month 0, qi
0, as 

follows: 

(15.34) 0/ ;b
i i it q q≡ i =1,...,n. 

 
The Laspeyres quantity index, QL(q0,qb,p0), that 
compares quantities in year b, qb, with the corre-
sponding quantities in month 0, q0, using the prices 
of month 0, p0, as weights can be defined as  
a weighted average of the quantity ratios ti as  
follows: 
 

(15.35) 
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15.44 Using equation (A15.2.4) in Appendix 
15.2, the relationship between the Lowe index 
PLo(p0,pt,qb) that uses the quantities of year b as 
weights to compare the prices of month t with 
month 0 and the corresponding ordinary Laspeyres 
index PL(p0,pt,q0) that uses the quantities of month 
0 as weights is defined as  
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Thus, the Lowe price index using the quantities of 
year b as weights, PLo(p0,pt,qb), is equal to the 
usual Laspeyres index using the quantities of 
month 0 as weights, PL(p0,pt,q0), plus a covariance 

term 0

1

( )( )
n

i i i
i

r r t t s∗ ∗

=

− −∑  between the price rela-

tives ri ≡ pi 
t/ pi

0 and the quantity relatives ti ≡  
qi

b/qi
0, divided by the Laspeyres quantity index 

QL(q0,qb,p0) between month 0 and base year b.  
 
15.45 Equation (15.36) shows that the Lowe 
price index will coincide with the Laspeyres price 
index if the covariance or correlation between the 
month 0 to t price relatives ri ≡ pi

t/pi
0 and the 

month 0 to year b quantity relatives ti ≡ qi
b/qi

0 is 
zero. Note that this covariance will be zero under 
three different sets of conditions: 

• If the month t prices are proportional to the 
month 0 prices so that all ri = r*, 

• If the base year b quantities are proportional to 
the month 0 quantities so that all ti = t*, and 

• If the distribution of the relative prices ri is in-
dependent of the distribution of the relative 
quantities ti. 

 
The first two conditions are unlikely to hold em-
pirically, but the third is possible, at least approxi-
mately, if purchasers do not systematically change 
their purchasing habits in response to changes in 
relative prices.  
 
15.46 If this covariance in equation (15.36) is 
negative, then the Lowe index will be less than the 
Laspeyres, and, finally, if the covariance is posi-
tive, then the Lowe index will be greater than the 
Laspeyres index. Although the sign and magnitude 
of the covariance term is ultimately an empirical 
matter, it is possible to make some reasonable con-
jectures about its likely sign. If the base year b 
precedes the price reference month 0 and there are 
long-term trends in prices, then it is likely that this 
covariance is positive, and hence that the Lowe in-
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dex will exceed the corresponding Laspeyres price 
index;40 that is,  

(15.37) 0 0 0( , , ) ( , , ).t b t
Lo LP p p q P p p q>  

 
To see why this covariance is likely to be positive, 
suppose that there is a long-term upward trend in 
the price of product i so that ri − r* ≡ (pi

t / pi
0) − r* 

is positive. With normal substitution responses,41 
qi

t / qi
0 less an average quantity change of this type 

(t*) is likely to be negative, or, upon taking recip-
rocals, qi

0 / qi
t less an average quantity change of 

this (reciprocal) type is likely to be positive. But if 
the long-term upward trend in prices has persisted 
back to the base year b, then ti − t* ≡ (qi

b / qi
0) − t* 

is also likely to be positive. Hence, the covariance 
will be positive under these circumstances. More-
over, the more distant is the weight reference year 
b from the price reference month 0, the bigger the 
residuals ti − t* will likely be and the bigger will 
be the positive covariance. Similarly, the more dis-
tant is the current-period month t from the base-
period month 0, the bigger the residuals ri − r* will 
likely be and the bigger will be the positive covari-
ance. Thus, under the assumptions that there are 
long-term trends in prices and normal substitution 
responses, the Lowe index will normally be greater 
than the corresponding Laspeyres index.  
 
15.47 Define the Paasche index between months 
0 and t as follows: 

                                                        
40It is also necessary to assume that purchasers have nor-

mal substitution effects in response to these long-term 
trends in prices; that is, if a product increases (relatively) in 
price, its quantity purchased will decline (relatively), and if 
a product decreases relatively in price, its quantity pur-
chased will increase relatively. This reflects the normal 
“market equilibrium” response to changes in supply. 

41Walsh (1901, pp. 281–82) was well aware of substitu-
tion effects, as can be seen in the following comment that 
noted the basic problem with a fixed-basket index that uses 
the quantity weights of a single period: “The argument 
made by the arithmetic averagist supposes that we buy the 
same quantities of every class at both periods in spite of the 
variation in their prices, which we rarely, if ever, do.  As a 
rough proposition, we—a community—generally spend 
more on articles that have risen in price and get less of 
them, and spend less on articles that have fallen in price 
and get more of them.”    
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As was discussed in Section C.1, a reasonable tar-
get index to measure the price change going from 
month 0 to t is some sort of symmetric average of 
the Paasche index PP(p0,pt,qt) defined by equation 
(15.38) and the corresponding Laspeyres index 
PL(p0,pt,q0) defined by equation (15.32). Adapting 
equation (A15.1.5) in Appendix 15.1, the relation-
ship between the Paasche and Laspeyres indices 
can be written as follows: 
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where the price relatives ri ≡ pi

t / pi
0 are defined by 

equation (15.31) and their share-weighted average 
r* by equation (15.32), and the ui, u* and QL are 
defined as follows: 
 
(15.40) 0/ ;t

i i iu q q≡  i = 1,...,n, 
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and the month 0 revenue shares si

0 are defined by 
equation (15.33). Thus, u* is equal to the 
Laspeyres quantity index between months 0 and t. 
This means that the Paasche price index that uses 
the quantities of month t as weights, PP(p0,pt,qt), is 
equal to the usual Laspeyres index using the quan-
tities of month 0 as weights, PL(p0,pt,q0), plus a 

covariance term 0

1

( )( )
n

i i i
i

r r u u s∗ ∗

=

− −∑  between the 

price relatives ri ≡ pi
t / pi

0 and the quantity relatives 
ui ≡ qi

t / qi
0, divided by the Laspeyres quantity in-

dex QL(q0,qt,p0) between month 0 and month t.  
 
15.48 Although the sign and magnitude of the 
covariance term is again an empirical matter, it is 
possible to make a reasonable conjecture about its 
likely sign. If there are long-term trends in prices, 
and purchasers respond normally to price changes 
in their purchases, then it is likely that this covari-
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ance is negative, and hence the Paasche index will 
be less than the corresponding Laspeyres price in-
dex; that is,  

(15.42) 0 0 0( , , ) ( , , )t t t
P LP p p q P p p q< . 

 
To see why this covariance is likely to be negative, 
suppose that there is a long-term upward trend in 
the price of product i 42 so that ri − r* ≡ (pi

t / pi
0) − 

r* is positive. With normal substitution responses, 
qi

t / qi
0 less an average quantity change of this type 

(u*) is likely to be negative. Hence, ui − u* ≡ (qi
t / 

qi
0) − u* is likely to be negative. Thus, the covari-

ance will be negative under these circumstances. 
Moreover, the more distant is the base month 0 
from the current-month t, the bigger in magnitude 
the residuals ui − u* will likely be and the bigger in 
magnitude will be the negative covariance.43 Simi-
larly, the more distant is the current-period month t 
from the base-period month 0, the bigger the re-
siduals ri − r* will likely be and the bigger in mag-
nitude will be the covariance. Thus, under the as-
sumptions that there are long-term trends in prices 
and normal substitution responses, the Laspeyres 
index will be greater than the corresponding 
Paasche index, with the divergence likely growing 
as month t becomes more distant from month 0.  
  
15.49 Putting the arguments in the three previ-
ous paragraphs together, it can be seen that under 
the assumptions that there are long-term trends in 
prices and normal substitution responses, the Lowe 
price index between months 0 and t will exceed the 
corresponding Laspeyres price index, which in 
turn will exceed the corresponding Paasche price 
index; that is, under these hypotheses, 

(15.43) 
0 0 0 0( , , ) ( , , ) ( , , ).t b t t t

Lo L PP p p q P p p q P p p q> >  
 
Thus, if the long-run target price index is an aver-
age of the Laspeyres and Paasche indices, it can be 
                                                        

42The reader can carry through the argument if there is a 
long-term relative decline in the price of the ith product. 
The argument required to obtain a negative covariance re-
quires that there be some differences in the long-term 
trends in prices; that is, if all prices grow (or fall) at the 
same rate, we have price proportionality, and the covari-
ance will be zero. 

43However, QL = u* may also be growing in magnitude, 
so the net effect on the divergence between PL and PP is 
ambiguous.  

seen that the Laspeyres index will have an upward 
bias relative to this target index, and the Paasche 
index will have a downward bias. In addition, if 
the base year b is prior to the price reference 
month, month 0, then the Lowe index will also 
have an upward bias relative to the Laspeyres in-
dex and hence also to the target index. 
 
D.2   Lowe index and midyear indices 

15.50 The discussion in the previous paragraph 
assumed that the base year b for quantities pre-
ceded the base month for prices, month 0. How-
ever, if the current-period month t is quite distant 
from the base month 0, then it is possible to think 
of the base year b as referring to a year that lies be-
tween months 0 and t. If the year b does fall be-
tween months 0 and t, then the Lowe index be-
comes a midyear index.44 The Lowe midyear index 
no longer has the upward biases indicated by the 
inequalities in equation (15.43) under the assump-
tion of long-term trends in prices and normal sub-
stitution responses by quantities.  

15.51 It is now assumed that the base-year quan-
tity vector qb corresponds to a year that lies be-
tween months 0 and t. Under the assumption of 
long-term trends in prices and normal substitution 
effects so that there are also long-term trends in 
quantities (in the opposite direction to the trends in 
prices so that if the ith product price is trending up, 
then the corresponding ith quantity is trending 
down), it is likely that the intermediate-year quan-

                                                        
44This concept can be traced to Peter Hill (1998, p. 46): 

“When inflation has to be measured over a specified se-
quence of years, such as a decade, a pragmatic solution to 
the problems raised above would be to take the middle year 
as the base year.  This can be justified on the grounds that 
the basket of goods and services purchased in the middle 
year is likely to be much more representative of the pattern 
of consumption over the decade as a whole than baskets 
purchased in either the first or the last years. Moreover, 
choosing a more representative basket will also tend to re-
duce, or even eliminate, any bias in the rate of inflation 
over the decade as a whole as compared with the increase 
in the CoL index.” Thus, in addition to introducing the con-
cept of a midyear index, Hill also introduced the idea of 
representativity bias. For additional material on midyear 
indices, see Schultz (1999) and Okamoto (2001). Note that 
the midyear index concept could be viewed as a close com-
petitor to Walsh’s (1901, p. 431) multiyear fixed-basket in-
dex, where the quantity vector was chosen to be an arith-
metic or geometric average of the quantity vectors in the 
period. 
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tity vector will lie between the monthly quantity 
vectors q0 and qt. The midyear Lowe index, 
PLo(p0,pt,qb), and the Laspeyres index going from 
month 0 to t, PL(p0,pt,q0), will still satisfy the exact 
relationship given by equation (15.36). Thus, 
PLo(p0,pt,qb) will equal PL(p0,pt,q0) plus the co-

variance term 0 0 0

1

( )( ) ( , , )
n

b
i i i L

i

r r t t s Q q q p∗ ∗

=

− −∑ , 

where QL(q0,qb,p0) is the Laspeyres quantity index 
going from month 0 to t. This covariance term is 
likely to be negative, so that  

(15.44) 0 0 0( , , ) ( , , ).t t b
L LoP p p q P p p q>  

 
To see why this covariance is likely to be negative, 
suppose that there is a long-term upward trend in 
the price of product i so that ri − r* ≡ (pi

t / pi
0) − r* 

is positive. With normal substitution responses, qi 
will tend to decrease relatively over time, and 
since qi

b is assumed to be between qi
0 and qi

t, 
qi

b/qi
0 less an average quantity change of this type, 

r* is likely to be negative. Hence ui − u* ≡   
(qi

b / qi
0) − t* is likely to be negative. Thus, the co-

variance is likely to be negative under these cir-
cumstances. Under the assumptions that the quan-
tity base year falls between months 0 and t and 
that there are long-term trends in prices and nor-
mal substitution responses, the Laspeyres index 
will normally be larger than the corresponding 
Lowe midyear index, with the divergence likely 
growing as month t becomes more distant from 
month 0.  
 
15.52 It can also be seen that under the above 
assumptions, the midyear Lowe index is likely to 
be greater than the Paasche index between months 
0 and t; that is, 

(15.45) 0 0( , , ) ( , , ).t b t t
Lo PP p p q P p p q>  

  
To see why the above inequality is likely to hold, 
think of qb starting at the month 0 quantity vector 
q0 and then trending smoothly to the month t quan-
tity vector qt. When qb = q0, the Lowe index be-
comes the Laspeyres index PL(p0,pt,q0). When qb = 
qt, the Lowe index becomes the Paasche index 
PP(p0,pt,qt). Under the assumption of trending 
prices and normal substitution responses to these 
trending prices, it was shown earlier that the 
Paasche index will be less than the corresponding 
Laspeyres price index; that is, that PP(p0,pt,qt) was 
less than PL(p0,pt,q0); recall equation (15.42). 

Thus, under the assumption of smoothly trending 
prices and quantities between months 0 and t, and 
assuming that qb is between q0 and qt, we will have 
 
(15.46) 0 0( , , ) ( , , )t t t b

P LoP p p q P p p q<  
 0 0( , , )t

LP p p q< . 
  
Thus, if the base year for the Lowe index is chosen 
to be between the base month for the prices, month 
0, and the current month for prices, month t, and 
there are trends in prices with corresponding trends 
in quantities that correspond to normal substitution 
effects, then the resulting Lowe index is likely to 
lie between the Paasche and Laspeyres indices go-
ing from months 0 to t. If the trends in prices and 
quantities are smooth, then choosing the base year 
halfway between periods 0 and t should give a 
Lowe index that is approximately halfway between 
the Paasche and Laspeyres indices and hence will 
be very close to an ideal target index between 
months 0 and t. This basic idea has been imple-
mented by Okamoto (2001) using Japanese con-
sumer data, and he found that the resulting mid-
year indices approximated the corresponding 
Fisher ideal indices very closely. 
 
15.53 It should be noted that these midyear indi-
ces can be computed only on a retrospective basis; 
that is, they cannot be calculated in a timely fash-
ion as can Lowe indices that use a base year before 
month 0. Thus, midyear indices cannot be used to 
replace the more timely Lowe indices. However, 
these timely Lowe indices are likely to have an 
upward bias even bigger than the usual Laspeyres 
upward bias compared with an ideal target index, 
which was taken to be an average of the Paasche 
and Laspeyres indices.  

15.54 All of the inequalities derived in this sec-
tion rest on the assumption of long-term trends in 
prices (and corresponding economic responses in 
quantities). If there are no systematic long-run 
trends in prices and only random fluctuations 
around a common trend in all prices, then the 
above inequalities are not valid, and the Lowe in-
dex using a prior base year will probably provide a 
perfectly adequate approximation to both the 
Paasche and Laspeyres indices. However, there are 
some reasons for believing that some long-run 
trends in prices exist:  
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(i)  The computer chip revolution of the past 40 
years has led to strong downward trends in 
the prices of products that use these chips in-
tensively. As new uses for chips are devel-
oped, the share of products that are chip-
intensive has grown, which implies that what 
used to be a relatively minor problem has be-
come a major problem. 

(ii)  Other major scientific advances have had 
similar effects. For example, the invention of 
fiber-optic cable (and lasers) has led to a 
downward trend in telecommunications prices 
as obsolete technologies based on copper wire 
are gradually replaced. 

(iii)  Since the end of World War II, a series of in-
ternational trade agreements have dramati-
cally reduced tariffs around the world. These 
reductions, combined with improvements in 
transportation technologies, have led to a 
rapid growth of international trade and re-
markable improvements in international spe-
cialization. Manufacturing activities in the 
more developed economies have gradually 
been outsourced to lower-wage countries, 
leading to deflation in goods prices in most 
countries. However, many services cannot be 
readily outsourced,45 and so on average the 
price of services trends upward while the 
price of goods trends downward. 

(iv)  At the microeconomic level, there are tre-
mendous differences in growth rates of firms. 
Successful firms expand their scale, lower 
their costs, and cause less successful competi-
tors to wither away with their higher prices 
and lower volumes. This leads to a systematic 
negative correlation between changes in item 
prices and the corresponding changes in item 
volumes that can be very large. 

 
Thus, there is some a priori basis for assuming 
long-run divergent trends in prices and hence some 
basis for concern that a Lowe index that uses a 
base year for quantity weights that is prior to the 
base month for prices may be upward biased, 
compared with a more ideal target index.  
 

                                                        
45However some services can be internationally out-

sourced; for example, call centers, computer programming, 
and airline maintenance. 

D.3 Young index 

15.55 Recall the definitions for the base-year 
quantities, qi

b, and the base-year prices, pi
b, given 

by equation (15.23) and equation (15.24). The 
base-year revenue shares can be defined in the 
usual way as follows:  

(15.47) 

1

;
b b

b i i
i n

b b
k k

k

p q
s

p q
=

≡

∑
i =1,...,n. 

 
Define the vector of base-year revenue shares in 
the usual way as sb ≡ [s1

b,…,sn
b]. These base-year 

revenue shares were used to provide an alternative 
formula for the base year b Lowe price index go-
ing from month 0 to t defined in equation (15.26) 

as PLo(p0,pt,qb) = 0

1 1

( / ) ( / )
n n

b t b b b
i i i i i i

i i

s p p s p p
= =
∑ ∑ . 

Rather than using this index as their short-run tar-
get index, many statistical agencies use the follow-
ing closely related index: 
  

(15.48) ( )0 0

1

( , , ) .
n

t b b t
Y i i i

i

P p p s s p p
=

≡ ∑  

 
This type of index was first defined by the English 
economist Arthur Young (1812).46 Note that there 
is a change in focus when the Young index is used 
compared with the indices proposed earlier in this 
chapter. Up to this point, the indices proposed have 
been of the fixed-basket type (or averages of such 
indices), where a product basket that is somehow 
representative for the two periods being compared 
is chosen and then “purchased” at the prices of the 
two periods, and the index is taken to be the ratio 
of these two costs. On the other hand, for the 
Young index, one instead chooses representative 
revenue shares that pertain to the two periods un-
der consideration and then uses these shares to cal-
culate the overall index as a share-weighted aver-
age of the individual price ratios, pi

t / pi
0. Note that 

this share-weighted average of price ratios view of 
index number theory is a bit different from the 
view taken at the beginning of this chapter, which 
viewed the index number problem as the problem 
of decomposing a value ratio into the product of 
two terms, one of which expresses the amount of 
                                                        

46Walsh (1901, p. 536; 1932, p. 657) attributes this for-
mula to Young. 
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price change between the two periods and the other 
that expresses the amount of quantity change.47  
 
15.56 Statistical agencies sometimes regard the 
Young index defined above as an approximation to 
the Laspeyres price index PL(p0,pt,q0). Hence, it is 
of interest to see how the two indices compare. De-
fining the long-term monthly price relatives going 
from month 0 to t as ri ≡ pi

t/pi
0 and using equations 

(15.32) and (15.48), 

(15.49) 0 0 0( , , ) ( , , )t b t
Y LP p p s P p p q−  

     0
0 0

1 1

t tn n
b i i
i i

i ii i

p p
s s

p p= =

   
≡ −   

   
∑ ∑  

     

0 0
0

1 1

0 0

1 1

0

1
,

tn n
b bi
i i i i i

i ii

n n
b b
i i i i i

i i

n
b
i i i

i

p
s s s s r

p

s s r r r s s

s s r r

= =

∗ ∗

= =

∗

=

 
   = − = −    

 

     = − − + −     

   = − −   

∑ ∑

∑ ∑

∑

 

 

since 0

1 1

1
n n

b
i i

i i

s s
= =

= =∑ ∑  and defining 

                                                        
47Irving Fisher’s 1922 book is famous for developing the 

value ratio decomposition approach to index number the-
ory, but his introductory chapters took the share-weighted 
average point of view: “An index number of prices, then, 
shows the average percentage change of prices from one 
point of time to another”  (1922, p. 3).  Fisher went on to 
note the importance of economic weighting: “The preced-
ing calculation treats all the commodities as equally impor-
tant; consequently, the average was called ‘simple’. If one 
commodity is more important than another, we may treat 
the more important as though it were two or three com-
modities, thus giving it two or three times as much ‘weight’ 
as the other commodity” (1922, p. 6). Walsh (1901, pp. 
430–31) considered both approaches: “We can either (1) 
draw some average of the total money values of the classes 
during an epoch of years, and with weighting so determined 
employ the geometric average of the price variations [ra-
tios]; or (2) draw some average of the mass quantities of 
the classes during the epoch, and apply to them Scrope’s 
method.” Scrope’s method is the same as using the Lowe 
index. Walsh (1901, pp. 88–90) consistently stressed the 
importance of weighting price ratios by their economic im-
portance (rather than using equally weighted averages of 
price relatives). Both the value ratio decomposition ap-
proach and the share-weighted average approach to index 
number theory will be studied from the axiomatic perspec-
tive in the following chapter; see also Sections C and E in 
Chapter 16. 

( )0 0 0

1

* , ,
n

t
i i L

i

r s r P p p q
=

≡ =∑ .  

 
Thus, the Young index PY(p0,pt,sb) is equal to the 
Laspeyres index PL(p0,pt,q0) plus the covariance 
between the difference in the annual shares per-
taining to year b and the month 0 shares, si

b − si
0, 

and the deviations of the relative prices from their 
mean, ri − r*.  
 
15.57 It is no longer possible to guess the likely 
sign of the covariance term. The question is no 
longer whether the quantity demanded goes down 
as the price of product i goes up (the answer to this 
question is usually yes) but does the share of reve-
nue go down as the price of product i goes up? The 
answer depends on the elasticity of demand for the 
product. However, let us provisionally assume that 
there are long-run trends in product prices, and if 
the trend in prices for product i is above the mean, 
then the revenue share for the product trends down 
(and vice versa). Thus, we are assuming high elas-
ticities or very strong substitution effects. Assum-
ing also that the base year b is before month 0, 
then under these conditions, suppose that there is a 
long-term upward trend in the price of product i so 
that ri − r* ≡ (pi

t / pi
0) − r* is positive. With the as-

sumed very elastic purchaser substitution re-
sponses, si will tend to decrease relatively over 
time. Since si

b is assumed to be before si
0, si

0 is ex-
pected to be less than si

b , or si
b − si

0 will likely be 
positive. Thus, the covariance is likely to be posi-
tive under these circumstances. Hence with long-
run trends in prices and very elastic responses of 
purchasers to price changes, the Young index is 
likely to be greater than the corresponding 
Laspeyres index.  

15.58 Assume that there are long-run trends in 
product prices. If the trend in prices for product i is 
above the mean, then suppose that the revenue 
share for the product trends up (and vice versa). 
Thus, we are assuming low elasticities or very 
weak substitution effects. Assume also that the 
base year b is before month 0, and suppose that 
there is a long-term upward trend in the price of 
product i so that ri − r* ≡ (pi

t / pi
0) − r* is positive. 

With the assumed very inelastic substitution re-
sponses, si will tend to increase relatively over 
time, and, since si

b is assumed to be before si
0, we 

will have si
0 greater than si

b , or si
b − si

0 is negative. 
Thus, the covariance is likely to be negative under 
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these circumstances. Hence with long-run trends in 
prices and very inelastic responses of purchasers 
to price changes, the Young index is likely to be 
less than the corresponding Laspeyres index.  

15.59 The previous two paragraphs indicate that, 
a priori, it is not known what the likely difference 
between the Young index and the corresponding 
Laspeyres index will be. If elasticities of substitu-
tion are close to 1, then the two sets of revenue 
shares, si

b and si
0, will be close to each other and 

the difference between the two indices will be 
close to zero. However, if monthly revenue shares 
have strong seasonal components, then the annual 
shares si

b could differ substantially from the 
monthly shares si

0. 

15.60 It is useful to have a formula for updating 
the previous month’s Young price index using 
only month-over-month price relatives. The Young 
index for month t + 1, PY(p0,pt+1,sb), can be pre-
sented in terms of the Lowe index for month t, 
PY(p0,pt,sb), and an updating factor as follows: 

(15.50) 
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using equation (15.47) 
1
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where the hybrid weights si

b0t are defined by 
 

(15.51) 
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∑
i = 1,...,n. 

 
Thus, the hybrid weights si

b0t can be obtained from 
the base-year weights si

b by updating them; that is, 
by multiplying them by the price relatives (or indi-
ces at higher levels of aggregation), pi

t / pi
0. Thus, 

the required updating factor, going from month  
t to month t + 1, is the chain-linked index, 

0 1

1

( / )
n

b t t t
i i i

i

s p p+

=
∑ , which uses the hybrid revenue-

share weights si
b0t defined by equation (15.51). 

 
15.61 Even if the Young index provides a close 
approximation to the corresponding Laspeyres in-
dex, it is difficult to recommend the use of the 
Young index as a final estimate of the change in 
prices going from period 0 to t, just as it was diffi-
cult to recommend the use of the Laspeyres index 
as the final estimate of inflation going from period 
0 to t. Recall that the problem with the Laspeyres 
index was its lack of symmetry in the treatment of 
the two periods under consideration. That is, using 
the justification for the Laspeyres index as a good 
fixed-basket index, there was an identical justifica-
tion for the use of the Paasche index as an equally 
good fixed-basket index to compare periods 0 and 
t. The Young index suffers from a similar lack of 
symmetry with respect to the treatment of the base 
period. The problem can be explained as follows. 
The Young index, PY(p0,pt,sb), defined by equation 
(15.48), calculates the price change between 
months 0 and t, treating month 0 as the base. But 
there is no particular reason to treat month 0 as the 
base month other than convention. Hence, if we 
treat month t as the base and use the same formula 
to measure the price change from month t back to 

month 0, the index PY(p0,pt,sb) = 0

1

( / )
n

b t
i i i

i

s p p
=
∑  

would be appropriate. This estimate of price 
change can then be made comparable to the origi-
nal Young index by taking its reciprocal, leading 
to the following rebased Young index,48 
PY*(p0,pt,sb), defined as  

                                                        
48Using Irving Fisher’s (1922, p. 118) terminology, 

PY*(p0,pt,sb) ≡ 1/[PY(pt,p0,sb)] is the time antithesis of 
the original Young index, PY(p0,pt,sb). 
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(15.52) 0 0
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( , , ) 1 ( / )
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Y i i i
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P p p s s p p∗

=

≡ ∑   
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=
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Thus, the rebased Young index, PY*(p0,pt,sb), that 
uses the current month as the initial base period is 
a share-weighted harmonic mean of the price rela-
tives going from month 0 to month t, whereas the 
original Young index, PY(p0,pt,sb), is a share-
weighted arithmetic mean of the same price rela-
tives. 
  
15.62 Fisher argued that an index number for-
mula should give the same answer no matter which 
period was chosen as the base: 

Either one of the two times may be taken as the 
“base”. Will it make a difference which is cho-
sen? Certainly, it ought not and our Test 1 de-
mands that it shall not. More fully expressed, the 
test is that the formula for calculating an index 
number should be such that it will give the same 
ratio between one point of comparison and the 
other point, no matter which of the two is taken 
as the base. (Irving Fisher, 1922, p. 64) 

 
15.63 The problem with the Young index is that 
not only does it not coincide with its rebased coun-
terpart, but there is a definite inequality between 
the two indices, namely 

(15.53) 0 0( , , ) ( , , ),t b t b
Y YP p p s P p p s∗ ≤  

 
with a strict inequality provided that the period t 
price vector pt is not proportional to the period 0 
price vector p0.49 Thus, a statistical agency that 

                                                        
49These inequalities follow from the fact that a harmonic 

mean of M positive numbers is always equal to or less than 
the corresponding arithmetic mean; see Walsh (1901, p. 
517) or Irving Fisher (1922, pp. 383–84). This inequality is 
a special case of Schlömilch’s (1858) Inequality; see 
Hardy, Littlewood and Polyá (1934, p. 26). Walsh (1901, 
pp. 330–32) explicitly noted the inequality in equation 
(15.53) and also noted that the corresponding geometric 
average would fall between the harmonic and arithmetic 
averages. Walsh (1901, p. 432) computed some numerical 
examples of the Young index and found big differences be-
tween it and his best indices, even using weights that were 
representative for the periods being compared. Recall that 
the Lowe index becomes the Walsh index when geometric 

(continued) 

uses the direct Young index PY(p0,pt,sb) will gener-
ally show a higher inflation rate than a statistical 
agency that uses the same raw data but uses the re-
based Young index, PY*(p0,pt,sb).  
 
15.64 The inequality in equation (15.53) does 
not tell us by how much the Young index will ex-
ceed its rebased time antithesis. However, in Ap-
pendix 15.3, it is shown that to the accuracy of a 
certain second-order Taylor series approximation, 
the following relationship holds between the direct 
Young index and its time antithesis: 

(15.54) 0 0( , , ) ( , , )t b t b
Y YP p p s P p p s∗≈  

      0( , , ) Var ,t b
YP p p s e+  

where Var e is defined as  
 

(15.55) 
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i

e s e e∗
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The deviations ei are defined by 1 + ei = ri / r* for  
i = 1,…,n where the ri and their weighted mean r* 
are defined by 
 
(15.56) 0/ ;t

i i ir p p≡ i = 1,…,n    , 
 

(15.57) 
1

n
b
i i

i

r s r∗

=

≡ ∑ , 

 
which turns out to equal the direct Young index, 
PY(p0,pt,sb). The weighted mean of the ei is defined 
as 
 

(15.58) 
1

n
b
i i

i

e s e∗

=

≡ ∑ , 

 
which turns out to equal 0. Hence, the more dis-
persion there is in the price relatives pi

t / pi
0, to the 

accuracy of a second-order approximation, the 
more the direct Young index will exceed its coun-
terpart that uses month t as the initial base period 
rather than month 0. 

                                                                                   
mean quantity weights are chosen, and so the Lowe index 
can perform well when representative weights are used. 
This is not necessarily the case for the Young index, even 
using representative weights.  Walsh (1901, p. 433) 
summed up his numerical experiments with the Young in-
dex as follows: “In fact, Young’s method, in every form, 
has been found to be bad.”   
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15.65 Given two a priori equally plausible index 
number formulas that give different answers, such 
as the Young index and its time antithesis, Irving 
Fisher (1922, p. 136) generally suggested taking 
the geometric average of the two indices.50 A 
benefit of this averaging is that the resulting for-
mula will satisfy the time reversal test. Thus, rather 
than using either the base period 0 Young index, 
PY(p0,pt,sb), or the current period t Young index, 
PY*(p0,pt,sb), which is always below the base pe-
riod 0 Young index if there is any dispersion in 
relative prices, it seems preferable to use the fol-
lowing index, which is the geometric average of 
the two alternatively based Young indices:51  

(15.59) 0( , , )t b
YP p p s∗ ∗  

       
1/20 0( , , ) ( , , ) .t b t b

Y YP p p s P p p s∗ ≡     
 
If the base-year shares si

b happen to coincide with 
both the month 0 and month t shares, si

0 and si
t, re-

spectively, the time-rectified Young index 
PY**(p0,pt,sb) defined by equation (15.59) will co-
incide with the Fisher ideal price index between 
months 0 and t, PF(p0,pt,q0,qt) (which will also 
equal the Laspeyres and Paasche indices under 
these conditions). Note also that the index PY** de-
fined by equation (15.59) can be produced on a 
timely basis by a statistical agency. 
 

                                                        
50“We now come to a third use of these tests, namely, to 

‘rectify’ formulae, i.e., to derive from any given formula 
which does not satisfy a test another formula which does 
satisfy it; …. This is easily done by ‘crossing’, that is, by 
averaging antitheses.  If a given formula fails to satisfy Test 
1 [the time reversal test], its time antithesis will also fail to 
satisfy it; but the two will fail, as it were, in opposite ways, 
so that a cross between them (obtained by geometrical av-
eraging) will give the golden mean which does satisfy” (Ir-
ving Fisher, 1922, p. 136). Actually, the basic idea behind 
Fisher’s rectification procedure was suggested by Walsh, 
who was a discussant for Fisher (1921), where Fisher gave 
a preview of his 1922 book: “We merely have to take any 
index number, find its antithesis in the way prescribed by 
Professor Fisher, and then draw the geometric mean be-
tween the two”  (Correa Moylan Walsh, 1921b, p. 542).   

51This index is a base-year weighted counterpart to an 
equally weighted index proposed by Carruthers, Sellwood, 
and Ward (1980, p. 25) and Dalén (1992a, p. 140) in the 
context of elementary index number formulas.  See Chapter 
20 for further discussion of this unweighted index. 

E.   Divisia Index and Discrete 
Approximations  

E.1 Divisia price and  
quantity indices 

15.66 The second broad approach to index num-
ber theory relies on the assumption that price and 
quantity data change in a more or less continuous 
way. 

15.67 Suppose that the price and quantity data 
on the n products in the chosen domain of defini-
tion can be regarded as continuous functions of 
(continuous) time, say, pi(t) and qi(t) for i = 1,…,n. 
The value of producer revenue at time t is V(t) de-
fined in the obvious way as 

(15.60) 
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( ) ( ) ( ).
n

i i
i

V t p t q t
=

≡ ∑  

 
15.68 Now suppose that the functions pi(t) and 
qi(t) are differentiable. Then both sides of equation 
(15.60) can be differentiated with respect to time 
to obtain 

(15.61) 
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Divide both sides of equation (15.61) through by 
V(t) and, using equation (15.60), the following 
equation is obtained: 
 

(15.62) 1 1

1

( ) ( ) ( ) ( )
( ) / ( )

( ) ( )

n n

i i i i
i i

n

j j
j

p t q t p t q t
V t V t

p t q t

= =

=

′ ′+
′ =

∑ ∑

∑
 

 
1 1

( ) ( )
( ) ( )

( ) ( )

n n
i i

i i
i ii i

p t q t
s t s t

p t q t= =

′ ′
= +∑ ∑ , 

  
where the time t revenue share on product i, si(t), is 
defined as 
 

(15.63) 
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( ) ( )
( )

( ) ( )

i i
i n
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m

p t q t
s t

p t q t
=

≡

∑
for i = 1,…,n. 

 
15.69 François Divisia (1926, p. 39) argued as 
follows: suppose the aggregate value at time t, 
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V(t), can be written as the product of a time t price-
level function, P(t), say, multiplied by a time t 
quantity-level function, Q(t), say; that is, we have 

(15.64) ( ) ( ) ( ).V t P t Q t=  
 
Suppose, further, that the functions P(t) and Q(t) 
are differentiable. Then, differentiating equation 
(15.64) yields 
 
(15.65) ( ) ( ) ( ) ( ) ( ).V t P t Q t P t Q t′ ′ ′= +  
 
Dividing both sides of equation (15.65) by V(t)  
and using equation (15.64) leads to the following 
equation: 
 

(15.66) ( ) ( ) ( ) .
( ) ( ) ( )

V t P t Q t
V t P t Q t

′ ′ ′
  =    +   

 
15.70 Divisia compared the two expressions for 
the logarithmic value derivative, V′(t)/V(t), given 
by equation (15.62) and equation (15.66). He sim-
ply defined the logarithmic rate of change of the 
aggregate price level, P′(t)/P(t), as the first set of 
terms on the right-hand side of equation (15.62), 
and he simply defined the logarithmic rate of 
change of the aggregate quantity level, Q′(t)/Q(t), 
as the second set of terms on the right-hand side of 
equation (15.62). That is, he made the following 
definitions: 

(15.67) 
1

( )( ) ( ) ;
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n
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i
i i
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P t p t=

′′
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(15.68) 
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( )( ) ( ) .
( ) ( )

n
i

i
i i

q tQ t s t
Q t q t=

′′
≡ ∑  

 
15.71 Equations (15.67) and (15.68) are reason-
able definitions for the proportional changes in the 
aggregate price and quantity (or quantity) levels, 
P(t) and Q(t).52 The problem with these definitions 
is that economic data are not collected in continu-
ous time; they are collected in discrete time. In 
other words, even though transactions can be 

                                                        
52If these definitions are applied (approximately) to the 

Young index studied in the previous section, then it can be 
seen that for the Young price index to be consistent with 
the Divisia price index, the base-year shares should be cho-
sen to be average shares that apply to the entire time period 
between months 0 and t.  

thought of as occurring in continuous time, no 
producer records his or her purchases as they occur 
in continuous time; rather, purchases over a finite 
time period are cumulated and then recorded. A 
similar situation occurs for producers or sellers of 
products; firms cumulate their sales over discrete 
periods of time for accounting or analytical pur-
poses. If it is attempted to approximate continuous 
time by shorter and shorter discrete time intervals, 
empirical price and quantity data can be expected 
to become increasingly erratic, since consumers 
make purchases only at discrete points of time (and 
producers or sellers of products make sales only at 
discrete points of time). However, it is still of 
some interest to approximate the continuous time 
price and quantity levels, P(t) and Q(t) defined im-
plicitly by equations (15.67) and (15.68), by dis-
crete time approximations. This can be done in two 
ways. Either methods of numerical approximation 
can be used or assumptions about the path taken by 
the functions pi(t) and qi(t) (i = 1,…,n) through 
time can be made. The first strategy is used in the 
following section. For discussions of the second 
strategy, see Vogt (1977; 1978), Van Ijzeren 
(1987, pp. 8–12), Vogt and Barta (1997), and Balk 
(2000). 

15.72 There is a connection between the Divisia 
price and quantity levels, P(t) and Q(t), and the 
economic approach to index number theory. How-
ever, this connection is best made after one has 
studied the economic approach to index number 
theory in Chapter 17. Since this material is rather 
technical, it appears in Appendix 17.1. 

E.2 Discrete approximations to  
continuous-time Divisia index 

15.73 To make operational the continuous time 
Divisia price and quantity levels, P(t) and Q(t) de-
fined by the differential equations (15.67) and 
(15.68), it is necessary to convert to discrete time. 
Divisia (1926, p. 40) suggested a straightforward 
method for doing this conversion, which we now 
outline. 

15.74 Define the following price and quantity 
(forward) differences 

(15.69) (1) (0);P P P∆ ≡ −   
(15.70) (1) (0);i i ip p p∆ ≡ −  i = 1,...,n. 
 
Using the above definitions 
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using equation (15.67) when t = 0 and approximat-
ing pi(0) by the difference ∆pi 
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where pt ≡ [p1(t),…,pn(t)] and qt ≡ [q1(t),…,qn(t)] 
for t = 0,1. Thus, it can be seen that Divisia’s dis-
crete approximation to his continuous-time price 
index is just the Laspeyres price index, PL, defined 
by equation (15.5). 
 
15.75 But now a problem noted by Frisch (1936, 
p. 8) occurs: instead of approximating the deriva-
tives by the discrete (forward) differences defined 
by equations (15.69) and (15.70), other approxima-
tions could be used and a wide variety of discrete 
time approximations can be obtained. For example, 
instead of using forward differences and evaluating 
the index at time t = 0, one could use backward 
differences and evaluate the index at time t = 1. 
These backward differences are defined as 

(15.72) (0) (1);b i i ip p p∆ ≡ −  i = 1,...,n. 
 
This use of backward differences leads to the fol-
lowing approximation for P(0) / P(1): 
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using equation (15.67) when t = 1 and approximat-
ing pi(1) by the difference ∆bpi: 

{ }
1

1

(1) (1)

(1) (1)

n

i b i i
i

n

m m
m

p p q

p q

=

=

+ ∆
=

∑

∑
 

1

1

(0) (1)

(1) (1)

n

i i
i
n

m m
m

p q

p q

=

=

=
∑

∑
 

0 1 0 1

1
( , , , )PP p p q q

= , 

 
where PP is the Paasche index defined by equation 
(15.6). Taking reciprocals of both sides of equation 
(15.73) leads to the following discrete approxima-
tion to P(1) / P(0): 
 

(15.74) (1)
(0) P

P P
P

≈ . 

 
15.76 Thus, as Frisch53 noted, both the Paasche 
and Laspeyres indices can be regarded as (equally 
valid) approximations to the continuous-time Di-
visia price index.54 Since the Paasche and 
Laspeyres indices can differ considerably in some 
empirical applications, it can be seen that Divisia’s 
idea is not all that helpful in determining a unique 
discrete time index number formula.55 What is use-
ful about the Divisia indices is the idea that as the 
discrete unit of time gets smaller, discrete ap-

                                                        
53“As the elementary formula of the chaining, we may get 

Laspeyres’ or Paasche’s or Edgeworth’s or nearly any other 
formula, according as we choose the approximation princi-
ple for the steps of the numerical integration (Ragnar 
Frisch, 1936, p. 8). 

54Diewert (1980, p. 444) also obtained the Paasche and 
Laspeyres approximations to the Divisia index using a 
somewhat different approximation argument. He also 
showed how several other popular discrete time index 
number formulas could be regarded as approximations to 
the continuous-time Divisia index. 

55Trivedi (1981) systematically examined the problems 
involved in finding a best discrete time approximation to 
the Divisia indices using the techniques of numerical analy-
sis. However, these numerical analysis techniques depend 
on the assumption that the true continuous-time micro price 
functions, pi(t), can be adequately represented by a poly-
nomial approximation. Thus, we are led to the conclusion 
that the best discrete time approximation to the Divisia in-
dex depends on assumptions that are difficult to verify. 
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proximations to the Divisia indices can approach 
meaningful economic indices under certain condi-
tions. Moreover, if the Divisia concept is accepted 
as the correct one for index number theory, then 
the corresponding correct discrete time counterpart 
might be taken as a weighted average of the chain 
price relatives pertaining to the adjacent periods 
under consideration, where the weights are some-
how representative for the two periods under  
consideration. 

F.   Fixed-Base versus Chain  
Indices 

15.77 This section56 discusses the merits of us-
ing the chain system for constructing price indices 
in the time series context versus using the fixed-
base system.57 

15.78 The chain system58 measures the change 
in prices going from one period to another using a 
bilateral index number formula involving the 
prices and quantities pertaining to the two adjacent 
periods. These one-period rates of change (the 
links in the chain) are then cumulated to yield the 
relative levels of prices over the entire period un-
der consideration. Thus, if the bilateral price index 
is P, the chain system generates the following pat-
tern of price levels for the first three periods: 

(15.75) 0 1 0 11, ( , , , ),P p p q q  
0 1 0 1 1 2 1 2( , , , ) ( , , , )P p p q q P p p q q . 

 
15.79 On the other hand, the fixed-base system 
of price levels using the same bilateral index num-
ber formula P simply computes the level of prices 

                                                        
56This section is based largely on the work of Peter Hill 

(1988; 1993, pp. 385–90). 
57The results in Appendix 17.1 provide some theoretical 

support for the use of chain indices in that it is shown that 
under certain conditions, the Divisia index will equal an 
economic index. Hence, any discrete approximation to the 
Divisia index will approach the economic index as the time 
period gets shorter. Thus, under certain conditions, chain 
indices will approach an underlying economic index.   

58The chain principle was introduced independently into 
the economics literature by Lehr (1885, pp. 45–6) and Mar-
shall (1887, p. 373). Both authors observed that the chain 
system would mitigate the difficulties because of the intro-
duction of new products into the economy, a point also 
mentioned by Peter Hill (1993, p. 388).  Irving Fisher 
(1911, p. 203) introduced the term “chain system.” 

in period t relative to the base period 0 as 
P(p0,pt,q0,qt). Thus, the fixed-base pattern of price 
levels for periods 0, 1, and 2 is  

(15.76) 0 1 0 1 0 2 0 21, ( , , , ), ( , , , ).P p p q q P p p q q  
 
15.80 Note that in both the chain system and the 
fixed-base system of price levels defined by equa-
tions (15.75) and (15.76), the base-period price 
level is equal to 1. The usual practice in statistical 
agencies is to set the base-period price level equal 
to 100. If this is done, then it is necessary to multi-
ply each of the numbers in equations (15.75) and 
(15.76) by 100.  

15.81 Because of the difficulties involved in ob-
taining current-period information on quantities 
(or, equivalently, on revenues), many statistical 
agencies loosely base their PPI on the use of the 
Laspeyres formula in equation (15.5) and the 
fixed-base system. Therefore, it is of some interest 
to look at the possible problems associated with 
the use of fixed-base Laspeyres indices. 

15.82 The main problem with the use of fixed-
base Laspeyres indices is that the period 0 fixed 
basket of products that is being priced out in pe-
riod t often can be quite different from the period t 
basket. Thus, if there are systematic trends in at 
least some of the prices and quantities59 in the in-
dex basket, the fixed-base Laspeyres price index, 
PL(p0,pt,q0,qt), can be quite different from the cor-
responding fixed-base Paasche price index, 
PP(p0,pt,q0,qt).60 This means that both indices are 
likely to be an inadequate representation of the 
movement in average prices over the time period 
under consideration.  

15.83 The fixed-base Laspeyres quantity index 
cannot be used forever; eventually, the base-period 
quantities q0 are so far removed from the current-
period quantities qt that the base must be changed. 

                                                        
59Examples of rapidly downward trending prices and up-

ward trending quantities are computers, electronic equip-
ment of all types, Internet access, and telecommunication 
charges.   

60 Note that PL(p0,pt,q0,qt) will equal PP(p0,pt,q0,qt) if ei-
ther the two quantity vectors q0 and qt are proportional or 
the two price vectors p0 and pt are proportional.  Thus, to 
obtain a difference between the Paasche and Laspeyres in-
dices, nonproportionality in both prices and quantities is 
required. 
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Chaining is merely the limiting case where the 
base is changed each period.61  

15.84 The main advantage of the chain system is 
that under normal conditions, chaining will reduce 
the spread between the Paasche and Laspeyres in-
dices.62 These indices provide an asymmetric per-
spective on the amount of price change that has 
occurred between the two periods under considera-
tion, and it could be expected that a single point 
estimate of the aggregate price change should lie 
between these two estimates. Thus, the use of ei-
ther a chained Paasche or Laspeyres index will 
usually lead to a smaller difference between the 
two and hence to estimates that are closer to the 
“truth.”63  

15.85 Peter Hill (1993, p. 388), drawing on his  
earlier research (1988, pp. 136–37) and that of 
Szulc (1983), noted that it is not appropriate to use 
the chain system when prices oscillate, or 
“bounce,” to use Szulc’s (1983, p. 548) term. This 
phenomenon can occur in the context of regular 
seasonal fluctuations or in the context of price 
wars. However, in the context of roughly mono-
tonically changing prices and quantities, Peter Hill 
(1993, p. 389) recommended the use of chained 
symmetrically weighted indices (see Section C). 
The Fisher and Walsh indices are examples of 
symmetrically weighted indices. 

15.86 It is possible to be a bit more precise re-
garding under which conditions one should or 
should not chain. Basically, one should chain if the 
prices and quantities pertaining to adjacent periods 
are more similar than the prices and quantities of 
more distant periods, since this strategy will lead 
to a narrowing of the spread between the Paasche 
and Laspeyres indices at each link.64 One needs a 
                                                        

61Regular seasonal fluctuations can cause monthly or 
quarterly data to “bounce,” using Szulc’s (1983) term, and 
chaining bouncing data can lead to a considerable amount 
of index drift. That is, if after 12 months, prices and quanti-
ties return to their levels of a year earlier, then a chained 
monthly index will usually not return to unity. Hence, the 
use of chained indices for “noisy” monthly or quarterly 
data is not recommended without careful consideration. 

62See Diewert (1978, p. 895) and Peter Hill (1988; 1993, 
pp. 387–88). 

63This observation will be illustrated with an artificial 
data set in Chapter 19. 

64Walsh, in discussing whether fixed-base or chained in-
dex numbers should be constructed, took for granted that 
the precision of all reasonable bilateral index number for-

(continued) 

measure of how similar are the prices and quanti-
ties pertaining to two periods. The similarity 
measures could be relative or absolute. In the case 
of absolute comparisons, two vectors of the same 
dimension are similar if they are identical and dis-
similar otherwise. In the case of relative compari-
sons, two vectors are similar if they are propor-
tional and dissimilar if they are nonproportional.65 
Once a similarity measure has been defined, the 
prices and quantities of each period can be com-
pared using this measure, and a “tree” or path that 
links all of the observations can be constructed 
where the most similar observations are compared 
using a bilateral index number formula.66 R. J. Hill 
(1995) defined the price structures between the 
two countries to be more dissimilar the bigger is 

                                                                                   
mulas would improve, provided that the two periods or 
situations being compared were more similar and, for this 
reason, favored the use of chained indices: “The question is 
really, in which of the two courses [fixed-base or chained 
index numbers] are we likely to gain greater exactness in 
the comparisons actually made? Here the probability seems 
to incline in favor of the second course; for the conditions 
are likely to be less diverse between two contiguous peri-
ods than between two periods say, fifty years apart” 
(Correa Moylan Walsh, 1901, p. 206). Walsh (1921a, pp. 
84–85) later reiterated his preference for chained index 
numbers. Fisher also made use of the idea that the chain 
system would usually make bilateral comparisons between 
price and quantity data that were more similar and hence 
the resulting comparisons would be more accurate: “The 
index numbers for 1909 and 1910 (each calculated in terms 
of 1867–1877) are compared with each other. But direct 
comparison between 1909 and 1910 would give a different 
and more valuable result. To use a common base is like 
comparing the relative heights of two men by measuring 
the height of each above the floor, instead of putting them 
back to back and directly measuring the difference of level 
between the tops of their heads” (Irving Fisher, 1911, p. 
204). “It seems, therefore, advisable to compare each year 
with the next, or, in other words, to make each year the 
base year for the next. Such a procedure has been recom-
mended by Marshall, Edgeworth and Flux. It largely meets 
the difficulty of non-uniform changes in the Q’s, for any 
inequalities for successive years are relatively small” (Ir-
ving Fisher, 1911, pp. 423–24).   

65Diewert (2002b) takes an axiomatic approach to defin-
ing various indices of absolute and relative dissimilarity. 

66Irving Fisher (1922, pp. 271–76) hinted at the possibil-
ity of using spatial linking; that is, of linking countries 
similar in structure. However, the modern literature has 
grown due to the pioneering efforts of R.J. Hill (1995; 
1999a; 1999b; 2001). R.J. Hill (1995) used the spread be-
tween the Paasche and Laspeyres price indices as an indica-
tor of similarity and showed that this criterion gives the 
same results as a criterion that looks at the spread between 
the Paasche and Laspeyres quantity indices. 
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the spread between PL and PP; that is, the bigger is 
max {PL/PP, PP/PL}. The problem with this meas-
ure of dissimilarity in the price structures of the 
two countries is that it could be the case that PL = 
PP (so that the R. J. Hill measure would register a 
maximal degree of similarity), but p0 could be very 
different from pt. Thus, there is a need for a more 
systematic study of similarity (or dissimilarity) 
measures to pick the best one that could be used as 
an input into R. J. Hill’s (1999a; 1999b; 2001) 
spanning tree algorithm for linking observations. 

15.87 The method of linking observations ex-
plained in the previous paragraph based on the 
similarity of the price and quantity structures of 
any two observations may not be practical in a sta-
tistical agency context, since the addition of a new 
period may lead to a reordering of the previous 
links. However, the above scientific method for 
linking observations may be useful in deciding 
whether chaining is preferable or whether fixed-
base indices should be used while making month-
to-month comparisons within a year.  

15.88 Some index number theorists have ob-
jected to the chain principle on the grounds that it 
has no counterpart in the spatial context: 

They [chain indices] only apply to intertemporal 
comparisons, and in contrast to direct indices 
they are not applicable to cases in which no natu-
ral order or sequence exists. Thus, the idea of a 
chain index, for example, has no counterpart in 
interregional or international price comparisons, 
because countries cannot be sequenced in a 
“logical” or “natural” way (there is no k + 1 nor 
k − 1 country to be compared with country k). 
(Peter von der Lippe, 2001, p. 12)67 

This is correct, but R.J. Hill’s approach does lead 
to a natural set of spatial links. Applying the same 
approach to the time-series context will lead to a 
set of links between periods that may not be month 
to month, but it will in many cases justify year-
over-year linking of the data pertaining to the same 

                                                        
67It should be noted that von der Lippe (2001, pp. 56–8) 

is a vigorous critic of all index number tests based on 
symmetry in the time series context, although he is willing 
to accept symmetry in the context of making international 
comparisons.  “But there are good reasons not to insist on 
such criteria in the intertemporal case.  When no symmetry 
exists between 0 and t, there is no point in interchanging 0 
and t”  (Peter von der Lippe, 2001, p. 58).  

month. This problem will be reconsidered in Chap-
ter 22.  
 
15.89 It is of some interest to determine if there 
are index number formulas that give the same an-
swer when either the fixed-base or chain system is 
used. Comparing the sequence of chain indices de-
fined by equation (15.75) above to the correspond-
ing fixed-base indices, it can be seen that we will 
obtain the same answer in all three periods if the 
index number formula P satisfies the following 
functional equation for all price and quantity  
vectors: 

(15.77) 0 2 0 2 0 1 0 1( , , , ) ( , , , )P p p q q P p p q q=   
   1 2 1 2( , , , )P p p q q× . 

 
If an index number formula P satisfies equation 
(15.77), then P satisfies the circularity test.68  
 
15.90 If it is assumed that the index number for-
mula P satisfies certain properties or tests in addi-
tion to the circularity test above,69 then Funke, 
Hacker, and Voeller (1979) showed that P must 
have the following functional form credited origi-
nally to Konüs and Byushgens70 (1926, pp. 163–
66):71 

                                                        
68The test name is credited to Irving Fisher (1922, p. 

413), and the concept was originally credited to Wester-
gaard (1890, pp. 218–19). 

69The additional tests are (i) positivity and continuity of 
P(p0,p1,q0,q1) for all strictly positive price and quantity vec-
tors p0,p1,q0,q1; (ii) the identity test; (iii) the commensura-
bility test; (iv) P(p0,p1,q0,q1) is positively homogeneous of 
degree 1 in the components of p1 ; and (v) P(p0,p1,q0,q1) is 
positively homogeneous of degree zero in the components 
of q1.   

70Konüs and Byushgens show that the index defined by 
equation (15.78) is exact for Cobb-Douglas (1928) prefer-
ences; see also Pollak (1983a, pp. 119–20).  The concept of 
an exact index number formula will be explained in Chap-
ter 17. 

71This result can be derived using results in Eichhorn 
(1978, pp. 167–68) and Vogt and Barta (1997, p. 47). A 
simple proof can be found in Balk (1995). This result vin-
dicates Irving Fisher’s (1922, p. 274) intuition. He asserted 
that “the only formulae which conform perfectly to the cir-
cular test are index numbers which have constant 
weights…” Irving Fisher (1922, p. 275) went on to assert, 
“But, clearly, constant weighting is not theoretically cor-
rect.  If we compare 1913 with 1914, we need one set of 
weights; if we compare 1913 with 1915, we need, theoreti-
cally at least, another set of weights. … Similarly, turning 

(continued) 
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where the n constants αi satisfy the following re-
strictions: 
 

(15.79)
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Thus, under very weak regularity conditions, the 
only price index satisfying the circularity test is a 
weighted geometric average of all the individual 
price ratios, the weights being constant through 
time. 
 
15.91 An interesting special case of the family 
of indices defined by equation (15.78) occurs when 
the weights αi are all equal. In this case, PKB re-
duces to the Jevons (1865) index: 

(15.80)
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15.92 The problem with the indices defined by 
Konüs and Byushgens and Jevons is that the indi-
vidual price ratios, pi

1 / pi
0, have weights (either αi 

or 1/n ) that are independent of the economic im-
portance of product i in the two periods under con-
sideration. Put another way, these price weights 
are independent of the quantities of product i con-
sumed or the revenues on product i during the two 
periods. Hence, these indices are not really suitable 
for use by statistical agencies at higher levels of 
aggregation when revenue share information is 
available. 

15.93 The above results indicate that it is not 
useful to ask that the price index P satisfy the cir-
cularity test exactly. However, it is of some interest 
to find index number formulas that satisfy the cir-
cularity test to some degree of approximation, 
since the use of such an index number formula will 
lead to measures of aggregate price change that are 
more or less the same whether we use the chain or 
fixed-base systems. Irving Fisher (1922, p. 284) 

                                                                                   
from time to space, an index number for comparing the 
United States and England requires one set of weights, and 
an index number for comparing the United States and 
France requires, theoretically at least, another.” 

found that deviations from circularity using his 
data set and the Fisher ideal price index PF defined 
by equation (15.12) above were quite small. This 
relatively high degree of correspondence between 
fixed-base and chain indices has been found to 
hold for other symmetrically weighted formulas 
like the Walsh index PW defined by equation 
(15.19).72 Thus, in most time-series applications of 
index number theory where the base year in fixed-
base indices is changed every five years or so, it 
will not matter very much whether the statistical 
agency uses a fixed-base price index or a chain in-
dex, provided that a symmetrically weighted for-
mula is used.73 This, of course, depends on the 
length of the time series considered and the degree 
of variation in the prices and quantities as we go 
from period to period. The more prices and quanti-
ties are subject to large fluctuations (rather than 
smooth trends), the less the correspondence.74 

15.94 It is possible to give a theoretical explana-
tion for the approximate satisfaction of the circu-
larity test for symmetrically weighted index num-
ber formulas. Another symmetrically weighted for-
mula is the Törnqvist index PT.75 The natural loga-
rithm of this index is defined as follows: 

(15.81) 0 1 0 1ln ( , , , )TP p p q q  
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0 1
0

1

1 ln
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n
i

i i
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s s

p=

 
≡ +  
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where the period t revenue shares si

t are defined by 
equation (15.7) above. Alterman, Diewert, and 
Feenstra (1999, p. 61) show that if the logarithmic 
                                                        

72See, for example, Diewert (1978, p. 894). Walsh (1901, 
pp. 424 and 429) found that his three preferred formulas all 
approximated each other very well, as did the Fisher ideal 
for his artificial data set. 

73More specifically, most superlative indices (which are 
symmetrically weighted) will satisfy the circularity test to a 
high degree of approximation in the time series context. 
See Chapter 17 for the definition of a superlative index. It 
is worth stressing that fixed-base Paasche and Laspeyres 
indices are very likely to diverge considerably over a five-
year period if computers (or any other product that has 
price and quantity trends different from the trends in the 
other products) are included in the value aggregate under 
consideration.  See Chapter 19 for some empirical evidence 
on this topic.   

74Again, see Szulc (1983) and Peter Hill (1988). 
75This formula was implicitly introduced in Törnqvist 

(1936) and explicitly defined in Törnqvist and Törnqvist 
(1937). 
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price ratios ln (pi
t / pi

t–1) trend linearly with time t, 
and the revenue shares si

t also trend linearly with 
time, then the Törnqvist index PT will satisfy the 
circularity test exactly.76 Since many economic 
time series on prices and quantities satisfy these 
assumptions approximately, then the Törnqvist in-
dex will satisfy the circularity test approximately. 
As will be seen in Chapter 19, generally the Törn-
qvist index closely approximates the symmetri-
cally weighted Fisher and Walsh indices, so that 
for many economic time series (with smooth 
trends), all three of these symmetrically weighted 
indices will satisfy the circularity test to a high 
enough degree of approximation so that it will not 
matter whether we use the fixed-base or chain 
principle. 
 
15.95 Walsh (1901, p. 401; 1921a, p. 98; 1921b, 
p. 540) introduced the following useful variant of 
the circularity test: 

(15.82) 0 1 0 1 1 2 1 21 ( , , , ) ( , , , )P p p q q P p p q q=  
0 0... ( , , , )T TP p p q q . 

 
The motivation for this test is the following. Use 
the bilateral index formula P(p0,p1,q0,q1) to calcu-
late the change in prices going from period 0 to 1, 
use the same formula evaluated at the data corre-
sponding to periods 1 and 2, P(p1,p2,q1,q2), to cal-
culate the change in prices going from period 1 to 
2, … . Use P(pT−1,pT,qT−1,qT) to calculate the 
change in prices going from period T − 1 to T. In-
troduce an artificial period T + 1 that has exactly 
the price and quantity of the initial period 0 and 
use P(pT,p0,qT,q0) to calculate the change in prices 
going from period T to 0. Finally, multiply all 
these indices, and, since we end up where we 
started, then the product of all of these indices 
should ideally be 1. Diewert (1993a, p. 40) called 
this test a multiperiod identity test.77 Note that if T 
= 2 (so that the number of periods is 3 in total), 

                                                        
76This exactness result can be extended to cover the case 

when there are monthly proportional variations in prices 
and the revenue shares have constant seasonal effects in 
addition to linear trends; see Alterman, Diewert, and Feen-
stra (1999, p. 65). 

77Walsh (1921a, p. 98) called his test the circular test, but 
since Irving Fisher also used this term to describe his  tran-
sitivity test defined earlier by equation (15.77), it seems 
best to stick to Irving Fisher’s terminology since it is well 
established in the literature.  

then Walsh’s test reduces to Fisher’s (1921, p. 534; 
1922, p. 64) time reversal test.78 
 
15.96 Walsh (1901, pp. 423–33) showed how 
his circularity test could be used to evaluate the 
worth of a bilateral index number formula. He in-
vented artificial price and quantity data for five pe-
riods and added a sixth period that had the data of 
the first period. He then evaluated the right-hand 
side of equation (15.82) for various formulas, 
P(p0,p1,q0,q1), and determined how far from unity 
the results were. His best formulas had products 
that were close to 1.79  

15.97 This same framework is often used to 
evaluate the efficacy of chained indices versus 
their direct counterparts. Thus, if the right-hand 
side of equation (15.82) turns out to be different 
from unity, the chained indices are said to suffer 
from “chain drift.” If a formula does suffer from 
chain drift, it is sometimes recommended that 
fixed-base indices be used in place of chained 
ones. However, this advice, if accepted, would al-
ways lead to the adoption of fixed-base indices, 
provided that the bilateral index formula satisfies 
the identity test, P(p0,p0,q0,q0) = 1. Thus, it is not 
recommended that Walsh’s circularity test be used 
to decide whether fixed-base or chained indices 
should be calculated. However, it is fair to use 
Walsh’s circularity test as he originally used it; 
that is, as an approximate method for deciding the 
force of a particular index number formula. To de-
cide whether to chain or use fixed-base indices, 
one should decide on the basis of how similar are 
the observations being compared and choose the 
method that will best link the most similar obser-
vations.  

15.98 Various properties, axioms, or tests that an 
index number formula could satisfy have already 
been introduced in this chapter. In the following 
chapter, the test approach to index number theory 
will be studied in a more systematic manner. 

                                                        
78Walsh (1921b, pp. 540–41) noted that the time reversal 

test was a special case of his circularity test. 
79This is essentially a variant of the methodology that Ir-

ving Fisher (1922, p. 284) used to check how well various 
formulas corresponded to his version of the circularity test.   
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Appendix 15.1: Relationship  
Between Paasche and  
Laspeyres Indices 
15.99 Recall the notation used in Section B.2. 
Define the ith relative price or price relative ri and 
the ith quantity relative ti as follows: 

 

(A15.1.1) 
1 1

0 0; ; 1i i
i i

i i

p qr t i ,...,n.
p q

≡ ≡ =  

 
Using equation (15.8) above for the Laspeyres 
price index PL and equation (A15.1.1), we have 
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that is, we define the “average” price relative r* as 
the base-period revenue share-weighted average of 
the individual price relatives, ri . 
 
15.100 Using equation (15.6) for the Paasche 
price index PP, we have 
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using equation (A15.1.2) and 0

1

1
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i
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s
=

=∑  and where 

the average quantity relative t* is defined as 
 

(A15.1.4) * 0
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n
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i

t t s Q
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where the last equality follows using equation 
(15.11), the definition of the Laspeyres quantity 
index QL. 
 
15.101  Taking the difference between PP and PL 
and using equation (A15.1.2) – equation (A15.1.4) 
yields 

(A15.1.5) * * 0

1

1 ( )( ) .
n

P L i i i
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P P r r t t s
Q =

− = − −∑   

 
Now let r and t be discrete random variables that 
take on the n values ri and ti, respectively. Let si

0 
be the joint probability that r = ri and t = ti for i = 
1,…,n, and let the joint probability be 0 if r = ri 
and t = tj where i ≠ j. It can be verified that the 

summation * * 0

1

( )( )
n

i i i
i

r r t t s
=

− −∑  on the right-hand 

side of equation (A15.1.5) is the covariance be-
tween the price relatives ri and the corresponding 
quantity relatives ti. This covariance can be con-
verted into a correlation coefficient.80 If this co-
variance is negative, which is the usual case in the 
consumer context, then PP will be less than PL. If it 
is positive, which will occur in the situations 
where supply conditions are fixed (as in the fixed-
input output price index), but demand is changing, 
then PP will be greater than PL.  
 
Appendix 15.2: Relationship  
Between Lowe and Laspeyres 
Indices 
15.102 Recall the notation used in Section D.1. 
Define the ith relative price relating the price of 
product i of month t to month 0, ri, and the ith 
quantity relative, ti, relating quantity of product i in 
base year b to month 0, ti,  as follows: 

(A15.2.1) 0 0 ;
t b
i i

i i
i i

p qr t
p q

≡ ≡ i = 1,…,n. 

 

                                                        
80See Bortkiewicz (1923, pp. 374–75) for the first appli-

cation of this correlation coefficient decomposition tech-
nique. 
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As in Appendix 15.1, the Laspeyres price index 
PL(p0,pt,q0) can be defined as r*, the month 0 reve-
nue share-weighted average of the individual price 
relatives ri defined in equation (A15.2.1), except 
that the month t price, pi

t, now replaces period 1 
price, pi

1, in the definition of the ith price relative 
ri : 
 

(A15.2.2) 0

1

.
n

i i L
i

r r s P∗

=

≡ =∑  

 
15.103 The average quantity relative t* relating 
the quantities of base year b to those of month 0 is 
defined as the month 0 revenue share-weighted av-
erage of the individual quantity relatives ti defined 
in equation (A15.2.1): 

(A15.2.3) * 0
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i
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≡ =∑ , 

where QL = QL(q0,qb,p0) is the Laspeyres quantity 
index relating the quantities of month 0, q0, to 
those of the year b, qb, using the prices of month 0, 
p0, as weights. 
 
15.104 Using equation (15.26), the Lowe index 
comparing the prices in month t with those of 
month 0, using the quantity weights of the base 
year b, is equal to  
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since using equation (A15.2.2), r* equals the 
Laspeyres price index, PL(p0,pt,q0), and using 
equation (A15.2.3), t* equals the Laspeyres quan-
tity index, QL(q0,qb,p0). Thus, equation (A15.2.4) 
tells us that the Lowe price index using the quanti-
ties of year b as weights, PLo(p0,pt,qb), is equal to 
the usual Laspeyres index using the quantities of 
month 0 as weights, PL(p0,pt,q0), plus a covariance 

term 0

1

( )( )
n

i i i
i

r r t t s∗ ∗

=

− −∑  between the price rela-

tives ri ≡ pi
t / pi

0 and the quantity relatives ti ≡  
qi

b / qi
0, divided by the Laspeyres quantity index 

QL(q0,qb,p0) between month 0 and base year b. 
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Appendix 15.3: Relationship  
Between Young Index and Its 
Time Antithesis  
15.105 Recall that the direct Young index, 
PY(p0,pt,sb), was defined by equation (15.48) and 
its time antithesis, PY*(p0,pt,sb), was defined by 
equation (15.52). Define the ith relative price be-
tween months 0 and t as  

(A15.3.1) 0/ ;t
i i ir p p≡ i = 1,...,n  , 

 
and define the weighted average (using the base-
year weights si

b) of the ri as 
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≡ ∑ , 

 
which turns out to equal the direct Young index, 
PY(p0,pt,sb). Define the deviation ei of ri from their 
weighted average r* using the following equation: 
 
(A15.3.3) (1 );i ir r e∗= + i = 1,...,n. 
 
If equation (A15.3.3) is substituted into equation 
(A15.3.2), the following equations are obtained: 
 

(A15.3.4) 
1

(1 )
n

b
i i

i

r s r e∗ ∗

=

≡ +∑  

1

n
b
i i

i

r r s e∗ ∗

=

= + ∑ , since 
1

1
n

b
i

i

s
=

=∑ . 

 

(A15.3.5) 
1

0.
n

b
i i

i

e s e∗

=

≡ =∑  

 
Thus, the weighted mean e* of the deviations ei 
equals 0. 
 
15.106 The direct Young index, PY(p0,pt,sb), and 
its time antithesis, PY*(p0,pt,sb), can be written as 
functions of r*, the weights si

b and the deviations 
of the price relatives ei as follows:  
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15.107 Now, regard PY*(p0,pt,sb) as a function of 
the vector of deviations, e ≡ [e1,…,en], say, PY*(e). 
The second-order Taylor series approximation to 
PY*(e) around the point e = 0n is given by the fol-
lowing expression:81 
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using equation (A15.3.5) 
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using equation (A15.3.6) 
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where the weighted sample variance of the vector e 
of price deviations is defined as 
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15.108 Rearranging equation (A15.3.8) gives the 
following approximate relationship between the di-
rect Young index PY(p0,pt,sb) and its time antithesis 
PY*(p0,pt,sb), to the accuracy of a second-order 
Taylor series approximation about a price point 
where the month t price vector is proportional to 
the month 0 price vector: 

(A15.3.10) 0( , , )t b
YP p p s  

      0 0( , , ) ( , , ) Var .t b t b
Y YP p p s P p p s e∗≈ +  

 
Thus, to the accuracy of a second-order approxi-
mation, the direct Young index will exceed its time 

                                                        
81This type of second-order approximation is credited to 

Dalén (1992a, p. 143) for the case r* = 1 and to Diewert 
(1995a, p. 29) for the case of a general r*. 



 Producer Price Index Manual 
 

402 
 

antithesis by a term equal to the direct Young in-
dex times the weighted variance of the deviations 
of the price relatives from their weighted mean. 
 

Thus, the bigger the dispersion in relative prices, 
the more the direct Young index will exceed its 
time antithesis. 
 


