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16.   Axiomatic and Stochastic Approaches  
to Index Number Theory 

A.   Introduction 

16.1 As Chapter 15 demonstrated, it is useful to 
be able to evaluate various index number formulas 
that have been proposed in terms of their proper-
ties. If a formula turns out to have rather undesir-
able properties, then doubt is cast on its suitability 
as a target index that could be used by a statistical 
agency. Looking at the mathematical properties of 
index number formulas leads to the test or axio-
matic approach to index number theory. In this 
approach, desirable properties for an index number 
formula are proposed; then it is determined 
whether any formula is consistent with these prop-
erties or tests. An ideal outcome is that the pro-
posed tests are desirable and completely determine 
the functional form for the formula. 

16.2 The axiomatic approach to index number 
theory is not completely straightforward, since 
choices have to be made in two dimensions: 

• The index number framework must be deter-
mined; and 

• Once the framework has been decided upon, 
the  tests or properties that should be imposed 
on the index number need to be determined. 

 
The second point is straightforward: different price 
statisticians may have different ideas about what 
tests are important, and alternative sets of axioms 
can lead to alternative best index number func-
tional forms. This point must be kept in mind 
while reading this chapter, since there is no univer-
sal agreement on what is the best set of reasonable 
axioms. Hence, the axiomatic approach can lead to 
more than one best index number formula. 
 
16.3 The first point about choices listed above 
requires further discussion. In the previous chapter, 
for the most part, the focus was on bilateral index 
number theory; that is, it was assumed that prices 
and quantities for the same n commodities were 
given for two periods, and the object of the index 

number formula was to compare the overall level 
of prices in one period with that of the other pe-
riod. In this framework, both sets of price and 
quantity vectors were regarded as variables that 
could be independently varied, so that, for exam-
ple, variations in the prices of one period did not 
affect the prices of the other period or the quanti-
ties in either period. The emphasis was on compar-
ing the overall cost of a fixed basket of quantities 
in the two periods or taking averages of such 
fixed-basket indices. This is an example of an in-
dex number framework.  

16.4 But other index number frameworks are 
possible. For example, instead of decomposing a 
value ratio into a term that represents price change 
between the two periods times another term that 
represents quantity change, one could attempt to 
decompose a value aggregate for one period into a 
single number that represents the price level in the 
period times another number that represents the 
quantity level in the period. In the first variant of 
this approach, the price index number is supposed 
to be a function of the n product prices pertaining 
to that aggregate in the period under consideration, 
and the quantity index number is supposed to be a 
function of the n product quantities pertaining to 
the aggregate in the period. The resulting price in-
dex function was called an absolute index number 
by Frisch (1930, p. 397), a price level by Eichhorn 
(1978, p. 141), and a unilateral price index by 
Anderson, Jones, and Nesmith (1997, p. 75). In a 
second variant of this approach, the price and 
quantity functions are allowed to depend on both 
the price and quantity vectors pertaining to the pe-
riod under consideration.1 These two variants of 
unilateral index number theory will be considered 
in Section B.2 

                                                        
1Eichhorn (1978 p. 144) and Diewert (1993d, p. 9) con-

sidered this approach. 
2In these unilateral index number approaches, the price 

and quantity vectors are allowed to vary independently. In 
(continued) 
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16.5 The remaining approaches in this chapter 
are largely bilateral approaches; that is, the prices 
and quantities in an aggregate are compared for 
two periods. In Sections C and E, the value ratio 
decomposition approach is taken.3 In Section C, 
the bilateral price and quantity indices, 
P(p0,p1,q0,q1) and Q(p0,p1,q0,q1), are regarded as 
functions of the price vectors pertaining to the two 
periods, p0 and p1, and the two quantity vectors, q0 
and q1. Not only do the axioms or tests that are 
placed on the price index P(p0,p1,q0,q1) reflect rea-
sonable price index properties, some of them have 
their origin as reasonable tests on the quantity in-
dex Q(p0,p1,q0,q1). The approach in Section C si-
multaneously determines the best price and quan-
tity indices. 

16.6 In Section D, attention is shifted to the 
price ratios for the n commodities between periods 
0 and 1, ri ≡ pi

1/pi
0 for i = 1,…,n. In the unweighted 

stochastic approach to index number theory, the 
price index is regarded as an evenly weighted av-
erage of the n price relatives or ratios, ri. Carli 
(1804; originally published in 1764) and Jevons 
(1863, 1865) were the early pioneers in this ap-
proach to index number theory, with Carli using 
the arithmetic average of the price relatives and 
Jevons endorsing the geometric average (but also 
considering the harmonic average). This approach 
to index number theory will be covered in Section 
D.1. This approach is consistent with a statistical 
approach that regards each price ratio ri as a ran-
dom variable with mean equal to the underlying 
price index. 

16.7 A major problem with the unweighted av-
erage of price relatives approach to index number 
theory is that it does not take into account the eco-
nomic importance of the individual commodities in 
the aggregate. Arthur Young (1812) did advocate 
some form of rough weighting of the price rela-
tives according to their relative value over the pe-
riod being considered, but the precise form of the 
required value weighting was not indicated.4 How-
                                                                                   
yet another index number framework, prices are allowed to 
vary freely, but quantities are regarded as functions of the 
prices. This leads to the economic approach to index num-
ber theory, which will be considered in more depth in 
Chapters 17 and 18. 

3Recall Section B in Chapter 15 for an explanation of this 
approach. 

4Walsh (1901, p. 84) refers to Young’s contributions as 
follows: “Still, although few of the practical investigators 

(continued) 

ever, it was Walsh (1901, pp. 83–121; 1921a, pp. 
81–90) who stressed the importance of weighting 
the individual price ratios, where the weights are 
functions of the associated values for the com-
modities in each period, and each period is to be 
treated symmetrically in the resulting formula: 

What we are seeking is to average the variations 
in the exchange value of one given total sum of 
money in relation to the several classes of goods, 
to which several variations [price ratios] must be 
assigned weights proportional to the relative 
sizes of the classes. Hence the relative sizes of 
the classes at both the periods must be consid-
ered. (Correa Moylan Walsh, 1901, p. 104)  

Commodities are to be weighted according to 
their importance, or their full values. But the 
problem of axiometry always involves at least 
two periods. There is a first period and there is a 
second period which is compared with it. Price 
variations5 have taken place between the two, 
and these are to be averaged to get the amount of 
their variation as a whole. But the weights of the 
commodities at the second period are apt to be 
different from their weights at the first period. 
Which weights, then, are the right ones—those 
of the first period or those of the second? Or 
should there be a combination of the two sets? 
There is no reason for preferring either the first 
or the second. Then the combination of both 
would seem to be the proper answer. And this 
combination itself involves an averaging of the 
weights of the two periods. (Correa Moylan 
Walsh, 1921a, p. 90) 

16.8 Thus, Walsh was the first to examine in 
some detail the rather intricate problems6 in decid-
                                                                                   
have actually employed anything but even weighting, they 
have almost always recognized the theoretical need of al-
lowing for the relative importance of the different classes 
ever since this need was first pointed out, near the com-
mencement of the century just ended, by Arthur Young. … 
Arthur Young advised simply that the classes should be 
weighted according to their importance.”  

5A price variation is a price ratio or price relative in 
Walsh’s terminology. 

6Walsh (1901, pp. 104–105) realized that it would not do 
to simply take the arithmetic average of the values in the 
two periods, [vi

0 + vi
1]/2, as the correct weight for the ith 

price relative ri since, in a period of rapid inflation, this 
would give too much importance to the period that had the 
highest prices, and he wanted to treat each period symmet-
rically: “But such an operation is manifestly wrong. In the 
first place, the sizes of the classes at each period are reck-
oned in the money of the period, and if it happens that the 

(continued) 
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ing how to weight the price relatives pertaining to 
an aggregate, taking into account the economic 
importance of the commodities in the two periods 
being considered. Note that the type of index num-
ber formulas that he was considering was of the 
form P(r,v0,v1), where r is the vector of price rela-
tives that has ith component ri

 = pi
1/pi

0 and vt is the 
period  t value vector that has ith component vi

t = 
pi

tqi
t for  t = 0,1. His suggested solution to this 

weighting problem was not completely satisfac-
tory, but he did at least suggest a useful framework 
for a price index as a value-weighted average of 
the n price relatives. The first satisfactory solution 
to the weighting problem was obtained by Theil 
(1967, pp. 136–37), and his solution will be ex-
plained in Section D.2. 

16.9 It can be seen that one of Walsh’s ap-
proaches to index number theory7 was an attempt 
to determine the best weighted average of the price 
relatives, ri. This is equivalent to using an axio-
matic approach to try to determine the best index 
of the form P(r,v0,v1). This approach will be con-
sidered in Section E below.8  

16.10 Recall that in Chapter 15, the Young and 
Lowe indices were introduced. These indices do 
not fit precisely into the bilateral framework be-
cause the value or quantity weights used in these 
indices do not necessarily correspond to the values 
or quantities that pertain to either of the periods 
that correspond to the price vectors p0 and p1. In 
                                                                                   
exchange value of money has fallen, or prices in general 
have risen, greater influence upon the result would be given 
to the weighting of the second period; or if prices in general 
have fallen, greater influence would be given to the weight-
ing of the second period. Or in a comparison between two 
countries greater influence would be given to the weighting 
of the country with the higher level of prices. But it is plain 
that the one period, or the one country, is as important, in 
our comparison between them, as the other, and the 
weighting in the averaging of their weights should really be 
even.” However, Walsh was unable to come up with 
Theil’s (1967) solution to the weighting problem, which 
was to use the average revenue share [si

0 + si
1]/2, as the 

correct weight for the ith price relative in the context of us-
ing a weighted geometric mean of the price relatives.  

7Walsh also considered basket-type approaches to index 
number theory, as was seen in Chapter 15. 

8In Section E, rather than starting with indices of the form 
P(r,v0,v1), indices of the form P(p0,p1,v0,v1) are considered. 
However, if the invariance to changes in the units of meas-
urement test is imposed on this index, it is equivalent to 
studying indices of the form P(r,v0,v1). Vartia (1976a) also 
used a variation of this approach to index number theory. 

Section F, the axiomatic properties of these two 
indices with respect to their price variables will be 
studied. 

 
B.   The Levels Approach  
to Index Number Theory  

B.1  Axiomatic approach to  
unilateral price indices 

16.11 Denote the price and quantity of product n 
in period  t by pi

t and qi
t, respectively, for i = 

1,2,…,n and  t = 0,1,…,T. The variable qi
t is inter-

preted as the total amount of product i transacted 
within period t. In order to conserve the value of 
transactions, it is necessary that pi

t be defined as a 
unit value; that is, pi

t must be equal to the value of 
transactions in product i for period t divided by the 
total quantity transacted, qi

t. In principle, the pe-
riod of time should be chosen so that variations in 
product prices within a period are quite small 
compared with their variations between periods.9 

                                                        
9This treatment of prices as unit values over time follows 

Walsh (1901, p. 96; 1921a, p. 88) and Fisher (1922, p. 
318). Fisher and Hicks both had the idea that the length of 
the period should be short enough so that variations in price 
within the period could be ignored as the following quota-
tions indicate: “Throughout this book ‘the price’ of any 
commodity or ‘the quantity’ of it for any one year was as-
sumed given. But what is such a price or quantity? Some-
times it is a single quotation for January 1 or July 1, but 
usually it is an average of several quotations scattered 
throughout the year. The question arises: On what principle 
should this average be constructed? The practical answer is 
any kind of average since, ordinarily, the variation during a 
year, so far, at least, as prices are concerned, are too little to 
make any perceptible difference in the result, whatever 
kind of average is used. Otherwise, there would be ground 
for subdividing the year into quarters or months until we 
reach a small enough period to be considered practically a 
point. The quantities sold will, of course, vary widely. 
What is needed is their sum for the year (which, of course, 
is the same thing as the simple arithmetic average of the per 
annum rates for the separate months or other subdivisions). 
In short, the simple arithmetic average, both of prices and 
of quantities, may be used. Or, if it is worth while to put 
any finer point on it, we may take the weighted arithmetic 
average for the prices, the weights being the quantities 
sold” (Irving Fisher, 1922, p. 318). “I shall define a week 
as that period of time during which variations in prices can 
be neglected. For theoretical purposes this means that 
prices will be supposed to change, not continuously, but at 
short intervals. The calendar length of the week is of course 
quite arbitrary; by taking it to be very short, our theoretical 

(continued) 
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For  t = 0,1,…,T, and i = 1,…,n, define the value of 
transactions in product i as vi

t ≡ pi
tqi

t and define the 
total value of transactions in period  t as  

(16.1)
1 1

n n
t t t t

i i i
i i

V v p q
= =

≡ =∑ ∑ ,  t = 0,1,...,T. 

 
16.12 Using the notation above, the following 
levels version of the index number problem is de-
fined as follows: for  t = 0,1,…,T, find scalar num-
bers Pt and Qt such that 

(16.2) t t tV P Q= ,  t = 0,1,...,T. 
 
16.13 The number Pt is interpreted as an aggre-
gate period t price level, while the number Qt is in-
terpreted as an aggregate period  t quantity level. 
The aggregate price level Pt is allowed to be a 
function of the period  t price vector, pt, while the 
aggregate period  t quantity level Qt is allowed to 
be a function of the period  t quantity vector, qt. As 
a result we have the following: 

(16.3) ( )  and  ( )t t t tP c p Q f q= = ,  t = 0,1,...,T. 
 
16.14 The functions c and f are to be determined 
somehow. Note that equation (16.3) requires that 
the functional forms for the price aggregation 
function c and for the quantity aggregation func-
tion f be independent of time. This is a reasonable 
requirement, since there is no reason to change the 
method of aggregation as time changes.  

16.15 Substituting equations (16.3) and (16.2) 
into equation (16.1) and dropping the superscript  t 
means that c and f must satisfy the following func-
tional equation for all strictly positive price and 
quantity vectors: 

(16.4) 
1

( ) ( )  
n

i i
i

c p f q p q
=

= ∑ , 

 
for all pi > 0 and for all qi > 0.  
 
16.16 It is natural to assume that the functions 
c(p) and f(q) are positive if all prices and quantities 
are positive: 

                                                                                   
scheme can be fitted as closely as we like to that ceaseless 
oscillation which is a characteristic of prices in certain mar-
kets” (John Hicks, 1946, p. 122). 

(16.5) 1 1( ,..., ) 0 ; ( ,..., ) 0 n nc p p f q q> >  
 
if all pi > 0 and for all qi > 0. 
 
16.17 Let 1n denote an n dimensional vector of 
ones. Then equation (16.5) implies that when  
p = 1n, c(1n) is a positive number, a for example, 
and when q = 1n, then f(1n) is also a positive num-
ber, b for example; that is, equation (16.5) implies 
that c and f satisfy 

(16.6) (1 ) 0 ; (1 ) 0.n nc a f b= > = >  
 
16.18 Let p = 1n and substitute the first expres-
sion in equation (16.6) into (16.4) in order to ob-
tain the following equation: 

(16.7) i
1

( )   for all q 0.
n

i

i

q
f q

a=

= >∑  

 
16.19 Now let q = 1n and substitute the second 
part of equation (16.6) into (16.4) in order to ob-
tain the following equation: 

1

( )  for all 0.
n

i
i

i

p
c p p

b=

= >∑  

 
16.20 Finally substitute equations (16.7) and 
(16.8) into the left-hand side of equation (16.4) and 
the following equation is obtained: 

(16.9) 
1 1 1

 
n n n

i i
i i

i i i

p q
p q

b a= = =

   
=   

   
∑ ∑ ∑ , 

 
for all pi > 0 and for all qi > 0. If n is greater than 
1, it is obvious that equation (16.9) cannot be satis-
fied for all strictly positive p and q vectors. Thus, 
if the number of commodities n exceeds 1, then 
there are no functions c and f that satisfy equations 
(16.4) and (16.5).10 
 
16.21 Thus, this levels test approach to index 
number theory comes to an abrupt halt; it is fruit-
less to look for price- and quantity-level functions, 
Pt = c(pt) and Qt = f(qt), that satisfy equations 
(16.2) or (16.4) and also satisfy the very reason-
able positivity requirements in equation (16.5). 

                                                        
10Eichhorn (1978, p. 144) established this result. 
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16.22 Note that the levels price index function, 
c(pt), did not depend on the corresponding quantity 
vector qt, and the levels quantity index function, 
f(qt), did not depend on the price vector pt. Perhaps 
this is the reason for the rather negative result ob-
tained above. As a result, in the next section, the 
price and quantity functions are allowed to be 
functions of both pt and qt.  

B.2  A second axiomatic approach 
to unilateral price indices 

16.23 In this section, the goal is to find functions 
of 2n variables, c(p,q) and f(p,q) such that the fol-
lowing counterpart to equation (16.4) holds: 

(16.10) 
1

( , ) ( , )
n

i i
i

c p q f p q p q
=

= ∑ , 

 
for all pi > 0 and for all qi > 0. 
 
16.24 Again, it is natural to assume that the 
functions c(p,q) and f(p,q) are positive if all prices 
and quantities are positive: 

(16.11) 1 1( ,..., ; ,..., ) 0 ; n nc p p q q >  
     1 1( ,..., ; ,..., ) 0n nf p p q q > , 

 
if all pi > 0 and for all qi > 0. 
 
16.25 The present framework does not distin-
guish between the functions c and f, so it is neces-
sary to require that these functions satisfy some 
reasonable properties. The first property imposed 
on c is that this function be homogeneous of de-
gree 1 in its price components: 

(16.12) ( , )  ( , )  for all  0.c p q c p qλ = λ λ >  
 
Thus, if all prices are multiplied by the positive 
number λ, then the resulting price index is λ times 
the initial price index. A similar linear homogene-
ity property is imposed on the quantity index f; that 
is, f is to be homogeneous of degree 1 in its quan-
tity components: 
 
(16.13) ( , )  ( , )  for all  0.f p q f p qλ = λ λ >  
 
16.26 Note that the properties in equations 
(16.10), (16.11), and (16.13) imply that the price 
index c(p,q) has the following homogeneity prop-
erty with respect to the components of q: 

(16.14) 
1

( , )
( , )

n
i i

i

p q
c p q

f p q=

λ
λ =

λ∑ where λ > 0. 

1

 
( , )

n
i i

i

p q
f p q=

λ
=

λ∑ using equation (16.3) 

1 ( , )

n
i i

i

p q
f p q=

= ∑  

( , )c p q= using equations (16.10) 
and (16.11) 

 
Thus c(p,q) is homogeneous of degree 0 in its q 
components. 
 
16.27 A final property that is imposed on the 
levels price index c(p,q) is the following: Let the 
positive numbers di be given. Then it is asked that 
the price index be invariant to changes in the units 
of measurement for the n commodities, so that the 
function c(p,q) has the following property: 

(16.15) 1 1 1 1( ,..., ; ,..., )n n n nc d p d p q d q d  

1 1( ,..., ; ,..., ).n nc p p q q=  
 

16.28 It is now possible to show that the proper-
ties in equations (16.10), (16.11), (16.12), (16.14), 
and (16.15) on the price-levels function c(p,q) are 
inconsistent; that is, there is no function of 2n vari-
ables c(p,q) that satisfies these quite reasonable 
properties.11  

16.29 To see why this is so, apply equation 
(16.15), setting di = qi for each i, to obtain the fol-
lowing equation: 

(16.16) 1 1( ,..., ; ,..., )n nc p p q q  

1 1( ,..., ;1,...,1).n nc p q p q=  
 

If c(p,q) satisfies the linear homogeneity property 
in equation (16.12) so that c(λp,q) = λc(p,q), then 
equation (16.16) implies that c(p,q) is also linearly 
homogeneous in q, so that c(p,λq) = λc(p,q). But 
this last equation contradicts equation (16.14), 
which establishes the impossibility result.  
 
16.30 The rather negative results obtained in 
Section B.1 and this section indicate that it is fruit-
less to pursue the axiomatic approach to the deter-
                                                        

11This proposition is due to Diewert (1993d, p. 9), but his 
proof is an adaptation of a closely related result due to 
Eichhorn (1978, pp. 144–45). 
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mination of price and quantity levels, where both 
the price and quantity vector are regarded as inde-
pendent variables.12 Therefore, in the following 
sections of this chapter, the axiomatic approach to 
the determination of a bilateral price index of the 
form P(p0,p1,q0,q1) will be pursued. 

C.   First Axiomatic Approach  
to Bilateral Price Indices 

C.1  Bilateral indices and some 
early tests 

16.31 In this section, the strategy will be to as-
sume that the bilateral price index formula, 
P(p0,p1,q0,q1), satisfies a sufficient number of rea-
sonable tests or properties so that the functional 
form for p is determined.13 The word bilateral14 re-
fers to the assumption that the function p depends 
only on the data pertaining to the two situations or 
periods being compared; that is, p is regarded as a 
function of the two sets of price and quantity vec-
tors, (p0,p1,q0,q1), that are to be aggregated into a 
single number that summarizes the overall change 
in the n price ratios, p1

1/p1
0,…, pn

1/pn
0. 

16.32 The value ratio decomposition approach to 
index number theory will be taken; that is, along 
with the price index P(p0,p1,q0,q1), there is a com-
panion quantity index Q(p0,p1,q0,q1) such that the 
product of these two indices equals the value ratio 
between the two pe- riods.15 Thus, throughout this 
section, it is assumed that p and q satisfy the fol-
lowing product test: 

(16.17) 1 0 0 1 0 1   V /V P(p , p ,q ,q ) =  
0 1 0 1)Q(p , p ,q ,q× . 

 
The period  t values, Vt, for  t = 0,1 are defined by 
equation (16.1). Equation (16.17) means that as 
                                                        

12Recall that in the economic approach, the price vector p 
is allowed to vary independently, but the corresponding 
quantity vector q is regarded as being determined by p. 

13Much of the material in this section is drawn from Sec-
tions 2 and 3 of Diewert (1992a). For more recent surveys 
of the axiomatic approach, see Balk (1995) and Auer 
(2001). 

14Multilateral index number theory refers to the case 
where there are more than two situations whose prices and 
quantities need to be aggregated. 

15See Section B of Chapter 15 for more on this approach, 
which was initially due to I. Fisher (1911, p. 403; 1922). 

soon as the functional form for the price index p is 
determined, then equation (16.17) can be used to 
determine the functional form for the quantity in-
dex Q. However, a further advantage of assuming 
that the product test holds is that if a reasonable 
test is imposed on the quantity index Q, then equa-
tion (16.17) can be used to translate this test on the 
quantity index into a corresponding test on the 
price index P.16 
 
16.33 If n = 1, so that there is only one price and 
quantity to be aggregated, then a natural candidate 
for p is p1

1/p1
0 , the single-price ratio, and a natural 

candidate for q is q1
1/q1

0 , the single-quantity ratio. 
When the number of products or items to be ag-
gregated is greater than 1, index number theorists 
have proposed over the years properties or tests 
that the price index p should satisfy. These proper-
ties are generally multidimensional analogues to 
the one good price index formula, p1

1/p1
0. In sec-

tions C.2 through C.6, 20 tests are listed that turn 
out to characterize the Fisher ideal price index. 

16.34 It will be assumed that every component 
of each price and quantity vector is positive; that 
is, pt > > 0n and qt > > 0n 17 for  t = 0,1. If it is de-
sired to set q0 = q1, the common quantity vector is 
denoted by q; if it is desired to set p0 = p1, the 
common price vector is denoted by p. 

16.35 The first two tests are not very controver-
sial, so they will not be discussed in detail. 

T1—Positivity:18 P(p0,p1,q0,q1) > 0. 
  
T2—Continuity:19 P(p0,p1,q0,q1) is a continuous 
function of its arguments. 
 
16.36 The next two tests are somewhat more 
controversial. 

T3—Identity or Constant Prices Test:20 
P(p,p,q0,q1) = 1. 
                                                        

16This observation was first made by Fisher (1911, pp. 
400–406). See alsoVogt (1980) and Diewert (1992a). 

17Notation: q >> 0n means that each component of the 
vector q is positive; q ≥ 0n means each component of q is 
nonnegative; and q > 0n means q ≥ 0n and q ≠ 0n. 

18Eichhorn and Voeller (1976, p. 23) suggested this test. 
19Fisher (1922, pp. 207–15) informally suggested this. 
20Laspeyres (1871, p. 308), Walsh (1901, p. 308), and 

Eichhorn and Voeller (1976, p. 24) have all suggested this 
test. Laspeyres came up with this test or property to dis-

(continued) 
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16.37 That is, if the price of every good is iden-
tical during the two periods, then the price index 
should equal unity, no matter what the quantity 
vectors are. The controversial part of this test is 
that the two quantity vectors are allowed to be dif-
ferent.21 

T4—Fixed-Basket or Constant Quantities Test:22 
1

0 1 1

0

1

( , , , ) .

n

i i
i
n

i i
i
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That is, if quantities are constant during the two 
periods so that q0 = q1 ≡ q, then the price index 
should equal the revenue in the constant basket in 

period 1, 1
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16.38 If the price index p satisfies test T4 and p 
and q jointly satisfy the product test, equation 
(16.17), then it is easy to show23 that q must satisfy 
the identity test Q(p0,p1,q,q) = 1 for all strictly 
positive vectors p0,p1,q. This constant quantities 
test for q is also somewhat controversial, since p0 
and p1 are allowed to be different. 
                                                                                   
credit the ratio of unit-values index of Drobisch (1871a), 
which does not satisfy this test. This test is also a special 
case of Fisher’s (1911, pp. 409–10) price proportionality 
test.  

21Usually, economists assume that given a price vector p, 
the corresponding quantity vector q is uniquely determined. 
Here, the same price vector is used, but the corresponding 
quantity vectors are allowed to be different. 

22The origins of this test go back at least 200 years to the 
Massachusetts legislature, which used a constant basket of 
goods to index the pay of Massachusetts soldiers fighting in 
the American Revolution; see Willard Fisher (1913). Other 
researchers who have suggested the test over the years in-
clude Lowe (1823, Appendix, p. 95), Scrope (1833, p. 406), 
Jevons (1865), Sidgwick (1883, pp. 67–68), Edgeworth 
(1925, p. 215; originally published in 1887), Marshall 
(1887, p. 363), Pierson (1895, p. 332), Walsh (1901, p. 540; 
1921b, pp. 543–44), and Bowley (1901, p. 227). Vogt and 
Barta (1997, p. 49) correctly observe that this test is a spe-
cial case of Fisher’s (1911, p. 411) proportionality test for 
quantity indices, which Fisher (1911, p. 405) translated into 
a test for the price index using the product test in equation 
(15.3).  

23See Vogt (1980, p. 70). 

C.2  Homogeneity tests 

16.39 The following four tests restrict the behav-
ior of the price index p as the scale of any one of 
the four vectors p0,p1,q0,q1 changes. 

T5—Proportionality in Current Prices:24 
P(p0,λp1,q0,q1) = λP(p0,p1,q0,q1) for λ > 0. 
 
16.40 That is, if all period 1 prices are multiplied 
by the positive number λ, then the new price index 
is λ times the old price index. Put another way, the 
price index function P(p0,p1,q0,q1) is (positively) 
homogeneous of degree 1 in the components of the 
period 1 price vector p1. Most index number theo-
rists regard this property as a fundamental one that 
the index number formula should satisfy.  

16.41 Walsh (1901) and Fisher (1911, p. 418; 
1922, p. 420) proposed the related proportionality 
test P(p,λp,q0,q1) = λ. This last test is a combina-
tion of T3 and T5; in fact, Walsh (1901, p. 385) 
noted that this last test implies the identity test T3. 

16.42 In the next test, instead of multiplying all 
period 1 prices by the same number, all period 0 
prices are multiplied by the number λ. 

T6—Inverse Proportionality in Base-Period 
Prices:25 
 P(λp0,p1,q0,q1) = λ−1P(p0,p1,q0,q1) for λ > 0. 
 
That is, if all period 0 prices are multiplied by the 
positive number λ, then the new price index is 1/λ 
times the old price index. Put another way, the 
price index function P(p0,p1,q0,q1) is (positively) 
homogeneous of degree minus 1 in the compo-
nents of the period 0 price vector p0. 
 
16.43 The following two homogeneity tests can 
also be regarded as invariance tests. 

T7—Invariance to Proportional Changes in  
Current Quantities:  
 P(p0,p1,q0,λq1) = P(p0,p1,q0,q1) for all λ > 0. 
 
That is, if current-period quantities are all multi-
plied by the number λ, then the price index re-
mains unchanged. Put another way, the price index 
                                                        

24This test was proposed by Walsh (1901, p. 385), Eich-
horn and Voeller (1976, p. 24), and Vogt (1980, p. 68).  

25Eichhorn and Voeller (1976, p. 28) suggested this test. 



 Producer Price Index Manual 
 

410 
 

function P(p0,p1,q0,q1) is (positively) homogeneous 
of degree zero in the components of the period 1 
quantity vector q1. Vogt (1980, p. 70) was the first 
to propose this test,26 and his derivation of the test 
is of some interest. Suppose the quantity index q 
satisfies the quantity analogue to the price test T5; 
that is, suppose q satisfies Q(p0,p1,q0,λq1) = 
λQ(p0,p1,q0,q1) for λ > 0. Then using the product 
test in equation (16.17), it can be seen that p must 
satisfy T7. 
 
T8—Invariance to Proportional Changes in Base 
Quantities:27  
 P(p0,p1,λq0,q1) = P(p0,p1,q0,q1) for all λ > 0. 
 
That is, if base-period quantities are all multiplied 
by the number λ, then the price index remains un-
changed. Put another way, the price index function 
P(p0,p1,q0,q1) is (positively) homogeneous of de-
gree 0 in the components of the period 0 quantity 
vector q0. If the quantity index q satisfies the fol-
lowing counterpart to T8: Q(p0,p1,λq0,q1) = 
λ−1Q(p0,p1,q0,q1) for all λ > 0, then using equation 
(16.17), the corresponding price index p must sat-
isfy T8. This argument provides some additional 
justification for assuming the validity of T8 for the 
price index function P. 
 
16.44 T7 and T8 together impose the property 
that the price index p does not depend on the abso-
lute magnitudes of the quantity vectors q0 and q1.  

C.3  Invariance and symmetry tests 

16.45 The next five tests are invariance or sym-
metry tests. Fisher (1922, pp. 62–63, 458–60) and 
Walsh (1901, p. 105; 1921b, p. 542) seem to have 
been the first researchers to appreciate the signifi-
cance of these kinds of tests. Fisher (1922, pp. 62–
63) spoke of fairness, but it is clear that he had 
symmetry properties in mind. It is perhaps unfor-
tunate that he did not realize that there were more 
symmetry and invariance properties than the ones 
he proposed; if he had realized this, it is likely that 
he would have been able to provide an axiomatic 
characterization for his ideal price index, as will be 
done in Section C.6. The first invariance test is that 
                                                        

26Fisher (1911, p. 405) proposed the related test 

P(p0,p1,q0,λq0) = P(p0,p1,q0,q0) = 1 0 0 0

1 1

n n

i i i i
i i

p q p q
= =
∑ ∑ . 

27This test was proposed by Diewert (1992a, p. 216). 

the price index should remain unchanged if the or-
dering of the commodities is changed: 

T9—Commodity Reversal Test (or invariance to 
changes in the ordering of commodities): 
 P(p0*,p1*,q0*,q1*) = P(p0,p1,q0,q1), 
 
where pt* denotes a permutation of the compo-
nents of the vector pt, and qt* denotes the same 
permutation of the components of qt for  t = 0,1. 
This test is due to Irving Fisher (1922, p. 63);28 it 
is one of his three famous reversal tests. The other 
two are the time reversal test and the factor rever-
sal test, which will be considered below. 
 
16.46 The next test asks that the index be invari-
ant to changes in the units of measurement. 

T10—Invariance to Changes in the Units of 
Measurement (commensurability test):  
P(α1p1

0,...,αnpn
0; α1p1

1,...,αnpn
1; 

     α1
−1q1

0,...,αn
−1qn

0; α1
−1q1

1,...,αn
−1qn

1)  
 
   = P(p1

0,...,pn
0; p1

1,...,pn
1; q1

0,...,qn
0; q1

1,...,qn
1) 

 
for all α1 > 0, …, αn > 0. 
 
That is, the price index does not change if the units 
of measurement for each product are changed. The 
concept of this test comes from Jevons (1863, p. 
23) and the Dutch economist Pierson (1896, p. 
131), who criticized several index number formu-
las for not satisfying this fundamental test. Fisher 
(1911, p. 411) first called this test the change of 
units test, and later (Fisher, 1922, p. 420) he called 
it the commensurability test. 
 
16.47 The next test asks that the formula be in-
variant to the period chosen as the base period. 

T11—Time Reversal Test:  
P(p0,p1,q0,q1) = 1/P(p1,p0,q1,q0). 
 
That is, if the data for periods 0 and 1 are inter-
changed, then the resulting price index should 
equal the reciprocal of the original price index. In 
the one good case when the price index is simply 

                                                        
28“This [test] is so simple as never to have been formu-

lated. It is merely taken for granted and observed instinc-
tively. Any rule for averaging the commodities must be so 
general as to apply interchangeably to all of the terms aver-
aged” (Irving Fisher, 1922, p. 63). 
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the single-price ratio, this test will be satisfied (as 
are all of the other tests listed in this section). 
When the number of goods is greater than one, 
many commonly used price indices fail this test; 
for example, the Laspeyres (1871) price index, PL, 
defined by equation (15.5) in Chapter 15, and the 
Paasche (1874) price index, PP, defined by equa-
tion (15.6) in Chapter 15, both fail this fundamen-
tal test. The concept of the test comes from Pierson 
(1896, p. 128), who was so upset with the fact that 
many of the commonly used index number formu-
las did not satisfy this test that he proposed that the 
entire concept of an index number should be aban-
doned. More formal statements of the test were 
made by Walsh (1901, p. 368; 1921b, p. 541) and 
Fisher (1911, p. 534; 1922, p. 64). 
 
16.48 The next two tests are more controversial, 
since they are not necessarily consistent with the 
economic approach to index number theory. How-
ever, these tests are quite consistent with the 
weighted stochastic approach to index number the-
ory to be discussed later in this chapter. 

T12—Quantity Reversal Test (quantity weights 
symmetry test): P(p0,p1,q0,q1) = P(p0,p1,q1,q0). 
 
That is, if the quantity vectors for the two periods 
are interchanged, then the price index remains in-
variant. This property means that if quantities are 
used to weight the prices in the index number for-
mula, then the period 0 quantities q0 and the period 
1 quantities q1 must enter the formula in a symmet-
ric or evenhanded manner. Funke and Voeller 
(1978, p. 3) introduced this test; they called it the 
weight property. 
 
16.49 The next test is the analogue to T12 ap-
plied to quantity indices: 

T13—Price Reversal Test (price weights symmetry 
test):29  
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29This test was proposed by Diewert (1992a, p. 218). 
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Thus, if we use equation (16.17) to define the 
quantity index q in terms of the price index P, then 
it can be seen that T13 is equivalent to the follow-
ing property for the associated quantity index Q: 
 
(16.19) 0 1 0 1 1 0 0 1( , , , ) ( , , , ).Q p p q q Q p p q q=  
  
That is, if the price vectors for the two periods are 
interchanged, then the quantity index remains in-
variant. Thus, if prices for the same good in the 
two periods are used to weight quantities in the 
construction of the quantity index, then property 
T13 implies that these prices enter the quantity in-
dex in a symmetric manner. 
 
C.4  Mean value tests 

16.50 The next three tests are mean value tests. 

T14—Mean Value Test for Prices:30 
 
(16.20) 1 0min (  :   1,..., )i i ip p i n=  

0 1 0 1( , , , )P p p q q≤  
1 0max (  :   1,..., )i i ip p i n≤ = . 

 
That is, the price index lies between the minimum 
price ratio and the maximum price ratio. Since the 
price index is supposed to be interpreted as a kind 
of average of the n price ratios, pi

1/pi
0, it seems es-

sential that the price index p satisfy this test.  
 
16.51 The next test is the analogue to T14 ap-
plied to quantity indices: 

T15—Mean Value Test for Quantities:31 
 
(16.21) 1 0min (  :   1,..., )i i iq q i n=  

1 0
1 0

0 1 0 1

( ) max (  :   1,..., )
( , , , ) i i i

V V q q i n
P p p q q

≤ ≤ = , 

 

                                                        
30This test seems to have been first proposed by Eichhorn 

and Voeller (1976, p. 10).  
31This test was proposed by Diewert (1992a, p. 219). 
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where Vt is the period  t value for the aggregate de-
fined by equation (16.1) above. Using the product 
test in equation (16.17) to define the quantity index 
q in terms of the price index P, it can be seen that 
T15 is equivalent to the following property for the 
associated quantity index Q: 
 
(16.22) 1 0min ( /  : 1,..., ) i i iq q i n=  

0 1 0 1 1 0( , , , ) max ( /  : 1,..., )i i iQ p p q q q q i n≤ ≤ = . 
 
That is, the implicit quantity index q defined by p 
lies between the minimum and maximum rates of 
growth qi

1/qi
0 of the individual quantities. 

 
16.52 In Section C of Chapter 15, it was argued 
that it was reasonable to take an average of the 
Laspeyres and Paasche price indices as a single 
best measure of overall price change. This point of 
view can be turned into a test:  

T16—Paasche and Laspeyres Bounding Test:32 
The price index p lies between the Laspeyres and 
Paasche indices, PL and PP, defined by equations 
(15.5) and (15.6) in Chapter 15. 
 
A test could be proposed where the implicit quan-
tity index q that corresponds to p via equation 
(16.17) is to lie between the Laspeyres and 
Paasche quantity indices, QP and QL, defined by 
equations (15.10) and (15.11) in Chapter 15. How-
ever, the resulting test turns out to be equivalent to 
test T16. 
 
C.5  Monotonicity tests 

16.53 The final four tests are monotonicity tests; 
that is, how should the price index P(p0,p1,q0,q1) 
change as any component of the two price vectors 
p0 and p1 increases or as any component of the two 
quantity vectors q0 and q1 increases? 

T17—Monotonicity in Current Prices: 
P(p0,p1,q0,q1) < P(p0,p2,q0,q1) if p1 < p2. 
 
That is, if some period 1 price increases, then the 
price index must increase, so that P(p0,p1,q0,q1) is 
increasing in the components of p1. This property 
was proposed by Eichhorn and Voeller (1976,  

                                                        
32Bowley (1901, p. 227) and Fisher (1922, p. 403) both 

endorsed this property for a price index. 

p. 23), and it is a reasonable property for a price 
index to satisfy. 
 
T18—Monotonicity in Base Prices: P(p0,p1,q0,q1) 
> P(p2,p1,q0,q1) if p0 < p2.  
  
That is, if any period 0 price increases, then the 
price index must decrease, so that P(p0,p1,q0,q1) is 
decreasing in the components of p0 . This quite 
reasonable property was also proposed by Eich-
horn and Voeller (1976, p. 23). 
 
T19—Monotonicity in Current Quantities:  
If q1 < q2, then  
 

(16.23) 
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T20—Monotonicity in Base Quantities: If q0 < q2, 
then  
 

(16.24) 
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16.54 Let q be the implicit quantity index that 
corresponds to p using equation (16.17). Then it is 
found that T19 translates into the following ine-
quality involving Q: 

(16.25) 0 1 0 1 0 1 0 2( , , , ) ( , , , )Q p p q q Q p p q q<  
1 2if .q q<  

 
That is, if any period 1 quantity increases, then the 
implicit quantity index q that corresponds to the 
price index p must increase. Similarly, we find that 
T20 translates into: 
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(16.26) 0 1 0 1 0 1 2 1( , , , ) ( , , , )Q p p q q Q p p q q>  
0 2if .q q<  

 
That is, if any period 0 quantity increases, then the 
implicit quantity index q must decrease. Tests T19 
and T20 are due to Vogt (1980, p. 70). 
 
16.55 This concludes the listing of tests. In the 
next section, it is asked whether any index number 
formula P(p0,p1,q0,q1) exists that can satisfy all 20 
tests. 

C.6  Fisher ideal index and test  
approach 

16.56 It can be shown that the only index num-
ber formula P(p0,p1,q0,q1) that satisfies tests T1–
T20 is the Fisher ideal price index PF, defined as 
the geometric mean of the Laspeyres and Paasche 
indices:33 

(16.27) 
1 20 1 0 1 0 1 0 1( , , , ) ( , , , )F LP p p q q P p p q q ≡    

    
1/ 20 1 0 1( , , , )PP p p q q ×  . 

 
To prove this assertion, it is relatively straightfor-
ward to show that the Fisher index satisfies all 20 
tests.  
 
16.57 The more difficult part of the proof is 
showing that it is the only index number formula 
that satisfies these tests. This part of the proof fol-
lows from the fact that if p satisfies the positivity 
test T1 and the three reversal tests, T11–T13, then 
p must equal PF. To see this, rearrange the terms in 
the statement of test T13 into the following equa-
tion: 

(16.28) 
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33See Diewert (1992a, p. 221).  
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using T11, the time reversal test.
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Now take positive square roots on both sides of 
equation (16.28), and it can be seen that the left-
hand side of the equation is the Fisher index 
PF(p0,p1,q0,q1) defined by equation (16.27) and the 
right-hand side is P(p0,p1,q0,q1). Thus, if p satisfies 
T1, T11, T12, and T13, it must equal the Fisher 
ideal index PF.  
 
16.58 The quantity index that corresponds to the 
Fisher price index using the product test in equa-
tion (16.17) is QF , the Fisher quantity index, de-
fined by equation (15.14) in Chapter 15. 

16.59 It turns out that PF satisfies yet another 
test, T21, which was Irving Fisher's (1921, p. 534; 
1922. pp. 72–81) third reversal test (the other two 
being T9 and T11): 

T21—Factor Reversal Test (functional form sym-
metry test):  
(16.29) 
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A justification for this test is the following: assume 
P(p0,p1,q0,q1) is a good functional form for the 
price index; then if the roles of prices and quanti-
ties are reversed, P(q0,q1,p0,p1) ought to be a good 
functional form for a quantity index (which seems 
to be a correct argument). The product, therefore, 
of the price index P(q0,q1,p0,p1) and the quantity 
index Q(q0,q1,p0,p1) = P(q0,q1,p0,p1) ought to equal 
the value ratio, V1/V0 . The second part of this ar-
gument does not seem to be valid; consequently, 
many researchers over the years have objected to 
the factor reversal test. However, if one is willing 
to embrace T21 as a basic test, Funke and Voeller 
(1978, p. 180) showed that the only index number 
function P(q0,q1,p0,p1) that satisfies T1 (positivity), 
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T11 (time reversal test), T12 (quantity reversal 
test), and T21 (factor reversal test) is the Fisher 
ideal index PF defined by equation (16.27). Thus, 
the price reversal test T13 can be replaced by the 
factor reversal test in order to obtain a minimal set 
of four tests that lead to the Fisher price index.34 
 
C.7  Test performance of other  
indices 

16.60 The Fisher price index PF satisfies all 20 
of the tests listed in Sections C.1–C.5. Which tests 
do other commonly used price indices satisfy? Re-
call the Laspeyres index PL, equation (15.5); the 
Paasche index PP, equation (15.6); the Walsh in-
dex PW, equation (15.19); and the Törnqvist index 
PT, equation (15.81) in Chapter 15.  

16.61 Straightforward computations show that 
the Paasche and Laspeyres price indices, PL and 
PP, fail only the three reversal tests, T11, T12, and 
T13. Since the quantity and price reversal tests, 
T12 and T13, are somewhat controversial and can 
be discounted, the test performance of PL and PP 
seems at first glance to be quite good. However, 
the failure of the time reversal test, T11, is a severe 
limitation associated with the use of these indices. 

16.62 The Walsh price index, PW, fails four 
tests: T13, the price reversal test; T16, the Paasche 
and Laspeyres bounding test; T19, the monotonic-
ity in current quantities test; and T20, the 
monotonicity in base quantities test. 

16.63 Finally, the Törnqvist price index PT fails 
nine tests: T4, the fixed-basket test; T12 and T13, 
the quantity and price reversal tests; T15, the mean 
value test for quantities; T16, the Paasche and 
Laspeyres bounding test; and T17–T20, the four 
monotonicity tests. Thus, the Törnqvist index is 
subject to a rather high failure rate from the view-
point of this axiomatic approach to index number 
theory.35  

                                                        
34Other characterizations of the Fisher price index can be 

found in Funke and Voeller (1978) and Balk (1985, 1995). 
35However, it will be shown later in Chapter 19 that the 

Törnqvist index approximates the Fisher index quite 
closely using normal time-series data that are subject to 
relatively smooth trends. Under these circumstances, the 
Törnqvist index can be regarded as passing the 20 tests to a 
reasonably high degree of approximation. 

16.64 The tentative conclusion that can be 
drawn from these results is that from the viewpoint 
of this particular bilateral test approach to index 
numbers, the Fisher ideal price index PF appears to 
be best because it satisfies all 20 tests.36 The 
Paasche and Laspeyres indices are next best if we 
treat each test as being equally important. How-
ever, both of these indices fail the very important 
time reversal test. The remaining two indices, the 
Walsh and Törnqvist price indices, both satisfy the 
time reversal test, but the Walsh index emerges as 
the better one because it passes 16 of the 20 tests, 
whereas the Törnqvist satisfies only 11 tests. 

C.8  Additivity test 

16.65 There is an additional test that many na-
tional income accountants regard as very impor-
tant: the additivity test. This is a test or property 
that is placed on the implicit quantity index 
Q(q0,q1,p0,p1) that corresponds to the price index 
P(q0,q1,p0,p1) using the product test in equation 
(16.17). This test states that the implicit quantity 
index has the following form: 

(16.30) 
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where the common across-periods price for prod-
uct i, pi* for i = 1,…,n, can be a function of all 4n 
prices and quantities pertaining to the two periods 
or situations under consideration, p0,p1,q0,q1. In the 
literature on making multilateral comparisons (that 
is, comparisons among more than two situations), 
it is quite common to assume that the quantity 
comparison between any two regions can be made 
using the two regional quantity vectors, q0 and q1, 
and a common reference price vector, p* ≡ 
(p1*,…,pn*).37 

                                                        
36This assertion needs to be qualified: there are many 

other tests that we have not discussed, and price statisti-
cians could differ on the importance of satisfying various 
sets of tests. Some references that discuss other tests are 
Auer (2001; 2002), Eichhorn and Voeller (1976), Balk 
(1995), and Vogt and Barta (1997). In Section E, it is 
shown that the Törnqvist index is ideal for a different set of 
axioms. 

37Hill (1993, pp. 395–97) termed such multilateral meth-
ods the block approach, while Diewert (1996a, pp. 250–51) 
used the term average price approaches. Diewert (1999b, 

(continued) 
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16.66 Different versions of the additivity test 
can be obtained if further restrictions are placed on 
precisely which variables each reference price pi* 
depends. The simplest such restriction is to assume 
that each pi* depends only on the product i prices 
pertaining to each of the two situations under con-
sideration, pi

0 and pi
1. If it is further assumed that 

the functional form for the weighting function is 
the same for each product, so that pi* = m(pi

0,pi
1) 

for i = 1,…,n, then we are led to the unequivocal 
quantity index postulated by Knibbs (1924, p. 44).  

16.67 The theory of the unequivocal quantity in-
dex (or the pure quantity index)38 parallels the the-
ory of the pure price index outlined in Section C.2 
of Chapter 15. An outline of this theory is now 
given. Let the pure quantity index QK have the fol-
lowing functional form: 

(16.31) 

1 0 1

0 1 0 1 1

0 0 1

1

( , )
( , , , ) .

( , )

n

i i i
i

K n

k k k
k

q m p p
Q p p q q

q m p p

=

=

≡
∑

∑
  

 
It is assumed that the price vectors p0 and p1 are 
strictly positive, and the quantity vectors q0 and q1 
are nonnegative but have at least one positive 
component.39 The problem is to determine the 
functional form for the averaging function m if 
possible. To do this, it is necessary to impose some 
tests or properties on the pure quantity index QK. 
As was the case with the pure price index, it is rea-
sonable to ask that the quantity index satisfy the 
time reversal test: 
 

(16.32) 1 0 1 0
0 1 0 1

1( , , , ) .
( , , , )K

K

Q p p q q
Q p p q q

=   

 
16.68 As was the case with the theory of the un-
equivocal price index, it can be seen that if the un-
equivocal quantity index QK is to satisfy the time 
reversal test of equation (16.32), the mean function 

                                                                                   
p. 19) used the term additive multilateral system. For axio-
matic approaches to multilateral index number theory, see 
Balk (1996a, 2001) and Diewert (1999b). 

38Diewert (2001) used this term.  
39It is assumed that m(a,b) has the following two proper-

ties: m(a,b) is a positive and continuous function, defined 
for all positive numbers a and b; and m(a,a) = a for all  
a > 0. 

in equation (16.31) must be symmetric. It is also 
asked that QK satisfy the following invariance to 
proportional changes in current prices test. 

 
(16.33) 0 1 0 1 0 1 0 1( , , , ) ( , , , )K KQ p p q q Q p p q qλ =   

0 1 0 1for all , , , and all 0p p q q λ > . 
 
16.69 The idea behind this invariance test is this: 
the quantity index QK(p0,p1,q0,q1) should depend 
only on the relative prices in each period. It should 
not depend on the amount of inflation between the 
two periods. Another way to interpret equation 
(16.33) is to look at what the test implies for the 
corresponding implicit price index, PIK, defined us-
ing the product test of equation (16.17). It can be 
shown that if QK satisfies equation (16.33), then 
the corresponding implicit price index PIK will sat-
isfy test T5, the proportionality in current prices 
test. The two tests in equations (16.32) and (16.33) 
determine the precise functional form for the pure 
quantity index QK defined by equation (16.31): the 
pure quantity index or Knibbs’ unequivocal quan-
tity index QK must be the Walsh quantity index 
QW

40 defined by 

(16.34)
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≡
∑

∑
  

 
16.70 Thus, with the addition of two tests, the 
pure price index PK must be the Walsh price index 
PW defined by equation (15.19) in Chapter 15. 
With the addition of the same two tests (but ap-
plied to quantity indices instead of price indices), 
the pure quantity index QK must be the Walsh 
quantity index QW defined by equation (16.34). 
However, note that the product of the Walsh price 
and quantity indices is not equal to the revenue ra-
tio, V1/V0. Thus, believers in the pure or unequivo-
cal price and quantity index concepts have to 
choose one of these two concepts; they cannot ap-
ply both simultaneously.41 

16.71 If the quantity index Q(q0,q1,p0,p1) satis-
fies the additivity test in equation (16.30) for some 

                                                        
40This is the quantity index that corresponds to the price 

index 8 defined by Walsh (1921a, p. 101).  
41Knibbs (1924) did not notice this point! 
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price weights pi*, then the percentage change in 
the quantity aggregate, Q(q0,q1,p0,p1) − 1, can be 
rewritten as follows: 

(16.35)
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w q q
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where the weight for product i, wi, is defined as 
 

(16.36)
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* 0
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; 1,..., .i
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≡ =
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Note that the change in product i going from situa-
tion 0 to situation 1 is qi

1 − qi
0. Thus, the ith term 

on the right-hand side of equation (16.35) is the 
contribution of the change in product i to the over-
all percentage change in the aggregate going from 
period 0 to 1. Business analysts often want statisti-
cal agencies to provide decompositions like equa-
tion (16.35) so they can decompose the overall 
change in an aggregate into sector-specific compo-
nents of change.42 Thus, there is a demand on the 
part of users for additive quantity indices.  
 
16.72 For the Walsh quantity index defined by 
equation (16.34), the ith weight is 

(16.37)
0 1

0 0 1
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; 1,..., .
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i i
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∑
  

 
Thus, the Walsh quantity index QW has a percent-
age decomposition into component changes of the 
form in equation (16.35), where the weights are 
defined by equation (16.37). 
 
                                                        

42Business and government analysts also often demand an 
analogous decomposition of the change in price aggregate 
into sector-specific components that add up. 

16.73 It turns out that the Fisher quantity index 
QF defined by equation (15.14) in Chapter 15 also 
has an additive percentage change decomposition 
of the form given by equation (16.35).43 The ith 
weight wFi for this Fisher decomposition is rather 
complicated and depends on the Fisher quantity 
index QF(p0,p1,q0,q1) as follows:44 

(16.38)
0 2 1( )

; 1,...,
1i

i F i
F
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w Q w
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Q
+

≡ =
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,  

 
where QF is the value of the Fisher quantity index, 
QF(p0,p1,q0,q1), and the period t normalized price 
for product i, wi

t, is defined as the period i price pi
t 

divided by the period  t revenue on the aggregate: 
 

(16.39)
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16.74 Using the weights wFi defined by equa-
tions (16.38) and (16.39), the following exact de-
composition is obtained for the Fisher ideal quan-
tity index:45 

(16.40) 0 1 0 1 1 0

1

( , , , ) 1 ( ).
i

n

F F i i
i

Q p p q q w q q
=

− = −∑   

 
Thus, the Fisher quantity index has an additive 
percentage change decomposition. 
 
16.75 Due to the symmetric nature of the Fisher 
price and quantity indices, it can be seen that the 
Fisher price index PF defined by equation (16.27) 
                                                        

43The Fisher quantity index also has an additive decom-
position of the type defined by equation (16.30) due to Van 
Ijzeren (1987, p. 6). The ith reference price pi* is defined as 
pi* ≡ (1/2)pi

0 + (1/2)pi
1/PF(p0,p1,q0,q1) for i = 1,…,n and 

where PF is the Fisher price index. This decomposition was 
also independently derived by Dikhanov (1997). The Van 
Ijzeren decomposition for the Fisher quantity index is cur-
rently being used by the Bureau of Economic Analysis; see 
Moulton and Seskin (1999, p. 16) and Ehemann, Katz, and 
Moulton (2002). 

44This decomposition was obtained by Diewert (2002a) 
and Reinsdorf, Diewert, and Ehemann (2002). For an eco-
nomic interpretation of this decomposition, see Diewert 
(2002a). 

45To verify the exactness of the decomposition, substitute 
equation (16.38) into equation (16.40) and solve the result-
ing equation for QF. It is found that the solution is equal to 
QF defined by equation (15.14) in Chapter 15. 
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also has the following additive percentage change 
decomposition: 

(16.41) 0 1 0 1 1 0

1

( , , , ) 1 ( )
i
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F F i i
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P p p q q v p p
=
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where the product i weight vFi is defined as 
 

(16.42)
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where PF is the value of the Fisher price index, 
PF(p0,p1,q0,q1), and the period  t normalized quan-
tity for product i, vi

t, is defined as the period i 
quantity qi

t divided by the period  t revenue on the 
aggregate: 
 

(16.43)
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16.76 The above results show that the Fisher 
price and quantity indices have exact additive de-
compositions into components that give the contri-
bution to the overall change in the price (or quan-
tity) index of the change in each price (or quan-
tity). 

D.   Stochastic Approach  
to Price Indices 

D.1  Early unweighted  
stochastic approach 

16.77 The stochastic approach to the determina-
tion of the price index can be traced back to the 
work of Jevons (1863, 1865) and Edgeworth 
(1888) over a hundred years ago.46 The basic idea 
behind the (unweighted) stochastic approach is that 
each price relative, pi

1/pi
0 for i = 1,2,…,n can be 

regarded as an estimate of a common inflation rate 
α between periods 0 and 1;47 that is, it is assumed 
that 

                                                        
46For references to the literature, see Diewert (1993a, pp. 

37–38; 1995a; 1995b). 
47“In drawing our averages the independent fluctuations 

will more or less destroy each other; the one required varia-
tion of gold will remain undiminished” (W. Stanley Jevons, 
1863, p. 26). 

(16.44)
1

0 ; 1,2,...,i
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p i n
p

= α + ε = ,  

 
where α is the common inflation rate and the εi are 
random variables with mean 0 and variance σ2. 
The least squares or maximum likelihood estimator 
for α is the Carli (1804) price index PC defined as 
 

(16.45) 
1

0 1
0

1

1( , ) .
n

i
C

i i

pP p p
n p=

≡ ∑  

 
A drawback of the Carli price index is that it does 
not satisfy the time reversal test, that is, PC(p1,p0) ≠ 
1/ PC(p0,p1).48 
 
16.78 Now change the stochastic specification 
and assume that the logarithm of each price rela-
tive, ln(pi

1/pi
0), is an unbiased estimate of the loga-

rithm of the inflation rate between periods 0 and 1, 
β, say. The counterpart to equation (16.44) is: 

(16.46)
1

0ln( ) ; 1,2,..., ,i
i

i

p i n
p

= β + ε =   

 
where β ≡ ln α and the εi are independently dis-
tributed random variables with mean 0 and vari-
ance σ 2. The least-squares or maximum-likelihood 
estimator for β is the logarithm of the geometric 
mean of the price relatives. Hence, the correspond-
ing estimate for the common inflation rate α49  

                                                        
48In fact, Fisher (1922, p. 66) noted that 

PC(p0,p1)PC(p1,p0) ≥ 1 unless the period 1 price vector p1 is 
proportional to the period 0 price vector p0; that is, Fisher 
showed that the Carli index has a definite upward bias. He 
urged statistical agencies not to use this formula. Walsh 
(1901, pp. 331 and 530) also discovered this result for the 
case n = 2. 

49Greenlees (1999) pointed out that although 
1

0
1

1 ln
n

i

i i

p
n p=

 
 
 

∑  is an unbiased estimator for β, the corre-

sponding exponential of this estimator, PJ defined by equa-
tion (16.47), will generally not be an unbiased estimator for 
α under our stochastic assumptions. To see this, let xi = ln 
(pi

1/pi
0). Taking expectations, we have: Exi = β = ln α. De-

fine the positive, convex function f of one variable x by f(x) 
≡ ex. By Jensen’s (1906) inequality, Ef(x) ≥ f(Ex). Letting x 
equal the random variable xi, this inequality becomes 
E(pi

1/pi
0) = Ef(xi) ≥ f(Exi) = f(β) = eβ = eln α = α. Thus, for 

each n, E(pi
1/pi

0) ≥ α, and it can be seen that the Jevons 
(continued) 
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is the Jevons (1865) price index PJ defined as  
follows:  

(16.47) 
1

0 1
0

1
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inJ
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p
P p p

p=

≡∏  

 
16.79 The Jevons price index PJ does satisfy the 
time reversal test and thus is much more satisfac-
tory than the Carli index PC. However, both the 
Jevons and Carli price indices suffer from a fatal 
flaw: each price relative pi

1/pi
0 is regarded as being 

equally important and is given an equal weight in 
the index number equations (16.45) and (16.47). 
Keynes was particularly critical of this unweighted 
stochastic approach to index number theory.50 He 
directed the following criticism toward this ap-
proach, which was vigorously advocated by 
Edgeworth (1923): 

Nevertheless I venture to maintain that such 
ideas, which I have endeavoured to expound 
above as fairly and as plausibly as I can, are root-
and-branch erroneous. The “errors of observa-
tion”, the “faulty shots aimed at a single bull’s 
eye” conception of the index number of prices, 
Edgeworth’s “objective mean variation of gen-
eral prices”, is the result of confusion of thought. 
There is no bull’s eye. There is no moving but 
unique centre, to be called the general price level 
or the objective mean variation of general prices, 
round which are scattered the moving price lev-
els of individual things. There are all the various, 
quite definite, conceptions of price levels of 
composite commodities appropriate for various 
purposes and inquiries which have been sched-
uled above, and many others too. There is noth-
ing else. Jevons was pursuing a mirage. 

What is the flaw in the argument? In the first 
place it assumed that the fluctuations of individ-
ual prices round the “mean” are “random” in the 
sense required by the theory of the combination 

                                                                                   
price index will generally have an upward bias under the 
usual stochastic assumptions.  

50Walsh (1901, p. 83) also stressed the importance of 
proper weighting according to the economic importance of 
the commodities in the periods being compared: “But to as-
sign uneven weighting with approximation to the relative 
sizes, either over a long series of years or for every period 
separately, would not require much additional trouble; and 
even a rough procedure of this sort would yield results far 
superior to those yielded by even weighting. It is especially 
absurd to refrain from using roughly reckoned uneven 
weighting on the ground that it is not accurate, and instead 
to use even weighting, which is much more inaccurate.”  

of independent observations. In this theory the 
divergence of one “observation” from the true 
position is assumed to have no influence on the 
divergences of other “observations”. But in the 
case of prices, a movement in the price of one 
product necessarily influences the movement in 
the prices of other commodities, whilst the mag-
nitudes of these compensatory movements de-
pend on the magnitude of the change in revenue 
on the first product as compared with the impor-
tance of the revenue on the commodities secon-
darily affected. Thus, instead of “independence”, 
there is between the “errors” in the successive 
“observations” what some writers on probability 
have called “connexity”, or, as Lexis expressed 
it, there is “sub-normal dispersion”. 

 We cannot, therefore, proceed further until we 
have enunciated the appropriate law of connex-
ity. But the law of connexity cannot be enunci-
ated without reference to the relative importance 
of the commodities affected—which brings us 
back to the problem that we have been trying to 
avoid, of weighting the items of a composite 
commodity. (John Maynard Keynes, 1930,  
pp. 76–77) 

The main point Keynes seemed to be making in 
the quotation above is that prices in the economy 
are not independently distributed from each other 
and from quantities. In current macroeconomic 
terminology, Keynes can be interpreted as saying 
that a macroeconomic shock will be distributed 
across all prices and quantities in the economy 
through the normal interaction between supply and 
demand; that is, through the workings of the gen-
eral equilibrium system. Thus, Keynes seemed to 
be leaning toward the economic approach to index 
number theory (even before it was developed to 
any great extent), where quantity movements are 
functionally related to price movements. A second 
point that Keynes made in the above quotation is 
that there is no such thing as the inflation rate; 
there are only price changes that pertain to well-
specified sets of commodities or transactions; that 
is, the domain of definition of the price index must 
be carefully specified.51 A final point that Keynes 
made is that price movements must be weighted by 
their economic importance; that is, by quantities or 
revenues. 
 

                                                        
51See Section B in Chapter 15 for additional discussion 

on this point. 
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16.80 In addition to the above theoretical criti-
cisms, Keynes also made the following strong em-
pirical attack on Edgeworth’s unweighted stochas-
tic approach: 

The Jevons-Edgeworth “objective mean varia-
tion of general prices,” or “indefinite” standard, 
has generally been identified, by those who were 
not as alive as Edgeworth himself was to the 
subtleties of the case, with the purchasing power 
of money—if only for the excellent reason that it 
was difficult to visualise it as anything else. And 
since any respectable index number, however 
weighted, which covered a fairly large number of 
commodities could, in accordance with the ar-
gument, be regarded as a fair approximation to 
the indefinite standard, it seemed natural to re-
gard any such index as a fair approximation to 
the purchasing power of money also. 

Finally, the conclusion that all the standards 
“come to much the same thing in the end” has 
been reinforced “inductively” by the fact that ri-
val index numbers (all of them, however, of the 
wholesale type) have shown a considerable 
measure of agreement with one another in spite 
of their different compositions. … On the con-
trary, the tables given above (pp. 53, 55) supply 
strong presumptive evidence that over long pe-
riod as well as over short periods the movements 
of the wholesale and of the consumption stan-
dards respectively are capable of being widely 
divergent. (John Maynard Keynes, 1930, pp. 80–
81) 

In the quotation above, Keynes noted that the pro-
ponents of the unweighted stochastic approach to 
price change measurement were comforted by the 
fact that all of the then existing (unweighted) indi-
ces of wholesale prices showed broadly similar 
movements. However, Keynes showed empirically 
that his wholesale price indices moved quite dif-
ferently than his consumer price indices.  
 
16.81 In order to overcome these criticisms of 
the unweighted stochastic approach to index num-
bers, it is necessary to 

• Have a definite domain of definition for the 
index number; and 

• Weight the price relatives by their economic 
importance.52 

 
16.82 In the following section, alternative meth-
ods of weighting will be discussed. 

D.2  Weighted stochastic approach 

16.83 Walsh (1901, pp. 88–89) seems to have 
been the first index number theorist to point out 
that a sensible stochastic approach to measuring 
price change means that individual price relatives 
should be weighted according to their economic 
importance or their transactions’ value in the two 
periods under consideration: 

It might seem at first sight as if simply every 
price quotation were a single item, and since 
every commodity (any kind of commodity) has 
one price-quotation attached to it, it would seem 
as if price-variations of every kind of commodity 
were the single item in question. This is the way 
the question struck the first inquirers into price-
variations, wherefore they used simple averaging 
with even weighting. But a price-quotation is the 
quotation of the price of a generic name for 
many articles; and one such generic name covers 
a few articles, and another covers many. … A 
single price-quotation, therefore, may be the 
quotation of the price of a hundred, a thousand, 
or a million dollars’ worth, of the articles that 
make up the commodity named. Its weight in the 
averaging, therefore, ought to be according to 
these money-unit’s worth. (Correa Moylan 
Walsh, 1921a, pp. 82–83) 

However, Walsh did not give a convincing argu-
ment on exactly how these economic weights 
should be determined. 
 
16.84 Theil (1967, pp. 136–37) proposed a solu-
tion to the lack of weighting in the Jevons index, 
PJ, defined by equation (16.47). He argued as fol-
lows. Suppose we draw price relatives at random 
in such a way that each dollar of revenue in the 
base period has an equal chance of being selected. 
Then the probability that we will draw the ith price 

relative is equal to 0 0 0 0 0

1

n

i i i k k
k

s p q p q
=

≡ ∑ , the period 

                                                        
52Walsh (1901, pp. 82–90; 1921a, pp. 82–83) also ob-

jected to the lack of weighting in the unweighted stochastic 
approach to index number theory. 
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0 revenue share for product i. Then the overall 
mean (period 0 weighted) logarithmic price change 

is ( )0 1 0

1

ln
n

i i i
i

s p p
=
∑ .53 Now repeat the above mental 

experiment and draw price relatives at random in 
such a way that each dollar of revenue in period 1 
has an equal probability of being selected. This 
leads to the overall mean (period 1 weighted) loga-

rithmic price change of ( )1 1 0

1

ln
n

i i i
i

s p p
=
∑ .54 Each of 

these measures of overall logarithmic price change 
seems equally valid, so we could argue for taking a 
symmetric average of the two measures in order to 
obtain a final single measure of overall logarithmic 
price change. Theil55 argued that a nice, symmetric 
index number formula can be obtained if the prob-
ability of selection for the nth price relative is 
made equal to the arithmetic average of the period 
0 and 1 revenue shares for product n. Using these 
probabilities of selection, Theil’s final measure of 
overall logarithmic price change was 

 

(16.48)
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Note that the index PT defined by equation (16.48) 
is equal to the Törnqvist index defined by equation 
(15.81) in Chapter 15. 
 
16.85 A statistical interpretation of the right-
hand side of equation (16.48) can be given. Define 
the ith logarithmic price ratio ri by: 

                                                        
53In Chapter 19, this index will be called the geometric 

Laspeyres index, PGL. Vartia (1978, p. 272) referred to this 
index as the logarithmic Laspeyres index. Yet another 
name for the index is the base-weighted geometric index.  

54In Chapter 19, this index will be called the geometric 
Paasche index, PGP. Vartia (1978, p. 272) referred to this 
index as the logarithmic Paasche index. Yet another name 
for the index is the current-period weighted geometric in-
dex.  

55“The price index number defined in (1.8) and (1.9) uses 
the n individual logarithmic price differences as the basic 
ingredients. They are combined linearly by means of a two 
stage random selection procedure: First, we give each re-
gion the same chance (½) of being selected, and second, we 
give each dollar spent in the selected region the same 
chance (1/ma or 1/mb) of being drawn” (Henri Theil, 1967, 
p. 138).  

(16.49)
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Now define the discrete random variable—we will 
call it R—as the random variable that can take on 
the values ri with probabilities ρi ≡ (1/2)[ si

0 + si
1] 

for i = 1,…,n. Note that since each set of revenue 
shares, si

0 and si
1, sums to 1 over i, the probabili-

ties ρi will also sum to 1. It can be seen that the 
expected value of the discrete random variable R is 
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Thus, the logarithm of the index PT can be inter-
preted as the expected value of the distribution of 
the logarithmic price ratios in the domain of defi-
nition under consideration, where the  n discrete 
price ratios in this domain of definition are 
weighted according to Theil’s probability weights, 
ρi ≡ (1/2)[ si

0 + si
1] for i = 1,…,n.  

 
16.86 Taking antilogs of both sides of equation 
(16.48), the Törnqvist- (1936, 1937) Theil price 
index, PT, is obtained.56 This index number for-
mula has a number of good properties. In particu-
lar, PT satisfies the proportionality in current prices 
test (T5) and the time reversal test (T11) discussed 
in Section C. These two tests can be used to justify 
Theil’s (arithmetic) method of forming an average 
of the two sets of revenue shares in order to obtain 
his probability weights, ρi ≡ (1/2)[ si

0 + si
1] for i = 

1,…,n. Consider the following symmetric mean 
class of logarithmic index number formulas: 

(16.51)
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0 1 0 1 0 1
0

1

ln ( , , , ) ( , ) ln( )
n

i
S i i

i i

pP p p q q m s s
p=

≡ ∑ ,  

 
where m(si

0,si
1) is a positive function of the period 

0 and 1 revenue shares on product i, si
0 and si

1, re-
spectively. In order for PS to satisfy the time rever-
sal test, it is necessary for the function m to be 

                                                        
56The sampling bias problem studied by Greenlees (1999) 

does not occur in the present context because there is no 
sampling involved in equation (16.50): the sum of the pi

tqi
t 

over i for each period t is assumed to equal the value ag-
gregate Vt for period t. 
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symmetric. Then it can be shown57 that for PS to 
satisfy test T5, m must be the arithmetic mean. 
This provides a reasonably strong justification for 
Theil’s choice of the mean function.  
 
16.87 The stochastic approach of Theil has an-
other advantageous symmetry property. Instead of 
considering the distribution of the price ratios ri = 
ln (pi

1/pi
0), we could also consider the distribution 

of the reciprocals of these price ratios, say, 

(16.52)
10 1

1 0ln lni i
i

i i

p pt
p p

−
 

≡ =  
 

 

    
1

0ln for   1, ,i
i

i

p r i n
p

= − = − = … .  

 
The symmetric probability, ρi ≡ (1/2)[ si

0 + si
1], 

can still be associated with the ith reciprocal loga-
rithmic price ratio ti for i = 1,…,n. Now define the 
discrete random variable, t, say, as the random 
variable that can take on the values ti with prob-
abilities ρi ≡ (1/2)[ si

0 + si
1] for i = 1,…,n. It can be 

seen that the expected value of the discrete random 
variable  t is 
 

(16.53) [ ]
1

E
n

i i
i

T t
=

≡ ρ∑  

[ ]
1

0 1 0 1

using equation (16.52)

E using equation (16.50)

ln  ( , , , ).

n

i i
i

T

r t

R

P p p q q

=

= −

= −

= −

∑
 

 
Thus, it can be seen that the distribution of the 
random variable  t is equal to minus the distribu-
tion of the random variable R. Hence, it does not 
matter whether the distribution of the original 
logarithmic price ratios, ri ≡ ln (pi

1/pi
0), is consid-

ered or the distribution of their reciprocals, ti ≡ ln 
(pi

1/pi
0), is considered: essentially the same sto-

chastic theory is obtained. 
 
16.88 It is possible to consider weighted sto-
chastic approaches to index number theory where 
the distribution of the price ratios, pi

1/pi
0, is con-

sidered rather than the distribution of the logarith-
mic price ratios, ln (pi

1/pi
0). Thus, again following 

in the footsteps of Theil, suppose that price rela-
                                                        

57See Diewert (2000) and Balk and Diewert (2001). 

tives are drawn at random in such a way that each 
dollar of revenue in the base period has an equal 
chance of being selected. Then the probability that 
the ith price relative will be drawn is equal to si

0, 
the period 0 revenue share for product i. Thus, the 
overall mean (period 0 weighted) price change is 

(16.54)
1

0 1 0 1 0
0

1

( , , , ) ,
n

i
L i

i i

pP p p q q s
p=

= ∑   

 
which turns out to be the Laspeyres price index, 
PL. This stochastic approach is the natural one for 
studying sampling problems associated with im-
plementing a Laspeyres price index.  
 
16.89 Take the same hypothetical situation and 
draw price relatives at random in such a way that 
each dollar of revenue in period 1 has an equal 
probability of being selected. This leads to the 
overall mean (period 1 weighted) price change 
equal to  

(16.55) 
1

0 1 0 1 1
0

1

( , , , ) .
n

i
Pal i

i i

pP p p q q s
p=

= ∑  

 
This is known as the Palgrave (1886) index num-
ber formula.58  
 
16.90 It can be verified that neither the 
Laspeyres nor the Palgrave price indices satisfy the 
time reversal test, T11. Thus, again following in 
the footsteps of Theil, it might be attempted to ob-
tain a formula that satisfied the time reversal test 
by taking a symmetric average of the two sets of 
shares. Thus, consider the following class of sym-
metric mean index number formulas:  

(16.56)
1

0 1 0 1 0 1
0

1

( , , , ) ( , )
n

i
m i i

i i

pP p p q q m s s
p=

≡ ∑ ,  

 
where m(si

0,si
1) is a symmetric function of the pe-

riod 0 and 1 revenue shares for product i, si
0 and 

si
1, respectively. In order to interpret the right-hand 

side of equation (16.56) as an expected value of 
the price ratios pi

1/pi
0, it is necessary that  

 

                                                        
58It is formula number 9 in Fisher’s (1922, p. 466) listing 

of index number formulas. 
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(16.57) 0 1

1

( , ) 1.
n

i i
i

m s s
=

=∑   

 
However, in order to satisfy equation (16.57), m 
must be the arithmetic mean.59 With this choice of 
m, equation (16.56) becomes the following (un-
named) index number formula, Pu: 
 

(16.58)
1

0 1 0 1 0 1
0

1

1( , , , ) ( ) .
2

n
i

u i i
i i

pP p p q q s s
p=

≡ +∑   

 
Unfortunately, the unnamed index Pu does not sat-
isfy the time reversal test either.60 
 
16.91 Instead of considering the distribution of 
the price ratios, pi

1/pi
0, the distribution of the re-

ciprocals of these price ratios could be considered. 
The counterparts to the asymmetric indices defined 
earlier by equations (16.54) and (16.55) are now 

( )0 0 1

1

n

i i i
i

s p p
=
∑  and ( )1 0 1

1

n

i i i
i

s p p
=
∑ , respectively. 

These are (stochastic) price indices going back-
ward from period 1 to 0. In order to make these in-
dices comparable with other previous forward-
looking indices, take the reciprocals of these indi-
ces (which lead to harmonic averages) and the fol-
lowing two indices are obtained: 

(16.59) 0 1 0 1
0

0
1

1

1( , , , )HL n
i

i
i i

P p p q q
ps
p=

≡

∑
,  

 

(16.60) 0 1 0 1
0

1
1

1

1( , , , )HP n
i

i
i i

P p p q q
ps
p=

≡

∑
 

0 1 0 1
11

1
0

1

1 ( , , , )P
n

i
i

i i

P p p q q
ps
p

−

=

= =
 
 
 

∑
,  

                                                        
59For a proof of this assertion, see Balk and Diewert 

(2001). 
60In fact, this index suffers from the same upward bias as 

the Carli index in that Pu(p0,p1,q0,q1)Pu(p1,p0,q1,q0) ≥ 1. To 
prove this, note that the previous inequality is equivalent to 
[Pu(p1,p0,q1,q0)]−1 ≤ Pu(p0,p1,q0,q1), and this inequality fol-
lows from the fact that a weighted harmonic mean of n 
positive numbers is equal to or less than the corresponding 
weighted arithmetic mean; see Hardy, Littlewood, and 
Pólya (1934, p. 26).  

 
using equation (15.9) in Chapter 15. Thus, the re-
ciprocal stochastic price index defined by equation 
(16.60) turns out to equal the fixed-basket Paasche 
price index, PP. This stochastic approach is the 
natural one for studying sampling problems asso-
ciated with implementing a Paasche price index. 
The other asymmetrically weighted reciprocal sto-
chastic price index defined by equation (16.59) has 
no author’s name associated with it, but it was 
noted by Irving Fisher (1922, p. 467) as his index 
number formula 13. Vartia (1978, p. 272) called 
this index the harmonic Laspeyres index, and his 
terminology will be used. 
 
16.92 Now consider the class of symmetrically 
weighted reciprocal price indices defined as 

(16.61) 0 1 0 1
11

0 1
0

1

1( , , , )

( , )
mr

n
i

i i
i i

P p p q q
pm s s
p

−

=

≡
 
 
 

∑
, 

 
where, as usual, m(si

0,si
1) is a homogeneous sym-

metric mean of the period 0 and 1 revenue shares 
on product i. However, none of the indices defined 
by equations (16.59)–(16.61) satisfy the time re-
versal test. 
 
16.93 The fact that Theil’s index number for-
mula PT satisfies the time reversal test leads to a 
preference for Theil’s index as the best weighted 
stochastic approach. 

16.94 The main features of the weighted sto-
chastic approach to index number theory can be 
summarized as follows. It is first necessary to pick 
two periods and a transaction’s domain of defini-
tion. As usual, each value transaction for each of 
the n commodities in the domain of definition is 
split up into price and quantity components. Then, 
assuming there are no new commodities or no dis-
appearing commodities, there are  n price relatives 
pi

1/pi
0 pertaining to the two situations under con-

sideration along with the corresponding 2n revenue 
shares. The weighted stochastic approach just as-
sumes that these  n relative prices, or some trans-
formation of these price relatives, f(pi

1/pi
0), have a 

discrete statistical distribution, where the ith prob-
ability, ρi = m(si

0,si
1), is a function of the revenue 

shares pertaining to product i in the two situations 
under consideration, si

0 and si
1. Different price in-

dices result, depending on how one chooses the 
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functions f and m. In Theil’s approach, the trans-
formation function f was the natural logarithm, and 
the mean function m was the simple unweighted 
arithmetic mean. 

16.95 There is a third aspect to the weighted sto-
chastic approach to index number theory: one must 
decided what single number best summarizes the 
distribution of the  n (possibly transformed) price 
relatives. In the analysis above, the mean of the 
discrete distribution was chosen as the best sum-
mary measure for the distribution of the (possibly 
transformed) price relatives, but other measures 
are possible. In particular, the weighted median or 
various trimmed means are often suggested as the 
best measure of central tendency because these 
measures minimize the influence of outliers. How-
ever, a detailed discussion of these alternative 
measures of central tendency is beyond the scope 
of this chapter. Additional material on stochastic 
approaches to index number theory and references 
to the literature can be found in Clements and Izan 
(1981, 1987), Selvanathan and Rao (1994), 
Diewert (1995b), Cecchetti (1997), and Wynne 
(1997, 1999). 

16.96 Instead of taking the above stochastic ap-
proach to index number theory, it is possible to 
take the same raw data that are used in this ap-
proach but use them with an axiomatic approach. 
Thus, in the following section, the price index is 
regarded as a value-weighted function of the  n 
price relatives, and the test approach to index 
number theory is used in order to determine the 
functional form for the price index. Put another 
way, the axiomatic approach in the next section 
looks at the properties of alternative descriptive 
statistics that aggregate the individual price rela-
tives (weighted by their economic importance) into 
summary measures of price change in an attempt 
to find the best summary measure of price change. 
Thus, the axiomatic approach pursued in Section E 
can be viewed as a branch of the theory of descrip-
tive statistics. 

E.   Second Axiomatic Approach 
to Bilateral Price Indices 

E.1  Basic framework and some 
preliminary tests 

16.97 As was mentioned in Section A, one of 
Walsh’s approaches to index number theory was 

an attempt to determine the best weighted average 
of the price relatives, ri.61 This is equivalent to us-
ing an axiomatic approach to try to determine the 
best index of the form P(r,v0,v1), where v0 and v1 
are the vectors of revenues on the  n commodities 
during periods 0 and 1.62 However, rather than 
starting off with indices of the form P(r,v0,v1), in-
dices of the form P(p0,p1,v0,v1) will be considered, 
since this framework will be more comparable to 
the first bilateral axiomatic framework taken in 
Section C. If the invariance to changes in the units 
of measurement test is imposed on an index of the 
form P(p0,p1,v0,v1), then P(p0,p1,v0,v1) can be writ-
ten in the form P(r,v0,v1). 

16.98 Recall that the product test, equation 
(16.17), was used in order to define the quantity 
index, Q(p0,p1,q0,q1) ≡ V1/[V0P(p0,p1,q0,q1)], that 
corresponded to the bilateral price index 
P(p0,p1,q0,q1). A similar product test holds in the 
present framework; that is, given that the func-
tional form for the price index P(p0,p1,v0,v1) has 
been determined, then the corresponding implicit 
quantity index can be defined in terms of p as  
follows:  

                                                        
61Fisher also took this point of view when describing his 

approach to index number theory: “An index number of the 
prices of a number of commodities is an average of their 
price relatives. This definition has, for concreteness, been 
expressed in terms of prices. But in like manner, an index 
number can be calculated for wages, for quantities of goods 
imported or exported, and, in fact, for any subject matter 
involving divergent changes of a group of magnitudes. 
Again, this definition has been expressed in terms of time. 
But an index number can be applied with equal propriety to 
comparisons between two places or, in fact, to comparisons 
between the magnitudes of a group of elements under any 
one set of circumstances and their magnitudes under an-
other set of circumstances” (Irving Fisher, 1922, p. 3). 
However, in setting up his axiomatic approach, Fisher im-
posed axioms on the price and quantity indices written as 
functions of the two price vectors, p0 and p1, and the two 
quantity vectors, q0 and q1; that is, he did not write his price 
index in the form P(r,v0,v1) and impose axioms on indices 
of this type. Of course, in the end, his ideal price index 
turned out to be the geometric mean of the Laspeyres and 
Paasche price indices, and, as was seen in Chapter 15, each 
of these indices can be written as revenue share-weighted 
averages of the n price relatives, ri ≡ pi

1/pi
0. 

62Chapter 3 in Vartia (1976a) considered a variant of this 
axiomatic approach. 
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(16.62) 
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16.99 In Section C, the price and quantity indi-
ces P(p0,p1,q0,q1) and Q(p0,p1,q0,q1) were deter-
mined jointly; that is, not only were axioms im-
posed on P(p0,p1,q0,q1), but they were also im-
posed on Q(p0,p1,q0,q1), and the product test in 
equation (16.17) was used to translate these tests 
on q into tests on P. In Section E, this approach 
will not be followed: only tests on P(p0,p1,v0,v1) 
will be used in order to determine the best price 
index of this form. Thus, there is a parallel theory 
for quantity indices of the form Q(q0,q1,v0,v1) 
where it is attempted to find the best value-
weighted average of the quantity relatives, qi

1/qi
0.63  

16.100 For the most part, the tests that will be 
imposed on the price index P(p0,p1,v0,v1) in this 
section are counterparts to the tests that were im-
posed on the price index P(p0,p1,v0,v1) in Section 
C. It will be assumed that every component of each 
price and value vector is positive; that is, pt > > 0n 
and vt > > 0n for  t = 0,1. If it is desired to set v0 = 
v1, the common revenue vector is denoted by v; if 
it is desired to set p0 = p1, the common price vector 
is denoted by p. 

16.101 The first two tests are straightforward 
counterparts to the corresponding tests in Section 
C. 

T1—Positivity: P(p0,p1,v0,v1) > 0. 
 
T2—Continuity: P(p0,p1,v0,v1) is a continuous 
function of its arguments. 
 
T3—Identity or Constant Prices Test:  

P(p,p,v0,v1) = 1. 

                                                        
63It turns out that the price index that corresponds to this 

best quantity index, defined as P*(p0,p1,v0,v1) ≡ 

( )1 0 0 1 0

1 1
ln ln , , ,

n n
i

i i
i i

v v Q q q v v
= =

 
 
 

∑ ∑ , will not equal the best 

price index, P(p0,p1,v0,v1). Thus, the axiomatic approach in 
Section E generates separate best price and quantity indices 
whose product does not equal the value ratio in general. 
This is a disadvantage of the second axiomatic approach to 
bilateral indices compared with the first approach studied in 
Section C.  

 
That is, if the price of every good is identical dur-
ing the two periods, then the price index should 
equal unity, no matter what the value vectors are. 
Note that the two value vectors are allowed to be 
different in the above test. 
 
E.2  Homogeneity tests 

16.102 The following four tests restrict the behav-
ior of the price index p as the scale of any one of 
the four vectors p0,p1,v0,v1 changes. 

T4—Proportionality in Current Prices: 
P(p0,λp1,v0,v1) = λP(p0,p1,v0,v1) for λ > 0. 
 
That is, if all period 1 prices are multiplied by the 
positive number λ, then the new price index is λ 
times the old price index. Put another way, the 
price index function P(p0,p1,v0,v1) is (positively) 
homogeneous of degree 1 in the components of the 
period 1 price vector p1. This test is the counterpart 
to test T5 in Section C. 
 
16.103 In the next test, instead of multiplying all 
period 1 prices by the same number, all period 0 
prices are multiplied by the number λ. 

T5—Inverse Proportionality in Base-Period 
Prices:  
 P(λp0,p1,v0,v1) = λ−1P(p0,p1,v0,v1) for λ > 0. 
 
That is, if all period 0 prices are multiplied by the 
positive number λ, then the new price index is 1/λ 
times the old price index. Put another way, the 
price index function P(p0,p1,v0,v1) is (positively) 
homogeneous of degree minus 1 in the compo-
nents of the period 0 price vector p0. This test is 
the counterpart to test T6 in Section C. 
 
16.104 The following two homogeneity tests can 
also be regarded as invariance tests. 

T6—Invariance to Proportional Changes in  
Current-Period Values:  
 P(p0,p1,v0,λv1) = P(p0,p1,v0,v1) for all λ > 0. 
 
That is, if current-period values are all multiplied 
by the number λ, then the price index remains un-
changed. Put another way, the price index function 
P(p0,p1,v0,v1) is (positively) homogeneous of de-
gree 0 in the components of the period 1 value vec-
tor v1.  
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T7—Invariance to Proportional Changes in Base-
Period Values:  
 P(p0,p1,λv0,v1) = P(p0,p1,v0,v1) for all λ > 0. 
 
That is, if base-period values are all multiplied by 
the number λ, then the price index remains un-
changed. Put another way, the price index function 
P(p0,p1,v0,v1) is (positively) homogeneous of de-
gree 0 in the components of the period 0 value vec-
tor v0.  
 
16.105 T6 and T7 together impose the property 
that the price index p does not depend on the abso-
lute magnitudes of the value vectors v0 and v1. Us-

ing test T6 with λ = 1

1

1
n

i
i

v
=
∑ , and using test T7 

with λ = 0

1

1
n

i
i

v
=
∑ , it can be seen that p has the fol-

lowing property:  

(16.63) 0 1 0 1 0 1 0 1( , , , ) ( , , , )P p p v v P p p s s= , 
 
where s0 and s1 are the vectors of revenue shares 
for periods 0 and 1; that is, the ith component of st 

is si
t ≡ 

1

n
t t
i k

k

v v
=
∑  for  t = 0,1. Thus, the tests T6 and 

T7 imply that the price index function p is a func-
tion of the two price vectors p0 and p1 and the two 
vectors of revenue shares, s0 and s1. 
 
16.106 Walsh suggested the spirit of tests T6 and 
T7 as the following quotation indicates: 

What we are seeking is to average the variations 
in the exchange value of one given total sum of 
money in relation to the several classes of goods, 
to which several variations [i.e., the price rela-
tives] must be assigned weights proportional to 
the relative sizes of the classes. Hence the rela-
tive sizes of the classes at both the periods must 
be considered. (Correa Moylan Walsh, 1901,  
p. 104) 

16.107 Walsh also realized that weighting the ith 
price relative ri by the arithmetic mean of the value 
weights in the two periods under consideration, 
(1/2)[vi

0 + vi
1], would give too much weight to the 

revenues of the period that had the highest level of 
prices: 

At first sight it might be thought sufficient to add 
up the weights of every class at the two periods 

and to divide by two. This would give the 
(arithmetic) mean size of every class over the 
two periods together. But such an operation is 
manifestly wrong. In the first place, the sizes of 
the classes at each period are reckoned in the 
money of the period, and if it happens that the 
exchange value of money has fallen, or prices in 
general have risen, greater influence upon the re-
sult would be given to the weighting of the sec-
ond period; or if prices in general have fallen, 
greater influence would be given to the weight-
ing of the first period. Or in a comparison be-
tween two countries, greater influence would be 
given to the weighting of the country with the 
higher level of prices. But it is plain that the one 
period, or the one country, is as important, in 
our comparison between them, as the other, and 
the weighting in the averaging of their weights 
should really be even. (Correa Moylan Walsh, 
1901, pp. 104–05) 

16.108 As a solution to the above weighting prob-
lem, Walsh (1901, p. 202; 1921a, p. 97) proposed 
the following geometric price index: 

(16.64) 
( )1

0 1 0 1
0

1

( , , , )
w in

i
GW

i i

pP p p v v
p=

 
≡  

 
∏ , 

 
where the ith weight in the above formula was de-
fined as 
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The second part of equation (16.65) shows that 
Walsh’s geometric price index PGW(p0,p1,v0,v1) can 
also be written as a function of the revenue share 
vectors, s0 and s1; that is, PGW(p0,p1,v0,v1) is homo-
geneous of degree 0 in the components of the 
value vectors v0 and v1, and so PGW(p0,p1,v0,v1) = 
PGW(p0,p1,s0,s1). Thus, Walsh came very close to 
deriving the Törnqvist-Theil index defined earlier 
by equation (16.48).64  

                                                        
64One could derive Walsh’s index using the same argu-

ments as Theil except that the geometric average of the 
revenue shares (si

0si
1)1/2 could be taken as a preliminary 

(continued) 
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E.3  Invariance and symmetry tests 

16.109 The next five tests are invariance or sym-
metry tests, and four of them are direct counter-
parts to similar tests in Section C. The first invari-
ance test is that the price index should remain un-
changed if the ordering of the commodities is 
changed. 

T8—Commodity Reversal Test (or invariance to 
changes in the ordering of commodities): 
 P(p0*,p1*,v0*,v1*) = P(p0,p1,v0,v1), 
 
where pt* denotes a permutation of the compo-
nents of the vector pt and vt* denotes the same 
permutation of the components of vt for  t = 0,1.  
 
16.110 The next test asks that the index be invari-
ant to changes in the units of measurement. 

T9—Invariance to Changes in the Units of Meas-
urement (commensurability test):  
 P(α1p1

0,...,αnpn
0; α1p1

1,...,αnpn
1; v1

0,...,vn
0;  

v1
1,...,vn

1)  
= P(p1

0,...,pn
0; p1

1,...,pn
1; v1

0,...,vn
0; v1

1,...,vn
1) 

for all α1 > 0, …, αn > 0. 
 
That is, the price index does not change if the units 
of measurement for each product are changed. 
Note that the revenue on product i during period t, 
vi

t, does not change if the unit by which product i 
is measured changes. 
 
16.111 Test T9 has a very important implication. 
Let α1 =1/p1

0, … , αn = 1/pn
0 and substitute these 

values for the αi into the definition of the test. The 
following equation is obtained: 

 
(16.66) 0 1 0 1 0 1( , , , ) (1 , , , )nP p p v v P r v v=  

     0 1( , , )P r v v∗≡ , 
 
                                                                                   
probability weight for the ith logarithmic price relative, ln 
ri. These preliminary weights are then normalized to add up 
to unity by dividing by their sum. It is evident that Walsh’s 
geometric price index will closely approximate Theil’s in-
dex using normal time-series data. More formally, regard-
ing both indices as functions of p0,p1,v0,v1, it can be shown 
that PW(p0,p1,v0,v1) approximates PT(p0,p1,v0,v1) to the sec-
ond order around an equal price (that is, p0 = p1) and quan-
tity (that is, q0 = q1) point.  

where 1n is a vector of ones of dimension n, and r 
is a vector of the price relatives; that is, the ith 
component of r is ri ≡ pi

1/pi
0. Thus, if the commen-

surability test T9 is satisfied, then the price index 
P(p0,p1,v0,v1), which is a function of 4n variables, 
can be written as a function of 3n variables, P*(r, 
v0,v1), where r is the vector of price relatives and 
P*(r, v0,v1) is defined as P(1n,r,v0,v1).  
 
16.112 The next test asks that the formula be in-
variant to the period chosen as the base period. 

T10—Time Reversal Test: P(p0,p1,v0,v1) =  
1/ P(p1,p0,v1,v0). 

 
That is, if the data for periods 0 and 1 are inter-
changed, then the resulting price index should 
equal the reciprocal of the original price index. 
Obviously, in the one good case when the price in-
dex is simply the single-price ratio, this test will be 
satisfied (as are all of the other tests listed in this 
section).  
 
16.113 The next test is a variant of the circularity 
test that was introduced in Section F of Chapter 
15.65 

T11—Transitivity in Prices for Fixed-Value 
Weights:  

 P(p0,p1,vr,vs)P(p1,p2,vr,vs) = P(p0,p2,vr,vs). 
 
In this test, the revenue-weighting vectors, vr and 
vs, are held constant while making all price com-
parisons. However, given that these weights are 
held constant, then the test asks that the product of 
the index going from period 0 to 1, P(p0,p1,vr,vs), 
times the index going from period 1 to 2, 
P(p1,p2,vr,vs), should equal the direct index that 
compares the prices of period 2 with those of pe-
riod 0, P(p0,p2,vr,vs). Clearly, this test is a many-
product counterpart to a property that holds for a 
single price relative.  
 
16.114 The next test in this section captures the 
idea that the value weights should enter the index 
number formula in a symmetric manner. 

T12—Quantity Weights Symmetry Test: 
 P(p0,p1,v0,v1) = P(p0,p1,v1,v0). 

 

                                                        
65See equation (15.77) in Chapter 15. 
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That is, if the revenue vectors for the two periods 
are interchanged, then the price index remains in-
variant. This property means that if values are used 
to weight the prices in the index number formula, 
then the period 0 values v0 and the period 1 values 
v1 must enter the formula in a symmetric or even-
handed manner. 
 
E.4  Mean value test 

16.115 The next test is a mean value test. 

T13—Mean Value Test for Prices: 
 
(16.67) 1 0min (  :   1,..., )i i ip p i n=  
     0 1 0 1( , , , )P p p v v≤ 1 0max (  :   1,..., )i i ip p i n≤ = . 

 
That is, the price index lies between the minimum 
price ratio and the maximum price ratio. Since the 
price index is to be interpreted as an average of the  
n price ratios, pi

1/pi
0, it seems essential that the 

price index p satisfy this test.  
 
E.5  Monotonicity tests 

16.116 The next two tests in this section are 
monotonicity tests; that is, how should the price 
index P(p0,p1,v0,v1) change as any component of 
the two price vectors p0 and p1 increases? 

T14—Monotonicity in Current Prices:  
  P(p0,p1,v0,v1) < P(p0,p2,v0,v1) if p1 < p2. 
 
That is, if some period 1 price increases, then the 
price index must increase (holding the value vec-
tors fixed), so that P(p0,p1,v0,v1) is increasing in the 
components of p1 for fixed p0, v0, and v1.  
 
T15—Monotonicity in Base Prices:  

P(p0,p1,v0,v1) > P(p2,p1,v0,v1) if p0 < p2.  
  
That is, if any period 0 price increases, then the 
price index must decrease, so that P(p0,p1,v0,v1) is 
decreasing in the components of p0 for fixed p1, v0 
and v1.  
 
E.6  Weighting tests 

16.117 The preceding tests are not sufficient to 
determine the functional form of the price index; 
for example, it can be shown that both Walsh’s 
geometric price index PGW(p0,p1,v0,v1) defined by 
equation (16.65) and the Törnqvist-Theil index 

PT(p0,p1,v0,v1) defined by equation (16.48) satisfy 
all of the above axioms. At least one more test, 
therefore, will be required in order to determine 
the functional form for the price index 
P(p0,p1,v0,v1).  

16.118 The tests proposed thus far do not specify 
exactly how the revenue share vectors s0 and s1 are 
to be used in order to weight, for example, the first 
price relative, p1

1/p1
0. The next test says that only 

the revenue shares s1
0 and s1

1 pertaining to the first 
product are to be used in order to weight the prices 
that correspond to product 1, p1

1 and p1
0.  

T16—Own-Share Price Weighting:  
 
(16.68) ( )0 1 0 1

1 1,1,...,1 ; ,1,...,1 ; ,P p p v v  

0 1 0 0 1 1
1 1 1 1

1 1
, , ,

n n

k k
k k

f p p v v v v
= =

    =     
    

∑ ∑ . 

 

Note that 1
1

n
t t

k
k

v v
=
∑  equals s1

t, the revenue share 

for product 1 in period t. This test says that if all of 
the prices are set equal to 1 except the prices for 
product 1 in the two periods, but the revenues in 
the two periods are arbitrarily given, then the index 
depends only on the two prices for product 1 and 
the two revenue shares for product 1. The axiom 
says that a function of 2 + 2n variables is actually 
only a function of four variables.66  
 
16.119 If test T16 is combined with test T8, the 
commodity reversal test, then it can be seen that p 
has the following property: 

(16.69) 0(1,...,1, ,1,...,1 ; iP p  
1 0 11,...,1, ,1,...,1 ;  ; )ip v v  

0 1 0 0 1 1
1 1 1 1

1 1
, , , , 1,..., .

n n

k k
k k

f p p v v v v i n
= =

    = =    
    

∑ ∑  

Equation (16.69) says that if all of the prices are 
set equal to 1 except the prices for product i in the 
two periods, but the revenues in the two periods 
are arbitrarily given, then the index depends only 
on the two prices for product i and the two revenue 
shares for product i. 
 

                                                        
66In the economics literature, axioms of this type are 

known as separability axioms. 
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16.120 The final test that also involves the 
weighting of prices is the following: 

T17—Irrelevance of Price Change with Tiny 
Value Weights: 
 
(16.70) 0 1

1 1( ,1,...,1 ; ,1,...,1 ;P p p  
0 0 1 1
2 20, ,...,  ; 0, ,..., ) 1.n nv v v v =  

 
The test T17 says that if all of the prices are set 
equal to 1 except the prices for product 1 in the 
two periods, and the revenues on product 1 are 0 in 
the two periods but the revenues on the other 
commodities are arbitrarily given, then the index is 
equal to 1.67 Roughly speaking, if the value 
weights for product 1 are tiny, then it does not 
matter what the price of product 1 is during the 
two periods. 
  
16.121 If test T17 is combined with test T8, the 
product reversal test, then it can be seen that p has 
the following property: for i = 1,…,n: 

(16.71) 0 1(1,...,1, ,1,...,1 ; 1,...,1, ,1,...,1 ; i iP p p  
0 0 1 1
1 1,...,0,...,  ; ,...,0,..., ) 1n nv v v v = . 

 
Equation (16.71) says that if all of the prices are 
set equal to 1 except the prices for product i in the 
two periods, and the revenues on product i are 0 
during the two periods but the other revenues in 
the two periods are arbitrarily given, then the index 
is equal to 1. 
 
16.122 This completes the listing of tests for the 
weighted average of price relatives approach to bi-
lateral index number theory. It turns out that these 
tests are sufficient to imply a specific functional 
form for the price index as will be seen in the next 
section. 

 

                                                        
67Strictly speaking, since all prices and values are re-

quired to be positive, the left-hand side of equation (16.70) 
should be replaced by the limit as the product 1 values, v1

0 
and v1

1, approach 0. 

E.7  Törnqvist-Theil price index and 
second test approach to bilateral  
indices 

16.123 In Appendix 16.1, it is shown that if the 
number of commodities  n exceeds two and the bi-
lateral price index function P(p0,p1,v0,v1) satisfies 
the 17 axioms listed above, then p must be the 
Törnqvist-Theil price index PT(p0,p1,v0,v1) defined 
by equation (16.48).68 Thus, the 17 properties or 
tests listed in Section E provide an axiomatic char-
acterization of the Törnqvist-Theil price index, just 
as the 20 tests listed in Section C provided an 
axiomatic characterization of the Fisher ideal price 
index.  

16.124 There is a parallel axiomatic theory for 
quantity indices of the form Q(p0,p1,v0,v1) that de-
pend on the two quantity vectors for periods 0 and 
1, q0 and q1, as well as on the corresponding two 
revenue vectors, v0 and v1. Thus, if Q(p0,p1,v0,v1) 
satisfies the quantity counterparts to tests T1–T17, 
then q must be equal to the Törnqvist-Theil quan-
tity index QT(q0,q1,v0,v1), defined as follows:  

(16.72) 
1

0 1 0 1 0 1
0

1

1ln ( , , , ) ( ) ln( )
2

n
i

T i i
i i

qQ q q v v s s
q=

≡ +∑ , 

 
where, as usual, the period  t revenue share on 

product i, si
t, is defined as 1

1

n
t t

k
k

v v
=
∑  for i = 1,…,n 

and  t = 0,1. 
 
16.125 Unfortunately, the implicit Törnqvist-
Theil price index PIT(q0,q1,v0,v1), which corre-
sponds to the Törnqvist-Theil quantity index QT 
defined by equation (16.72) using the product test, 
is not equal to the direct Törnqvist-Theil price in-
dex PT(p0,p1,v0,v1) defined by equation (16.48). 
The product test equation that defines PIT in the 
present context is given by the following equation:  

 

                                                        
68The Törnqvist-Theil price index satisfies all 17 tests, 

but the proof in Appendix 16.1 did not use all of these tests 
to establish the result in the opposite direction: tests T5, 
T13, T15, and either T10 or T12 were not required in order 
to show that an index satisfying the remaining tests must be 
the Törnqvist-Theil price index. For alternative characteri-
zations of the Törnqvist-Theil price index, see Balk and 
Diewert (2001) and Hillinger (2002). 
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(16.73) 0 1 0 1( , , , )ITP q q v v  

1

1

0 0 1 0 1

1
 ( , , , )

n

i
i

n

i T
i

v

v Q q q v v

=

=

≡
 
 
 

∑

∑
. 

 
The fact that the direct Törnqvist-Theil price index 
PT is not in general equal to the implicit Törnqvist-
Theil price index PIT defined by equation (16.73) is 
a bit of a disadvantage compared with the axio-
matic approach outlined in Section C, which led to 
the Fisher ideal price and quantity indices as being 
best. Using the Fisher approach meant that it was 
not necessary to decide whether one wanted a best 
price index or a best quantity index: the theory out-
lined in Section C determined both indices simul-
taneously. However, in the Törnqvist-Theil ap-
proach outlined in this section, it is necessary to 
choose whether one wants a best price index or a 
best quantity index.69 
 
16.126 Other tests are, of course, possible. A 
counterpart to test T16 in Section C, the Paasche 
and Laspeyres bounding test, is the following 
geometric Paasche and Laspeyres bounding test: 

(16.74) 0 1 0 1( , , , )GLP p p v v  
   0 1 0 1 0 1 0 1( , , , ) ( , , , ) orGPP p p v v P p p v v≤ ≤  

      0 1 0 1( , , , )GPP p p v v  
    0 1 0 1 0 1 0 1( , , , ) ( , , , ),GLP p p v v P p p v v≤ ≤  

 
where the logarithms of the geometric Laspeyres 
and geometric Paasche price indices, PGL and PGP, 
are defined as follows: 
 

(16.75) 
1

0 1 0 1 0
0

1
ln ( , , , ) ln ,

n
i

GL i
i i

p
P p p v v s

p=

 
≡  

 
∑  

(16.76) 
1

0 1 0 1 1
0

1
ln ( , , , ) ln .

n
i

GP i
i i

p
P p p v v s

p=

 
≡  

 
∑  

 

                                                        
69Hillinger (2002) suggested taking the geometric mean 

of the direct and implicit Törnqvist-Theil price indices in 
order to resolve this conflict. Unfortunately, the resulting 
index is not best for either set of axioms that were sug-
gested in this section. 

As usual, the period  t revenue share on product i, 

si
t, is defined as 1

1

n
t t

k
k

v v
=
∑  for i = 1,…,n and  t = 

0,1. It can be shown that the Törnqvist-Theil price 
index PT(p0,p1,v0,v1) defined by equation (16.48) 
satisfies this test, but the geometric Walsh price 
index PGW(p0,p1,v0,v1) defined by equation (16.65) 
does not satisfy it. The geometric Paasche and 
Laspeyres bounding test was not included as a 
primary test in Section E because, a priori, it was 
not known what form of averaging of the price 
relatives (for example, geometric, arithmetic, or 
harmonic) would turn out to be appropriate in this 
test framework. The test equation (16.74) is an ap-
propriate one if it has been decided that geometric 
averaging of the price relatives is the appropriate 
framework. The geometric Paasche and Laspeyres 
indices correspond to extreme forms of value 
weighting in the context of geometric averaging, 
and it is natural to require that the best price index 
lie between these extreme indices. 
 
16.127 Walsh (1901, p. 408) pointed out a prob-
lem with his geometric price index PGW defined by 
equation (16.65), which also applies to the Törn-
qvist-Theil price index PT(p0,p1,v0,v1) defined by 
equation (16.48): these geometric-type indices do 
not give the right answer when the quantity vectors 
are constant (or proportional) over the two periods. 
In this case, Walsh thought that the right answer 
must be the Lowe index, which is the ratio of the 
costs of purchasing the constant basket during the 
two periods. Put another way, the geometric indi-
ces PGW and PT do not satisfy T4, the fixed-basket 
test, in Section C above. What, then, was the ar-
gument that led Walsh to define his geometric av-
erage type index PGW? It turns out that he was led 
to this type of index by considering another test, 
which will now be explained. 

16.128 Walsh (1901, pp. 228–31) derived his test 
by considering the following simple framework. 
Let there be only two commodities in the index, 
and suppose that the revenue share on each product 
is equal in each of the two periods under consid-
eration. The price index under these conditions  
is equal to P(p1

0,p2
0;p1

1,p2
1;v1

0,v2
0;v1

1,v2
1) = 

P*(r1,r2;1/2,1/2;1/2,1/2) ≡ m(r1,r2), where m(r1,r2) 
is a symmetric mean of the two price relatives,  
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r1 ≡ p1
1/p1

0 and r2 ≡ p2
1/p2

0.70 In this framework, 
Walsh then proposed the following price-relative 
reciprocal test:  

(16.77) 1
1 1( , ) 1.m r r− =  

 
Thus, if the value weighting for the two commodi-
ties is equal over the two periods, and the second 
price relative is the reciprocal of the first price 
relative I1, then Walsh (1901, p. 230) argued that 
the overall price index under these circumstances 
ought to equal 1, since the relative fall in one price 
is exactly counterbalanced by a rise in the other, 
and both commodities have the same revenues in 
each period. He found that the geometric mean sat-
isfied this test perfectly, but the arithmetic mean 
led to index values greater than 1 (provided that r1 
was not equal to 1), and the harmonic mean led to 
index values that were less than 1, a situation that 
was not at all satisfactory.71 Thus, he was led to 
some form of geometric averaging of the price 
relatives in one of his approaches to index number 
theory. 
 
16.129 A generalization of Walsh’s result is easy 
to obtain. Suppose that the mean function, m(r1,r2), 
satisfies Walsh’s reciprocal test, equation (16.77), 
and, in addition, m is a homogeneous mean, so that 
it satisfies the following property for all r1 > 0, r2 > 
0, and λ > 0:  

(16.78) 1 2 1 2( , ) ( , ).m r r m r rλ λ = λ  
 
Let r1 > 0, r2 > 0. Then 
 

(16.79) 1
1 2 1 2

1

( , ) ( , )rm r r m r r
r

 
=  
 

 

1 2
1

1 1

1

2 2
1 1

1 1

( , ),  using equation (16.78)

1with  

(1, ) ( ),

r rr m
r r

r
r rr m r f
r r

=

λ =

= =

 

                                                        
70Walsh considered only the cases where m was the arith-

metic, geometric, and harmonic means of r1 and r2. 
71 “This tendency of the arithmetic and harmonic solu-

tions to run into the ground or to fly into the air by their ex-
cessive demands is clear indication of their falsity” (Correa 
Moylan Walsh, 1901, p. 231). 

 
where the function of one (positive) variable f(z) is 
defined as 
 
(16.80) ( ) (1, ).f z m z≡  
 
Using equation (16.77): 
 
(16.81) 1

1 11 ( , )m r r−=  

  
11

1 1
1

2
1 1

( , )

(1, ),   

r m r r
r

r m r

−

−

 
=  
 

=

 

1

1using equation (16.78) with   
r

λ = . 

 
Using equation (16.80), equation (16.81) can be 
rearranged in the following form: 
 
(16.82) 2 1

1 1( ) .f r r− −=  
 
Letting z ≡ r1

−2 so that z1/2 = r1
−1, equation (16.82) 

becomes 
 
(16.83) 1/ 2( ) .f z z=  
 
Now substitute equation (16.83) into equation 
(16.79) and the functional form for the mean func-
tion m(r1,r2) is determined: 
 

(16.84) 
1/ 2

1/ 2 1/ 22 2
1 2 1 1 1 2

1 1

( , ) .r rm r r r f r r r
r r

   
= = =   

   
 

 
Thus, the geometric mean of the two price rela-
tives is the only homogeneous mean that will sat-
isfy Walsh’s price-relative reciprocal test.  
 
16.130 There is one additional test that should be 
mentioned. Fisher (1911, p. 401) introduced this 
test in his first book that dealt with the test ap-
proach to index number theory. He called it the test 
of determinateness as to prices and described it as 
follows:  

A price index should not be rendered zero, infin-
ity, or indeterminate by an individual price be-
coming zero. Thus, if any product should in 1910 
be a glut on the market, becoming a “free good,” 
that fact ought not to render the index number for 
1910 zero. (Irving Fisher, 1911, p. 401) 
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In the present context, this test could be interpreted 
to mean the following: if any single price pi

0 or pi
1 

tends to zero, then the price index P(p0,p,v0,v1) 
should not tend to zero or plus infinity. However, 
with this interpretation of the test, which regards 
the values vi

t as remaining constant as the pi
0 or pi

1 
tends to zero, none of the commonly used index 
number formulas would satisfy this test. As a re-
sult, this test should be interpreted as a test that 
applies to price indices P(p0,p1,q0,q1) of the type 
that were studied in Section C, which is how 
Fisher intended the test to apply. Thus, Fisher’s 
price determinateness test should be interpreted as 
follows: if any single price pi

0 or pi
1 tends to zero, 

then the price index P(p0,p,q0,q1) should not tend 
to zero or plus infinity. With this interpretation of 
the test, it can be verified that Laspeyres, Paasche, 
and Fisher indices satisfy this test, but the  
Törnqvist-Theil price index will not satisfy this 
test. Thus, when using the Törnqvist-Theil price 
index, care must be taken to bound the prices away 
from zero in order to avoid a meaningless index 
number value.  
 
16.131 Walsh was aware that geometric average 
type indices like the Törnqvist-Theil price index PT 
or Walsh’s geometric price index PGW defined by 
equation (16.64) become somewhat unstable72 as 
individual price relatives become very large or 
small:  

Hence in practice the geometric average is not 
likely to depart much from the truth. Still, we 
have seen that when the classes [that is, reve-
nues] are very unequal and the price variations 
are very great, this average may deflect consid-
erably. (Correa Moylan Walsh, 1901, p. 373) 

In the cases of moderate inequality in the sizes of 
the classes and of excessive variation in one of 
the prices, there seems to be a tendency on the 
part of the geometric method to deviate by itself, 
becoming untrustworthy, while the other two 
methods keep fairly close together. (Correa Moy-
lan Walsh, 1901, p. 404) 

16.132 Weighing all of the arguments and tests 
presented in Sections C and E of this chapter, it 
seems that there may be a slight preference for the 
use of the Fisher ideal price index as a suitable tar-
get index for a statistical agency, but opinions can 

                                                        
72That is, the index may approach zero or plus infinity. 

differ on which set of axioms is the most appropri-
ate to use in practice. 

F.   Test Properties of Lowe  
and Young Indices 

16.133 In Chapter 15, the Young and Lowe indi-
ces were defined. In the present section, the axio-
matic properties of these indices with respect to 
their price arguments will be developed.73 

16.134 Let qb ≡ [q1
b,...,qn

b] and pb ≡ [p1
b,...,pn

b] 
denote the quantity and price vectors pertaining to 
some base year. The corresponding base-year 
revenue shares can be defined in the usual way as  

(16.85) 

1

,  1,..., .
b b

b i i
i n

b b
k k

k

p q
s i n

p q
=

≡ =

∑
 

 
Let sb ≡ [s1

b,...,sn
b] denote the vector of base-year 

revenue shares. The Young (1812) price index be-
tween periods 0 and  t is defined as follows: 
  

(16.86) 0
0

1
( , , ) .

tn
t b b i

Y i
i i

p
P p p s s

p=

 
≡  

 
∑  

 
The Lowe (1823, p. 316) price index74 between pe-
riods 0 and  t is defined as follows: 
 

                                                        
73Baldwin (1990, p. 255) worked out a few of the axio-

matic properties of the Lowe index. 
74This index number formula is also precisely Bean and 

Stine’s (1924, p. 31) Type A index number formula. Walsh 
(1901, p. 539) initially mistakenly attributed Lowe’s for-
mula to G. Poulett Scrope (1833), who wrote Principles of 
Political Economy in 1833 and suggested Lowe’s formula 
without acknowledging Lowe’s priority. But in his discus-
sion of Fisher’s (1921) paper, Walsh (1921b, pp. 543–44) 
corrects his mistake on assigning Lowe’s formula: “What 
index number should you then use? It should be this: ∑ q 
p1/ ∑ q p0. This is the method used by Lowe within a year 
or two of one hundred years ago. In my [1901] book, I 
called it Scope’s index number; but it should be called 
Lowe’s. Note that in it are used quantities neither of a base 
year nor of a subsequent year. The quantities used should 
be rough estimates of what the quantities were throughout 
the period or epoch.”  
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(16.87) 10 1
0

0

1 1
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tnn
b it b
i bi i

i it b i
Lo n n

b b k
k k k b
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psp q p
P p p q

pp q s
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 ≡ =
 
 
 

∑∑

∑ ∑
. 

 
16.135 Drawing on those that have been listed in 
Sections C and E, we highlight 12 desirable axi-
oms for price indices of the form P(p0,p1). The pe-
riod 0 and  t price vectors, p0 and pt, are presumed 
to have strictly positive components. 

T1—Positivity Test: P(p0,pt) > 0 if all prices are 
positive. 
 
T2—Continuity Test: P(p0,pt) is a continuous func-
tion of prices. 
 
T3—Identity Test: P(p0,p0) = 1. 
 
T4—Homogeneity Test for Period  t Prices: 
P(p0,λpt) = λP(p0,pt) for all λ > 0. 
 
T5—Homogeneity Test for Period 0 Prices: 
P(λp0,pt) = λ−1P(p0,pt) for all λ > 0. 
 
T6—Commodity Reversal Test: P(pt,p0) = 
P(p0*,pt*), where p0* and pt* denote the same per-
mutation of the components of the price vectors p0 
and pt.75  
 
T7—Invariance to Changes in the Units of  
Measurement or the Commensurability Test:  
 P(α1p1

0,...,αnpn
0; α1p1

t,...,αnpn
t) = P(p1

0,...,pn
0; 

p1
t,...,pn

t) for all α1 > 0, …, αn > 0. 
 
T8—Time Reversal Test: P(pt,p0) = 1/P(p0,pt). 
 
T9—Circularity or Transitivity Test: P(p0,p2) = 
P(p0,p1)P(p1,p2). 
 
T10—Mean Value Test: min{pi

t/pi
0 : i = 1,…,n} ≤ 

P(pt,p0) ≤ max{pi
t/pi

0 : i = 1,…,n}. 
 
T11—Monotonicity Test with Respect to Period  t 
Prices: P(p0,pt) < P(p0,pt*) if pt < pt*. 
 

                                                        
75In applying this test to the Lowe and Young indices, it 

is assumed that the base-year quantity vector qb and the 
base-year share vector sb are subject to the same permuta-
tion. 

T12—Monotonicity Test with Respect to Period 0 
Prices: P(p0,pt) > P(p0*,pt) if p0 < p0*. 
 
16.136 It is straightforward to show that the Lowe 
index defined by equation (16.87) satisfies all 12 
of the axioms or tests listed above. Hence, the 
Lowe index has very good axiomatic properties 
with respect to its price variables.76 

16.137 It is straightforward to show that the 
Young index defined by equation (16.86) satisfies 
10 of the 12 axioms, failing T8, the time reversal 
test, and T9, the circularity test. Thus, the axio-
matic properties of the Young index are definitely 
inferior to those of the Lowe index.  

Appendix 16.1: Proof of  
Optimality of Törnqvist-Theil 
Price Index in Second Bilateral 
Test Approach 

16.138 Define ri ≡ pi
1/pi

0 for i = 1,…,n. Using T1, 
T9, and equation (16.66), P(p0,p1,v0,v1) =  
P*(r, v0,v1). Using T6, T7, and equation (16.63): 

(A16.1) 0 1 0 1 0 1( , , , ) ( , , )P p p v v P r s s∗= , 
 
where st is the period  t revenue share vector for  t 
= 0,1. 
 
16.139 Let x ≡ (x1,…,xn) and y ≡ (y1,…,yn) be 
strictly positive vectors. The transitivity test T11 
and equation (A16.1) imply that the function P* 
has the following property: 

(A16.2) 0 1 0 1( ; , ) ( ; , )P x s s P y s s∗ ∗  
0 1

1 1( ,..., ; , )n nP x y x y s s∗= . 
 
16.140 Using T1, P*(r,s0,s1) > 0 and using T14, 
P*(r, s0,s1) is strictly increasing in the components 
of r. The identity test T3 implies that  

(A16.3) 0 1(1 , , ) 1nP s s∗ = , 
 

                                                        
76From the discussion in Chapter 15, it will be recalled 

that the main problem with the Lowe index occurs if the 
quantity weight vector qb is not representative of the quan-
tities that were purchased during the time interval between 
periods 0 and 1.  
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where 1n is a vector of ones of dimension n. Using 
a result due to Eichhorn (1978, p. 66), it can be 
seen that these properties of P* are sufficient to 
imply that there exist positive functions αi(s0,s1) 
for i = 1,…,n such that P* has the following repre-
sentation: 
 

(A16.4) 0 1 0 1

1

ln ( , , ) ( , ) ln
n

i i
i

P r s s s s r∗

=

= α∑ . 

 
16.141 The continuity test T2 implies that the 
positive functions αi(s0,s1) are continuous. For λ > 
0, the linear homogeneity test T4 implies that 

(A16.5) 0 1 0 1ln ( , , ) ln ln ( , , )P r s s P r s s∗ ∗λ = λ +  
0 1

1

0 1 0 1

1 1

0 1 0 1

1

( , ) ln ,  using equation (A16.4)

( , ) ln ( , ) ln

( , ) ln ln ( , , ),

n

i i
i

n n

i i i
i i

n

i
i

s s r

s s s s r

s s P r s s

=

= =

∗

=

= α λ

= α λ + α

= α λ +

∑

∑ ∑

∑
  using equation (A16.4).  

 
Equating the right-hand sides of the first and last 
lines in (A16.5) shows that the functions αi(s0,s1) 
must satisfy the following restriction: 
 

(A16.6) 0 1

1

( , ) 1
n

i
i

s s
=

α =∑ , 

 
for all strictly positive vectors s0 and s1. 
 
16.142 Using the weighting test T16 and the com-
modity reversal test T8, equation (16.69) holds. 
Equation (16.69) combined with the commensura-
bility test T9 implies that P* satisfies the following 
equation:  

(A16.7) 0 1(1,...,1, ,1,...,1 ; , )iP r s s∗  
0 1(1, , , ) ;  1,...,if r s s i n= = , 

 
for all ri > 0, where f is the function defined in test 
T16. 
 
16.143 Substitute equation (A16.7) into equation 
(A16.4) in order to obtain the following system of 
equations: 

(A16.8) 0 1(1,...,1, ,1,...,1 ; , )iP r s s∗  

0 1(1, , , )if r s s=  
0 1(s ,s ) ln  ;  1,...,i ir i n= α = . 

 
But the first part of equation (A16.8) implies that 
the positive continuous function of 2n variables 
αi(s0,s1) is constant with respect to all of its argu-
ments except si

0 and si
1, and this property holds for 

each i. Thus, each αi(s0,s1) can be replaced by the 
positive continuous function of two variables 
βi(si

0,si
1) for i = 1,…,n.77 Now replace the αi(s0,s1) 

in equation (A16.4) with the βi(si
0,si

1) for i = 
1,…,n and the following representation for P* is 
obtained:  
 

(A16.9) 0 1 0 1

1

ln ( , , ) ( , ) ln .
n

i i i i
i

P r s s s s r∗

=

= β∑  

  
16.144 Equation (A16.6) implies that the func-
tions βi(si

0,si
1) also satisfy the following restric-

tions: 

(A16.10) 0 1

1 1

1 ; 1  
n n

i i
i i

s s
= =

= =∑ ∑  

   0 1

1

implies ( , ) 1
n

i i i
i

s s
=

β =∑ . 

 
16.145 Assume that the weighting test T17 holds, 
and substitute equation (16.71) into (A16.9) in or-
der to obtain the following equation: 

(A16.11) 
1

0(0,0) ln 0 ;    1,...,i
i

i

p
i n

p
 

β = = 
 

. 

 
Since the pi

1 and pi
0 can be arbitrary positive num-

bers, it can be seen that equation (A16.11) implies 
 
(A16.12) (0,0) 0 ;    1,..., .i i nβ = =  
 
16.146 Assume that the number of commodities  
n is equal to or greater than 3. Using equations 
(A16.10) and (A16.12), Theorem 2 in Aczél (1987, 
p. 8) can be applied and the following functional 
form for each of the βi(si

0,si
1) is obtained: 

                                                        
77More explicitly, β1(s1

0,s1
1) ≡ α1(s1

0,1,…,1;s1
1,1,…,1) 

and so on. That is, in defining β1(s1
0,s1

1), the function 
α1(s1

0,1,…,1;s1
1,1,…,1) is used where all components of 

the vectors s0 and s1 except the first are set equal to an arbi-
trary positive number like 1. 
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(A16.13) 0 1 0 1( , )  (1 ) ;     1,...,i i i i is s s s i nβ = γ + − γ = , 
 
where γ is a positive number satisfying 0 < γ < 1.  
 
16.147 Finally, the time reversal test T10 or the 
quantity weights symmetry test T12 can be used to 
show that γ must equal ½. Substituting this value 
or γ back into equation (A16.13) and then substi- 
 

tuting those equations back into equation (A16.9), 
the functional form for P*, and hence p, is deter-
mined as 

(A16.14) 0 1 0 1 0 1ln ( , , , ) ln ( , , )P p p v v P r s s∗=  

 
1

0 1
0

1

1( ) ln
2

n
i

i i
i i

p
s s

p=

 
= +  

 
∑ . 

 


