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17.   Economic Approach 

A.   Introduction 

A.1  Setting the Stage 

17.1 The family of PPIs provides price indices 
to deflate parts of the system of national accounts. 
As is well known,1 there are three distinct ap-
proaches to measuring GDP: 

• The production approach, 
• The expenditure or final demand  

approach, and 
• The income approach. 
 
The production approach2 to calculating nominal 
GDP involves calculating the value of outputs pro-
duced by an industry and subtracting the value of 
intermediate inputs (or intermediate consumption, 
to use the national accounting term) used in the in-
dustry. This difference in value is called the indus-
try’s value added. Summing these industry esti-
mates of value added leads to an estimate of  
national GDP. PPIs are used to separately deflate 
both industry outputs and industry intermediate in-
puts.3 A PPI also is used to deflate an industry’s 
nominal value added into value added at constant 
prices. 
 
17.2 The economic approach to the PPI begins 
not at the industry level, but at the establishment 
level. An establishment is the PPI counterpart to a 
household in the theory of the CPI. An establish-
ment is an economic entity that undertakes produc-
tion or productive activity at a specific geographic 
location in the country and is capable of providing 
basic accounting information on the prices and 
quantities of the outputs it produces and on the in-

                                                        
1See Eurostat and others (1993) or Bloem, Dippelsman, 

and Maehle (2001, p. 17). 
2Early contributors to this approach include Bowley 

(1922, p. 2), Rowe (1927, p. 173), Burns (1930, pp. 247–
50), and Copeland (1932, pp. 3–5). 

3Additional material relating national accounting aggre-
gates to PPIs may be found in Chapter 14. 

puts it uses during an accounting period. This 
chapter focuses on establishments that undertake 
production under a for-profit motivation. In Chap-
ter 14, it was shown that the 1993 SNA output in 
the production account is broken down into market 
output (P.11), output for own final use (P.12), and 
other nonmarket output (P.13). The latter includes 
output of government and nonprofit institutions 
serving households distributed free or sold at 
prices not economically significant. The PPI cov-
ers all types of domestically produced or processed 
goods and services that are valued at market prices 
and thus excludes P.13. 

17.3 Production is an activity that transforms 
or combines material inputs into other material 
outputs (for example, agricultural, mining, manu-
facturing, or construction activities) or transports 
materials from one location to another. Production 
also includes storage activities, which in effect 
transport materials in the same location from one 
time period to another. Finally, production also in-
cludes the use and creation of services of all 
types.4  

17.4 There are two major problems with the 
above definition of an establishment. The first is 
that many production units at specific geographic 
locations do not have the capability of providing 
basic accounting information on their inputs used 
and outputs produced. These production units may 
simply be a division or single plant of a large firm, 
and detailed accounting information on prices may 
be available only at the head office (or not at all). 
If this is the case, the definition of an establish-
ment is modified to include production units at a 
number of specific geographic locations in the 
country instead of just one location. The important 
aspect of the definition of an establishment is that 
it be able to provide accounting information on 
prices and quantities.5 A second problem is that 
                                                        

4See Peter Hill (1999) for a taxonomy for services. 
5In this modified definition of an establishment, it is gen-

erally a smaller collection of production units than a firm, 
since a firm may be multinational. Thus, another way of de-

(continued) 
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while the establishment may be able to report ac-
curate quantity information, its price information 
may be based on transfer prices set by a head of-
fice. These transfer prices are imputed prices and 
may not be very closely related to market prices.6  

17.5 Thus the problems involved in obtaining 
the correct commodity prices for establishments 
are generally more difficult than the corresponding 
problems associated with obtaining market prices 
for households. However, in this chapter, these 
problems will be ignored, and it will be assumed 
that representative market prices are available for 
each output produced by an establishment and for

                                                                                   
fining an establishment for our purposes is as follows: an 
establishment is the smallest aggregate of national produc-
tion units able to provide accounting information on its in-
puts and outputs for the time period under consideration. 

6For many highly specialized intermediate inputs in a 
multistage production process using proprietary technolo-
gies, market prices may simply not exist. Furthermore, sev-
eral alternative concepts could be used to define transfer 
prices; see Diewert (1985) and Eden (1998). The 1993 SNA 
(paragraph 6.82) notes that for deliveries between estab-
lishments belonging to the same enterprise  

Goods and services that one establishment provides to a 
different establishment belonging to the same enterprise 
are counted as part of the output of the producing estab-
lishment. Such goods and services may be used for in-
termediate consumption by the receiving establishment, 
but they also could be used for gross fixed capital forma-
tion. The goods and services should be valued by the 
producing establishment at current basic prices; the re-
ceiving establishment should value them at the same 
prices plus any additional transportation costs paid to 
third parties. The use of artificial transfer prices em-
ployed for internal accounting purposes within the enter-
prise should be avoided, if possible. 

The difficulties in ascertaining such prices are recognized 
however:  

From an accounting point of view it can be difficult to 
partition a vertically integrated enterprise into establish-
ments because values have to be imputed for the outputs 
from the earlier stages of production which are not actu-
ally sold on the market and which become intermediate 
inputs into later stages. Some of these enterprises may re-
cord the intra-enterprise deliveries at prices that reflect 
market values, but others may not. Even if adequate data 
are available on the costs incurred at each stage of pro-
duction, it may be difficult to decide what is the appro-
priate way in which to allocate the operating surplus of 
the enterprise among the various stages. One possibility 
is that a uniform rate of profit could be applied to the 
costs incurred at each stage (1993 SNA,  paragraph 5.33). 

each intermediate input used by the same estab-
lishment for at least two accounting periods.7  

17.6 The economic approach to PPIs requires 
that establishment output prices exclude any indi-
rect taxes that various layers of government might 
levy on outputs produced by the establishment. 
These indirect taxes are excluded because firms do 
not get to keep these tax revenues, even though 
they may collect them for governments. Thus, 
these taxes are not part of establishment revenue 
streams. On the other hand, the economic approach 
to PPIs requires that establishment intermediate 
input prices include any indirect taxes that gov-
ernments might levy on these inputs used by the 
establishment. The reason for including these taxes 
is that they are actual costs paid by the establish-
ment. These conventions on the treatment of indi-
rect taxes on production are consistent with those 
specified in Section B.1 of Chapter 2.  

17.7 For the first sections of this chapter, an 
output price index, an intermediate input price in-
dex, and a value-added deflator8 will be defined 
for a single establishment from the economic per-
spective. In subsequent sections, aggregation will 
take place over establishments to define national 
counterparts to these establishment price indices.  

17.8 Some notation is required. Consider the 
case of an establishment that produces N com-
modities during two periods, periods 0 and 1. De-
note the period t output price vector by py

t ≡ 
[py1

t,...,pyN
t] and the corresponding period t output 

quantity vector by yt ≡ [y1
t,...,yN

t], for t = 0,1. As-
sume that the establishment uses M commodities 
as intermediate inputs during periods 0 and 1. An 
intermediate input is an input produced by another 
establishment in the country or an imported (non-
durable) commodity.9 The period t intermediate 
                                                        

7These pricing problems are pursued in Chapter 6, where 
the concept of a market price for each product produced by 
an establishment during the accounting period under con-
sideration is the value of production for that product di-
vided by the quantity produced during that period; that is, 
the price is the average price for that product.  

8While the value-added price index is just like any other 
price index in its definition, it is commonly referred to as 
the “value-added deflator,” and the Manual will observe 
this common terminology. 

9However, capital inputs or durable inputs are excluded 
from the list of intermediate inputs. A durable input is an 
input whose contribution to production lasts more than one 
accounting period. This makes the definition of a durable 

(continued) 
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input price vector is denoted by px
t ≡ [px1

t,...,pxM
t] 

and the corresponding period t intermediate input 
quantity vector by xt ≡ [x1

t,...,xM
t] for t = 0,1. Fi-

nally, it is assumed that that the establishment uses 
the services of K primary inputs during periods 0 
and 1. The period t primary input vector used by 
the establishment is denoted by zt ≡ [z1

t,...,zK
t] for  

t = 0,1. 

17.9 Note it is assumed that the list of com-
modities produced by the establishment and the list 
of inputs used by the establishment remains the 
same over the two periods for which a price com-
parison is wanted. In real life, the list of commodi-
ties used and produced by an establishment does 
not remain constant over time. New commodities 
appear and old commodities disappear. The rea-
sons for this churning of commodities include the 
following: 

(i)  Producers substitute new processes for older 
ones in response to changes in relative prices, 
and some of these new processes use new in-
puts. 

(ii)  Technical progress creates new processes or 
products, and the new processes use inputs 
not used in previous periods. 

(iii)  Seasonal fluctuations in the demand (or sup-
ply) of commodities cause some commodities 
to be unavailable in certain periods of the 
year. 

 
The introduction of new commodities is dealt with 
in Chapter 21 and the problems associated with 
seasonal commodities in Chapter 22. In the present 
chapter, these complications are ignored, and it is 
assumed that the list of commodities remains the 
same over the two periods under consideration. It 
also will be assumed that all establishments are 
present in both periods under consideration; that is, 
there are no new or disappearing establishments.10 

                                                                                   
input dependent on the length of the accounting period. 
However, by convention, an input is classified as being du-
rable if it lasts longer than two or three years. Thus, an in-
termediate input is a nondurable input that is also not a 
primary input. Durable inputs are classified as primary in-
puts even if they are produced by other establishments.  
Other primary inputs include labor, land, and natural re-
source inputs. 

10Rowe (1927, pp. 174–75) was one of the first econo-
mists to appreciate the difficulties statisticians faced when 
attempting to construct price or quantity indices of produc-
tion: “In the construction of an index of production there 

(continued) 

17.10 When convenient, the above notation will 
be simplified to match the notation used in Chap-
ters 15 and 16. Thus, when studying the output 
price index, py

t ≡ [py1
t,...,pyN

t] and yt ≡ [y1
t,...,yN

t] 
will be replaced by pt ≡ [p1

t,...,pN
t] and qt ≡ 

[q1
t,...,qN

t]; when studying the input price index, px
t 

≡ [px1
t,...,pxM

t] and xt ≡ [x1
t,...,xM

t] will be replaced 
by pt ≡ [p1

t,...,pM
t] and qt ≡ [q1

t,...,qM
t]; and when 

studying the value-added deflator, the composite 
vector of output and input prices [py

t,px
t], will be 

replaced by pt ≡ [p1
t,...,pN

t]; and the vector of net 
outputs [yt,−xt], by qt ≡ [q1

t,...,qN
t] for t = 0,1 in 

each case. Thus, the appropriate definition for pt 
and qt depends on the context. 

17.11 To most practitioners in the field, our ba-
sic framework, which assumes that detailed price 
and quantity data are available for each of the pos-
sibly millions of establishments in the economy, 
will seem to be utterly unrealistic. However, two 
answers can be directed at this very valid criticism: 

• The spread of the computer and the ease of 
storing transaction data have made the as-
sumption that the statistical agency has access 
to detailed price and quantity data less unreal-
istic. With the cooperation of businesses, it is 
now possible to calculate price and quantity 
indices of the type studied in Chapters 15 and 

                                                                                   
are three inherent difficulties which, inasmuch as they are 
almost insurmountable, impose on the accuracy of the in-
dex, limitations, which under certain circumstances may be 
somewhat serious. The first is that many of the products of 
industry are not capable of quantitative measurement.  This 
difficulty appears in its most serious form in the case of the 
engineering industry. ... The second inherent difficulty is 
that the output of an industry, even when quantitatively 
measurable, may over a series of years change qualitatively 
as well as quantitatively. Thus during the last twenty years 
there has almost certainly been a tendency towards an im-
provement in the average quality of the yarn and cloth pro-
duced by the cotton industry .... The third inherent diffi-
culty lies in the inclusion of new industries which develop 
importance as the years go on.” These three difficulties still 
exist today: think of the difficulties involved in measuring 
the outputs of the insurance and gambling industries; an in-
creasing number of industries produce outputs that are one 
of a kind, and, hence, price and quantity comparisons are 
necessarily difficult if not impossible; and, finally, the huge 
increases in research and development expenditures by 
firms and governments have led to ever increasing numbers 
of new products and industries. Chapter 8 considers the is-
sues for index compilation arising from new and disappear-
ing goods and services, as well as establishments. 
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16 using very detailed data on prices and 
quantities.11 

• Even if it is not realistic to expect to obtain de-
tailed price and quantity data for every trans-
action made by every establishment in the 
economy on a monthly or quarterly basis, it is 
still necessary to accurately specify the uni-
verse of transactions in the economy. Once  
the target universe is known, sampling tech-
niques can be applied in order to reduce data 
requirements. 

A.2  An overview of the chapter 

17.12 In this subsection, a brief overview of the 
contents of this chapter will be given. In Section B, 
the economic theory of the output price index for 
an establishment is outlined. This theory is cred-
ited primarily to Fisher and Shell (1972) and 
Archibald (1977). Various bounds to the output 
price index are developed, along with some useful 
approximations to the theoretical output price in-
dex. Diewert’s (1976) theory of superlative indices 
is outlined. A superlative index can be evaluated 
using observable price and quantity data, but under 
certain conditions it can give exactly the same an-
swer as the theoretical output price index. 

17.13 In the previous two chapters, the Fisher 
(1922) ideal price index and the Törnqvist (1936) 
price index emerged as being supported by the test 
and stochastic approaches to index number theory, 
respectively. These two indices also will emerge as 
very good choices from the economic perspective. 
However, a practical drawback to their use is that 
current-period information on quantities is re-
quired, information that the statistical agency will 
usually not have on a current-period basis. Hence, 
in Section E, recent suggestions for approximating 
these indices are looked at using only current in-
formation on prices; that is, it is assumed that  
current-period information on quantities is not  
available. 

17.14 Finally, in Appendix 17.1, the relationship 
between the Divisia price index introduced in 

                                                        
11An early study that computed Fisher ideal indices for a 

distribution firm in western Canada for seven quarters ag-
gregating over 76,000 inventory items is found in Diewert 
and Smith (1994). 

Chapter 15 and an economic output price index is 
considered. 

B.   Fisher-Shell Output Price  
Index: The Case of One  
Establishment 

B.1  Fisher-Shell output price index 
and observable bounds 

17.15 This subsection includes an outline of the 
theory of the output price index for a single estab-
lishment developed by Fisher and Shell (1972) and 
Archibald (1977). This theory is the producer the-
ory counterpart to the theory of the cost-of-living 
index for a single consumer (or household) that 
was first developed by the Russian economist, 
Konüs (1924). These economic approaches to 
price indices rely on the assumption of (competi-
tive) optimizing behavior on the part of economic 
agents (consumers or producers). Thus, in the case 
of the output price index, given a vector of output 
prices pt that the agent faces in a given time period 
t, it is assumed that the corresponding hypothetical 
quantity vector qt is the solution to a revenue 
maximization problem that involves the producer’s 
production function f or production possibilities 
set. (Hereafter the terms value of output and reve-
nue are used interchangeably, inventory changes 
being ignored.)  

17.16 In contrast to the axiomatic approach to 
index number theory, the economic approach does 
not assume that the two quantity vectors q0 ≡ 
[q1

0,...,qN
0] and q1 ≡ [q1

1,...,qN
1] are independent of 

the two price vectors p0 ≡ [p1
0,...,pN

0] and p1 ≡ 
[p1

1,...,pN
1]. In the economic approach, the period 0 

quantity vector q0 is determined by the producer’s 
period 0 production function and the period 0 vec-
tor of prices p0 that the producer faces, and the pe-
riod 1 quantity vector q1 is determined by the pro-
ducer’s period 1 production function f and the pe-
riod 1 vector of prices p1. 

17.17 Before the output price index is defined 
for an establishment, it is necessary to describe the 
establishment’s technology in period t. In the eco-
nomics literature, it is traditional to describe the 
technology of a firm or industry in terms of a pro-
duction function, which reveals the maximum 
amount of output that can be produced using a 
given vector of inputs. However, since most estab-
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lishments produce more than one output, it is more 
convenient to describe the establishment’s tech-
nology in period t by means of a production possi-
bilities set St. The set St describes what output vec-
tors q can be produced in period t if the establish-
ment has at its disposal the vector of inputs v ≡ 
[x,z], where x is a vector of intermediate inputs and 
z is a vector of primary inputs. Thus, if [q,v] be-
longs to St, then the nonnegative output vector q 
can be produced by the establishment in period t if 
it can use the nonnegative vector v of inputs.  

17.18 Let p ≡ (p1,…pN) denote a vector of posi-
tive output prices that the establishment might face 
in period t, and let v ≡ [x,z] be a nonnegative vector 
of inputs that the establishment might have avail-
able for use during period t. Then the establish-
ment’s revenue function using period t technology 
is defined as the solution to the following revenue 
maximization problem: 

(17.1) Rt(p,v) ≡ maxq {
1

N

n n
n

p q
=

∑ : q belongs to 

St(v)}. 
 
Thus, Rt(p,v) is the maximum value of output, 

1

N

n n
n

p q
=

∑ , that the establishment can produce, given 

that it faces the vector of output prices p and the 
vector of inputs v is available for use, using the pe-
riod t technology.12  
 
17.19 The period t revenue function Rt can be 
used to define the establishment’s period t tech-
nology output price index Pt between any two peri-
ods, say, period 0 and period 1, as follows: 

(17.2) Pt(p0,p1,v) = Rt(p1,v) / Rt(p0,v),  
 
where p0 and p1 are the vectors of output prices 
that the establishment faces in periods 0 and 1, re-
spectively, and v is a reference vector of interme-
                                                        

12The function Rt is known as the GDP function or the 
national product function in the international trade litera-
ture (see Kohli, 1978 and 1991; or Woodland, 1982). It was 
introduced into the economics literature by Samuelson 
(1953). Alternative terms for this function include (i) the 
gross profit function, see Gorman (1968); (ii) the restricted 
profit function, see Lau (1976) and McFadden (1978); and 
(iii) the variable profit function, see Diewert (1973 and 
1974a). The mathematical properties of the revenue func-
tion are laid out in these references. 

diate and primary inputs.13 If N = 1 so that the es-
tablishment produces only one output, then it can 
be shown that the output price index collapses to 
the single-output price relative between periods 0 
and 1, p1

1/ p1
0. In the general case, note that the 

output price index defined by equation (17.2) is a 
ratio of hypothetical revenues that the establish-
ment could realize, given that it has the period t 
technology and the vector of inputs v to work with. 
The numerator in equation (17.2) is the maximum 
revenue that the establishment could attain if it 
faced the output prices of period 1, p1, while the 
denominator in equation (17.2) is the maximum 
revenue that the establishment could attain if it 
faced the output prices of period 0, p0. Note that all 
of the variables in the numerator and denominator 
functions are exactly the same, except that the out-
put price vectors differ. This is a defining charac-
teristic of an economic price index: all environ-
mental variables are held constant with the excep-
tion of the prices in the domain of definition of the 
price index. 
 
17.20 Note that there are a wide variety of price 
indices of the form equation (17.2), depending on 
which reference technology t and reference input 
vector v is chosen. Thus, there is not a single eco-
nomic price index of the type defined by equation 
(17.2): there is an entire family of indices.  

17.21 Usually, interest lies in two special cases 
of the general definition of the output price index 
in equation (17.2): (i) P0(p0,p1,v0), which uses the 
period 0 technology set and the input vector v0 that 
was actually used in period 0, and (ii) P1(p0,p1,v1), 
which uses the period 1 technology set and the in-
put vector v1 that was actually used in period 1. Let 
q0 and q1 be the observed output vectors for the es-
tablishment in periods 0 and 1, respectively. If 

                                                        
13This concept of the output price index (or a closely re-

lated variant) was defined by Fisher and Shell (1972, pp. 
56–58), Samuelson and Swamy (1974, pp. 588–92), Archi-
bald (1977, pp. 60–61), Diewert (1980, pp. 460–61; 1983a, 
p. 1055), and Balk (1998a, pp. 83–89).  Readers who are 
familiar with the theory of the true cost-of-living index will 
note that the output price index defined by equation (17.2) 
is analogous to the true cost-of-living index, which is a ratio 
of cost functions, say, C(u,p1)/C(u,p0), where u is a refer-
ence utility level: r replaces C, and the reference utility 
level u is replaced by the vector of reference variables (t,v).  
For references to the theory of the true cost-of-living index, 
see Konüs (1924), Pollak (1983a), or the CPI counterpart to 
this Manual,  ILO and others (2004). 
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there is revenue-maximizing behavior on the part 
of the establishment in periods 0 and 1, then ob-
served revenue in periods 0 and 1 should be equal 
to R0(p0,v0) and R1(p1,v1), respectively; that is, the 
following equalities should hold: 

(17.3) R0(p0,v0) = 0 0

1

N

n n
n

p q
=

∑  and R1(p1,v1) = 1 1

1

N

n n
n

p q
=

∑ . 

 
17.22 Under these revenue-maximizing assump-
tions, Fisher and Shell (1972, pp. 57–58) and 
Archibald (1977, p. 66) have shown that the two 
theoretical indices, P0(p0,p1,v0) and P1(p0,p1,v1) de-
scribed in (i) and (ii) above, satisfy equations 
(17.4) and (17.5): 

(17.4) P0(p0,p1,v0) ≡ R0(p1,v0) / R0(p0,v0), 
 
using equation (17.2) 

 = R0(p1,v0) / 0 0

1

N

n n
n

p q
=

∑ , 

 using equation (17.3) 

 ≥ 1 0 0 0

1 1

N N

n n n n
n n

p q p q
= =

∑ ∑ ,  

since q0 is feasible for the maximization problem,  
which defines R0(p1,v0), and so 

R0(p1,v0) ≥ 1 0

1

N

n n
n

p q
=

∑  

 ≡ PL(p0,p1,q0,q1), 
 
where PL is the Laspeyres (1871) price index. 
Similarly, 
 
(17.5) P1(p0,p1,v1) ≡ R1(p1,v1) / R1(p0,v1), 
 
using equation (17.2) 
 

= 1 1

1

N

n n
n

p q
=

∑ R1(p0,v1), 

using equation (17.3) 

≤ 1 1 0 1

1 1

N N

n n n n
n n

p q p q
= =

∑ ∑ ,  

 

since q1 is feasible for the maximization problem,  
which defines R1(p0,v1), and so 

R1(p0,v1) ≥ 0 1

1

N

n n
n

p q
=

∑  

≡ PP(p0,p1,q0,q1), 
 

where PP is the Paasche (1874) price index. Thus, 
the inequality in equation (17.4) says that the ob-
servable Laspeyres index of output prices PL is a 
lower bound to the theoretical output price index 
P0(p0,p1,v0), and the inequality (17.5) says that the 
observable Paasche index of output prices PP is an 
upper bound to the theoretical output price index 
P1(p0,p1,v1). Note that these inequalities are in the 
opposite direction compared with their counter-
parts in the theory of the true cost-of-living in-
dex.14  
 
17.23 It is possible to illustrate the two inequali-
ties in equations (17.4) and (17.5) if there are only 
two commodities; see Figure 17.1, which is based 
on diagrams credited to Hicks (1940, p. 120) and 
Fisher and Shell (1972, p. 57). 

17.24 First the inequality in equation (17.4) is il-
lustrated for the case of two outputs both produced 
in both periods. The solution to the period 0 reve-
nue maximization problem is the vector q0, and the 
straight line through B represents the revenue line 
that is just tangent to the period 0 output produc-
tion possibilities set, S0(v0) ≡ {(q1,q2,v0) belongs to 
S0}. The curved line through q0  and A is the fron-
tier to the producer’s period 0 output production 
possibilities set S0(v0). The solution to the period 1 
revenue maximization problem is the vector q1, 
and the straight line through H represents the reve-
nue line that is just tangent to the period 1 output 
production possibilities set, S1(v1) ≡ {(q1,q2,v1) be-
longs to S1}. The curved line through q1 and F is 
the frontier to the producer’s period 1 output pro-
duction possibilities set S1(v1). The point q0* solves 
the hypothetical maximization problem of maxi-
mizing revenue when facing the period 1 price 
vector p1 = (p1

1,p2
1) but using the period 0 technol-

ogy and input vector. This is given by R0(p1,v0) = 
p1

1q1
0* + p2

1q2
0* , and the dashed line through D is 

the corresponding isorevenue line p1
1q1 + p2

1q2 = 
R0(p1,v0). Note that the hypothetical revenue line 
through D is parallel to the actual period 1 revenue 
line through H. From equation (17.4), the hypo-
thetical Fisher-Shell output price index, 
P0(p0,p1,v0), is R0(p1,v0) / [p1

0q1
0 + p2

0q2
0], while 

the ordinary Laspeyres output price index is [p1
1q1

0 

                                                        
14This is because the optimization problem in the cost-of-

living theory is a cost minimization problem as opposed to 
our present revenue maximization problem. The method of 
proof used to derive equations (17.4) and (17.5) dates back 
to Konüs (1924), Hicks (1940), and Samuelson (1950).   
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+ p2
1q2

0] / [p1
0q1

0 + p2
0q2

0]. Since the denominators 
for these two indices are the same, the difference 
between the indices is due to the differences in 
their numerators. In Figure 17.1, this difference in 
the numerators is expressed by the fact that the 
revenue line through C lies below the parallel 
revenue line through D. Now, if the producer’s pe-
riod 0 output production possibilities set were 
block-shaped with a vertex at q0, then the producer 
would not change production patterns in response 
to a change in the relative prices of the two com-
modities while using the period 0 technology and 
inputs. In this case, the hypothetical vector q0* 
would coincide with q0, the dashed line through D 
would coincide with the dashed line through C, 
and the true output price index, P0(p0,p1,v0), would 
coincide with the ordinary Laspeyres price index. 
However, block-shaped production possibilities 

sets are generally not consistent with producer be-
havior; that is, when the price of a commodity in-
creases, producers generally supply more of it. 
Thus, in the general case, there will be a gap be-
tween the points C and D. The magnitude of this 
gap represents the amount of substitution bias be-
tween the true index and the corresponding 
Laspeyres index; that is, the Laspeyres index gen-
erally will be less than the corresponding true out-
put price index, P0(p0,p1,v0). 

17.25 Figure 17.1 also can be used to illustrate 
the inequality (17.5) for the two-output case. Note 
that technical progress or increases in input avail-
ability have caused the period 1 output production 
possibilities set S1(v1) ≡ {(q1,q2) : [q1,q2,v1] belongs 
to S1} to be much bigger than the corresponding 
period 0 output production possibilities set S0(v0) ≡ 

 
 

 
Figure 17.1. Laspeyres and Paasche Bounds to the Output Price Index 
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{(q1,q2) : [q1,q2,v0] belongs to S0}.15 Note also that 
the dashed lines through E and G are parallel to the 
period 0 isorevenue line through B. The point q1* 
solves the hypothetical problem of maximizing 
revenue using the period 1 technology and inputs 
when facing the period 0 price vector p0 = 
(p1

0,p2
0). This is given by R1(p0,v1) = p1

0q1
1* + 

p2
0q2

1* , and the dashed line through G is the corre-
sponding isorevenue line p1

1q1 + p2
1q2 = R1(p0,v1). 

From equation (17.5), the theoretical output price 
index using the period 1 technology and inputs is 
[p1

1q1
1 + p2

1q2
1] / R1(p0,v1), while the ordinary 

Paasche price index is [p1
1q1

1 + p2
1q2

1] / [p1
0q1

1 + 
p2

0q2
1]. Since the numerators for these two indices 

are the same, the difference between the indices is 
due to the differences in their denominators. In 
Figure 17.1, this difference in the denominators is 
expressed by the fact that the revenue line through 
E lies below the parallel cost line through G. The 
magnitude of this difference represents the amount 
of substitution bias between the true index and the 
corresponding Paasche index; that is, the Paasche 
index generally will be greater than the corre-
sponding true output price index using current-
period technology and inputs, P1(p0,p1,v1). Note 
that this inequality goes in the opposite direction to 
the previous inequality (17.4). The reason for this 
change in direction is that one set of differences 
between the two indices takes place in the numera-
tors of the two indices (the Laspeyres inequalities), 
while the other set takes place in the denominators 
of the two indices (the Paasche inequalities).  
 
17.26 Equations (17.4) and (17.5) have two 
problems: 

• Two equally valid economic price indices, 
P0(p0,p1,v0) and P1(p0, p1 ,v1), can be used to 
describe the amount of price change that took 
place between periods 0 and 1, whereas the 
public will demand that the statistical agency 
produce a single estimate of price change be-
tween the two periods. 

                                                        
15However, the validity of equation (17.5) does not de-

pend on the relative position of the two output production 
possibilities sets. To obtain the strict inequality version of 
equation (17.5), two things are needed: (i) the frontier of 
the period 1 output production possibilities set to be 
“curved” and (ii) relative output prices to change going 
from period 0 to 1, so that the two price lines through G 
and H in Figure 17.1 are tangent to different points on the 
frontier of the period 1 output production possibilities set. 

• Only one-sided observable bounds to these 
two theoretical price indices16 result from this 
analysis, and for most practical purposes, two-
sided bounds are required. 

 
The following subsection shows a possible solu-
tion to these two problems. 
 
B.2  Fisher ideal index as an  
average of observable bounds 

 
17.27 It is possible to define a theoretical output 
price index that falls between the observable 
Paasche and Laspeyres price indices. To do this, 
first define a hypothetical revenue function, 
π(p,α), that corresponds to the use of an α 
weighted average of the technology sets S0(v0)  
and S1(v1) for periods 0 and 1 as the reference 
technology: 

(17.6) R(p,α) ≡ max q {
1

N

n n
n

p q
=

∑ : q belongs to  

(1− α)S0(v0) + αS1(v1)}. 
 
Thus, the revenue maximization problem in equa-
tion (17.6) corresponds to the use of a weighted 
average of the period 0 and period 1 technology 
sets, where the period 0 vector gets the weight 1−α 
and the period 1 vector gets the weight α, where α 
is a number between 0 and 1.17 The meaning of the 
weighted average technology set in equation (17.6) 
can be explained in terms of Figure 17.1 as fol-
lows. As α changes continuously from 0 to 1, the 
output production possibilities set changes in a 
continuous manner from the set S0(v0) (whose 
frontier is the curve that ends in the point A) to the 
set S1(v1) (whose frontier is the curve that ends in 
the point F). Thus, for any α between 0 and 1, a 
hypothetical establishment output production pos-
sibilities set is obtained that lies between the base-
period set S0(v0) and the current-period set S1(v1). 
For each α, this hypothetical output production 

                                                        
16The Laspeyres output price index is a lower bound to 

the theoretical index P0(p0,p1,v0), while the Paasche output 
price index is an upper bound to the theoretical index 
P1(p0,p1,v1). 

17When α = 0, R(p,0) = R0(p,v0), and when α = 1, R(p,1) 
= R1(p,v1). 
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possibilities set can be used as the constraint set 
for a theoretical output price index.  
 
17.28 The new revenue function in definition 
(17.6) is now used in order to define the following 
family (indexed by α) of theoretical net output 
price indices: 

(17.7) P(p0,p1,α) ≡ R(p1,α) / R(p0,α). 
 
The important advantage that theoretical output 
price indices of the form in equations (17.2) or 
(17.7) have over the traditional Laspeyres and 
Paasche output price indices PL and PP is that these 
theoretical indices deal adequately with substitu-
tion effects; that is, when an output price increases, 
the producer supply should increase, holding in-
puts and the technology constant.18  
 
17.29 Diewert (1983a, pp. 1060–61) showed 
that, under certain conditions,19 there exists an α 
between 0 and 1 such that the theoretical output 
price index defined by equation (17.7) lies between 
the observable (in principle) Paasche and 
Laspeyres output indices, PP and PL ; that is, there 
exists an α such that  

(17.8) PL ≤ P(p0,p1,α) ≤ PP  or  
    PP ≤ P(p0,p1,α) ≤ PL . 

 

                                                        
18This is a normal output substitution effect. However, 

empirically, it will often happen that observed period-to-
period decreases in price are not accompanied by corre-
sponding decreases in supply. However, these abnormal 
“substitution” effects can be rationalized as the effects of 
technological progress. For example, suppose the price of 
computer chips decreases substantially going from period 0 
to 1. If the technology were constant over these two peri-
ods, one would expect domestic producers to decrease their 
supply of chips going from period 0 to 1. In actual fact, the 
opposite happens, because technological progress has led to 
a sharp reduction in the cost of producing chips, which is 
passed on to demanders of chips. Thus the effects of tech-
nological progress cannot be ignored in the theory of the 
output price index. The counterpart to technological change 
in the theory of the cost-of-living index is taste change, 
which is often ignored.  

19Diewert adapted a method of proof credited originally 
to Konüs (1924) in the consumer context. Sufficient condi-
tions on the period 0 and 1 technology sets for the result to 
hold are given in Diewert (1983a, p. 1105). The exposition 
of the material in Sections B.2, B.3, and C.1 also draws on 
Chapter 2 in Alterman, Diewert, and Feenstra (1999). 

17.30 The fact that the Paasche and Laspeyres 
output price indices provide upper and lower 
bounds to a “true” output price P(p0,p1,α) in equa-
tion (17.8) is a more useful and important result 
than the one-sided bounds on the “true” indices 
that were derived in equations (17.4) and (17.5). If 
the observable (in principle) Paasche and 
Laspeyres indices are not too far apart, then taking 
a symmetric average of these indices should pro-
vide a good approximation to an economic output 
price index, where the reference technology is 
somewhere between the base- and current-period 
technologies. The precise symmetric average of 
the Paasche and Laspeyres indices was determined 
in Section C.1 of Chapter 15 on axiomatic grounds 
and led to the geometric mean, the Fisher price in-
dex, PF: 

(17.9) PF(p0,p1,q0,q1) ≡ [PL(p0,p1,q0,q1)  
      × PP(p0,p1,q0,q1)]1/2. 
 
Thus, the Fisher ideal price index receives a fairly 
strong justification as a good approximation to an 
unobservable theoretical output price index.20 
 
17.31 The bounds given by equations (17.4), 
(17.5), and (17.8) are the best that can be obtained 
on economic output price indices without making 
further assumptions. In the next subsection, further 
assumptions are made on the two technology sets 
S0 and S1 or, equivalently, on the two revenue 
functions R0(p,v) and R1(p,v). With these extra as-
sumptions, it is possible to determine the geomet-
ric average of the two theoretical output price indi-
ces that are of primary interest, P0(p0,p1,v0) and 
P1(p0,p1,v1). 

B.3  Törnqvist index as an  
approximation to an economic  
output price index 

17.32 An alternative to the Laspeyres and 
Paasche indices defined in equations (17.4) and 

                                                        
20Note that Irving Fisher (1922) constructed Laspeyres, 

Paasche, and Fisher output price indices for his U.S. data 
set. Fisher also adopted the view that the product of the 
price and quantity index should equal the value ratio be-
tween the two periods under consideration, an idea that he 
had already formulated (1911, p. 403). He did not consider 
explicitly the problem of deflating value added, but by 
1930, his ideas on deflation and measuring quantity growth 
being essentially the same problem had spread to the prob-
lem of deflating nominal value added; see Burns (1930). 
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(17.5) or the Fisher index defined by equation 
(17.9) is to use the Törnqvist (1936) Theil (1967) 
price index PT, whose natural logarithm is defined 
as follows: 

(17.10) ln PT(p0,p1,q0,q1) 

= ( )( ) ( )0 1 1 0

1

1 2 ln
N

n n n n
n

s s p p
=

+∑ , 

 

 where 
1

N
t t t t t
n n n n n

n

s p q p q
=

= ∑  is the revenue share of 

commodity n in the total value of sales in period t.  
 
17.33 Recall the definition of the period t reve-
nue function, Rt(p,v), defined earlier by equation 
(17.1). Now assume that the period t revenue func-
tion has the following translog functional form21  
for t = 0,1 : 

(17.11) ln Rt(p,v)  

= 0
1 1

ln ln
N M K

t t t
n n m m

n m

p v
+

= =

α + α + β∑ ∑  

1 1

1 ln ln
2

N N
t
nj n j

n j
p p

= =

+ α∑∑  

1 1 1 1

1ln ln ln ln ,
2

N M K M K M K
t t
nm n m mk m k

n m m k

p v v v
+ + +

= = = =

+ β + γ∑ ∑ ∑ ∑
 
where the αn

t coefficients satisfy the restrictions: 
 

(17.12) 
1

N
t
n

n=

α∑ = 1 for t = 0,1, 

 
and the t

njα  coefficients satisfy the following  
restrictions:22 
 

(17.13) 
1

N
t
nj

n=

α∑ = 0, for t = 0,1 and n = 1,2,…,N. 

 

The equations (17.12) and (17.13) are necessary to 
ensure that Rt(p,v) is linearly homogeneous in the 

                                                        
21This functional form was introduced and named by 

Christensen, Jorgenson, and Lau (1971). It was adapted to 
the revenue function or profit function context by Diewert 
(1974a). 

22It also is assumed that the symmetry conditions αnj
t = 

αjn
t for all n,j and for t = 0,1, and γmk

t = γkm
t for all m,k, and 

for t = 0,1 are satisfied. 

components of the output price vector p (which is 
a property that a revenue function must satisfy.)23 
Note that at this stage of our argument, the coeffi-
cients that characterize the technology in each pe-
riod (the αs, βs and γs) are allowed to be com-
pletely different in each period. It also should be 
noted that the translog functional form is an exam-
ple of a flexible functional form;24 that is, it can 
approximate an arbitrary technology to the second 
order. 
 
17.34 A result in Caves, Christensen, and 
Diewert (1982, p. 1410) now can be adapted to the 
present context: if the quadratic price coefficients 
in equation (17.11) are equal across the two peri-
ods of the index number comparison (that is, αnj

0 = 
αnj

1 for all n,j), then the geometric mean of the 
economic output price index that uses period 0 
technology and the period 0 input vector v0, 
P0(p0,p1,v0), and the economic output price index 
that uses period 1 technology and the period 1 in-
put vector v1, P1(p0,p1,v1), is exactly equal to the 
Törnqvist output price index PT defined by equa-
tion (17.10) above; that is,  

(17.14) PT(p0,p1,q0,q1) = [P0(p0,p1,v0)  
× P1(p0,p1,v1)]1/2. 

 
The assumptions required for this result seem 
rather weak; in particular, there is no requirement 
that the technologies exhibit constant returns to 
scale in either period, and our assumptions are 
consistent with technological progress occurring 
between the two periods being compared. Because 
the index number formula PT is exactly equal to the 
geometric mean of two theoretical economic out-
put price indices, and it corresponds to a flexible 
functional form, the Törnqvist output price index 
number formula is said to be superlative, following 
the terminology used by Diewert (1976). 
 
17.35 In the following section, additional super-
lative output price formulas are derived. However, 
this section concludes with a few words of caution 
on the applicability of the economic approach to 
PPIs. 

                                                        
23See Diewert (1973 and 1974a) for the regularity condi-

tions that a revenue or profit function must satisfy. 
24The concept of flexible functional form was introduced 

by Diewert (1974a, p. 113).  
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17.36 The above economic approaches to the 
theory of output price indices have been based on 
the assumption that producers take the prices of 
their outputs as given fixed parameters that they 
cannot affect by their actions. However, a monopo-
listic supplier of a commodity will be well aware 
that the average price that can be obtained in the 
market for the commodity will depend on the num-
ber of units supplied during the period. Thus, un-
der noncompetitive conditions when outputs are 
monopolistically supplied (or when intermediate 
inputs are monopsonistically demanded), the eco-
nomic approach to PPIs breaks down. The problem 
of modeling noncompetitive behavior does not 
arise in the economic approach to CPIs because a 
single household usually does not have much con-
trol over the prices it faces in the marketplace. 

17.37 The economic approach to producer out-
put price indices can be modified to deal with cer-
tain monopolistic situations. The basic idea is cred-
ited to Frisch (1936, 14–15), and it involves lin-
earizing the demand functions a producer faces in 
each period around the observed equilibrium 
points in each period and then calculating shadow 
prices that replace market prices. Alternatively, 
one can assume that the producer is a markup mo-
nopolist and simply adds a markup or premium to 
the relevant marginal cost of production.25 How-
ever, to implement these techniques, econometric 
methods usually will have to be employed, and, 
hence, these methods are not really suitable for use 
by statistical agencies, except in very special cir-
cumstances when the problem of noncompetitive 
behavior is thought to be very significant and the 
agency has access to econometric resources. 

B.4  Fisher ideal index revisited  

17.38 In Section B.2, a justification was pro-
vided for the Fisher ideal index. It was argued, 
from the economic approach, that an appropriate 
index defined from economic theory should fall 
between Laspeyres and Paasche indices. On axio-
matic grounds, the Fisher ideal index was then 
proposed as the best average of these two formu-
las. The justification for the Törnqvist index in 
Section B.3 was quite different. The theory of ex-
act and superlative index numbers was used to jus-

                                                        
25See Diewert (1993b, pp. 584–90) for a more detailed 

description of these techniques for modeling monopolistic 
behavior and for additional references to the literature. 

tify its use. In the previous section, equation 
(17.14) showed that if the revenue function took a 
translog functional form, equation (17.11), then a 
theoretical price index based on this form would 
correspond exactly with the Törnqvist output price 
index, which is a price index number formula 
based on observable price and quantity data. 
Moreover, since the translog function is one form 
of a class of flexible functional forms, the  
Törnqvist output price index number formula was 
said to be superlative, following the terminology 
used by Diewert (1976). Flexible functional forms 
can approximate an arbitrary twice continuously 
differentiable linearly homogeneous functional 
form to the second order, which is an attractive 
property of an index number. Bear in mind that 
Laspeyres and Paasche correspond to revenue 
functions that have restrictive Leontief forms, 
which allow no substitution, and the geometric 
Laspeyres and Paasche indices correspond to 
Cobb-Douglas forms, which restrict the elasticity 
of substitution to unity. The translog production 
technology is a form that allows for wider substitu-
tion possibilities and that can, to the second order, 
approximate a range of functional forms. The eco-
nomic theory of index numbers provided a direct 
link between formulas used in practice and the im-
plicit underlying economic behavior they repre-
sent. Diewert (1973) showed that if the functional 
form assumed is not flexible, it implicitly imposes 
restrictions on the elasticity of substitution. Index 
numbers that do not correspond to flexible func-
tional forms, that is, are not superlative, are restric-
tive in this sense. In this section the findings for 
the Fisher ideal index are outlined. That is, the 
Fisher index, although justified on a mix of eco-
nomic and axiomatic principles in Section B.2, is 
revisited here using the exact and superlative ap-
proach to economic index numbers. It will be 
shown that its derivation, while analogous to that 
of the Törnqvist index, requires more restrictive 
assumptions. In Section B.5 the findings on super-
lative indices are generalized. 

17.39 The approach of the previous section is 
followed for the Fisher ideal index. However, first 
it is assumed that a linear homogeneous aggregator 
function exists for outputs. An additional (and con-
siderably more restrictive) assumption is being in-
voked here than that required for the Törnqvist in-
dex: that outputs are said to be homogeneously 
weakly separable from the other commodities in 
the production function. The intuitive meaning of 
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the separability assumption defined by equation 
(17.15) is that an output aggregate q ≡ f(q1,...,qN) 
exists; that is, a measure of the aggregate contribu-
tion to production of the amounts q1 of the first 
output, q2 of the second output, ..., and qN of the 
Nth output is the number q = f(q1,q2,...,qN). Note 
that it is assumed that the linearly homogeneous 
output aggregator function f does not depend on t. 
These assumptions are quite restrictive from the 
viewpoint of empirical economics,26 but strong as-
sumptions are required to obtain the existence of 
output aggregates. 

17.40 A unit revenue function,27 r can be defined 
as follows: 

(17.15) r(p) ≡ maxq {
1

N

n n
n

p q
=

∑ : f(q) = 1}, 

where p ≡ [p1,...,pN] and q ≡ [q1,...,qN]. Thus r(p) is 
the maximum revenue the establishment can make, 
given that it faces the vector of output prices p and 
is asked to produce a combination of outputs 
[q1,...,qN] = q that will produce a unit level of ag-
gregate output. Under the separability assump-
tions, the theoretical price index r(p1) / r(p0) is a 
ratio of unit revenue functions.  
 
17.41 Instead of starting with the a translog 
function for the revenue function of the Törnqvist 
index, the assumption of the Fisher ideal index is 
that the unit revenue function takes a homogene-
ous quadratic form given by 

(17.16) r(p1,…,pN) ≡ 
1 2

1 1

N N

ik i k
i k

b p p
= =

 
 
 
∑∑ , 

 
                                                        

26Suppose that in period 0, the vector of inputs v0 pro-
duces the vector of outputs q0. Our separability assump-
tions imply that the same vector of inputs v0 could produce 
any vector of outputs q such that f(q) = f(q0).  In real life, as 
q varied, one would expect that the corresponding input re-
quirements also would vary instead of remaining fixed. 

27An alternative approach, which reaches the same con-
clusions, is to start with assuming the producer’s aggrega-
tor function takes this quadratic form and, assuming out-
puts are homogeneously weakly separable from the other 
commodities in the production function, applies Wold’s 
identity. It then can be shown that the Fisher ideal quantity 
index corresponds exactly to a homogeneous quadratic ag-
gregator. Using the product rule, the unit revenue function 
can be derived to yield analogous results for the Fisher 
ideal price index. 

where the parameters bik satisfy the following 
symmetry conditions: 
 
(17.17) bik = bki for all i and k. 

 

Differentiating r(p) defined by equation (17.16) 
with respect to pi yields the following equations: 
 

(17.18) ( )
1 2

1 1 1

1 2
2

N N N

i ik i k ik k
i k k

r p b p p b p
−

= = =

  =       
∑∑ ∑ ; 

 
 i = 1,…,N and using equation (17.16), 
 

  = ( )
1

N

ik k
k

b p r p
=

 ∑ ,  

 
where ri(p) ≡ ∂r(pt) / ∂pi. To obtain the first equa-
tion in equation (17.18), it is necessary to use the 
symmetry conditions, equation (17.17). The sec-
ond equation in equation (17.18) now is evaluated 
at the observed period t price vector pt ≡ 
(p1

t,…,pN
t), and dividing both sides of the resulting 

equation by r(pt) yields 
 

(17.19 )
( )
( ) ( )

1
2

N
t

t ik k
i k

t t

b pr p

r p r p
==

  

∑
, t = 0,1 ;  i = 1,…,N. 

 
The above equation defines a theoretical price in-
dex. It now is required to relate this theoretical 
price index, which comes from a particular func-
tional form for the unit revenue function, that is, a 
homogeneous quadratic form, to an index number 
formula that can be used in practice. To do this, it 
is necessary to assume the establishment is maxi-
mizing revenue during the two periods, subject to 
the constraints of technology, and that the unit 
revenue function is differentiable, and to apply  
Hotelling’s lemma: that the partial derivative of a 
unit revenue function with respect to an output 
price is proportional to the equilibrium output 
quantity.  
 

(17.20) 
( ) ( )

( )
1

tt
nn

N t
t t
k k

k

r p pq
r pp q

=

 ∂   ∂ =

∑
; n = 1,…,N ; 

 t = 0,1. 
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In words, equation (17.20) says that the vector of 
period t establishment outputs qt , divided by pe-

riod t establishment revenues 
1

N
t t
k k

k

p q
=

∑ , is equal to 

the vector of first-order partial derivatives of the 
establishment unit revenue function ∇r(pt) ≡ 
[∂r(pt)/∂p1,...,∂r(pt)/∂pN], divided by the period t 
unit revenue function r(pt). 
  
Now recall the definition of the Fisher ideal price 
index PF defined by equations (15.12) or (17.9): 
 
(17.21) PF(p0,p1,q0,q1)  

1 2 1 2
1 0 0 0 1 1 0 1

1 1 1 1

N N N N

i i k k i i k k
i k i k

p q p q p q p q
= = = =

   
=    

   
∑ ∑ ∑ ∑  

substituting for 
1

N

nt kt kt
k

q p q
=

∑  from equation  

(17.20) for t = 0 
 

( ) ( )
1 2 1 2

1 0 0 1 1 0 1

1 1 1

N N N

i i i i k k
i i k

p r p r p p q p q
= = =

   
=    

   
∑ ∑ ∑  

( ) ( )
1 21 2

1 0 0 0 1 1 1

1 1 1

N N N

i i i i k k
i i k

p r p r p p q p q
= = =

   
=     

   
∑ ∑ ∑  

and for 
1

N

nt kt kt
k

q p q
=

∑  from equation (17.20) for 

t = 1 
 

( ) ( )

( ) ( )

1 2
1 0 0

1
1 2

0 1 1

1

N

i i
i

N

i i
i

p r p r p

p r p r p

=

=

 
 
 =
 
 
 

∑

∑
 

and using equation (17.19)  
 

( )

( )

1 2
20 1 0

1 1
1 2

21 0 1

1 1

N N

ik k i
i k

N N

ik k i
i k

b p p r p

b p p r p

= =

= =

     =
      

∑∑

∑∑
 

 
using equation (17.17) and canceling terms 
 

( ) ( )
1 21 22 20 11 1r p r p      =           

 

  
( ) ( )1 0r p r p= . 

Thus, under the assumption that the producer en-
gages in revenue-maximizing behavior during pe-
riods 0 and 1 and has technologies that satisfy the 
separability assumption, and that the unit revenue 
function is homogeneous quadratic, then the Fisher 
ideal price index PF is exactly equal to the true 
price index, r(p1) / r(p0).28 
 
17.42 Since the homogeneous quadratic unit 
revenue function r(p) defined by equation (17.16) 
is also a flexible functional form, the fact that the 
Fisher ideal price index PF exactly equals the true 
price index r(p1) / r(p0) means that PF is a superla-
tive index number formula.29 

B.5  Superlative output price  
indices 

B.5.1  A general class of superlative 
output price indices  

17.43 There are many other superlative index 
number formulas; that is, there exist many quantity 
indices Q(p0,p1,q0,q1) that are exactly equal to  
f(q1) / f(q0) and many price indices P(p0,p1,q0,q1) 
that are exactly equal to r(p1) / r(p0), where the ag-
gregator function f or the unit revenue function r is 
a flexible functional form. Two families of super-
lative indices are defined below—quantity indices 
and price indices. 

17.44 Suppose that the producer’s output aggre-
gator function30 is the following quadratic mean of 
order r aggregator function: 

(17.22) ( )
1

2 2
1

1 1
,...,

rN N
r r r

N ik i k
i k

f q q a q q
= =

 
≡  

 
∑∑ , 

 
where the parameters aik satisfy the symmetry con-
ditions aik = aki for all i and k, and the parameter r 
satisfies the restriction r ≠ 0.  Diewert (1976, 

                                                        
28This result was obtained by Diewert (1976, pp. 133–34) 

in the consumer context. 
29Note that the Fisher index PF is exact for the unit reve-

nue function defined by equation (17.16). These two output 
aggregator functions do not coincide in general. However, 
if the N by N symmetric matrix A of the aik has an inverse, 
then it readily can be shown that the N by N matrix B of the 
bik will equal A−1.  

30This terminology is credited to Diewert (1976, p. 129). 
This functional form was first defined by Denny (1974) as 
a unit cost function. 
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p. 130) showed that the aggregator function f r de-
fined by equation (17.22) is a flexible functional 
form; that is, it can approximate an arbitrary twice 
continuously differentiable linearly homogeneous 
functional form to the second order. Note that 
when r = 2, rr equals the homogeneous quadratic 
function defined by equation (17.16) above. 
 
17.45 Define the quadratic mean of order r 
quantity index Qr by 

(17.23) ( )0 1 0 1, , ,rQ p p q q  

     

1 12 21 1
0 1

0 0
1 1

r rr rn n
i i

i i
i ii i

q qs s
q q

−−

= =

      
   ≡    
         
∑ ∑ , 

 

where 
1

N
t t t t t
i i i i i

i
s p q p q

=

= ∑  is the period t revenue 

share for output i as usual. It can be verified that 
when r = 2, Qr simplifies into QF, the Fisher ideal 
quantity index. 
 
17.46 Using exactly the same techniques as were 
used in Section B.3, it can be shown that Qr is ex-
act for the aggregator function f r defined by equa-
tion (17.22); that is,  

(17.24) Qr(p0,p1,q0,q1) ( ) ( )1 0r rf q f q= . 
 
Thus, under the assumption that the producer en-
gages in revenue-maximizing behavior during pe-
riods 0 and 1 and has technologies that satisfy a 
linearly homogeneous aggregator function for out-
puts31 where the output aggregator function f(q) is 
defined by equation (17.22), then the quadratic 
mean of order r quantity index QF is exactly equal 
to the true quantity index, f r(q1) / f r(q0).32  Since 
Qr is exact for f r, and f r is a flexible functional 
form, the quadratic mean of order r quantity index 
Qr is a superlative index for each r ≠ 0. Thus, there 
are an infinite number of superlative quantity  
indices. 
 

                                                        
31This method for justifying aggregation over commodi-

ties is due to Shephard (1953, pp. 61–71). It is assumed that 
f(q) is an increasing, positive, and convex function of q for 
positive q. Samuelson and Swamy (1974) and Diewert 
(1980, pp.  438–42) also developed this approach to index 
number theory. 

32See Diewert (1976, p. 130). 

17.47 For each quantity index Qr, the product 
test in equation (15.3) can be used to define the 
corresponding implicit quadratic mean of order r 
price index Pr*: 

(17.25) Pr*(p0,p1,q0,q1) 

    ( )1 1 0 0 0 1 0 1

1
, , ,

N
r

i i i i
i

p q p q Q p p q q
=

 ≡  ∑  

 ( ) ( )* 1 * 0r rr p r p= , 
 
where rr* is the unit revenue function that corre-
sponds to the aggregator function f r defined by 
equation (17.22). For each r ≠ 0, the implicit quad-
ratic mean of order r price index Pr* is also a su-
perlative index. 
 
17.48 When r = 2, Qr defined by equation 
(17.23) simplifies to QF, the Fisher ideal quantity 
index, and Pr* defined by equation (17.25) simpli-
fies to PF, the Fisher ideal price index. When r = 1, 
Qr defined by equation (17.23) simplifies to 

(17.26) Q1(p0,p1,q0,q1) 
1 11 2 1 21 1

0 1
0 0

1 1

n n
i i

i i
i ii i

q qs s
q q
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         
∑ ∑  
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, 

 
where PW is the Walsh price index defined previ-
ously by equation (15.19) in Chapter 15. Thus P1* 
is equal to PW, the Walsh price index, and hence it 
is also a superlative price index. 
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17.49 Suppose the producer’s unit revenue func-
tion33 is the following quadratic mean of order r 
unit revenue function: 

(17.27) rr(p1,…,pn) 
1

2 2

1 1

rN N
r r

ik i k
i k

b p p
= =

 
≡  

 
∑∑ , 

 
where the parameters bik satisfy the symmetry con-
ditions bik = bki for all i and k and the parameter r 
satisfies the restriction r ≠ 0. Diewert (1976,  
p. 130) showed that the unit revenue function rr 
defined by equation (17.27) is a flexible functional 
form; i.e., it can approximate an arbitrary twice 
continuously differentiable linearly homogeneous 
functional form to the second order. Note again 
that when r = 2, rr equals the homogeneous quad-
ratic function defined by equation (17.16) above. 
 
17.50 Define the quadratic mean of order r price 
index Pr by: 

(17.28) Pr(p0,p1,q0,q1)  

       

1 12 21 1
0 1

0 0
1 1

r rr rn n
i i

i i
i ii i

p ps s
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−−

= =

      
   ≡    
         
∑ ∑  

 

where 
1

N
t t t t t
i i i i i

i

s p q p q
=

= ∑  is the period t revenue 

share for output i as usual. It can be verified that 
when r = 2, Pr simplifies into PF, the Fisher ideal 
price index. 
 
17.51 Using exactly the same techniques as were 
used in Section B.3, it can be shown that Pr is ex-
act for the unit revenue function rr defined by 
(17.27); that is,  

(17.29) Pr(p0,p1,q0,q1) ( ) ( )0r t rr p r p= . 
 
Thus, under the assumption that the producer en-
gages in revenue-maximizing behavior during pe-
riods 0 and 1 and has technologies that are homo-
geneously weakly separable where the output ag-
gregator function f(q) corresponds to the unit reve-
nue function rr(p) defined by (17.27), then the 
                                                        

33Again, the approach here is by way of a unit revenue 
function. An alternative formulation is via a quadratic mean 
of order r superlative quantity index. Using the product 
rule, the quantity index defines an implicit quadratic mean 
of order r price index that also is a superlative index. 

quadratic mean of order r price index Pr is exactly 
equal to the true output price index, rr(p1)/rr(p0).34 
Since Pr is exact for rr and rr is a flexible func-
tional form, that the quadratic mean of order r 
price index Pr is a superlative index for each r ≠ 0. 
Thus there are an infinite number of superlative 
price indices. 
 
17.52 For each price index Pr, the product test 
(15.3) can be used in order to define the corre-
sponding implicit quadratic mean of order r quan-
tity index Qr*: 

(17.30) Qr*(p0,p1,q0,q1) 

   ( ){ }1 1 0 0 0 1 0 1

1

, , ,
N

r
i i i i

i

p q p q P p p q q
=

≡ ∑  

   ( ) ( )* 1 * 0r rf p f p=  
 
where f r* is the aggregator function that corre-
sponds to the unit cost function rr defined by 
(17.27) above.35 For each r ≠ 0, the implicit quad-
ratic mean of order r quantity index Qr* is also a 
superlative index. 
 
17.53 When r = 2, Pr defined by (17.28) simpli-
fies to PF, the Fisher ideal price index and Qr* de-
fined by (17.30) simplifies to QF, the Fisher ideal 
quantity index. When r = 1, Pr defined by (17.28) 
simplifies to: 

(17.31) P1(p0,p1,q0,q1)  
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34See Diewert (1976, pp. 133–34). 
35The function f r* can be defined by using rr as follows: f 

r*(q) ≡ maxp ( )
1

: 1
n

r
i i

i

p q r p
=

 
= 

 
∑ . 
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where QW is the Walsh quantity index defined pre-
viously by equation (16.34) in Chapter 16. Thus 
Q1* is equal to QW, the Walsh (1901; 1921) quan-
tity index, and hence it is also a superlative quan-
tity index. 
 
17.54 Essentially, the economic approach to in-
dex number theory provides reasonably strong jus-
tifications for the use of the Fisher price index PF 
defined by equation (15.12) or equation (17.9), the 
Törnqvist-Theil price index PT defined by equation 
(16.22) or equation (17.10), and the quadratic 
mean of order r price indices Pr defined by equa-
tion (17.28) (when r = 1, this index is the Walsh 
price index defined by equation [15.19] in Chapter 
15). It is now necessary to ask if it matters which 
one of these formulas is chosen as best. 

B.5.2  Approximation properties of 
superlative indices 

17.55 The analysis in this chapter has led to 
three superlative index number formulas, the 
Fisher price index, the Törnqvist-Theil price index, 
and the Walsh price index, all of which appear to 
have good properties from the viewpoint of the 
economic approach to index number theory.  

17.56 Two questions arise as a consequence of 
these results:  

• Does it matter which formula is chosen? 
• If it does matter, which formula should be 

chosen? 
 
With respect to the first question, the justifications 
for the Törnqvist index presented in Section B.3 
are stronger than the justifications for the other su-

perlative indices presented in Section B.2, because 
the economic derivation did not rely on restrictive 
separability assumptions. The justification for the 
Fisher index, however, took a different form. Eco-
nomic theory established that Laspeyres and 
Paasche bounded a true index, and axiomatic 
grounds were found for the Fisher being the best 
average of the two. However, Diewert (1978,  
p. 888) showed that the three superlative index 
number formulas listed approximate each other to 
the second order around any point where the two 
price vectors, p0 and p1, are equal and where the 
two quantity vectors, q0 and q1, are equal. He con-
cluded that “all superlative indices closely ap-
proximate each other” (Diewert, 1978, p. 884). 
 
17.57 However, the above conclusion requires a 
caveat. The problem is that the quadratic mean of 
order r price indices Pr is a (continuous) function 
of the parameter r. Hence, as r becomes very large 
in magnitude, the index Pr can differ substantially 
from, say, P2 = PF, the Fisher ideal index. In fact, 
using equation (17.28) and the limiting properties 
of means of order r,36 R.J. Hill (2000, p. 7) showed 
that Pr has the following limit as r approaches plus 
or minus infinity:  

(17.32) limr→+∞ Pr(p0,p1,q0,q1)  
 = limr→−∞ Pr(p0,p1,q0,q1) 
 = [mini{pi

1/pi
0}maxi{pi

1/pi
0}]1/2. 

 
Thus for r large in magnitude, Pr can differ sub-
stantially from the Törnqvist-Theil price index, the 
Walsh price index, and the Fisher ideal index.37 
 
17.58 Although R.J. Hill’s theoretical and em-
pirical results demonstrate conclusively that all su-
perlative indices will not necessarily closely ap-
proximate each other, there is still the question of 
how well the more commonly used superlative in-
dices will approximate each other. All of the 
commonly used superlative indices, Pr and Pr*, 
fall into the interval 0 ≤ r ≤ 2. Diewert (1980,  
                                                        

36See Hardy, Littlewood, and Polyá (1934).  Actually, Al-
len and Diewert (1981, p. 434) obtained the result (17.32) 
but they did not appreciate its significance. 

37R.J. Hill (2000) documents this for two data sets. His 
time-series data consists of annual expenditure and quantity 
data for 64 components of U.S. GDP from 1977 to 1994. 
For this data set, Hill (2000, p. 16) found that “superlative 
indices can differ by more than a factor of two (i.e., by 
more than 100 percent), even though Fisher and Törnqvist 
never differ by more than 0.6 percent.” 
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p. 451) showed that the Törnqvist index PT is a 
limiting case of Pr as r tends to 0. R.J. Hill (2000, 
p. 16) summarized how far apart the Törnqvist and 
Fisher indices were making all possible bilateral 
comparisons between any two data points for his 
time-series data set as follows: 

The superlative spread S(0,2) is also of interest 
since, in practice, Törnqvist (r = 0) and Fisher  
(r = 2) are by far the two most widely used su-
perlative indices. In all 153 bilateral compari-
sons, S(0,2) is less than the Paasche-Laspeyres 
spread and on average, the superlative spread is 
only 0.1 percent. It is because attention, until 
now, has focused almost exclusively on superla-
tive indices in the range 0 ≤ r ≤ 2 that a general 
misperception has persisted in the index number 
literature that all superlative indices approximate 
each other closely. 

17.59 Thus for R.J. Hill’s time-series data set 
covering 64 components of U.S. GDP from 1977 
to 1994 and making all possible bilateral compari-
sons between any two years, the Fisher and  
Törnqvist price indices differed by only 0.1 per-
cent on average. This close correspondence is con-
sistent with the results of other empirical studies 
using annual time-series data.38 Additional evi-
dence on this topic may be found in Chapter 19. 

17.60 A reasonably strong justification has been 
provided by the economic approach for a small 
group of index numbers: the Fisher ideal index PF 
= P2 = P2* defined by equation (15.12) or equation 
(17.9), the Törnqvist-Theil index PT defined by 
equations (17.10) or (15.81), and the Walsh index 
PW defined by equation (15.19) (which is equal to 
the implicit quadratic mean of order r price indices 
Pr* defined by equation (17.25) when r = 1). They 
share the property of being superlative and ap-
proximate each other to the second order around 
any point. This indicates that for normal time- 
series data, these three indices will give virtually 
the same answer. The economic approach gave 
particular support to the Fisher and Törnqvist-
Theil indices, albeit on different grounds. The 
Fisher index was advocated as the only symmetri-
cally weighted average of Laspeyres and Paasche 
bounds that satisfied the time reversal test. Eco-
nomic theory argued for the existence of Laspeyres 
and Paasche bounds on a suitable true theoretical 
                                                        

38See, for example, Diewert (1978, p. 894) or Fisher 
(1922), which is reproduced in Diewert (1976, p. 135). 

index. The support for the Törnqvist index arose 
from its requiring less restrictive assumptions to 
show it was superlative than the Fisher and Walsh 
indices. The Törnqvist-Theil index seemed to be 
best from the stochastic viewpoint, and the Fisher 
ideal index was supported from the axiomatic 
viewpoint in that it best satisfied the quite reason-
able tests presented. The Walsh index seemed to 
be best from the viewpoint of the pure price index. 
To determine precisely which one of these three al-
ternative indices to use as a theoretical target or ac-
tual index, the statistical agency will have to de-
cide which approach to bilateral index number 
theory is most consistent with its goals. It is reas-
suring that, as illustrated in Chapter 19, for normal 
time series data, these three indices give virtually 
the same answer.  

C.   Economic Approach to an  
Intermediate Input Price Index  
for an Establishment 

17.61 Attention now is turned to the economic 
theory of the intermediate input price index for an 
establishment. This theory is analogous to the eco-
nomic theory of the output price index explained in 
Section B but now uses the joint cost function or 
the conditional cost function C in place of the 
revenue function r that was used in Section B. Sec-
tion E will continue the analysis in a similar vein 
for the value-added deflator. The approach in this 
section for the intermediate input price index is 
analogous to the Konüs (1924) theory for the true 
cost-of-living index in consumer theory.  

17.62 Recall that the set St(vt) describes what 
output vectors y can be produced in period t if the 
establishment has at its disposal the vector of in-
puts v ≡ [x,z], where x is a vector of intermediate 
inputs and z is a vector of primary inputs. Thus if 
[y,x,z] belongs to St, then the nonnegative output 
vector y can be produced by the establishment in 
period t, if it can use the nonnegative vector x of 
intermediate inputs and the nonnegative vector z of 
primary inputs. 

17.63 Let px ≡ (px1,…pxM) denote a positive vec-
tor of intermediate input prices that the establish-
ment might face in period t, let y be a nonnegative 
vector of output targets, and let z be a nonnegative 
vector of primary inputs that the establishment 
might have available for use during period t. Then 
the establishment’s conditional cost function using 
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period t technology is defined as the solution to the 
following intermediate input cost minimization 
problem: 

(17.33) Ct(px,y,z) ≡ min x {
1

M

xm m
m

p x
=

∑ : [y,x,z] be-

longs to St}. 
 
Thus Ct(px,y,z) is the minimum intermediate input 

cost, 
1

M

xm m
m

p x
=

∑ , that the establishment must pay to 

produce the vector of outputs y, given that it faces 
the vector of intermediate input prices px and the 
vector of primary inputs z is available for use, us-
ing the period t technology.39  
 
17.64 To make the notation for the intermediate 
input price index comparable to the notation used 
in Chapters 15 and 16 for price and quantity indi-
ces, in the remainder of this subsection the inter-
mediate input price vector px is replaced by the 
vector p, and the vector of intermediate quantities 
x is replaced by the vector q. Thus Ct(px,y,z) is re-
written as Ct(p,y,z). 

17.65 The period t conditional cost function Ct 

can be used to define the economy’s period t tech-
nology intermediate input price index Pt between 
any two periods, say, period 0 and period 1, as fol-
lows: 

(17.34) Pt(p0,p1,y,z) = Ct(p1,y,z) / Ct(p0,y,z),  
 
where p0 and p1 are the vectors of intermediate in-
put prices that the establishment faces in periods 0 
and 1, respectively; y is a reference vector of out-
puts that the establishment must produce, and z is a 
reference vector of primary inputs.40 If M = 1, so 
that there is only one intermediate input that the 
establishment uses, then it can be shown that the 
intermediate input price index collapses to the sin-

                                                        
39See McFadden (1978) for the mathematical properties 

of a conditional cost function. Alternatively, note that 
−Ct(px,y,z) has the same mathematical properties as the 
revenue function Rt defined earlier in this chapter. 

40This concept of the intermediate input price index is 
analogous to the import price index defined in Alterman, 
Diewert, and Feenstra (1999). If the vector of primary in-
puts is omitted from equation (17.34), then the resulting in-
termediate input price index reduces to the physical produc-
tion cost index defined by Court and Lewis (1942–43,  
p. 30). 

gle intermediate input price relative between peri-
ods 0 and 1, p1

1/ p1
0. In the general case, note that 

the intermediate input price index defined by equa-
tion (17.34) is a ratio of hypothetical intermediate 
input costs that the establishment must pay to pro-
duce the vector of outputs y, given that it has the 
period t technology and the vector of primary in-
puts v to work with. The numerator in equation 
(17.34) is the minimum intermediate input cost 
that the establishment could attain if it faced the 
intermediate input prices of period 1, p1, while the 
denominator in equation (17.34) is the minimum 
intermediate input cost that the establishment 
could attain if it faced the output prices of period 
0, p0. Note that all variables in the numerator and 
denominator of equation (17.34) are held constant 
except the vectors of intermediate input prices. 
 
17.66 As was the case with the theory of the 
output price index, there are a wide variety of price 
indices in equation (17.34) depending on which 
reference vector (t,y,z) is chosen (the reference 
technology is indexed by t, the reference output 
vector is indexed by y, and the reference primary 
input vector is indexed by z). As in the theory of 
the output price index, two special cases of the 
general definition of the intermediate input price 
index, equation (17.34), are of interest:  
(i) P0(p0,p1,y0,z0), which uses the period 0 technol-
ogy set, the output vector y0 produced in period 0, 
and the primary input vector z0 used in period 0; 
and (ii) P1(p0,p1,y1,z1), which uses the period 1, 
technology set, the output vector y1 produced in  
period 1, and the primary input vector z1 used in  
period 1. Let I0 and q1 be the observed intermedi-
ate input vectors for the establishment in periods 0 
and 1, respectively. If there is cost-minimizing be-
havior on the part of the producer in periods 0 and 
1, then the observed intermediate input cost in pe-
riods 0 and 1 should equal C0(p0,y0,z0) and 
C1(p1,y1,z1), respectively; that is, the following 
equalities should hold: 

(17.35) C0(p0,y0,z0) = 0 0

1

M

m m
m

p q
=

∑  and 

      C1(p1,y1,z1) = 1 1

1

M

m m
m

p q
=

∑ . 

 
17.67 Under these cost-minimizing assumptions, 
adapt the arguments of Fisher and Shell (1972,  
pp. 57–58) and Archibald (1977, p. 66) to show 
that the two theoretical indices, P0(p0,p1,y0,z0) and 
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P1(p0,p1,y1,z1) described in (i) and (ii) above, sat-
isfy the inequalities of equations (17.36) and 
(17.37): 

(17.36) P0(p0,p1,y0,z0) ≡ C0(p1,y0,z0) / C0(p0,y0,z0) 
 
using equation (17.34) 

  = C0(p1,y0,z0) 0 0

1

M

m m
m

p q
=

∑   

using equation (17.35) 

   ≤ 1 0 0 0

1 1

M M

m m m m
m m

p q p q
= =

∑ ∑ ,  

 
since q0 is feasible for the minimization problem 
that defines C0(p1,y0,z0), and so 

    C0(p1,y0,z0) ≤ 1 0

1

M

m m
m

p q
=

∑  

   ≡ PL(p0,p1,q0,q1), 
 
where PL is the Laspeyres intermediate input price 
index. Similarly, 
 
(17.37) P1(p0,p1,y1,z1) ≡ C1(p1,y1,z1) / C1(p0,y1,z1)  
 
using equation (17.34) 

  = ( )1 1 1 0 1 1

1

, ,
M

m m
m

p q C p y z
=

∑   

 
using equation (17.35) 

  ≥ 1 1 0 1

1 1

M M

m m m m
m m

p q p q
= =

∑ ∑ , 

since q1 is feasible for the minimization problem 
that defines C1(p0,y1,z1), and so  

    C1(p0,y1,z1) ≤ 0 1

1

M

m m
m

p q
=

∑  

   ≡ PP(p0,p1,q0,q1), 
 
where PP is the Paasche price index. Thus, equa-
tion (17.36) says that the observable Laspeyres in-
dex of intermediate input prices, PL , is an upper 
bound to the theoretical intermediate input price 
index, P0(p0,p1,y0,z0), and the equation (17.37) says 
that the observable Paasche index of intermediate 
input prices, PP, is a lower bound to the theoretical 
intermediate input price index, P1(p0,p1,y1,z1). Note 
that these inequalities are the reverse of earlier 
equations (17.4) and (17.5) found for the output 
price index, but the new inequalities are analogous 
to their counterparts in the theory of the true cost-
of-living index.  

17.68 As was the case in Section B.2, it is possi-
ble to define a theoretical intermediate input price 
index that falls between the observable Paasche 
and Laspeyres intermediate input price indices. To 
do this, first define a hypothetical intermediate in-
put cost function, C(p,α), that corresponds to the 
use of an α weighted average of the technology 
sets S0(y0,z0) and S1(y1,z1) for periods 0 and 1 as the 
reference technology and that uses an α-weighted 
average of the period 0 and period 1 output vectors 
y0 and y1 and primary input vectors z0 and z1 as the 
reference output and primary input vectors: 

(17.38) C(p,α) 

≡ min q {
1

M

m m
m

p q
=

∑ : q belongs to  

(1−α) S0(y0,z0) + α S1(y1,z1)}. 
 
Thus, the intermediate input cost minimization 
problem in equation (17.38) corresponds to the in-
termediate output target (1−α)y0 + αy1 and the use 
of an average of the period 0 and 1 primary input 
vectors z0 and z1 , where the period 0 vector gets 
the weight 1−α and the period 1 vector gets the 
weight α. An average is used of the period 0 and 
period 1 technology sets, where the period 0 set 
gets the weight 1−α and the period 1 set gets the 
weight α, where α is a number between 0 and 1. 
The new intermediate input cost function defined 
by equation (17.38) now can be used to define the 
following family of theoretical intermediate input 
price indices: 
 
(17.39) P(p0,p1,α) ≡ C(p1,α) / C(p0,α). 
 
17.69 Adapting the proof of Diewert (1983a,  
pp. 1060–61) shows that there exists an α between 
0 and 1 such that the theoretical intermediate input 
price index defined by equation  (17.39) lies be-
tween the observable (in principle) Paasche and 
Laspeyres intermediate input price indices, PP and 
PL ; that is, there exists an α such that  

(17.40) PL ≤ P(p0,p1,α) ≤ PP  
 or PP ≤ P(p0,p1,α) ≤ PL . 

 
17.70 If the Paasche and Laspeyres indices are 
numerically close to each other, then equation 
(17.40) tells us that a true economic intermediate 
input price index is fairly well determined, and a 
reasonably close approximation to the true index 
can be found by taking a symmetric average of  
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PL and PP such as the geometric average, which 
again leads to Irving Fisher’s (1922) ideal price in-
dex, PF, defined earlier by equation (17.40). 

17.71 It is worth noting that the above theory of 
the economic intermediate input price indices was 
very general; in particular, no restrictive functional 
form or separability assumptions were made on the 
technology.  

17.72 The translog technology assumptions used 
in Section B.3 to justify the use of the Törnqvist-
Theil output price index as an approximation to a 
theoretical output price index can be adapted to 
yield a justification for the use of the Törnqvist-
Theil intermediate input price index as an ap-
proximation to a theoretical intermediate input 
price index. Recall the definition of the period t 
conditional intermediate input cost function,  
C t(px,y,z), defined by equation (17.33). Replace the 
vector of intermediate input prices px by the vector 
p, and define the N + K vector u as u ≡ [y,z]. Now 
assume that the period t conditional cost function 
has the following translog functional form : for t = 
0,1 : 

(17.41) ln Ct(p,u)  

= 0
1 1

ln ln
M N K

t t t
m m j j

m j
p u

+

= =

α + α + β∑ ∑  

1 1

1 ln ln
2

M M
t
mj m j

m j
p p

= =

+ α∑∑  

1 1

ln ln
M N K

t
mn m n

m n

p u
+

= =

+ β∑ ∑  

1 1

1 ln ln
2

N K N K
t
nk n k

n k

u u
+ +

= =

+  γ∑ ∑ , 

 
where the αn

t and the γn
t coefficients satisfy the fol-

lowing restrictions: 
 
(17.42) αmj

t = αjm
t for all m,j and for t = 0,1; 

 
(17.43) γnk

t = γkn
t for all k,n and for t = 0,1; 

 

(17.44) 
=1

1
M

t
m

m

α =∑ for t = 0,1; and 

 

(17.45) 
=1

0
M

t
m

m

α =∑ for t = 0,1 and m = 1,2,…,M. 

 

The restrictions in equations (17.44) and (17.45) 
are necessary to ensure that Ct(p,u) is linearly ho-
mogeneous in the components of the intermediate 
input price vector p (which is a property that a 
conditional cost function must satisfy). Note that at 
this stage of our argument the coefficients that 
characterize the technology in each period (the αs, 
βs, and γs) are allowed to be completely different 
in each period. 
 
17.73 Adapting the result in Caves, Christensen, 
and Diewert (1982b, p. 1410) to the present con-
text;41 if the quadratic price coefficients in equa-
tion (17.41) are equal across the two periods where 
an index number comparison (that is, αmj

0 = αmj
1 

for all m,j) is being made, then the geometric mean 
of the economic intermediate input price index that 
uses period 0 technology, the period 0 output vec-
tor y0, and the period 0 vector of primary inputs z0, 
P0(p0,p1,y0,z0), and the economic intermediate in-
put price index that uses period 1 technology, the 
period 1 output vector y1, and the period 1 primary 
input vector z1, P1(p0,p1,y1,z1), is exactly equal to 
the Törnqvist intermediate input price index PT de-
fined by equation (17.10);42 that is,  

(17.46) PT(p0,p1,q0,q1) 
= [P0(p0,p1,y0,z0) P1(p0,p1,y1,z1)]1/2 . 

 
17.74 As was the case with our previous result 
in equation (17.40), the assumptions required for 
the result (17.46) seem rather weak; in particular, 
there is no requirement that the technologies ex-
hibit constant returns to scale in either period, and 
our assumptions are consistent with comparing 
technological progress occurring between the two 
periods. Because the index number formula PT is 
exactly equal to the geometric mean of two theo-
retical economic intermediate input price index, 
and this corresponds to a flexible functional form, 
the Törnqvist intermediate input index number for-
mula is said to be superlative. 
                                                        

41The Caves, Christensen, and Diewert translog exactness 
result is slightly more general than a similar translog exact-
ness result obtained earlier by Diewert and Morrison (1986, 
p. 668); Diewert and Morrison assumed that all of the 
quadratic terms in equation (17.41) were equal during the 
two periods under consideration, whereas Caves, Christen-
sen, and Diewert assumed only that αmj

0  =  αmj
1 for all m,j.  

42In the present context, output prices are replaced by in-
termediate input prices, and the number of terms in the 
summation of terms defined by equation (17.10) is changed 
from N to M. 
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17.75 It is possible to adapt the analysis of the 
output price index that was developed in Sections 
C.3 and C.4 to the intermediate input price index, 
and show that the two families of superlative out-
put price indices, Pr* defined by equation (17.25) 
and Pr defined by equation (17.23), also are super-
lative intermediate input price indices. However, 
the details are omitted here since to derive these 
results, rather restrictive separability restrictions 
are required on the technology of the establish-
ment.43  

17.76 In the following section, the analysis pre-
sented in this section is modified to provide an 
economic approach to the value-added deflator. 

D.   Economic Approach to the 
Value-Added Deflator for an  
Establishment 

17.77 Attention now is turned to the economic 
theory of the value-added deflator for an estab-
lishment. This theory is analogous to the economic 
theory of the output price index explained in Sec-
tion B, but now the profit function π is used in 
place of the revenue function r used in Section B.  

17.78 Recall that the set St describes which out-
put vectors y can be produced in period t if the es-
tablishment has at its disposal the vector of inputs 
[x,z], where x is a vector of intermediate inputs and 
z is a vector of primary inputs. Thus, if [y,x,z] be-
longs to St, then the nonnegative output vector y 
can be produced by the establishment in period t, if 
it can use the nonnegative vector x of intermediate 
inputs and the nonnegative vector z of primary in-
puts. 

17.79 Let py ≡ (py1,…pyN) and px ≡ (px1,…pxM) 
denote positive vectors of output and intermediate 
input prices that the establishment might face in 
period t, and let z be a nonnegative vector of pri-
mary inputs that the establishment might have 
available for use during period t. Then the estab-
lishment’s (gross) profit function or net revenue 
function using period t technology is defined as the 

                                                        
43The counterpart to our earlier separability assumption in 

equation (17.15) is now z1 = Ft(y,x,z2,...,zK) = 
Gt(y,f(x),z2,...,zK) for t = 0,1, where the intermediate input 
aggregator function f is linearly homogeneous and inde-
pendent of t. 

solution to the following net revenue maximization 
problem: 

(17.47) πt(py,px,z) ≡ max y,x  
 

( )
1 1

: ( , ) belongs to 
N M

t
yn n xm m

n m

p y p x y x S z
= =

 
− 

 
∑ ∑ , 

 
where, as usual, y ≡ [y1,...,yN] is an output vector 
and x ≡ [x1,...,xM] is an intermediate input vector. 
Thus, πt(py,px,z) is the maximum output revenue, 

1

N

yn n
n

p y
=

∑ , less intermediate input cost, 
1

M

xm m
m

p x
=

∑ , 

that the establishment could generate, given that it 
faces the vector of output prices py and the vector 
of intermediate input prices px , and given that the 
vector of primary inputs z is available for use, us-
ing the period t technology.44  
 
17.80 To make the notation for the value-added 
deflator comparable to the notation used in Chap-
ters 15 and 16 for price and quantity indices, in the 
remainder of this subsection, the net output price 
vector p is defined as p ≡ [py,px], and the net output 
quantity vector q is defined as q ≡ [y,−x]. Thus, all 
output and intermediate input prices are positive, 
output quantities are positive, but intermediate in-
puts are indexed with a minus sign. With these 
definitions, πt(py,px,z) can be rewritten as πt(p,z). 

17.81 The period t profit function πt can be used 
to define the economy’s period t technology value 
added deflator Pt between any two periods, say, 
period 0 and period 1, as follows:45 

(17.48) Pt(p0,p1,z) = πt(p1,z) / πt(p0,z),  
 
where p0 and p1 are the N + M dimensional vectors 
of net output prices that the establishment faces in 
periods 0 and 1, and z is a reference vector of pri-
mary inputs. Note that all variables in the numera-
tor and denominator of equation (17.48) are held 

                                                        
44 The profit function πt has the same mathematical prop-

erties as the revenue function Rt. 
45If there are no intermediate inputs, this concept reduces 

to Archibald’s (1977) fixed-input quantity output price in-
dex.  In the case where there is no technical progress be-
tween the two periods, this concept reduces to Diewert’s 
(1980, pp. 455–61) (net) output price deflator. Diewert 
(1983a) considered the general concept, which allows for 
technical progress between periods. 
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constant, except the vectors of net output (output 
and intermediate input) prices. 
 
17.82 As was the case with the theory of output 
price index, there are various price indices of the 
form of equation (17.48), depending on which ref-
erence vector (t,z) is chosen. The analysis follows 
that of the output price index in Section B. As in 
the theory of the output price index, interest lies in 
two special cases of the general definition of the 
intermediate input price index of the form of equa-
tion (17.48): a theoretical index that uses the pe-
riod 0 technology set and the primary input vector 
z0 used in period 0, and one that uses the period 1 
technology set and the primary input vector z1 used 
in period 1. The observable Laspeyres index of 
output and intermediate input prices PL is shown to 
be a lower bound to the former theoretical value-
added deflator, and the observable Paasche index 
of output and intermediate input prices PP is an up-
per bound to the latter theoretical value-added de-
flator.46 These inequalities go in the same direction 
as the earlier inequalities of equations (17.4) and 
(17.5) obtained for the output price index.  

17.83 As was the case in Section B.2, it is possi-
ble to define a value-added deflator that falls be-
tween the observable Paasche and Laspeyres 
value-added deflators. To do this, a hypothetical 
net revenue function, π(p,α), is defined to corre-
spond to an α-weighted average of the period 0 
and 1 technology sets, and an α-weighted average 
of the primary input vectors z0 and z1 is used as the 
reference primary input vector. 

                                                        
46To derive this inequality, the hypothetical value added 

0 1 0 1 0 1

1 1 1

N M N M

n n yn n xm m
n n m

p q p y p x
+

= = =

≡ −∑ ∑ ∑  must be positive to estab-

lish the inequality in (17.4). If the periods 0 and 1 are quite 
distant in time, or if there are dramatic changes in output or 
intermediate input prices between the two periods, this hy-
pothetical value added can be negative. In this case, one 
can try to use the chain principle to break up the large price 
and quantity changes that occurred between periods 0 and 1 
into a series of smaller changes.  With smaller changes, 
there is a better chance that the hypothetical value-added 
series will remain positive.  This seems consistent with the 
advice of Burns (1930, p. 256) on this topic.  Under certain 
circumstances, Bowley (1922, p. 256) raised the possibility 
of a negative nominal value added.  Burns (1930, p. 257) 
noted that this anomaly will generally disappear with 
higher aggregations across establishments or industries.  

17.84 Following the arguments made for the 
output price index if the Paasche and Laspeyres 
indices are numerically close, then a true economic 
value-added deflator is fairly well determined. A 
reasonably close approximation to the true index is 
a symmetric average of PL and PP , such as the 
geometric average, which again leads to Irving 
Fisher’s ideal price index.47  

17.85 The translog technology assumptions used 
in Section B.3 to justify the use of the Törnqvist-
Theil output price index as an approximation to a 
theoretical output price index can be adapted to 
yield a justification for the use of the Törnqvist-
Theil value-added price index as an approximation 
to a theoretical value-added deflator. Recall the 
definition of the period t net revenue function, 
πt(py,px,z), defined by equation (17.47). Replace 
the vectors of output prices py and the vector of in-
termediate input prices px by the vector p ≡ [py,px], 
and assume that the period t net revenue function 
has the translog functional form. Following the ar-
gument for the output price index, if the quadratic 
price coefficients are equal across the two periods, 
Törnqvist value-added deflator is exactly equal to 
this form of the theoretical index. Because the in-
dex number formula is exactly equal to an underly-
ing flexible functional form, the Törnqvist value-
added deflator formula is superlative. As was the 
case with the output price index, the assumptions 
required for this finding seem rather weak; in par-
ticular, there is no requirement that the technolo-
gies exhibit constant returns to scale in either  
period, and the assumptions are consistent with 
technological progress occurring between the two 
periods being compared. 

17.86 It is possible to adapt the analysis of the 
output price index developed in Sections B.4 and 
B.5 to the value-added deflator and show that the 
family of superlative output price indices, Pr de-
fined by equation (17.28), also are superlative 

                                                        
47Burns (1930, pp. 244–47) noted that the Laspeyres, 

Paasche, and Fisher value-added deflators could be used to 
deflate nominal net output or value added into real meas-
ures. Burns (1930, p. 247) also noted that that a Fisher ideal 
production aggregate built up as the product of the 
Laspeyres and Paasche quantity indices (the “index” 
method) would give the same answer as deflating the nomi-
nal value-added ratio by the Fisher price index (the “deflat-
ing” method).  
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value-added deflators.48 However, the details are 
omitted here because to derive these results, rather 
restrictive separability restrictions are required on 
the technology of the establishment.49  

17.87 Attention now is turned to the problems 
involved in aggregating over establishments to 
form national output, intermediate input, and 
value-added deflators. 

E.   Approximations to  
Superlative Indices:  
Midyear Indices 

17.88 A practical problem with superlative indi-
ces is that they always require current-period  
information on quantities as well as prices to be 
implemented. In the following section, a recent 
suggestion is looked at for approximating superla-
tive indices when information on current-period 
quantities is not available. 

                                                        
48The value-added aggregator function that corresponds 

to equation (17.55) is now f r(y,x). For this functional form, 
all quantities must be positive, and hence the prices of the 
outputs must be taken to be positive and the prices of in-
termediate inputs must be negative for the exactness result 
of equation (17.56) to hold. For the unit net revenue func-
tion that now corresponds to equation (17.27), all prices 
must be positive, output quantities positive, and intermedi-
ate input quantities negative for the exactness result (17.29) 
to hold.  

49The counterpart to the earlier separability assumption in 
equation (17.15) is now z1 = Ft(y,x,z2,...,zK) = 
Gt(f(y,x),z2,...,zK) for t = 0,1, where the output and interme-
diate input aggregator function f is linearly homogeneous 
and independent of t. This type of separability assumption 
was first made by Sims (1969). Under this separability as-
sumption, the family of value-added deflators defined by 
equation (17.48) simplify to r(p1) / r(p0), where the unit net 
revenue function is defined by r(p) ≡ max q 

1
1

: ( ,..., ) = 1
N M

n n N+M
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p q f q q
+

=

 
 
 
∑ . Note that these defla-

tors are independent of quantities. Under this separability 
assumption, the quantity index that corresponds to this real 
value-added price index is f(y1,x1)/f(y0,x0), and thus this in-
dex depends only on quantities. Sims (1977, p. 129) em-
phasizes that if measures of real net output are to depend 
only on the quantity vectors of outputs produced and inter-
mediate inputs used, then it will be necessary to make a 
separability assumption. Since these separability assump-
tions are very restrictive from an empirical point of view, 
the economic approaches to the PPI have been developed 
so they do not rely on separability assumptions.  

17.89 Recall equations (15.18) and (15.19) in 
Section C.2 of Chapter 15, which defined the 
Walsh (1901, p. 398; 1921a, p. 97) and Marshall 
(1887) Edgeworth (1925) price index between pe-
riods 0 and 1, PW(p0,p1,q0,q1) and PME(p0,p1,q0,q1), 
respectively. In Section C.4 it was indicated that 
the Walsh price index is a superlative index. On 
the other hand, although the Marshall-Edgeworth 
price index is not superlative, Diewert (1978,  
p. 897) showed that it will approximate any super-
lative index to the second order around a point 
where the base- and current-period price and quan-
tity vectors are equal,50 so that PME usually will ap-
proximate a superlative index fairly closely. In this 
section, some recent results credited to Schultz 
(1999) and Okamoto (2001) will be drawn on to 
show how various midyear price indices can ap-
proximate Walsh or Marshall-Edgeworth indices 
fairly closely under certain conditions. As shall be 
seen, midyear indices do not rely on quantity 
weights for the current and base periods; rather, 
they use quantity weights from years that lie be-
tween the base period and current period, and, 
hence, they can be produced on a timely basis. It is 
noted that the account is given in terms of using 
midperiod quantity weights, although equivalent 
indices could also be defined using midperiod 
revenue shares using appropriate definitions of in-
dices in the terms given, for example, for 
Laspeyres and Paasche in equations (15.8) and 
(15.9), respectively. 

17.90 Let t be an even positive integer. Then 
Schultz (1999) defined a midyear price index, 
which compares the price vector in period t, pt, 
with the corresponding price vector in period 0, p0, 
as follows: 

(17.49) PS(p0,pt,qt/2) ≡ 2 0 2

1 1

N N
t t t
n n n n

n n

p q p q
= =

∑ ∑ , 

  
where qt/2 is the quantity vector that pertains to the 
intermediate period, t/2. The definition for a mid-
year price index when t is odd (and greater than 2) 
is a bit trickier. Okamoto (2001) defined arithme-
tic-type and geometric-type midyear price indices 
comparing prices in period 0 with period t, where  
                                                        

50As usual, this result can be generalized to points of ap-
proximation where p1 =αp0 and q1 = βq0; that is, points 
where the period 1 price vector is proportional to the period 
0 price vector and where the period 1 quantity vector is 
proportional to the period 0 quantity vector. 
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t is odd by equations (17.50) and (17.51),  
respectively: 
 
(17.50) POA(p0,pt,q(t−1)/2,q(t+1)/2)  
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(17.51) POG(p0,pt,q(t−1)/2,q(t+1)/2) 
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∑
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Each of the price indices defined by equation 
(17.50) and equation (17.51) is of the fixed-basket 
type. In the arithmetic-type index defined by 
(17.50), the fixed-basket quantity vector is the 
simple arithmetic average of the two quantity vec-
tors that pertain to the intermediate periods,  
(t − 1) / 2 and (t + 1) / 2, whereas in the geometric-
type index defined by equation (17.51), the refer-
ence quantity vector is the geometric average of 
these two intermediate period quantity vectors. 
  
17.91 Okamoto (2001) used the above defini-
tions to define the following sequence of fixed-
base (arithmetic-type) midyear price indices: 

(17.52) 1, PME(p0,p1,q0,q1), PS(p0,p2,q1),  
POA(p0,p3,q1,q2), PS(p0,p4,q2), POA(p0,p5,q2,q3), ... . 
 
Thus, in period 0, the index is set equal to 1. In pe-
riod 1, the index is set equal to the Marshall-
Edgeworth price index between periods 0 and 1, 
PME(p0,p1,q0,q1) (which is the only index number in 
the above sequence that requires information on 
current-period quantities). In period 2, the index is 
set equal to the Schultz midyear index, 
PS(p0,p2,q1), defined by equation (17.49), which 
uses the quantity weights of the prior period 1, q1. 
In period 3, the index is set equal to the arithmetic 
Okamoto midyear index, POA(p0,p3,q1,q2), defined 
by equation (17.50), which uses the quantity 
weights of the two prior periods, q1 and q2, and so 
on. 
 

17.92 Okamoto (2001) also used the above defi-
nitions to define the following sequence of fixed-
base (geometric-type) midyear price indices: 

(17.53) 1, PW(p0,p1,q0,q1), PS(p0,p2,q1),  
POG(p0,p3,q1,q2), PS (p0,p4,q2), POG(p0,p5,q2,q3), ... . 
  
Thus, in period 0, the index is set equal to 1. In pe-
riod 1, the index is set equal to the Walsh price in-
dex between periods 0 and 1, PW(p0,p1,q0,q1) 
(which is the only index number in the sequence 
that requires information on current period quanti-
ties). In period 2, the index is set equal to the 
Schultz midyear index, PS(p0,p2,q1). In period 3, 
the index is set equal to the (geometric-type) Oka-
moto midyear index, POG(p0,p3,q1,q2), defined by 
equation (17.51), which uses the quantity weights 
of the two prior periods, q1 and q2 , and so on. 
 
17.93 It is also possible to define chained se-
quences51 of midyear indices that are counterparts 
to the fixed-base sequences defined by equations 
(17.52) and (17.53). Thus a chained counterpart to 
equation (17.52) can be defined as follows: 

(17.54) 1, PME(p0,p1,q0,q1), PS(p0,p2,q1),  
PME(p0,p1,q0,q1)PS (p1,p3,q2),  
PS (p0,p2,q1)PS(p2,p4,q3), 
 PME (p0,p1,q0,q1)PS (p1,p3,q2)PS (p3,p5,q4),  
PS (p0,p2,q1)PS (p2,p4,q3)PS (p4,p6,q5), .... . 
 
A chained counterpart to equation (17.53) can be 
defined as follows: 
 
(17.55) 1, PW (p0,p1,q0,q1), PS (p0,p2,q1),  
PW(p0,p1,q0,q1)PS(p1,p3,q2), PS(p0,p2,q1)PS(p2,p4,q3), 
PW(p0,p1,q0,q1)PS(p1,p3,q2)PS(p3,p5,q4),  
PS(p0,p2,q1)PS(p2,p4,q3)PS(p4,p6,q5), .... . 
 
Note that equations (17.54) and (17.55) differ only 
in the use of the Marshall-Edgeworth index, 
PME(p0,p1,q0,q1), to compare prices in period 1 with 
period 0, versus the Walsh index, PW(p0,p1,q0,q1), 
which is also used to compare prices for the same 
two periods. Otherwise, only the basic Schultz 
midyear formula, PS(pt,pt+2,qt+1), is used in both 
equations (17.54) and (17.55). 
  
                                                        

51See Section F in Chapter 15 for a review of chained  
indices.  
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17.94 Using Canadian and Japanese data, 
Schultz (1999) and Okamoto (2001) showed that 
midyear index number sequences like those de-
fined by equations (17.54) and (17.55) are rea-
sonably close to their superlative Fisher ideal 
counterparts. 

17.95 In addition to the above empirical results, 
some theoretical results can be generated that sup-
port the use of midyear indices as approximations 
to superlative indices.52 The theoretical results pre-
sented rely on specific assumptions about how the 
quantity vectors qt change over time. Two such 
specific assumptions will be made. 

17.96 It now is assumed that there are linear 
trends in quantities over the sample period; that is, 
it is assumed that 

(17.56) qt = q0 + tα ; t = 1,...,T, 
 
where α ≡ [α1,..., αN] is a vector of constants. 
Hence, for t even, using equation (17.56), it fol-
lows that 
 
(17.57) ( ) ( )0½ ½ tq q+  

( ) ( )0 0½ ½q q t = + + α   

( )0 2
2

ttq q= + α = . 

 
Similarly, for t odd (and greater than 2), it follows 
that 
 
(17.58) ( ) ( )0½ ½ tq q+  

( ) ( )0 0½ ½q q t = + + α   

( ) ( ) ( )( ) ( )( ){ }0 0½ ½ ½ 1 ½ 1q q t t = + + − + + α 

( ) ( ) ( ) ( )0 0½ ½ 1 ½ ½ 1q t q t   = + − α + + + α     

( ) ( ) ( ) ( )1 2 1 2½ ½t tq q− += + . 
 
Thus, under the linear time trends in quantities 
equation (17.56), it can be shown, using equations 
(17.57) and (17.58), that the Schultz midyear and 
the Okamoto arithmetic-type midyear indices all 
equal their Marshall-Edgeworth counterparts; that 
is, 

                                                        
52Okamoto (2001) also makes some theoretical argu-

ments relying on the theory of Divisia indices to show why 
midyear indices might approximate superlative indices. 

 
(17.59) PS(p0,pt,qt/2) = PME(p0,pt,q0,qt) for t even; 
 
(17.60) POA(p0,pt,q(q−1)/2,q(q+1)/2) = PME(p0,pt,q0,qt)  
for t odd.  
  
Thus, under the linear trends equation (17.56), the 
fixed-base and chained arithmetic-type sequences 
of midyear indices, equations (17.52) and (17.54), 
respectively, become the following sequences of 
Marshall-Edgeworth indices:53 
 
(17.60) 1, PME(p0,p1,q0,q1), PME(p0,p2,q0,q2),  
PME(p0,p3,q0,q3), PME(p0,p4,q0,q4), ... ;  
 
(17.61) 1, PME(p0,p1,q0,q1), PME(p0,p2,q0,q2),  
PME(p0,p1,q0,q1)PME(p1,p3,q1,q3),  
PME(p0,p2,q0,q2)PME(p2,p4,q2,q4),  
PME(p0,p1,q0,q1)PME(p1,p3,q1,q3)PME(p3,p5,q3,q5), ...  
 
17.97 The second specific assumption about the 
behavior of quantities over time is that quantities 
change at geometric rates over the sample period; 
that is, it is assumed that 

(17.62) ( ) 01 tt
n n nq g q= + n = 1,...,N ; t = 1,...,T, 

 
where gn is the geometric growth rate for quantity 
n. Hence, for t even, using equation (17.62), 
  

(17.63) ( )1 2 20 0 21 tt t
n n n n nq q g q q  = + =  . 

 
For t odd (and greater than 2), again using (17.62), 
 

(17.64) ( )1 2 20 01 tt
n n n nq q g q  = +   

( )( ) ( )( )1 4 1 1 01 t t
n ng q− +  = +  

( ) ( ) 1 21 2 1 2t t
n nq q− + =   . 

 
Using equations (17.63) and (17.64), it can be 
shown that, if quantities grow geometrically, then 
the Schultz midyear and the Okamoto geometric-
type midyear indices all equal their Walsh coun-
terparts; that is, 
                                                        

53Recall that Marshall-Edgeworth indices are not actually 
superlative, but they will usually approximate their superla-
tive Fisher counterparts fairly closely using “normal” time-
series data. 
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(17.65) PS(p0,pt,qt/2) = PW(p0,pt,q0,qt) for t even; 
(17.66) POG(p0,pt,q(q−1)/2, q(q+1)/2) = PW(p0,pt,q0,qt)  
for t odd. 
 
Thus, under the geometric growth rates equation 
(17.62), the fixed-base and chained geometric-type 
sequences of midyear indices, equations (17.53) 
and (17.55), respectively, become the following 
sequences of Walsh price indices: 
 
(17.67) 1, PW(p0,p1,q0,q1), PW(p0,p2,q0,q2),  
PW(p0,p3,q0,q3), PW(p0,p4,q0,q4), ... ;  
 
(17.68) 1, PW(p0,p1,q0,q1), PW(p0,p2,q0,q2),  
PW(p0,p1,q0,q1)PW(p1,p3,q1,q3),  
PW(p0,p2,q0,q2)PW(p2,p4,q2,q4),  
PW(p0,p1,q0,q1)PW(p1,p3,q1,q3)PW(p3,p5,q3,q5), ... . 
 
17.98 Since the Walsh price indices are superla-
tive, the results in this section show that if quanti-
ties are trending in a very smooth manner, then it 
is likely that superlative indices can be approxi-
mated fairly closely without having a knowledge 
of current-period quantities (but provided that 
lagged quantity vectors can be estimated on a con-
tinuous basis). 

17.99 It seems very likely that the midyear indi-
ces will approximate superlative indices to a much 
higher degree of approximation than chained or 
fixed-base Laspeyres indices.54 However, the real 
choice may not be between computing Laspeyres 
indices versus midyear indices but in producing 
midyear indices, in a timely manner versus waiting 
a year or two to produce actual superlative indices. 
However, there is always the danger that when 
price or quantity trends suddenly change, the mid-
year indices considered could give rather mislead-
ing advanced estimates of a superlative index. 
However, if this limitation of midyear indices is 
kept in mind, it seems that it would generally be 

                                                        
54It is clear that the midyear index methodologies could 

be regarded as very simple forecasting schemes to estimate 
the current period quantity vector based on past time series 
of quantity vectors. Viewed in this way, these midyear 
methods could be greatly generalized using time-series 
forecasting methods. 

useful for statistical agencies to compute midyear 
indices on an experimental basis.55 

Appendix 17.1: Relationship  
Between Divisia and  
Economic Approaches 
 
17.100 Divisia’s approach to index number theory 
relied on the theory of differentiation. Thus, it does 
not appear to have any connection with economic 
theory. However, starting with Ville (1946), a 
number of economists56 have established that the 
Divisia price and quantity indices do have a con-
nection with the economic approach to index num-
ber theory. This connection is outlined in the con-
text of output price indices. 

17.101 The approach taken to the output price in-
dex is similar to that taken in Section C.1. Thus, it 
is assumed that there is a linearly homogeneous 
output aggregator function, f(q) = f(q1,...,qN), that 
aggregates the N individual outputs that the estab-
lishment produces into an aggregate output,  
q = f(q).57 It is assumed further that in period t, the 
producer maximizes the revenue that it can 
achieve, given that it faces the period t aggregator 
constraint, f(q) = f(qt), where qt is the observed pe-
riod t output vector produced by the establishment. 
Thus, the observed period t production vector qt is 
assumed to solve the following period t revenue 
maximization problem: 

(A17.1) R(Qt,pt)  

≡ max q 1
1

: ( ,..., ) = 
N

t t
i i N

i

p q f q q Q
=

 
 
 
∑  

1

N
t t
i i

i

p q
=

= ∑ ; t = 0,1,…,T, 

 
where the period t output aggregate Qt is defined 
as Qt ≡ f(qt), and qt ≡ [q1

t,...,qN
t] is the establish-

ment’s period t observed output vector. The period 

                                                        
55Okamoto (2001) notes that in the 2000 Japanese CPI 

revision, midyear indices and chained Laspeyres indices 
will be added as a set of supplementary indices to the usual 
fixed-base Laspeyres price index. 

56See, for example, Malmquist (1953, p. 227), Wold 
(1953, pp. 134–47), Solow (1957), Jorgenson and Griliches 
(1967), and Hulten (1973). See Balk (2000) for a compre-
hensive survey of work on Divisia price and quantity indi-
ces. 

57Recall the separability assumptions (17.15). 
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t price vector for the N outputs that the establish-
ment produces is pt ≡ [p1

t,...,pN
t]. Note that the so-

lution to the period t revenue maximization prob-
lem defines the producer’s revenue function, 
R(Qt,pt).  
 
17.102 As in Section B.4, it is assumed that f is 
(positively) linearly homogeneous for strictly posi-
tive quantity vectors. Under this assumption, the 
producer’s revenue function, R(Q,p), decomposes 
into Qr(p), where r(p) is the producer’s unit reve-
nue function; see equation (17.16) in Section B.4. 
Using this assumption, it is found that the observed 

period t revenue, 
1

N
t t
i i

i

p q
=
∑ , has the following de-

composition:  

(A17.2) ( ) ( )
1

= 
N

t t t t
i i

i

p q r p f q
=
∑ for t = 0,1,…,T. 

 
Thus, the period t total revenue for the N com-

modities in the aggregate, 
1

N
t t
i i

i

p q
=
∑ , decomposes 

into the product of two terms, r(pt)f(qt). The period 
t unit revenue, r(pt), can be identified as the period 
t price level Pt, and the period t output aggregate, 
f(qt), as the period t quantity level Qt. 
 
17.103 The economic price level for period t, Pt ≡ 
c(pt), defined in the previous paragraph now is re-
lated to the Divisia price level for time t, P(t), that 
was defined in Chapter 15 by the differential equa-
tion (15.29). As in Section D.1 of Chapter 15, now 
think of the prices as being continuous, differenti-
able functions of time, pi(t) say, for i = 1,…,N. 
Thus, the unit revenue function can be regarded as 
a function of time t as well; that is, define the unit 
revenue function as a function of t as 

(A17.3) r*(t) ≡ r[p1(t),p2(t),…,pN(t)]. 
 
Assuming that the first-order partial derivatives of 
the unit revenue function r exist, the logarithmic 
derivative of r*(t) can be calculated as follows: 
 
(A17.4) ( ) ( ) ( )ln * 1 * *d r t dt r t dr t dt≡     

( ) ( ) ( ) ( )1 2
1

1 * , ,...,
N

i N
n

r t r p t p t p t
=

=       ∑
 using equation (A17.3), 

  

where  
 
ri[p1(t),p2(t),…,pN(t)] ≡ ∂r[p1(t),p2(t),…,pN(t)]/∂pi 
 
is the partial derivative of the unit revenue function 
with respect to the ith price, pi, and pi′(t) ≡ dpi(t)/dt 
is the time derivative of the ith price function, pi(t). 
Using Hotelling’s (1932, p. 594) lemma, the pro-
ducer’s revenue-maximizing supply for commod-
ity i at time t is 
 
(A17.5) qi(t) = Q(t) ri[p1(t),p2(t),…,pN(t)] 
for i = 1,…,N, 
 
where the aggregate output level at time t is Q(t) = 
f[q1(t),q2(t),…,qN(t)]. The continuous-time coun-
terpart to equation (A17.2) is that total revenue at 
time t is equal to the output aggregate, Q(t), times 
the period t unit revenue, r*(t); that is, 
 

(A17.6) ( ) ( ) ( ) ( )
1

*
N

i i
i

p t q t Q t r t
=

=∑  

( ) ( ) ( ) ( )1 2, ,..., NQ t r p t p t p t=    . 
Now the logarithmic derivative of the Divisia price 
level P(t) can be written as (recall equation 15.29 
in Chapter 15) 
 

(A17.7) P′(t) / P(t) 
( ) ( )

( ) ( )
1

1

'
N

i i
i

N

i i
i

p t q t

p t q t

=

=

=
∑

∑

N

i 1

p
=
∑ , 

         
( ) ( )

( ) ( )
1

'
,

*

N

i i
i

p t q t

Q t r t
==
∑

 using (A17.6) 

         
( ) ( ) ( ) ( ) ( ){ }

( ) ( )
1 2

1
, ,...,

,
*

N

i i N
i

p t Q t r p t p t p t

Q t r t
=

  
=

∑
 

using equation (A17.5) 

  ( ) ( ) ( ) ( )1 2
1

, ,..., ' *
N

i N i
i

r p t p t p t p r t
=

=   ∑  

( ) ( )1 * *r t dr t dt=    , 
using equation (A17.4) 

( ) ( )* ' *r t r t≡ . 
 
Thus, under the above continuous-time revenue-
maximizing assumptions, the Divisia price level, 
P(t), is essentially equal to the unit revenue func-
tion evaluated at the time t prices, that is, 
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 r*(t) ≡ r[p1(t),p2(t),…,pN(t)]. 
 
17.104 If the Divisia price level P(t) is set  
equal to the unit revenue function r*(t) ≡ 
r[p1(t),p2(t),…,pN(t)], then from equation (A17.2) it 
follows that the Divisia quantity level Q(t) defined 
in Chapter 15 by equation (15.30) will equal the 
producer’s output aggregator function regarded as 
a function of time, f*(t) ≡ f[q1(t),…,qN(t)]. Thus, 
under the assumption that the producer is continu-
ously maximizing the revenue that can be achieved 
given an aggregate output target where the output 
aggregator function is linearly homogeneous, it has 
been shown that the Divisia price and quantity lev-
els P(t) and Q(t), defined implicitly by the differ-
ential equations (15.29) and (15.30) in Chapter 15, 
are essentially equal to the producer’s unit revenue 
function  r*(t) and output aggregator function f*(t), 

respectively.58 These are rather remarkable equali-
ties since, in principle, given the functions of time, 
pi(t) and qi(t), the differential equations can be 
solved numerically,59 and hence P(t) and Q(t) are 
in principle observable (up to some normalizing 
constants).  

17.105 For more on the Divisia approach to index 
number theory, see Vogt (1977; 1978) and Balk 
(2000).  

—————————————— 
  58The scale of the output aggregator and unit revenue 
functions are not uniquely determined by the differential 
equations (15.29) and (15.30); that is, given f(q) and r(p), 
one can replace these functions by αf(q) and (1/α)r(p),  
respectively, and still satisfy equations (15.29) and (15.30) 
in Chapter 15. 
  59See Vartia (1983). 


