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20.   Elementary Indices 

A.   Introduction 

20.1 In all countries, the calculation of an out-
put PPI proceeds in two (or more) stages. In the 
first stage of calculation, elementary price indices 
are estimated for the elementary aggregates of a 
PPI. In the second and higher stages of aggrega-
tion, these elementary price indices are combined 
to obtain higher-level indices using information on 
the net output on each elementary aggregate as 
weights. An elementary aggregate consists of the 
revenue from a small and relatively homogeneous 
set of commodities defined within the industrial 
classification used in the PPI. Samples of prices 
are collected within each elementary aggregate, so 
that elementary aggregates serve as strata for sam-
pling purposes. 

20.2 Data on the revenues, or quantities, of dif-
ferent goods and services are typically not avail-
able within an elementary aggregate. Since there 
are no quantity or revenue weights, most of the in-
dex number theory outlined from Chapter 15 to 19 
is not directly applicable. As was noted in Chapter 
1, an elementary price index is a more primitive 
concept that often relies on price data only.  

20.3 The question of which is the most appro-
priate formula to use to estimate an elementary 
price index is considered in this chapter. The qual-
ity of a PPI depends heavily on the quality of the 
elementary indices, which are the basic building 
blocks from which PPIs are constructed.  

20.4 As was explained in Chapter 6, compilers 
have to select representative commodities within 
an elementary aggregate and then collect a sample 
of prices for each of the representative commodi-
ties, usually from a sample of different establish-
ments. The individual commodities whose prices 
actually are collected are described as the sampled 
commodities. Their prices are collected over a suc-
cession of time periods. An elementary price index 
is therefore typically calculated from two sets of 
matched price observations. It is assumed in this 
chapter that there are no missing observations and 

no changes in the quality of the commodities sam-
pled, so that the two sets of prices are perfectly 
matched. The treatment of new and disappearing 
commodities, and of quality change, is a separate 
and complex issue that is discussed in detail in 
Chapters 7, 8, and 21 of the Manual.  

20.5 Even though quantity or revenue weights 
are usually not available to weight the individual 
elementary price quotes, it is useful to consider an 
ideal framework where such information is avail-
able. This is done in Section B. The problems in-
volved in aggregating narrowly defined price 
quotes over time also are discussed in this section. 
Thus, the discussion in Section B provides a theo-
retical target for practical elementary price indices 
constructed using only information on prices. 

20.6 Section C introduces the main elementary 
index formulas used in practice, and Section D de-
velops some numerical relationships between the 
various indices. Chapters 15 to 17 developed the 
various approaches to index number theory when 
information on both prices and quantities was 
available. It also is possible to develop axiomatic, 
economic, or sampling approaches to elementary 
indices, and these three approaches are discussed 
below in Sections E, F, and G. Section H develops 
a simple statistical approach to elementary indices 
that resembles a highly simplified hedonic regres-
sion model. Section I concludes with an overview 
of the various results.1 

B.   Ideal Elementary Indices  

20.7 The aggregates covered by a CPI or a PPI 
usually are arranged in the form of a tree-like hier-
archy, such as COICOP or NACE. Any aggregate 
is a set of economic transactions pertaining to a set 
of commodities over a specified time period. Every 
economic transaction relates to the change of own-

                                                        
1This chapter draws heavily on the recent contributions of 

Dalén (1992a), Balk (1994, 1998b, 2002) and Diewert 
(1995a, 2002a, 2002b). 
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ership of a specific, well-defined product (good or 
service) at a particular place and date, and comes 
with a quantity and a price. The price index for an 
aggregate is calculated as a weighted average of 
the price indices for the subaggregates, the (net 
output) weights and type of average being deter-
mined by the index formula. One can descend in 
such a hierarchy as far as available information al-
lows the weights to be decomposed. The lowest-
level aggregates are called elementary aggregates. 
They are basically of two types: 

(i)  Those for which all detailed price and quan-
tity information is available, and 

(ii)  Those for which the statistician, considering 
the operational cost and the response burden 
of getting detailed price and quantity informa-
tion about all the transactions, decides to 
make use of a representative sample of com-
modities or respondents. 

 
The practical relevance of studying this topic is 
large. Since the elementary aggregates form the 
building blocks of a CPI or a PPI, the choice of an 
inappropriate formula at this level can have a tre-
mendous impact on the overall index. 
 
20.8 In this section, it will be assumed that de-
tailed price and quantity information is available 
for all transactions pertaining to the elementary 
aggregate for the two time periods under consid-
eration. This assumption allows us to define an 
ideal elementary aggregate. Subsequent sections 
will relax this strong assumption about the avail-
ability of detailed price and quantity data on trans-
actions, but it is necessary to have a theoretically 
ideal target for the practical elementary index. 

20.9 The detailed price and quantity data, al-
though perhaps not available to the statistician, are, 
in principle, available in the outside world. It is 
frequently the case that at the respondent level 
(that is, at the firm level), some aggregation of the 
individual transactions information has been exe-
cuted, usually in a form that suits the respondent’s 
financial or management information system. This 
respondent determined level of information could 
be called the basic information level. This is, how-
ever, not necessarily the finest level of information 
that could be made available to the price statisti-
cian. One could always ask the respondent to pro-
vide more disaggregated information. For instance, 
instead of monthly data, one could ask for weekly 

data; or, whenever appropriate, one could ask for 
regional instead of global data; or, one could ask 
for data according to a finer product classification. 
The only natural barrier to further disaggregation 
is the individual transaction level.2 

20.10 It is now necessary to discuss a problem 
that arises when detailed data on individual trans-
actions are available. This may occur at the indi-
vidual establishment level, or even for individual 
production runs. Recall that in Chapter 15, the 
price and quantity indexes, P(p0,p1,q0,q1) and 
Q(p0,p1,q0,q1), were introduced. These (bilateral) 
price and quantity indices decomposed the value 
ratio V1/V0 into a price change part P(p0,p1,q0,q1) 
and a quantity change part Q(p0,p1,q0,q1). In this 
framework, it was taken for granted that the period 
t price and quantity for product i, pi

t and qi
t, were 

well defined. However, these definitions are not 
straightforward, since individual purchasers may 
buy the same product during period t at different 
prices. Similarly, consider the sales of a particular 
establishment, when the same product may sell at 
very different prices during the course of the pe-
riod. Hence before a traditional bilateral price in-
dex of the form P(p0,p1,q0,q1) considered in previ-
ous chapters of this Manual can be applied, there is 
a nontrivial time aggregation problem to obtain the 
basic prices pi

t and qi
t that are the components of 

the price vectors p0 and p1 and the quantity vectors 
q0 and q1. Walsh3 (1901, 1921a) and Davies (1924, 
1932) suggested a solution in a CPI context to this 
time aggregation problem: the appropriate quantity 
at this very first stage of aggregation is the total 
quantity purchased of the narrowly defined prod-
uct, and the corresponding price is the value of 

                                                        
2See Balk (1994) for a similar approach. 
3Walsh explained his reasoning as follows: “Of all the 

prices reported of the same kind of article, the average to be 
drawn is the arithmetic; and the prices should be weighted 
according to the relative mass quantities that were sold at 
them (1901, p. 96). “Some nice questions arise as to 
whether only what is consumed in the country, or only 
what is produced in it, or both together are to be counted; 
and also there are difficulties as to the single price quota-
tion that is to be given at each period to each commodity, 
since this, too, must be an average. Throughout the country 
during the period a commodity is not sold at one price, nor 
even at one wholesale price in its principal market. Various 
quantities of it are sold at different prices, and the full value 
is obtained by adding all the sums spent (at the same stage 
in its advance towards the consumer), and the average price 
is found by dividing the total sum (or the full value) by the 
total quantities” (1921a, p. 88). 
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purchases of this product divided by the total 
amount purchased, which is a narrowly defined 
unit value. The appropriate unit value for a PPI 
context is the value of revenue divided by the total 
amount sold. In more recent times, other research-
ers have adopted the Walsh and Davies solution to 
the time aggregation problem.4 Note that this solu-
tion to the time aggregation problem has the fol-
lowing advantages: 

(i)  The quantity aggregate is intuitively plausi-
ble, being the total quantity of the narrowly 
defined products sold by establishments dur-
ing the time period under consideration, and 

(ii)  The product of the price times quantity equals 
the total revenue or value sold by the estab-
lishment during the time period under consid-
eration. 

 
This solution will be adopted to the time aggrega-
tion problem as a valid concept for the price and 
quantity at this first stage of aggregation. 
 
20.11 Having decided on an appropriate theo-
retical definition of price and quantity for a prod-
uct at the very lowest level of aggregation (that is, 
a narrowly defined unit value and the total quantity 
sold of that product by the individual establish-
ment), it is now necessary to consider how to ag-
gregate these narrowly defined elementary prices 
and quantities into an overall elementary aggre-
gate. Suppose that there are M lowest-level items, 
or specific products, in this chosen elementary 
category. Denote the period t quantity of product m 
by qm

t and the corresponding time aggregated unit 
value by pm

t for t = 0,1 and for products m = 
1,2,...,M. Define the period t quantity and price 
vectors as qt ≡ [q1

t,q2
t,...,qM

t] and pt ≡ [p1
t,p2

t,...,pM
t] 

for t = 0,1. It is now necessary to choose a theo-
retically ideal index number formula P(p0,p1,q0,q1) 
that will aggregate the individual product prices 
into an overall aggregate price relative for the M 
products in the chosen elementary aggregate. 
However, this problem of choosing a functional 
form for P(p0,p1,q0,q1) is identical to the overall 
index number problem that was addressed in 
Chapters 15 to 17. In these chapters, four different 
approaches to index number theory were studied 
that led to specific index number formulas as being 
                                                        

4See, for example, Szulc (1987, p. 13), Dalén (1992a,  
p. 135), Reinsdorf (1994b), Diewert (1995a, pp. 20–21), 
Reinsdorf and Moulton (1997), and Balk (2002). 

best from each perspective. From the viewpoint of 
fixed-basket approaches, it was found that the 
Fisher (1922) and Walsh (1901) price indexes, PF 
and PW, appeared to be best. From the viewpoint of 
the test approach, the Fisher index appeared to be 
best. From the viewpoint of the stochastic ap-
proach to index number theory, the Törnqvist-
Theil (Theil, 1967) index number formula PT 
emerged as being best. Finally, from the viewpoint 
of the economic approach to index number theory, 
the Walsh price index PW, the Fisher ideal index 
PF, and the Törnqvist-Theil index number formula 
PT were all regarded as being equally desirable. It 
also was shown that the same three index number 
formulas numerically approximate each other very 
closely, so it will not matter very much which of 
these alternative indexes is chosen.5 Hence, the 
theoretically ideal elementary index number for-
mula is taken to be one of the three formulas 
PF(p0,p1,q0,q1), PW(p0,p1,q0,q1), or PT(p0,p1,q0,q1), 
where the period t quantity of product m, qm

t, is the 
total quantity of that narrowly defined product 
produced by the establishment during period t, and 
the corresponding price for product m is pm

t, the 
time aggregated unit value for t = 0,1 and for 
products m = 1,....,M.  

20.12 In the following section, various practical 
elementary price indices will be defined. These in-
dices do not have quantity weights and thus are 
functions only of the price vectors p0 and p1, which 
contain time aggregated unit values for the M 
products in the elementary aggregate for periods 0 
and 1. Thus, when a practical elementary index 
number formula, say, PE(p0,p1), is compared with 
an ideal elementary price index, say, the Fisher 
price index PF(p0,p1,q0,q1), then obviously PE will 
differ from PF because the prices are not weighted 
according to their economic importance in the 
practical elementary formula. Call this difference 
between the two index number formulas formula 
approximation error. 

20.13 Practical elementary indices are subject to 
two other types of error: 

                                                        
5Theorem 5 in Diewert (1978, p. 888) showed that PF, PT, 

and PW will approximate each other to the second order 
around an equal price and quantity point; see Diewert 
(1978, p. 894), R.J. Hill (2000), and Chapter 19, Section B, 
for some empirical results.   
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• The statistical agency may not be able to col-
lect information on all M prices in the elemen-
tary aggregate; that is, only a sample of the M 
prices may be collected. Call the resulting di-
vergence between the incomplete elementary 
aggregate and the theoretically ideal elemen-
tary index the sampling error. 

• Even if a price for a narrowly defined product 
is collected by the statistical agency, it may 
not be equal to the theoretically appropriate 
time aggregated unit value price. This use of 
an inappropriate price at the very lowest level 
of aggregation gives rise to time aggregation 
error. 

 
20.14 In Section G, a sampling framework for 
the collection of prices that can reduce the above 
three types of error will be discussed. In Section C, 
the five main elementary index number formulas 
are defined, and in Section D, various numerical 
relationships between these five indices are devel-
oped. Sections E and F develop the axiomatic and 
economic approaches to elementary indices, and 
the five main elementary formulas used in practice 
will be evaluated in light of these approaches. 

C.   Elementary Indices Used  
in Practice 

20.15 Suppose that there are M lowest-level 
products or specific products in a chosen elemen-
tary category. Denote the period t price of product 
m by pm

t for t = 0,1 and for products m = 1,2,...,M. 
Define the period t price vector as pt ≡ 
[p1

t,p2
t,...,pM

t] for t = 0,1. 

20.16 The first widely used elementary index 
number formula is from the French economist 
Dutot (1738): 

(20.1) PD(p0,p1) ≡ ( ) ( )1 0

1 1

1 1M M

m m
m m

p p
M M= =

   
     

   
∑ ∑   

         = ( ) ( )1 0

1 1

M M

m m
i i

p p
= =

   
     

   
∑ ∑ . 

 
Thus the Dutot elementary price index is equal to 
the arithmetic average of the M period 1 prices di-
vided by the arithmetic average of the M period 0 
prices. 
 

20.17 The second widely used elementary index 
number formula is from the Italian economist Carli 
(1804): 

(20.2) PC(p0,p1) ≡ 
1

0
1

1M
m

mm

p
pM=

 
 
 

∑ . 

 
Thus the Carli elementary price index is equal to 
the arithmetic average of the M product price ra-

tios or price relatives,
1

0
m

m

p
p .  

 
20.18 The third widely used elementary index 
number formula is from the English economist 
Jevons (1863): 

(20.3) PJ(p0,p1) ≡
1/1

0
1

MM
m

mm

p
p=

 
 
 

∏ . 

 
Thus the Jevons elementary price index is equal to 
the geometric average of the M product price ratios 

or price relatives,
1

0
m

m

p
p .  

 
20.19 The fourth elementary index number for-
mula PH is the harmonic average of the M product 
price relatives, and it was first suggested in passing 
as an index number formula by Jevons (1865, p. 
121) and Coggeshall (1887): 

(20.4) PH(p0,p1) ≡
111

0
1

1M
m

mm

p
pM

−−

=

  
  

   
∑ . 

 
20.20 Finally, the fifth elementary index number 
formula is the geometric average of the Carli and 
harmonic formulas; that is, it is the geometric 
mean of the arithmetic and harmonic means of the 
M price relatives:  

(20.5) PCSWD(p0,p1) ≡ 0 1 0 1( , ) ( , )C HP p p P p p . 
 
This index number formula was first suggested by 
Fisher (1922, p. 472) as his formula 101. Fisher 
also observed that, empirically for his data set, 
PCSWD was very close to the Jevons index PJ, and 
these two indices were his best unweighted index 
number formulas. In more recent times, Car-
ruthers, Sellwood, and Ward (1980, p. 25) and 



 Producer Price Index Manual 
 

512 
 

Dalén (1992a, p. 140) also proposed PCSWD as an 
elementary index number formula. 
 
20.21 Having defined the most commonly used 
elementary formulas, the question now arises: 
which formula is best? Obviously, this question 
cannot be answered until desirable properties for 
elementary indices are developed. This will be 
done in a systematic manner in Section E, but in 
the present section, one desirable property for an 
elementary index will be noted: the time reversal 
test, noted in Chapter 15. In the present context, 
this test for the elementary index P(p0,p1) becomes 

(20.6) P(p0,p1) P(p1,p0) = 1. 
 
20.22 This test says that if the prices in period 2 
revert to the initial prices of period 0, then the 
product of the price change going from period 0 to 
1, P(p0,p1), times the price change going from pe-
riod 1 to 2, P(p1,p0), should equal unity; that is, 
under the stated conditions, the index should end 
up where it started. It can be verified that the 
Dutot; Jevons; and Carruthers, Sellwood, and 
Ward indices, PD, PJ , and PCSWD, all satisfy the 
time reversal test, but the Carli and harmonic indi-
ces, PC and PH, fail this test. In fact, these last two 
indices fail the test in the following biased manner: 

(20.7) PC(p0,p1) PC(p1,p0) ≥ 1 , 
(20.8) PH(p0,p1) PH(p1,p0) ≤ 1, 
 
with strict inequalities holding in formulas (20.7) 
and (20.8), provided that the period 1 price vector 
p1 is not proportional to the period 0 price vector 
p0.6 Thus the Carli index will generally have an 
upward bias while the harmonic index will gener-
ally have a downward bias. Fisher (1922, pp. 66 
and 383) seems to have been the first to establish 
the upward bias of the Carli index,7 and he made 
the following observations on its use by statistical 
agencies: 
 
                                                        

6These inequalities follow from the fact that a harmonic 
mean of M positive numbers is always equal to or less than 
the corresponding arithmetic mean; see Walsh (1901, p. 
517) or Fisher (1922, pp. 383–84). This inequality is a spe-
cial case of Schlömilch’s Inequality; see Hardy, Little-
wood, and Polyá (1934, p. 26). 

7See also Pigou (1924, pp. 59 and 70), Szulc (1987, p. 
12), and Dalén (1992a, p. 139). Dalén (1994, pp. 150–51) 
provides some nice intuitive explanations for the upward 
bias of the Carli index. 

In fields other than index numbers it is often the 
best form of average to use. But we shall see that 
the simple arithmetic average produces one of 
the very worst of index numbers. And if this 
book has no other effect than to lead to the total 
abandonment of the simple arithmetic-type of 
index number, it will have served a useful pur-
pose (Irving Fisher, 1922, pp. 29–30). 

20.23 In the following section, some numerical 
relationships between the five elementary indices 
defined in this section will be established. Then, in 
the subsequent section, a more comprehensive list 
of desirable properties for elementary indices will 
be developed, and the five elementary formulas 
will be evaluated in light of these properties or 
tests. 

D.   Numerical Relationships  
Between the Frequently Used 
Elementary Indices 

20.24 It can be shown8 that the Carli, Jevons, 
and harmonic elementary price indices satisfy the 
following inequalities: 

(20.9) PH(p0,p1) ≤ PJ(p0,p1) ≤ PC(p0,p1); 
 
that is, the harmonic index is always equal to or 
less than the Jevons index, which in turn is always 
equal to or less than the Carli index. In fact, the 
strict inequalities in formula (20.9) will hold, pro-
vided that the period 0 vector of prices, p0, is not 
proportional to the period 1 vector of prices, p1. 
 
20.25 The inequalities in formula (20.9) do not 
tell us by how much the Carli index will exceed 
the Jevons index and by how much the Jevons in-
dex will exceed the harmonic index. Hence, in the 
remainder of this section, some approximate rela-
tionships among the five indices defined in the 
previous section will be developed, which will pro-
vide some practical guidance on the relative mag-
nitudes of each of the indices. 

20.26 The first approximate relationship derived 
is between the Carli index PC and the Dutot index 

                                                        
8Each of the three indices PH, PJ, and PC  is a mean of or-

der r where r equals −1, 0, and 1, respectively, and so the 
inequalities follow from Schlömilch’s inequality; see 
Hardy, Littlewood, and Polyá (1934, p. 26). 
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PD. For each period t, define the arithmetic mean 
of the M prices pertaining to that period as follows: 

(20.10) pt* ≡ ( )
1

1M
t
m

m

p
M=

∑ ; t = 0,1.  

 
Now define the multiplicative deviation of the mth 
price in period t relative to the mean price in that 
period, t

me , as follows: 
 
(20.11) pm

t = pt*(1+ t
me );  m = 1,...,M ; t = 0,1. 

 
Note that formula (20.10) and formula (20.11) im-
ply that the deviations em

t sum to zero in each pe-
riod; that is, 
 

(20.12) ( )
1

1M
t
m

m
e

M=
∑ = 0 ; t = 0,1. 

 
Note that the Dutot index can be written as the ra-

tio of the mean prices,
1*

0*
p

p ; that is,  

 

(20.13) PD(p0,p1) =
1*

0*
p

p . 

 
Now substitute formula (20.11) into the definition 
of the Jevons index, formula (20.3): 
 

(20.14) PJ(p0,p1) = ( )
( )

1
1* 1

0* 0
1

1
1

MM
m

m m

p e
p e=

 +
 

+  
∏  

= ( )
( )

1
11*

0* 0
1

1
1

MM
m

m m

ep
p e=

 + 
   +    

∏  

= PD(p0,p1) f(e0,e1), using formula (20.13), 
 
where et ≡ [e1

t,..., t
me ] for t = 0 and 1, and the func-

tion f is defined as follows: 
 

(20.15) f(e0,e1) ≡ ( )
( )

1
1

0
1

1
1

MM
m

m m

e
e=

 +
 

+  
∏ . 

 
Expand f(e0,e1) by a second-order Taylor series 
approximation around e0 = 0M and e1 = 0M. Using 

formula (20.12), it can be verified9 that the follow-
ing second-order approximate relationship between 
PJ and PD results: 
 
(20.16) PJ(p0,p1)  
    ≈ PD(p0,p1) 0 0 1 11 11  ( )  ( )2 2M e e M e e + −    

    = PD(p0,p1) ( ) ( )0 11 11  ( ) var  ( ) var ,2 2e e + −   

 
where var(et) is the variance of the period t multi-
plicative deviations; that is, for t = 0,1: 
 

(20.17) var(et) ≡ ( ) ( )
2

*

1

1
M

t t
m

m

e eM
=

−∑  

   = ( ) ( )
2

1

1
M

t
m

m

eM
=

∑ , 

since et* = 0 using equation (20.12) 

   = ( )1 t te eM . 

 
20.27 Under normal conditions,10 the variance of 
the deviations of the prices from their means in 
each period is likely to be approximately constant, 
and so under these conditions, the Jevons price in-
dex will approximate the Dutot price index to the 
second order. With the exception of the Dutot for-
mula, the remaining four elementary indices de-
fined in Section C are functions of the relative 
prices of the M products being aggregated. This 
fact is used to derive some approximate relation-
ships between these four elementary indices. Thus 
define the mth price relative as  

(20.18) rm ≡ 
1

0
m

m

p
p  ; m = 1,...,M. 

 
20.28 Define the arithmetic mean of the m price 
relatives as 

(20.19) r* ≡ ( ) ( )
1

1
M

m
m

rM
=

∑  = PC(p0,p1), 

 

                                                        
9This approximate relationship was first obtained by Car-

ruthers, Sellwood, and Ward (1980, p. 25). 
10If there are significant changes in the overall inflation 

rate, some studies indicate that the variance of deviations of 
prices from their means also can change. Also, if M is 
small, there will be sampling fluctuations in the variances 
of the prices from period to period. 
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where the last equality follows from the definition 
of formula (20.2) of the Carli index. Finally, define 
the deviation em of the mth price relative rm  from 
the arithmetic average of the M price relatives r* 
as follows: 
 
(20.20) rm = r*(1 + em) ; m = 1,...,M.  
 
20.29 Note that formula (20.19) and formula 
(20.20) imply that the deviations em sum to zero; 
that is,  

(20.21) ( )
1

M

m
m

e
=

∑ = 0. 

Now substitute formula (20.20) into the definitions 
of PC, PJ, PH, and PCSWD, formulas (20.2) to (20.5), 
to obtain the following representations for these 
indices in terms of the vector of deviations, e ≡ 
[e1,...,eM]: 

(20.22) PC(p0,p1) = ( )
1

1 ( )
M

m
m

rM
=

∑  = r* 1 ≡ r*fC(e) ; 

(20.23) PJ(p0,p1)  = ( )
1

1

M
M

m
m

r
=

∏  = r* ( )
1

1

1
M

M
m

m

e
=

+∏   

  ≡ r*fJ(e) ; 
 

(20.24) PH(p0,p1) = ( )( )
11

1

1
M

m
m

rM

−−

=

 
 
  
∑    

 = r* ( )( )
11

1

1 1
M

m
m

eM

−−

=

 
+ 

  
∑  

 ≡ r*fH(e) ;  

(20.25) PCSWD(p0,p1) = 0 1 0 1( , ) ( , )C HP p p P p p  

 = r* ( ) ( )C Hf e f e  ≡ r*fCSWD(e), 

where the last equation in formulas (20.22) to 
(20.25) serves to define the deviation functions, 
fC(e), fJ(e), fH(e), and fCSW(e). The second-order 
Taylor series approximations to each of these func-
tions around the point e = 0M are 
 
(20.26) fC(e) ≈ 1; 
(20.27) fJ(e) ≈ 1 − (½ M)e⋅ e = 1 − (½ )var(e) ; 
(20.28) fH(e) ≈ 1 − ( 1

M )e⋅ e = 1 − var(e) ; 

(20.29)fCSWD(e) ≈ 1 − (½ M)e⋅ e  
     = 1 − (½ )var(e);  

 

where repeated use is made of formula (20.21) in 
deriving the above approximations.11 Thus to the 
second order, the Carli index PC will exceed the 
Jevons and Carruthers, Sellwood, and Ward indi-
ces, PJ and PCSWD, by (½ )r*var(e), which is one-
half of the variance of the M price relatives 
pm

1/pm
0. Much like the second order, the harmonic 

index PH will lie below the Jevons and Carruthers, 
Sellwood, and Ward indices, PJ and PCSWD, by 
one-half of the variance of the M price rela-

tives
1

0
m

m

p
p .  

 
20.30 Thus, empirically, it is expected that the 
Jevons and Carruthers, Sellwood, and Ward indi-
ces will be very close to each other. Using the pre-
vious approximation result formula (20.16), it is 
expected that the Dutot index PD also will be fairly 
close to PJ and PCSWD, with some fluctuations over 
time because of changing variances of the period 0 
and 1 deviation vectors e0 and e1. Thus, it is ex-
pected that these three elementary indices will give 
similar numerical answers in empirical applica-
tions. On the other hand, the Carli index can be 
expected to be substantially above these three indi-
ces, with the degree of divergence growing as the 
variance of the M price relatives grows. Similarly, 
the harmonic index can be expected to be substan-
tially below the three middle indices, with the de-
gree of divergence growing as the variance of the 
M price relatives grows.  

E.   The Axiomatic Approach  
to Elementary Indices 

20.31 Recall that in Chapter 16, the axiomatic 
approach to bilateral price indices, P(p0,p1,q0,q1), 
was developed. In the present chapter, the elemen-
tary price index P(p0,p1) depends only on the pe-
riod 0 and 1 price vectors, p0 and p1, not on the pe-
riod 0 and 1 quantity vectors, q0 and q1. One ap-
proach to obtaining new tests (T) or axioms for an 
elementary index is to look at the 20 or so axioms 
listed in Chapter 16 for bilateral price indices 
P(p0,p1,q0,q1), and adapt those axioms to the pre-
sent context; that is, use the old bilateral tests for 
P(p0,p1,q0,q1) that do not depend on the quantity 

                                                        
11These second-order approximations are from Dalén 

(1992a, p. 143) for the case r* = 1 and Diewert (1995a,  
p. 29) for the case of a general r*. 
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vectors q0 and q1 as tests for an elementary index 
P(p0,p1).12  

20.32 The first eight tests or axioms are rea-
sonably straightforward and uncontroversial: 

T1: Continuity: P(p0,p1) is a continuous function of 
the M positive period 0 prices p0 ≡ [p1

0,...,pM
0] and 

the M positive period 1 prices p1 ≡ [p1
1,...,pM

1]. 
 
T2: Identity: P(p,p) = 1; that is, if the period 0 
price vector equals the period 1 price vector, then 
the index is equal to unity. 
 
T3: Monotonicity in Current-Period Prices: 
 P(p0,p1) < P(p0,p) if p1 < p; that is, if any period 1 
price increases, then the price index increases. 
 
T4: Monotonicity in Base-Period Prices: P(p0,p1) 
> P(p,p1) if p0 < p; that is, if any period 0 price in-
creases, then the price index decreases. 
 
T5: Proportionality in Current-Period Prices: 
P(p0,λp1) = λP(p0,p1) if λ > 0; that is, if all period 
1 prices are multiplied by the positive number λ, 
then the initial price index is also multiplied by λ. 
 
T6: Inverse Proportionality in Base-Period Prices: 
P(λp0,p1) = λ−1 P(p0,p1) if λ > 0; that is, if all pe-
riod 0 prices are multiplied by the positive number 
λ, then the initial price index is multiplied by 1/λ. 
 

T7: Mean Value Test: minm {
1

0
m

m

p
p  : m = 1,...,M} 

≤ P(p0,p1) ≤ maxm {
1

0
m

m

p
p  : m = 1,...,M}; that is, 

the price index lies between the smallest and larg-
est price relatives. 
 
T8: Symmetric Treatment of Establishments/ 
Products: P(p0,p1) = P(p0*,p1*), where p0* and p1* 
denote the same permutation of the components of 
p0 and p1; that is, if there is a change in ordering of 
the establishments from which the price quotations 
(or products within establishments) are obtained 
for the two periods, then the elementary index re-
mains unchanged. 
 
                                                        

12This was the approach used by Diewert (1995a, pp. 5–
17), who drew on the earlier work of Eichhorn (1978, pp. 
152–60) and Dalén (1992a). 

20.33 Eichhorn (1978, p. 155) showed that tests 
T1, T2, T3, and T5 imply T7, so that not all of the 
above tests are logically independent. The follow-
ing tests are more controversial and are not neces-
sarily accepted by all price statisticians. 

T9: The Price-Bouncing Test: P(p0,p1)  
= P(p0*,p1**), where p0* and p1** denote possibly 
different permutations of the components of p0 and 
p1; that is, if the ordering of the price quotes for 
both periods is changed in possibly different ways, 
then the elementary index remains unchanged. 
 
20.34 Obviously, test T8 is a special case of test 
T9, where in test T8 the two permutations of the 
initial ordering of the prices are restricted to be the 
same. Thus test T9 implies test T8. Test T9 is from 
Dalén (1992a, p. 138), who justified this test by 
suggesting that the price index should remain un-
changed if outlet (for CPIs) prices “bounce” in 
such a manner that the outlets are just exchanging 
prices with each other over the two periods. While 
this test has some intuitive appeal, it is not consis-
tent with the idea that outlet prices should be 
matched to each other in a one-to-one manner 
across the two periods. If elementary aggregates 
contain thousands of individual products that differ 
not only by outlet, there still is less reason to main-
tain this test. 

20.35 The following test was also proposed by 
Dalén (1992a) in the elementary index context: 

T10: Time Reversal: P(p1,p0) = 0 11 ( , )P p p ; that is, 
if the data for periods 0 and 1 are interchanged, 
then the resulting price index should equal the re-
ciprocal of the original price index. 
 
20.36 Since many price statisticians approve of 
the Laspeyres price index in the bilateral index 
context, and this index does not satisfy the time re-
versal test, it is obvious that not all price statisti-
cians would regard the time reversal test in the 
elementary index context as being a fundamental 
test that must be satisfied. Nevertheless, many 
other price statisticians do regard this test as fun-
damental, since it is difficult to accept an index 
that gives a different answer if the ordering of time 
is reversed. 

T11: Circularity: P(p0,p1)P(p1,p2) = P(p0,p2); that 
is, the price index going from period 0 to 1, times 



 Producer Price Index Manual 
 

516 
 

the price index going from period 1 to 2, equals the 
price index going from period 0 to 2 directly. 
 
20.37 The circularity and identity tests imply the 
time reversal test (just set p2 = p0). Thus, the circu-
larity test is essentially a strengthening of the time 
reversal test, so price statisticians who did not ac-
cept the time reversal test are unlikely to accept the 
circularity test. However, if there are no obvious 
drawbacks to accepting the circularity test, it 
would seem to be a very desirable property: it is a 
generalization of a property that holds for a single 
price relative. 

T12: Commensurability:  
P(λ1p1

0,...,λMpM
0;λ1p1

1,...,λMpM
1)  

= P(p1
0,...,pM

0; p1
1,...,pM

1)  
= P(p0,p1) for all λ1 > 0,..., λM > 0;  
that is, if the units of measurement for each prod-
uct in each establishment are changed, then the 
elementary index remains unchanged. 
 
20.38 In the bilateral index context, virtually 
every price statistician accepts the validity of this 
test. However, in the elementary context, this test 
is more controversial. If the M products in the ele-
mentary aggregate are homogeneous, then it makes 
sense to measure all of the products in the same 
units. The very essence of homogeneity is that 
quantities can be added up in an economically 
meaningful way. Hence, if the unit of measure-
ment is changed, then test T12 should restrict all of 
the λm to be the same number (say, λ) and the test 
T12 becomes  

(20.30) P(λp0,λp1) = P(p0,p1); λ > 0. 
 
This modified test T12 will be satisfied if tests T5 
and T6 are satisfied. Thus, if the products in the 
elementary aggregate are very homogeneous, then 
there is no need for test T12. 
 
20.39 However, in actual practice, there usually 
will be thousands of individual products in each 
elementary aggregate, and the hypothesis of prod-
uct homogeneity is not warranted. Under these cir-
cumstances, it is important that the elementary in-
dex satisfy the commensurability test, since the 
units of measurement of the heterogeneous prod-
ucts in the elementary aggregate are arbitrary and 
hence the price statistician can change the index 

simply by changing the units of measurement for 
some of the products. 

20.40 This completes the listing of the tests for 
an elementary index. There remains the task of 
evaluating how many tests each of the five elemen-
tary indices defined in Section C passed. 

20.41 The Jevons elementary index, PJ , satisfies 
all of the tests, and hence emerges as being best 
from the viewpoint of the axiomatic approach to 
elementary indices. 

20.42 The Dutot index, PD , satisfies all of the 
tests with the important exception of the commen-
surability test T12, which it fails. Heterogeneous 
products in the elementary aggregate constitute a 
rather serious failure, and price statisticians should 
be careful in using this index under these condi-
tions. 

20.43 The geometric mean of the Carli and har-
monic elementary indices, PCSWD, fails only the 
price-bouncing test T9 and the circularity test T11. 
The failure of these two tests is probably not a fatal 
failure, so this index could be used by price statis-
ticians if, for some reason, they decided not to use 
the Jevons formula. It particularly would be suited 
to those who favor the test approach for guidance 
in choosing an index formula. As observed in Sec-
tion D, numerically, PCSWD will be very close to PJ.  

20.44 The Carli and harmonic elementary indi-
ces, PC and PH, fail the price-bouncing test T9, the 
time reversal test T10, and the circularity test T11, 
and pass the other tests. The failure of tests T9 and 
T11 is not a fatal failure, but the failure of the time 
reversal test T10 is rather serious, so price statisti-
cians should be cautious in using these indices. 

F.   The Economic Approach  
to Elementary Indices 

20.45 Recall the notation and discussion in Sec-
tion B. First, it is necessary to recall some of the 
basics of the economic approach from Chapter 17. 
This allowed the aggregator functions representing 
the producing technology and the behavioral as-
sumptions of the economic agents implicit in dif-
ferent formulas to be identified. The more realistic 
these were, the more support was given to the cor-
responding index number formula. The economic 
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approach helps identify what the target index 
should be. 

20.46 Suppose that each establishment produc-
ing products in the elementary aggregate has a set 
of inputs, and the linearly homogeneous aggrega-
tor function f(q) describes what output vector q ≡ 
[q1,...,qM] can be produced from the inputs. Further 
assume that each establishment engages in  
revenue-maximizing behavior in each period. 
Then, as was seen in Chapter 17, it can be shown 
that that certain specific functional forms for the 
aggregator f(q) or its dual unit revenue function 
R(p)13 lead to specific functional forms for the 
price index, P(p0,p1,q0,q1), with  

(20.31) P(p0,p1,q0,q1) = 
1

0
( )

( )
R p

R p . 

 
20.47 Suppose that the establishments have ag-
gregator functions f defined as follows:14 

(20.32) f(q1,...,qM) ≡ maxm {qm/αm : m = 1,...,M}, 
 
where the αm are positive constants. Then under 
these assumptions, it can be shown that equation 
(20.31) becomes15 
 

(20.33) 
1

0
( )

( )
R p

R p  = 
1 0

0 0
p q

p q  = 
1 1

0 1
p q

p q , 

 
and the quantity vector of products produced dur-
ing the two periods must be proportional; that is,  
 
(20.34) q1 = λq0 for some λ > 0. 
 
20.48 From the first equation in formula (20.33), 
it can be seen that the true output price index, 
R(p1) /R(p0), under assumptions of formula (20.32) 
about the aggregator function f, is equal to the 
Laspeyres price index, PL(p0,p1,q0,q1) ≡ p1⋅q0 / 
p0⋅q0. The Paasche formula PP(p0,p1,q0,q1) ≡ 
p1q1/p0q1 is equally justified under formula (20.34).  

20.49 Formula (20.32) on f thus justifies the 
Laspeyres and Paasche indices as being the “true” 

                                                        
13The unit revenue function is defined as R(p) ≡ max q 

{p⋅q : f(q) = 1}. 
14The preferences that correspond to this f are known as 

Leontief (1936) or no substitution preferences. 
15See Pollak (1983a). 

elementary aggregate from the economic approach 
to elementary indices. Yet this is a restrictive as-
sumption, at least from an economic viewpoint, 
that relative quantities produced do not vary with 
relative prices. Other less restrictive assumptions 
on technology can be made. For example, as 
shown in Section B.3, Chapter 17, certain assump-
tions on technology justify the Törnqvist price in-
dex, PT , whose logarithm is defined as  

(20.35)  ln PT(p0,p1,q0,q1) ≡ 
( )0 1 1

0
1

ln
2

M
i i i

i i

s s p
p=

+  
 
 

∑ . 

 
20.50 Suppose now that product revenues are 
proportional for each product over the two periods 
so that 

 
(20.36) pm

1qm
1 = λ pm

0qm
0 for m = 1,...,M and for 

some λ > 0. 
 
Under these conditions, the base-period revenue 
shares sm

0 will equal the corresponding period 1 
revenue shares sm

1 , as well as the corresponding 
β(m); that is, formula (20.36) implies 
 
(20.37) sm

0 = sm
1 ≡ β(m) ; m = 1,...,M. 

 
Under these conditions, the Törnqvist index re-
duces to the following weighted Jevons index:   
 

(20.38)  PJ(p0,p1,β(1),…,β(M))  = 
( )1

0
1

mM
m

mm

p
p

β

=

 
 
 

∏ .  

 
20.51 Thus, if the relative prices of products in a 
Jevons index are weighted using weights propor-
tional to base-period (which equals current-period) 
revenue shares in the product class, then the Jev-
ons index defined by equation (20.38) is equal  
to the following approximation to the Törnqvist 
index:  

(20.39)  PJ(p0,p1,s0) ≡ 
0

1

0
1

msM
m

mm

p
p=

 
 
 

∏ . 

 
20.52 In Section G, the sampling approach 
shows how, under various sample designs, elemen-
tary index number formulas have implicit weight-
ing systems. Of particular interest are sample de-
signs where products are sampled with probabili-
ties proportionate to quantity or revenue shares in 
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either period. Under such circumstances, quantity 
weights are implicitly introduced, so that the  
sample elementary index is an estimate of a  
population-weighted index. The economic ap-
proach then provides a basis for deciding whether 
the economic assumptions underlying the resulting 
population estimates are reasonable. For example, 
the above results show that the sample Jevons ele-
mentary index can be justified as an approximation 
to an underlying Törnqvist price index for a homo-
geneous elementary aggregate under a price sam-
pling scheme with probabilities of selection pro-
portionate to base-period revenue shares. 

20.53 Two assumptions have been outlined here: 
the assumption that the quantity vectors pertaining 
to the two periods under consideration are propor-
tional, formula (20.34), and the assumption that 
revenues are proportional over the two periods, 
formula (20.36).  

20.54 The choice between formulas depends not 
only on the sample design used, but also on the 
relative merits of the proportional quantities versus 
proportional revenues assumption. Similar consid-
erations apply to the economic theory of the CPI 
(or an intermediate input PPI), except that the ag-
gregator function describes the preferences of a 
cost-minimizing purchaser. In this context, index 
number theorists have debated the relative merits 
of the proportional quantities versus proportional 
expenditures assumption for a long time. Authors 
who thought that the proportional expenditures as-
sumption was more likely empirical include Jevons 
(1865, p. 295) and Ferger (1931, p. 39; 1936, p. 
271). These early authors did not have the eco-
nomic approach to index number theory at their 
disposal, but they intuitively understood, along 
with Pierson (1895, p. 332), that substitution ef-
fects occurred and, hence, the proportional expen-
ditures assumption was more plausible than the 
proportional quantities assumption. This is because 
cost-minimizing consumers will purchase fewer 
sampled products with above-average price in-
creases; the quantities can be expected to fall 
rather than remain constant. Such a decrease in 
quantities combined with the increase in price 
makes the assumption of constant expenditures 
more tenable. However, this is for the economic 
theory of CPIs. In Chapter 17, the economic theory 
of PPIs argued that revenue-maximizing establish-
ments will produce more sampled products with 
above-average price increases, making assump-

tions of constant revenues less tenable. However, 
the theory presented in Chapter 17 also indicated 
that technical progress was a complicating factor 
largely absent in the consumer context. 

20.55 If quantities supplied move proportionally 
over time, then this is consistent with a Leontief 
technology, and the use of a Laspeyres index is 
perfectly consistent with the economic approach to 
the output price index. On the other hand, if the 
probabilities used for sampling of prices for the 
Jevons index are taken to be the arithmetic average 
of the period 0 and 1 product revenue shares, and 
narrowly defined unit values are used as the price 
concept, then the weighted Jevons index becomes 
an ideal type of elementary index discussed in Sec-
tion B. In general, the biases introduced by the use 
of an unweighted formula cannot be assessed accu-
rately unless information on weights for the two 
periods is somehow obtained.  

G.   The Sampling Approach to 
Elementary Indices 

20.56 It can now be shown how various elemen-
tary formulas can estimate this Laspeyres formula 
under alternative assumptions about the sampling 
of prices. 

20.57 To justify the use of the Dutot elementary 
formula, consider the expected value of the Dutot 
index when sampling with base-period product in-
clusion probabilities equal to the sales quantities 
of product m in the base period relative to total 
sales quantities of all products in the product class 
in the base period. Assume that these definitions 
require that all products in the product class have 
the same units.16  

20.58 The expected value of the sample Dutot 
index is17 

(20.40) 

1 0 0 0

1 1

0 0

1 1

M M

m m m m
m m

M M

m m
m m

p q p q

q q

= =

= =

   
   
   
   
   
   

∑ ∑

∑ ∑
, 

 

                                                        
16The inclusion probabilities are meaningless unless the 

products are homogeneous. 
17There is a technical bias since E(x/y) is approximated 

by E(x)/E(y), but this will approach zero as m gets larger. 
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which is the familiar Laspeyres index, 
 

(20.41) 

1 0

1

0 0

1

M

m m
m

M

m m
m

p q

p q
=

=

∑

∑
 ≡ PL(p0,p1,q0,q1).  

 
20.59 Now it is easy to see how this sample de-
sign could be turned into a rigorous sampling 
framework for sampling prices in the particular 
product class under consideration. If product prices 
in the product class were sampled proportionally to 
their base-period probabilities, then the Laspeyres 
index formula (20.41) could be estimated by a 
probability-weighted Dutot index, where the prob-
abilities are defined by their base-period quantity 
shares. In general, with an appropriate sampling 
scheme, the use of the Dutot formula at the ele-
mentary level of aggregation for homogeneous 
products can be perfectly consistent with a 
Laspeyres index concept. Put otherwise, under this 
sampling design, the expectation of the sample 
Dutot is equal to the population Laspeyres.  

20.60 The Dutot formula also can be consistent 
with a Paasche index concept at the elementary 
level of aggregation. If sampling is with period 1 
item inclusion probabilities, the expectation of the 
sample Dutot is equal to  

(20.42) 

1 1 1 1

1 1

1 1

1 1

M M

m m m m
m m

M M

m m
m m

p q p q

q q

= =

= =

   
   
   
   
   
   

∑ ∑

∑ ∑
, 

 
which is the familiar Paasche formula, 
 

(20.43) 

1 1

1

0 1

1

M

m m
m

M

m m
m

p q

p q
=

=

∑

∑
 ≡ PP(p0,p1,q0,q1).  

 
20.61 Put otherwise, under this sampling design, 
the expectation of the sample Dutot is equal to the 
population Paasche index. Again, it is easy to see 
how this sample design could be turned into a rig-
orous sampling framework for sampling prices in 
the particular product class under consideration. If 
product prices in the product class were sampled 
proportionally to their period 1 probabilities, then 
the Paasche index formula (20.43) could be esti-

mated by the probability-weighted Dutot index. In 
general, with an appropriate sampling scheme, the 
use of the Dutot formula at the elementary level of 
aggregation (for a homogeneous elementary ag-
gregate) can be perfectly consistent with a Paasche 
index concept.18 

20.62 Rather than use the fixed-basket represen-
tations for the Laspeyres and Paasche indexes, the 
revenue-share representations for the Laspeyres 
and Paasche indexes could be used along with the 
revenue shares sm

0 or sm
1 as probability weights for 

price relatives. Under sampling proportional to 
base-period revenue shares, the expectation of the 
Carli index is  

(20.44) PC(p0,p1,s0) ≡ 
1

0
0

1

ln
M

m
m

mm

ps p=

 
 
 

∑ , 

 
which is the population Laspeyres index. Of 
course, formula (20.44) does not require the as-
sumption of homogeneous products as did formula 
(20.40) and formula (20.42). On the other hand, 
one can show analogously that under sampling 
proportional to period 1 revenue shares, the expec-
tation of the reciprocal of the sample harmonic in-
dex is equal to the reciprocal of the population 
Paasche index, and thus that the expectation of the 
sample harmonic index,  
 

(20.45) PH(p0,p1,s1) ≡ 
111

1
0

1

M
m

m
mm

ps p

−−

=

  
  

   
∑ , 

 
will be equal to the Paasche index. 
 
20.63 The above results show that the sample 
Dutot elementary index can be justified as an ap-
proximation to an underlying population Laspeyres 
or Paasche price index for a homogeneous elemen-
tary aggregate under appropriate price sampling 
schemes. The above results also show that the sam-
ple Carli and harmonic elementary indexes can be 
justified as approximations to an underlying popu-
lation Laspeyres or Paasche price index for a het-
erogeneous elementary aggregate under appropri-
ate price sampling schemes. 

                                                        
18Of course, the Dutot index as an estimate of a popula-

tion Paasche index will differ from the Dutot index as an 
estimate of a population Laspeyres index because of  repre-
sentativity or substitution bias. 
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20.64 Thus, if the relative prices of products in 
the product class under consideration are sampled 
using weights that are proportional to the arithme-
tic average of the base- and current-period revenue 
shares in the product class, then the expectation of 
this sample Jevons index is equal to the population 
Törnqvist index formula (20.35).  

20.65 Sample elementary indices sampled under 
appropriate probability designs were capable of 
approximating various population economic ele-
mentary indices, with the approximation becoming 
exact as the sampling approached complete cover-
age. Conversely, it can be seen that, in general, it 
will be impossible for a sample elementary price 
index, of the type defined in Section C, to provide 
an unbiased estimate of the theoretical population 
ideal elementary price index defined in Section B, 
even if all product prices in the elementary aggre-
gate were sampled. Hence, rather than just sam-
pling prices, it will be necessary for the price stat-
istician to collect information on the transaction 
values (or quantities) associated with the sampled 
prices to form sample elementary aggregates that 
will approach the target ideal elementary aggregate 
as the sample size becomes large. Thus instead of 
just collecting a sample of prices, it will be neces-
sary to collect corresponding sample quantities (or 
values) so that a sample Fisher, Törnqvist, or 
Walsh price index can be constructed. This sam-
ple-based superlative elementary price index will 
approach the population ideal elementary index as 
the sample size becomes large. This approach to 
the construction of elementary indices in a sam-
pling context was recommended by Pigou (1924, 
pp. 66–7), Fisher (1922, p. 380), Diewert (1995a, 
p. 25), and Balk (2002).19 In particular, Pigou 
(1924, p. 67) suggested that the sample-based 
Fisher ideal price index be used to deflate the 
value ratio for the aggregate under consideration to 
obtain an estimate of the quantity ratio for the ag-
gregate under consideration. 

20.66 Until fairly recently, it was not possible to 
determine how close an unweighted elementary 
index, defined in Section C, was to an ideal ele-
mentary aggregate. However, with the availability 
of scanner data (that is, of detailed data on the 
prices and quantities of individual products that are 
sold in retail outlets), it has been possible to com-
                                                        

19Balk (2002) provides the details for this sampling 
framework. 

pute ideal elementary aggregates for some product 
strata and compare the results with statistical 
agency estimates of price change for the same 
class of products. Of course, the statistical agency 
estimates of price change usually are based on the 
use of the Dutot, Jevons, or Carli formulas. These 
studies relate to CPIs, the data collected from the 
bar-code readers of retail outlets. But the concern 
here is with the discrepancy between unweighted 
and weighted indices used at this elementary ag-
gregate level, and the discrepancies are sufficiently 
large to merit highlighting in this PPI context. The 
following quotations summarize many of these 
scanner data studies: 

A second major recent development is the will-
ingness of statistical agencies to experiment with 
scanner data, which are the electronic data gen-
erated at the point of sale by the retail outlet and 
generally include transactions prices, quantities, 
location, date and time of purchase and the prod-
uct described by brand, make or model. Such de-
tailed data may prove especially useful for con-
structing better indexes at the elementary level. 
Recent studies that use scanner data in this way 
include Silver (1995), Reinsdorf (1996), Bradley, 
Cook, Leaver and Moulton (1997), Dalén 
(1997), de Haan and Opperdoes (1997) and 
Hawkes (1997). Some estimates of elementary 
index bias (on an annual basis) that emerged 
from these studies were: 1.1 percentage points 
for television sets in the United Kingdom; 4.5 
percentage points for coffee in the United States; 
1.5 percentage points for ketchup, toilet tissue, 
milk and tuna in the United States; 1 percentage 
point for fats, detergents, breakfast cereals and 
frozen fish in Sweden; 1 percentage point for 
coffee in the Netherlands and 3 percentage points 
for coffee in the United States respectively. 
These bias estimates incorporate both elementary 
and outlet substitution biases and are signifi-
cantly higher than our earlier ballpark estimates 
of .255 and .41 percentage points. On the other 
hand, it is unclear to what extent these large bias 
estimates can be generalized to other commodi-
ties (Diewert, 1998a, pp. 54–55).  

Before considering the results it is worth com-
menting on some general findings from scanner 
data. It is stressed that the results here are for an 
experiment in which the same data were used to 
compare different methods. The results for the 
U.K. Retail Prices Index can not be fairly com-
pared since they are based on quite different 
practices and data, their data being collected by 
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price collectors and having strengths as well as 
weaknesses (Fenwick, Ball, Silver and Morgan 
(2002)). Yet it is worth following up on 
Diewert’s (2002c) comment on the U.K. Retail 
Prices Index electrical appliances section, which 
includes a wide variety of appliances, such as 
irons, toasters, refrigerators, etc. which went 
from 98.6 to 98.0, a drop of 0.6 percentage 
points from January 1998 to December 1998. He 
compares these results with those for washing 
machines and notes that “..it may be that the non 
washing machine components of the electrical 
appliances index increased in price enough over 
this period to cancel out the large apparent drop 
in the price of washing machines but I think that 
this is somewhat unlikely.” A number of studies 
on similar such products have been conducted 
using scanner data for this period. Chained Fish-
ers indices have been calculated from the scanner 
data, (the RPI (within year) indices are fixed-
base Laspeyres ones), and have been found to 
fall by about 12% for televisions (Silver and 
Heravi, 2001a), 10% for washing machines (Ta-
ble 7 below), 7.5% for dishwashers, 15% for 
cameras and 5% for vacuum cleaners (Silver and 
Heravi, 2001b). These results are quite different 
from those for the RPI section and suggest that 
the washing machine disparity, as Diewert notes, 
may not be an anomaly. Traditional methods and 
data sources seem to be giving much higher rates 
for the CPI than those from scanner data, though 
the reasons for these discrepancies were not the 
subject of this study (Silver and Heravi, 2002,  
p. 25).  

20.67 These quotations summarize the results of 
many elementary aggregate index number studies 
based on the use of scanner data. These studies in-
dicate that when detailed price and quantity data 
are used to compute superlative indexes or hedonic 
indexes for an expenditure category, the resulting 
measures of price change are often below the cor-
responding official statistical agency estimates of 
price change for that category. Sometimes the 
measures of price change based on the use of scan-
ner data are considerably below the corresponding 
official measures.20 These results indicate that 

                                                        
20However, scanner data studies do not always show 

large potential biases in official CPIs. Masato Okamoto of 
the National Statistics Center in Japan informed us in a per-
sonal communication that a large-scale internal study was 
undertaken. Using scanner data for about 250 categories of 
processed food and daily necessities collected over the pe-
riod 1997 to 2000, it was found that the indices based on 

(continued) 

there may be large gains in the precision of ele-
mentary indices if a weighted sampling framework 
is adopted. 

20.68 Is there a simple intuitive explanation for 
the above empirical results? The empirical work is 
on CPIs, and the behavioral assumptions relate to 
such indices, though they equally apply to input 
PPIs. Furthermore, the analysis can be undertaken 
readily based on the behavioral assumptions under-
lying output PPIs, its principles being more impor-
tant. A partial explanation may be possible by 
looking at the dynamics of product demand. In any 
market economy, firms and outlets sell products 
that are either declining or increasing in price. 
Usually, the products that decline in price experi-
ence an increase in sales. Thus, the expenditure 
shares associated with products declining in price 
usually increase, and the reverse is true for prod-
ucts increasing in price. Unfortunately, elementary 
indices cannot pick up the effects of this negative 
correlation between price changes and the induced 
changes in expenditure shares, because elementary 
indices depend only on prices and not on expendi-
ture shares. 

20.69 An example can illustrate this point. Sup-
pose that there are only three products in the ele-
mentary aggregate, and that in period 0, the price 
of each product is pm

0 = 1, and the expenditure 
share for each product is equal, so that sm

0 = 1/3 
for m = 1,2,3. Suppose that in period 1, the price of 
product 1 increases to p1

1 = 1 + i, the price of 
product 2 remains constant at p2

1 = 1, and the price 
of product 3 decreases to p3

1 = (1 + i)−1, where the 
product 1 rate of increase in price is i > 0. Suppose 
further that the expenditure share of product 1 de-
creases to s1

1 = (⅓) − σ, where σ is a small number 
between 0 and ⅓, and the expenditure share of 
product 3 increases to s3

1 = (⅓) + σ. The expendi-
ture share of product 2 remains constant at s2

1 = ⅓. 
The five elementary indices, defined in Section C, 
all can be written as functions of the product 1 in-
flation rate i (which is also the product 3 deflation 
rate) as follows: 

(20.46) PJ(p0,p1) = ( )( )
1

1 31 1i i − + +   = 1  

 ≡ fJ(i) ; 
                                                                                   
scanner data averaged only about 0.2 percentage points be-
low the corresponding official indices per year. Japan uses 
the Dutot formula at the elementary level in its official CPI. 
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(20.47) PC(p0,p1) = ( ) ( ) 11 1 1
3 3 31 1i i −+ + + +   

 ≡ fC(i) ; 
 

(20.48) PH(p0,p1) = ( ) ( )1 11 1 1
3 3 31 1i i− −+ + + +    

     ≡ fH(i) ; 
 
(20.49) PCSWD(p0,p1) = 0 1 0 1( , ) ( , )C HP p p P p p   

    ≡ fCSW(i) ; 
 

(20.50) PD(p0,p1) = ( ) ( ) 11 1 1
3 3 31 1i i −+ + + +    

 ≡ fD(i) . 
 
20.70 Note that in this particular example, the 
Dutot index fD(i) turns out to equal the Carli index 
fC(i). The second-order Taylor series approxima-
tions to the five elementary indices formulas 
(20.46) to (20.50) are given by formulas (20.51) to 
(20.55) below: 

(20.51) fJ(i) = 1 ; 
(20.52) fC(i) ≈ 21

31 i+  ; 
(20.53) fH(i) ≈ 21

31 i−  ; 
(20.54) fCSW(i) ≈ 1 ; 
(20.55) fD(i) ≈ 21

31 i+  . 
 
Thus for small i, the Carli and Dutot indices will 
be slightly greater than 1,21 the Jevons and Car-
ruthers, Sellwood, and Ward indices will be ap-
proximately equal to 1, and the harmonic index 
will be slightly less than 1. Note that the first-order 
Taylor series approximation to all five indices is 1; 
that is, to the accuracy of a first-order approxima-
tion, all five indices equal unity. 
 
20.71 Now calculate the Laspeyres, Paasche, 
and Fisher indices for the elementary aggregate: 

(20.56) PL = ( ) ( ) 11 1 1
3 3 31 1i i −+ + + +   ≡ fL(i) ; 

 
(20.57) PP  

  = ( ) ( )
111 1 1

3 3 3( σ) 1 ( ) 1i i
−− − + + + + σ +   

   ≡ fP(i) ; 
                                                        

21Recall the approximate relationship in formula (20.16) 
in Section C between the Dutot and Jevons indices. In the 
example, var(e0) = 0, whereas var(I1) > 0. This explains 
why the Dutot index is not approximately equal to the Jev-
ons index in the example.  

 
(20.58) PF = L PP Pi  ≡ fF(i) . 
 
First-order Taylor series approximations to the 
above indices formulas (20.56) to (20.58) around i 
= 0 are given by formulas (20.59)–( 20.61): 
 
(20.59) fL(i) ≈ 1 ; 
 
(20.60) fP(i) ≈ 1 − 2σ i ; 
 
(20.61) fF(i) ≈ 1 − σ i . 
 
An ideal elementary index for the three products is 
the Fisher ideal index fF(i). The approximations in 
formulas (20.51) to (20.55) and formula (20.61) 
show that the Fisher index will lie below all five 
elementary indices by the amount σ i using first-
order approximations to all six indices. Thus all 
five elementary indices will have an approximate 
upward bias equal to σ i compared with an ideal 
elementary aggregate. 
 
20.72 Suppose that the annual product inflation 
rate for the product rising in price is equal to 10 
percent, so that i = .10 (and, hence, the rate of 
price decrease for the product decreasing in price 
is approximately 10 percent as well). If the expen-
diture share of the increasing price product de-
clines by 5 percentage points, then σ = .05, and the 
annual approximate upward bias in all five ele-
mentary indices is σ i = .05 × .10 = .005 or one-
half of a percentage point. If i increases to 20 per-
cent and σ increases to 10 percent, then the ap-
proximate bias increases to σ i = .10 × .20 = .02, or 
2 percent. 

20.73 The above example is highly simplified, 
but more sophisticated versions of it are capable of 
explaining at least some of the discrepancy be-
tween official elementary indices and superlative 
indices calculated by using scanner data for an ex-
penditure class. Basically, elementary indices de-
fined without using associated quantity or value 
weights are incapable of picking up shifts in ex-
penditure shares induced by fluctuations in product 
prices.22 To eliminate this problem, it will be nec-
essary to sample values along with prices in both 
the base and comparison periods.  
                                                        

22Put another way, elementary indices are subject to sub-
stitution or representativity bias. 
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20.74 In the following section, a simple  
regression-based approach to the construction of 
elementary indices is outlined, and, again, the im-
portance of weighting the price quotes will emerge 
from the analysis. 

H.   A Simple Stochastic  
Approach to Elementary Indices 

20.75 Recall the notation used in Section B. 
Suppose the prices of the M products for period 0 
and 1 are equal to the right-hand sides of formulas 
(20.62) and (20.63) below: 

(20.62) pm
0 = βm ; m = 1,...,M; 

 
(20.63) pm

1 = αβm ; m = 1,...,M, 
 
where α and the βm are positive parameters. Note 
that there are two M prices on the left-hand sides 
of equations (20.62) and (20.63) but only M + 1 
parameters on the right-hand sides of these equa-
tions. The basic hypothesis in equations (20.62) 
and (20.63) is that the two price vectors p0 and p1 
are proportional (with p1 = αp0 , so that α is the 
factor of proportionality) except for random multi-
plicative errors, and, hence, α represents the under-
lying elementary price aggregate. If logarithms are 
taken of both sides of equations (20.62) and 
(20.63) and some random errors em

0 and em
1 added 

to the right-hand sides of the resulting equations, 
the following linear regression model results: 

(20.64) ln pm
0 = δm + em

0; m = 1,...,M; 
 
(20.65) ln pm

1 = γ + δm + em
1; m = 1,...,M, 

 
where 
 
(20.66) γ ≡ ln α and δm ≡ ln βm ; m = 1,...,M. 
 
20.76 Note that equations (20.64) and (20.65) 
can be interpreted as a highly simplified hedonic 
regression model.23 The only characteristic of each 
product is the product itself. This model is also a 
special case of the country product dummy method 
for making international comparisons among the 

                                                        
23See Chapters 7, 8, and 21 for material on hedonic re-

gression models. 

prices of different countries.24 A major advantage 
of this regression method for constructing an ele-
mentary price index is that standard errors for the 
index number α can be obtained. This advantage 
of the stochastic approach to index number theory 
was stressed by Selvanathan and Rao (1994). 

20.77 It can be verified that the least-squares  
estimator for γ is 

(20.67) γ* ≡
1

0
1

1 ln
M

m

p
M p=

 
 
 

∑ . 

 
If γ* is exponentiated, then the following estimator 
for the elementary aggregate α is obtained: 
 

(20.68) α* ≡ 
1

2

1
1

M M
m

mm

p
p=

 
 
 

∏  ≡ PJ(p1,p2),  

 
where PJ(p0,p1) is the Jevons elementary price in-
dex defined in Section C above. Thus, there is a 
regression model-based justification for the use of 
the Jevons elementary index. 
 
20.78 Consider the following unweighted least-
squares model: 

(20.69) min γ, δ’s 

     ( ) ( )2 21 0

1 1

ln ln
M M

m m m m
m m

p p
= =

− δ + − γ − δ∑ ∑ . 

 
It can be verified that the γ solution to the uncon-
strained minimization problem (20.69) is the γ* 
defined by (20.67). 
 
20.79 There is a problem with the unweighted 
least-squares model defined by formula (20.69): 
the logarithm of each price quote is given exactly 
the same weight in the model, no matter what the 
revenue on that product was in each period. This is 
obviously unsatisfactory, since a price that has 
very little economic importance (that is, a low 
revenue share in each period) is given the same 
weight in the regression model compared with a 
very important product. Thus, it is useful to con-
sider the following weighted least-squares model:  

                                                        
24See Summers (1973). In our special case, there are only 

two “countries,” which are the two observations on the 
prices of the elementary aggregate for two periods. 
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(20.70) min γ, δ’s  

   ( ) ( )2 20 0 1 1

1 1

ln ln
M M

m m m m m m
m m

s p s p
= =

− δ + − γ − δ∑ ∑ , 

 
where the period t revenue share on product m is 
defined in the usual manner as 
 

(20.71) 

1

t t
t m m
m M

t t
m m

m

p q
s

p q
=

≡

∑
; t = 0,1 ; m = 1,...,M. 

 
Thus, in the model (20.70), the logarithm of each 
product price quotation in each period is weighted 
by its revenue share in that period. 
 
20.80 The γ solution to (20.70) is 

(20.72) γ** = ( )
1

0 1
0

1

, ln
M

m
m m

mm

ph s s p=

 
 
 

∑ , 

 
where 
 

(20.73) h(a,b) ≡ [ ]
1

1 11 1 2
2 2

aba b a b

−
− − + =  + 

, 

 
and h(a,b) is the harmonic mean of the numbers a 
and b. Thus γ** is a share-weighted average of the 
logarithms of the price ratios pm

1/pm
0. If γ** is ex-

ponentiated, then an estimator α** for the elemen-
tary aggregate α is obtained. 
 
20.81 How does α** compare with the three 
ideal elementary price indices defined in Section 
B? It can be shown25 that α** approximates those 
three indices to the second order around an equal 
price and quantity point; that is, for most data sets, 
α** will be very close to the Fisher, Törnqvist, and 
Walsh elementary indices.  

20.82 The results in this section provide some 
weak support for the use of the Jevons elementary 
index, but they provide much stronger support for 
the use of weighted elementary indices of the type 
defined in Section B above. The results in this sec- 
 

                                                        
25 Use the techniques discussed in Diewert (1978).  

tion also provide support for the use of value or 
quantity weights in hedonic regressions. 

I.   Conclusions 

20.83 The main results in this chapter can be 
summarized as follows: 

(i)  To define a “best” elementary index number 
formula, it is necessary to have a target index 
number concept. In Section B, it is suggested 
that normal bilateral index number theory ap-
plies at the elementary level as well as at 
higher levels, and hence the target concept 
should be one of the Fisher, Törnqvist, or 
Walsh formulas. 

(ii)  When aggregating the prices of the same nar-
rowly defined product within a period, the 
narrowly defined unit value is a reasonable 
target price concept. 

(iii)  The axiomatic approach to traditional ele-
mentary indices (that is, no quantity or value 
weights are available) supports the use of the 
Jevons formula under all circumstances. If the 
products in the elementary aggregate are very 
homogeneous (that is, they have the same unit 
of measurement), then the Dutot formula can 
be used. In the case of a heterogeneous ele-
mentary aggregate (the usual case), the Car-
ruthers, Sellwood, and Ward formula can be 
used as an alternative to the Jevons formula, 
but both will give much the same numerical 
answers. 

(iv)  The Carli index has an upward bias and the 
harmonic index has a downward bias. 

(v)  All five unweighted elementary indices are 
not really satisfactory. A much more satisfac-
tory approach would be to collect quantity or 
value information along with price informa-
tion and form sample superlative indices as 
the preferred elementary indices. 

(vi)  A simple hedonic regression approach to 
elementary indices supports the use of the 
Jevons formula. However, a more satisfactory 
approach is to use a weighted hedonic regres-
sion approach. The resulting index will 
closely approximate the ideal indices defined 
in Section B. 


