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I.   INTRODUCTION 

The changes in the supervisory framework, as put forward in the Basel II capital accord, 
which try to bridge the gap between regulatory capital and economic capital, are requiring 
regulators and supervisors to communicate with market participants using new language and 
new tools. In fact, the development of the internal rating system (IRB), as envisaged in the 
new regulations, and the more systematic collection of detailed data on exposures and 
recovery rates are expected to allow more and more financial institutions to evaluate their 
risk profile and to manage it based on these concepts. 
 
Over the last ten years, we have witnessed major advances in the field of modeling credit 
risk. There are now three main approaches to quantitative credit risk modeling: the “Merton-
style” approach, the purely empirical econometric approach, and the actuarial approach. 1 
Each of these approaches has, in turn, produced several models that are widely used by 
financial institutions around the world. 
 
All these models share a common purpose: determining the probability distribution of the 
losses on a portfolio of loans and other debt instruments. Being able to compute the loss 
distribution of a portfolio is critical, because it allows the determination of the credit Value at 
Risk (VaR) and, therefore, the economic capital required by credit operations. 
 
In this paper we present the theoretical background that underpins one of the most frequently 
used models for loss distribution determination: Credit Risk+. This model, originally 
developed by Credit Suisse Financial Products (CSFP), is based on the actuarial approach, 
and has quickly become one of the financial industry’s benchmarks in the field of credit risk 
modeling. Its popularity spilled over into the regulatory and supervisory community, 
prompting some supervisory authorities to start using it in their monitoring activities.2 There 
are several reasons why this model has become so popular: 
 
• It requires a limited amount of input data and assumptions; 

• It uses as basic input the same data as required by the Basel II IRB approach;  

• It provides an analytical solution for determining the loss distribution; and 

• It brings out one the most important credit risk drivers: concentration. 

 
We illustrate our implementation of the model and suggest that it could be used as a toolbox 
in the different monitoring activities of the IMF. We also analyze the problems that may arise 
by directly applying Credit Risk+, in its original formulation, to certain portfolio 
compositions. Consequently, we propose some solutions. 
                                                 
1 See Koyluoglu and Hickman (1998) and Crouhy, Galai, and Mark (2000) for more details. 

2 See Austrian Financial Market Authority and Oesterreichische Nationalbank (2004). 
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The paper is organized as follows: initially, we present the setting and basic definitions 
common to all the model specifications used in this paper. Then, we gradually proceed from 
the simplest model based on Bernoulli-distributed default events and default probabilities 
known with certainty to the fully-fledged version of Credit Risk+. The latter is based on the 
Poisson approximation and uncertain default probabilities determined by mutually 
independent risk factors. We then go beyond Credit Risk+ by presenting a specification that 
allows for correlation among risk factors as in Giese (2003). We also apply the implemented 
models to a specific portfolio of exposures to illustrate their characteristics and discuss in 
detail the results. Finally, we present some conclusions. 
 

II.   THE BASIC MODEL SETTING 

In this section, we present the setting and basic definitions common to all the model 
specifications used in the paper. We consider a portfolio of N obligors indexed by 

1, ,n N= K . Obligor n constitutes an exposure nE . The probability of default of obligor 
n over the period considered is np .  
 

A.   Default Events 

The default of obligor n can be represented by a Bernoulli random variable nD such that the 
probability of default over a given period of time is ( )1n nP D p= = , while the probability of 

survival over the same span is ( )0 1n nP D p= = − . Then, the probability generating function 
(PGF) of nD  is given by:3 

 ( ) ( ),
0

x
D n n

x
G z P D x z

∞

=

= = ⋅∑ . 

Since nD can only take two values (0 and 1), ( ),D nG z can be rewritten as follows: 

 ( ) ( ) ( )0 1
, 1 1D n n n n nG z p z p z p p z= − ⋅ + ⋅ = − + ⋅ . 

 
B.   Losses 

The loss on obligor n can be represented by the random variable n n nL D E= ⋅ . The probability 
distribution of nL is given by ( )n n nP L E p= = and ( )0 1n nP L p= = − . The total loss on the 
portfolio is represented by the random variable L : 

 
1 1

N N

n n n
n n

L L D E
= =

= = ⋅∑ ∑ . 

The objective is to determine the probability distribution of L under various sets of 
assumptions. Knowing the probability distribution of L  will allow us to compute the VaR 
and other risk measures for the portfolio. 
                                                 
3 Probability concepts are reviewed in the appendix. 
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C.   Normalized Exposures 

When implementing the model it has become common practice to normalize and round the 
individual exposures and then group them in exposure bands. The process of normalization 
and rounding limits the number of possible values for L , and hence reduces the time 
required to compute the probability distribution of L . When the normalization factor is small 
relative to the total portfolio exposure, the rounding error is negligible. Let F  be the 
normalization factor.4 The rounded normalized exposure of obligor n  is denoted nν  and is 
defined by 
 ( )/n nceil E Fν = . (1) 

 

D.   Normalized Losses 

The normalized loss on obligor n is denoted by nλ and is defined by 
 n n nDλ ν= ⋅ , 
where nD  is the default and nν  is the normalized exposure for obligor n. Hence, nλ is a 
random variable that takes value nν with probability np , and value 0 with probability 1 np− . 
The total normalized loss on the portfolio is represented by the random variableλ :  

 
1

N

n
n

λ λ
=

=∑ . 

Finding the probability distribution of λ is equivalent to finding the probability distribution 
of L . 
 

E.   Exposure Bands 

The use of exposure bands has become a common technique used in the literature to simplify 
the computational process. Once the individual exposures have been normalized and 
rounded, as shown in equation (1), common exposure bands can be defined in the following 
manner: the total number of exposure bands, J , is given by the highest value of the 
normalized individual exposures, { } 1

max N
n n

J ν
=

= . Let  j  represent the index for the 
exposure bands. Then, the common exposure in band j  is j jν = . The distribution of 
obligors among exposure bands is done such that each obligor n is assigned to band j  if 

n j jν ν= = . Then, the expected number of defaults in band j , jµ , is given by 

 
, n

j n
n j

p
ν

µ
=

= ∑ . 

Consequently, the total expected number of defaults in the portfolio, µ , is given by 

                                                 
4 In a portfolio with high variation of the exposure levels, the smallest exposure could be chosen as the 
normalization factor.  
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1

J

j
j

µ µ
=

=∑ . 

 
 

III.   MODEL 1: A SIMPLE MODEL WITH NON-RANDOM DEFAULT PROBABILITIES 

In this section we present a simple model with Bernoulli-distributed default events and non-
random default probabilities. The advantage of this model is that it relies on the smallest set 
of assumptions. As a result, the loss distribution in this model can be efficiently computed as 
a simple convolution, without making any approximation for the distribution of default 
events. This approach is particularly appropriate when default probabilities are high, and 
when there is little uncertainty concerning the values of  these probabilities. 
 
The key assumptions of the model are that individual default probabilities over the period 
considered are known with certainty, and that default events are independent among obligors. 
The objective is to determine the probability distribution of the total normalized loss, λ  or, 
equivalently, the PGF of λ . Given the assumption of independence among obligors, the PGF 
of the total normalized loss, λ , can easily be computed from the PGF of the individual 
normalized loss, nλ . Since nλ can only take the values 0 and nν , the PGF of nλ is given by 
 
 ( ) ( ) ( ) ( )0

, 0 1n n
n n n nG z P z P z p p zν ν

λ λ λ ν= = ⋅ + = ⋅ = − + ⋅ . 
 
Taking into account that λ  is the sum of nλ  over n  and since default events are independent 
among obligors, the PGF of λ  is simply given by 
 

 ( ) ( ) ( ),
1 1

1 n

N N

n n n
n n

G z G z p p zνλ λ
= =

⎡ ⎤= = − + ⋅⎣ ⎦∏ ∏ . 

 
This product of the individual loss PGF is a simple convolution that can be computed using 
the Fast Fourier Transform (FFT), from the Convolution Theorem:  

 ( ) ( ){ } ( ), ,
1

N

n B
n

G z IFFT FFT G z G zλ λ λ
=

⎛ ⎞⎡ ⎤= ≡⎜ ⎟⎣ ⎦⎝ ⎠
∏ , 

where IFFT is the Inverse Fast Fourier Transform. This algorithm can be efficiently implemented  as long as the 
portfolio does not contain more than a few thousand obligors.5 This is about as far as the model can be 
analytically developed under the assumption that the probability distributions of default events are Bernoulli 
distributions. In order to find a closed-form solution for the PGF of λ , when default events are represented by 
Bernoulli random variables, it is also necessary to assume that default events are independent among obligors, 
and that default probabilities are known with certainty (non-random). If, instead, probability of default is 
assumed to be random, computing the loss distribution requires the use of Monte Carlo simulation.6 

                                                 
5 See Section X for more details. 

6 See Section XI for an example. 
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Finding an analytical solution when probabilities are random and default events are no longer independent 
implies using an approximation for the distribution of the default events. This is precisely the path taken by  the 
Credit Risk+ model when deriving closed-form expressions for the PGF of λ .  

IV.   INTRODUCING THE POISSON APPROXIMATION 

In this section we describe in detail one of the essential assumptions of the Credit Risk+ 
model: the individual probabilities of default are assumed to be sufficiently small for the 
compound Bernoulli distribution of the default events to be approximated by a Poisson 
distribution. This assumption makes it possible to obtain an analytical solution even when the 
default probabilities are not known with certainty.  
 
Under the assumption that default events follow Bernoulli distribution, the PGF of obligor‘s 
n default is  
 ( ) ( ) ( ), 1 1 1D n n n nG z p p z p z= − + ⋅ = + − . 
Equivalently: 
 ( ) ( )( ) ( )( ), ,exp ln exp ln 1 1D n D n nG z G z p z⎡ ⎤ ⎡ ⎤= = + −⎣ ⎦⎣ ⎦ . (2) 

 If we assume that np  is very small, then ( )1np z −  is also very small under the 

assumption that 1z ≤ . Defining ( )1nw p z= − , we can perform a Taylor expansion of 
ln(1 )w+  in the vicinity of 0w = : 

 
2 3

ln(1 )
2 3

w ww w+ = − + L  

Neglecting the terms of order two and above and going back to the original notation yields 
 ( ) ( )ln 1 1 1n np z p z+ − ≈ −⎡ ⎤⎣ ⎦  (3) 

The assumption that justifies neglecting the terms of order two and above is that np is 

“small”: the smaller np , the smaller the (absolute) difference between ( )ln 1 1np z+ −⎡ ⎤⎣ ⎦  

and ( )1np z − . 
Going back to equation (2) and using the approximation from equation (3), we have: 
 ( ) ( ), exp 1D n nG z p z≈ −⎡ ⎤⎣ ⎦ . 
 
Performing again a Taylor expansion of ( )exp 1np z −⎡ ⎤⎣ ⎦  in the vicinity of 0np =  finally 
yields 

 ( ) ( ) ( ),
0

exp 1 exp
!

x
xn

D n n n
x

pG z p z p z
x

∞

=

≈ − = −⎡ ⎤⎣ ⎦ ∑ . (4) 

The last member of equation (4) is the PGF of a Poisson distribution with intensity np . 
Therefore, for small values of np , the Bernoulli distribution of nD can be approximated by a 
Poisson distribution with intensity np . 
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Using the Poisson approximation, the probability distribution of nD is then given by 

 ( ) ( )exp
!

x
n

n n
pP D x p
x

= = − . 

 
A new expression for the PGF of the individual normalized loss nλ  can also be derived using 
the Poisson approximation (4). The PGF of nλ is defined by 

 ( ) ( ) ( ),
n n nD

nG z E z E zλ ν
λ = = , (5) 

where E  is the expectation operator. Since nν  is not random, equation (5) can be written as:  

 ( ) ( ) ( ) ( ),
0 0

exp
!

n n n

x xD n
n n n

x x

pG z P D x z p z
x

ν ν
λ

∞ ∞

= =

= = ⋅ = − ⋅ ⋅∑ ∑ . (6) 

Since nD  takes only two values (0 and 1), we can express the PGF of nλ  as: 

 ( ) ( ) ( ), 1 expn
n n nG z p z pν

λ = + − . (7) 
The second term of the right side in equation (7) is the first order Taylor expansion of 

( )exp n
np zν ; that is, ( )exp 1n n

n np z p zν ν≈ + . Therefore, for small values of probabilities np , 

the PGF of the individual normalized loss, nλ , can be approximated by: 

 ( ) ( ), exp 1n
n nG z p zνλ

⎡ ⎤= −⎣ ⎦ . (8) 

 
V.   MODEL 2: THE MODEL WITH KNOWN PROBABILITIES REVISITED 

In this section, we apply the Poisson approximation to the basic model with known default 
probabilities, as presented in Section III. Hence, we derive a new expression for the PGF of 
the total normalized loss on the portfolio, ( )G zλ , based on the expression for ( ),nG zλ  from 
equation (8). Individual default probabilities are still assumed to be known with certainty 
(non-random), and default events are still assumed to be independent among obligors. 
 
Since individual losses are mutually independent, ( )G zλ is simply the product of the 
individual loss PGF, as in Section III: 

 ( ) ( ),
1

N

n
n

G z G zλ λ
=

=∏ . (9) 

Replacing ( ),nG zλ  in equation (9) with the expression from equation (8), we have: 

 
( )

( )
1

1

( ) exp 1

exp 1

n

n

N

n
n

N

n
n

G z p z

p z

ν
λ

ν

=

=

⎡ ⎤= −⎣ ⎦

⎡ ⎤
= −⎢ ⎥⎣ ⎦

∏

∑
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Using the definition of the exposure bands, as presented in Section II, subsection E, ( )G zλ  
can be written as follows:  

 ( )
1 ,

( ) exp 1j

n j

J

n
j n

G z p zνλ
ν ν= =

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ . 

This expression can be finally simplified using the definitions of the expected number of 
defaults in band j , jµ , and the expected total number of defaults in the portfolio, µ : 

 

( )
1

1

,

( ) exp 1

exp 1

( )

j

j

J

j
j

J
j

j

FIXED

G z z

z

G z

ν
λ

ν

λ

µ

µ
µ

µ

=

=

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
⎡ ⎤⎛ ⎞

= −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

≡

∑

∑  (10) 

Equation (10) defines the probability distribution of the total loss on the portfolio when 
default events are mutually independent, default probabilities are known with certainty, and 
Poisson distributions are used to approximate the distributions of individual default events.  
 

VI.   MODEL 3: THE MODEL WITH RANDOM DEFAULT PROBABILITIES 

In this section we present the full-fledged version of Credit Risk+. We do so by removing the 
assumptions used so far, that is, that the default probabilities are known with certainty, and 
that default events are unconditionally mutually independent. 
 
Instead, we assume that individual default probabilities are random, and are influenced by a 
common set of Gamma-distributed systematic risk factors. Consequently, the default events 
are assumed to be mutually independent only conditional on the realizations of the risk 
factors. Under these assumptions, the use of the Poisson approximation still allows us to 
obtain an analytical solution for the loss distribution. 
 
The alternative, using the Bernoulli defaults, would be to compute the loss distribution by 
Monte Carlo simulation. We provide an example of this procedure in Section XI, and report 
the results in Figure 4. 
 
Let us assume that there are K  risk factors indexed by k . Each factor k  is associated with a 
“sector” (an industry or a geographic zone, for example) and is represented by a random 
variable kγ . The probability distribution of kγ  is assumed to be a Gamma distribution with 
shape parameter 21/k kα σ= and scale parameter 2

k kβ σ= . Therefore, the mean and the 
variance are given by 

 
( )
( ) 2 2

1k k k

k k k k

E

Var

γ α β

γ α β σ

= ⋅ =

= ⋅ =
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The moment generating function (MGF) of kγ  is the function defined by: 

 ( ) ( ) ( ) ( )
21/2

, exp 1 1 kk

k k k kM z E z z z
σα

γ γ β σ
−−= ⋅ = − ⋅ = − ⋅⎡ ⎤⎣ ⎦ . 

 
The random variables kγ  are assumed to be mutually independent. In addition, the default 
probability of obligor n  is assumed to be given by the following model: 

 ,
1

K

n n k k n
k

p p ω
=

⎛ ⎞= γ⎜ ⎟
⎝ ⎠
∑ , (11) 

where np is the average default probability of obligor n , and ,k nω  is the share of obligor n ’s 
exposure in sector k (or the share of obligor n ’s debt that is exposed to factor k ) . 
According to this model, the default probability of obligor n  is a random variable with mean 

np . 
 
It is important to note that exposure to common risk factors introduces unconditional 
correlation between individual default events. Consequently, default events are no longer 
unconditionally mutually independent.7 However, individual default events—and therefore 
individual losses—are assumed to be mutually independent conditional on the set of factors 

( )1, , , ,k Kγ γ γ γ= K K .  
 
As in Sections IV and V, nD  is assumed to follow a Poisson distribution with intensity np , 
and the PGF of the individual normalized loss nλ is assumed to be 

 ( ) ( ), exp 1n
n nG z p zνλ

⎡ ⎤= −⎣ ⎦ . 

Using the multi-factor model for np  defined in equation (11), ( ),nG zλ can be written as 
follows: 
 

 
( ) ( )

( )

, ,
1

,
1

exp 1

exp 1

n

n

K

n n k k n
k

K

n k k n
k

G z p z

p z

ν
λ

ν

ω

ω

=

=

⎡ ⎤⎛ ⎞
= γ −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

⎡ ⎤= γ −⎣ ⎦

∑

∏
 

 
Let ( )G zλ γ  be the PGF of the total normalized loss, conditional on γ . Since individual 

losses are mutually independent conditional on γ , ( )G zλ γ  is simply the product of the 
individual loss PGF conditional on γ : 

                                                 
7 An approximate method for computing the correlation matrix of individual default events is 
presented in CSFP (1997). 
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( ) ( )

( )

( )

,
1

,
1 1

,
1 1

exp 1

exp 1

n

n

N

n
n

N K

n k k n
n k

N K

n k k n
n k

G z G z

p z

p z

λ λ

ν

ν

γ γ

ω

ω

=

= =

= =

=

⎡ ⎤= γ −⎣ ⎦

⎡ ⎤
= γ −⎢ ⎥⎣ ⎦

∏

∏∏

∑∑

 

If we define ( )kP z as: 

 ( ) ( ),
1

1n

N

k n k n
n

P z p zνω
=

= −∑ , (12) 

then ( )G zλ γ  can be written as 

 ( ) ( )
1

exp
K

k k
k

G z P zλ γ γ
=

⎡ ⎤= ⋅⎢ ⎥⎣ ⎦
∑ . 

 
Let Eγ denote the expectation operator under the probability distribution ofγ , and let 

,kEγ denote the expectation operator under the probability distribution of kγ . The 

unconditional PGF of the total normalized loss, denoted by ( )G zλ , is the expectation of 

( )G zλ γ underγ ’s probability distribution: 

 
( ) ( )

( )
1

exp
K

k k
k

G z E G z

E P z

λ γ λ

γ

γ

γ
=

⎡ ⎤= ⎣ ⎦
⎧ ⎫⎡ ⎤= ⋅⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

∑
 

 Define [ ]1( ) ( ), , ( ), , ( )k KP z P z P z P z= K K . Using the definition of the joint MGF of γ , 

M γ , we can write ( )G zλ  as follows: 

 ( ) ( ){ } ( )exp 'G z E P z M P zλ γ γγ= ⋅ =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . (13) 

It is important to note that this equation does not rely on the fact that the kγ s are mutually 
independent.  
 
Let us consider now a vector ( )1, , , ,k Kζ ζ ζ ζ= K K of auxiliary variables such that 
0 1kζ≤ <  for all 1, ,k K= K . The joint MGF of the vector γ  is given by: 

 ( ) ( ) ( )
1 1

exp ' exp exp
KK

k k k k
k k

M E E Eγ γ γ γζ ζ γ ζ γ ζ γ
= =

⎡ ⎤ ⎡ ⎤⎛ ⎞
= ⋅ = ⋅ = ⋅⎡ ⎤ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎣ ⎦

⎝ ⎠ ⎣ ⎦⎣ ⎦
∑ ∏ . (14) 

 
Recall that the MGF of kγ  is defined by: 

 ( ) ( ) ( )
21/2

, , exp 1 k

k k k k k k kM E
σ

γ γζ γ ζ σ ζ
−

= ⋅ = − ⋅⎡ ⎤⎣ ⎦ . 
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Since variables kγ  are mutually independent, ( )M γ ζ  can be rewritten as follows: 

 
( ) ( )

( )

,
1

,
1

exp
K

k k k
k

K

k k
k

M E

M

γ γ

γ

ζ ζ γ

ζ

=

=

= ⋅⎡ ⎤⎣ ⎦

=

∏

∏
 

 
Therefore, setting ( )k kP zζ = , ( )G zλ  is given by 

 
( ) ( )

( )
2

,
1

1/2

1

1 k

K

k k
k

K

k k
k

G z M P z

P z

λ γ

σ
σ

=

−

=

= ⎡ ⎤⎣ ⎦

⎡ ⎤= − ⋅⎣ ⎦

∏

∏
 (15) 

 
Equation (15) can be further transformed as follows: 

 ( ) ( )( ) ( ) ( )2
,2

1

1exp ln exp ln 1
K

k k CR
k k

G z G z P z G zλ λ λσ
σ +

=

⎧ ⎫
⎡ ⎤ ⎡ ⎤= = − − ⋅ ≡⎨ ⎬⎣ ⎦⎣ ⎦

⎩ ⎭
∑ . 

 
Hence, we obtained  the PGF of the total normalized loss on the portfolio for the Credit 
Risk+ model, ( ),CRG zλ + . It is worth noting that ( ),CRG zλ +  was obtained under the following 
assumptions: default probabilities are random; the factors that determine default probabilities 
are Gamma-distributed and mutually independent; and default events are mutually 
independent conditional on these factors.  
 

VII.   THE LATENT FACTORS ASSUMPTION 

In Credit Risk+ the factors kγ  are treated as latent variables. That is to say that the factors 
that influence the default probabilities are assumed to be unobservable. It is further assumed 
that the means and standard deviations of the default probabilities, as well as their 
sensitivities to the latent factors, are known or can be estimated without using observations of 
the factors kγ .  
 
The latent factors approach is required by the linear multi-factor model for the default 
probabilities (equation (11)). This model has the advantage of enabling the derivation of an 
analytical solution for the loss distribution. However, unlike a probit or logit model, this 
model has little empirical relevance, because it allows default probabilities to exceed 1 (albeit 
with very low probability). If equation (11)  were to be estimated using empirical 
observations of the factors kγ , it is likely that the default probabilities implied by the 
econometric model would often fall outside the interval [ ]0,1 . To avoid having to deal with 
unreasonable values for the default probabilities, instead of estimating equation (11) using 
observations of the factors kγ , these factors are treated as unobserved latent variables. 
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In Credit Risk+, the means of the latent factors can be normalized to one without loss of 
generality. As a result, the latent factors only play a role via their standard deviations after 
normalization ( ,  1, ,k k Kσ = K ), which can be estimated from the means, standard deviations 
and sensitivities of the default probabilities.  
 
Therefore, when Credit Risk+ is implemented in practice, the inputs of the model are: the 
mean individual default probabilities, denoted by ,  1, ,np n N= K ; the standard deviations of 
the individual default probabilities, denoted by ,  1, ,n n Nσ = K ; and the matrix of weights 

{ },  for k nω 1k K= K , 1n N= K ,  representing the exposure of each obligor n  to each factor 

k . Then, the kσ  are estimated from the nσ . 
 
Let us assume that some of the obligors in the portfolio are exposed to a single factor. For 
example, consider an obligor n  who is only exposed to factor κ : 

 ,

,

1,  
0,  

k n

k n

k
k

ω κ

ω κ

= =

= ≠
 

 
The default probability of this obligor is given by 
 n np p κγ= ⋅ . 
 
Therefore, 
 n np κσ σ= ⋅ . 
 
Note that this equation implies that the ratio n npσ is the same for all obligors such that 

, 1nκω = . Nevertheless, since this relationship holds for any obligor n  such that 1n
κω = , κσ  

can be computed from nσ  as follows 

 
, 1

1 n

nN pη
κ

κ
η ωκ

σσ
=

= ∑ , 

where Nκ  is the number of obligors such that , 1nκω = . In the case where all obligors are 
exposed to more than one factor, the original Credit Risk+ implementation uses weighted 
averages of nσ  to estimate kσ : 

 
, ,

1 1

,
1

1 1

with 

N N
n

k k n n k n n
n nk k n

N

k k n n
n

p
p

p

σσ ω σ ω
µ µ

µ ω

= =

=

= ⋅ = ⋅ ⋅

= ⋅

∑ ∑

∑
 (16) 

This expression is actually not consistent with the linear multi-factor model for individual 
default probabilities used in Credit Risk+, and it results in an underestimation of kσ .  
However, in practice, it gives reasonably accurate results, as it will be shown in Section XI. 
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An alternative is to use least squares to estimate kσ  from nσ . According to the multi-factor 
model for the default probabilities, 2

kσ s are solutions of the following linear system: 

 2 2 2
,

1

,  1, ,
K

n n k k n
k

p n Nσ σ ω
=

⎛ ⎞= ⋅ =⎜ ⎟
⎝ ⎠
∑ K . 

 
If N K≥ , then a solution to this system can be found using constrained least squares. 
However, there is no way to guarantee that 2

kσ , 1k K= K will all be strictly positive. The 
least squares method and the weighted average method are compared in Section XI. 
 

VIII.   MODEL 4: EXTENSION OF CREDIT RISK+ WITH CORRELATED FACTORS 

One of the limitations of Credit Risk+ is the assumption that the factors determining the 
default probabilities are mutually independent. In this section, following the approavh 
developed by Giese (2003), we allow for some form of correlation among factors. 
 
In Credit Risk+, the k -th factor kγ  follows a Gamma distribution with non-random shape 
and scale parameters ( kα and kβ , respectively). In other words, Credit Risk+ assumes that 
the means and variances of the kγ s are non-random. Giese (2003) introduces an additional 
factor, which will be denoted by Γ , that affects the distributions of all the kγ s, thereby 
introducing some correlation between the factors. Γ is assumed to follow a Gamma 
distribution with shape parameter 21/α σ= and scale parameter 2β σ= . Consequently, the 
mean and variance are given by 

 
( )
( ) 2 2

1E

Var

α β

α β σ

Γ = ⋅ =

Γ = ⋅ =
 

Now variables kγ  are assumed to be mutually independent conditional on Γ .  
 
The probability distribution of kγ  is still a Gamma distribution with shape parameter kα and 
scale parameter kβ . However, while kβ  is still constant, kα  is now a function of Γ , and 
hence a random variable, 
 k kα α= Γ⋅ , 
where kα is a constant.  
 
Let EΓ denote the expectation under Γ ’s distribution, and let ,kEγ  denote the expectation 
under kγ ’s distribution conditional on Γ . Similarly, let VarΓ denote the variance under Γ ’s 
distribution, and let ,kVarγ  denote the variance under kγ ’s distribution conditional on Γ . 
 
The expectation of kγ  conditional on Γ is given by: 

 ( ),k k k k k kEγ γ α β α βΓ = ⋅ = Γ ⋅ ⋅ . 
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The unconditional expectation of kγ is given by: 

 ( ) ( ) ( ) ( ),k k k k k k kE E E E Eγγ γ α β α βΓ Γ Γ⎡ ⎤= Γ = ⋅ = Γ ⋅ ⋅⎣ ⎦ . 
 
Since kα  and kβ  are not random, ( )kE γ  can be rewritten as follows: 

 ( ) ( )k k k k kE Eγ α β α βΓ= ⋅ ⋅ Γ = ⋅ . 
 
The unconditional expectation of kγ  is assumed, without loss of generality, to be equal to 1, 
so that 1/k kβ α= . The variance of kγ  conditional on Γ is given by 

 ( )2 2 2
, /k k k k k k k kVarγσ γ α β α β α= Γ = ⋅ = Γ ⋅ ⋅ = Γ . 

 
The unconditional variance of  kγ  is given by 

 

( ) ( ) ( )

( )

( ) ( )

, ,

2

1

k k k k k

k k
k

k k k k

Var E Var Var E

E Var

E Var

γ γγ γ γ

α β
α

β α β β σ

Γ Γ

Γ Γ

Γ Γ

⎡ ⎤ ⎡ ⎤= Γ + Γ⎣ ⎦ ⎣ ⎦
⎛ ⎞

= ⋅Γ + Γ ⋅ ⋅⎜ ⎟
⎝ ⎠

= ⋅ Γ + ⋅ ⋅ Γ = +

 

 
The unconditional covariance between any two factors kγ  and lγ  is given by 

 
( ) ( ) ( ) ( )

( ) ( ) ( ), ,

,k l k l k l

k l k l k l

Cov E E E

E E E Eγ

γ γ γ γ γ γ

γ γ γ γΓ

= ⋅ − ⋅

⎡ ⎤= ⋅ Γ − ⋅⎣ ⎦
 

 
Since kγ  and lγ  are independent conditional on Γ , this expression becomes: 

 

( ) ( ) ( ) ( ) ( )

( )
( ) ( )

, ,

2

2

,

1

1

k l k k k k k l

k k l l

k k l l

Cov E E E E E

E

Var E

γ γγ γ γ γ γ γ

α β α β

α β α β

Γ ⎡ ⎤= Γ ⋅ Γ − ⋅⎣ ⎦
⎡ ⎤= ⋅ ⋅ ⋅ ⋅ Γ −⎣ ⎦
⎡ ⎤= ⋅ ⋅ ⋅ ⋅ Γ + Γ −⎣ ⎦

 

Since 1k k l lα β α β⋅ = ⋅ = and ( )2 1E Γ = , the unconditional covariance between kγ  and lγ  is 
simply given by 
 ( ) 2, 0k lCov γ γ σ= > . 
 
Consider a vector ( )1, , , ,k KZ z z z= … … of auxiliary variables such that 0 1kz≤ <  for 

1, ,k K= K . The joint MGF of γ  is the function M γ defined by 

 ( )
1

exp
K

k k
k

M Z E zγ γΓ
=

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ . 

 
Using the properties of conditional expectations, ( )M Zγ  can be rewritten as follows: 
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 ( )
1

exp
K

k k
k

M Z E E zγ γ γΓ
=

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= Γ⎨ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∑ , 

 
where Eγ  is the expectation under γ ’s joint distribution. 
 
Since the kγ s are mutually independent conditional on Γ , ( )M Zγ  can be further rewritten 
as follows: 

 
( ) ( )

( )

,
1

,
1

exp |
K

k k k
k

K

k k
k

M Z E E z

E M z

γ γ

γ

γΓ
=

Γ
=

⎡ ⎤
= Γ⎡ ⎤⎢ ⎥⎣ ⎦

⎣ ⎦
⎡ ⎤

= Γ⎢ ⎥
⎣ ⎦

∏

∏
 

where ( ),kM γ ⋅ Γ  is the MGF of kγ conditional on Γ : 

 ( ) ( ) ( ) ( ), , exp 1 1k k

k k k k kM z E z z zα α
γ γ γ β β− −ΓΓ = ⎡ ⋅ Γ⎤ = − ⋅ = − ⋅⎣ ⎦ . 

( )M ZΓ  can now be rewritten as follows: 

 
( ) ( ) ( )

( ) ( )

, ,
11

1 1

exp log exp log

1exp ln 1 exp ln 1

K K

k k k k
kk

K K

k k k k k
k k k

M Z E M z E M z

E z E z

γ γ

α β β
β

Γ Γ Γ
==

Γ Γ
= =

⎧ ⎫⎛ ⎞ ⎧ ⎫⎡ ⎤ ⎛ ⎞⎪ ⎪ ⎡ ⎤= Γ = Γ⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦⎪ ⎪ ⎩ ⎭⎝ ⎠⎩ ⎭
⎧ ⎫⎡ ⎤⎧ ⎫⎡ ⎤ ⎪ ⎪= − Γ ⋅ ⋅ − ⋅ = −Γ ⋅ ⋅ − ⋅⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥⎣ ⎦ ⎪ ⎪⎩ ⎭ ⎣ ⎦⎩ ⎭

∑∏

∑ ∑
 

Define a new auxiliary variable t : 

 ( )
1

1 ln 1
K

k k
k k

t zβ
β=

= − ⋅ − ⋅∑ . 

Using t , ( )M Zγ can be rewritten as the MGF of Γ , denoted by MΓ : 

 ( ) ( ) ( ) ( )2
2

1exp ln 1M Z E t M t tγ σ
σΓ Γ= Γ ⋅ = = − − ⋅⎡ ⎤⎣ ⎦ . 

Replacing t  with its expression gives us the final expression for ( )M Zγ : 

 ( ) ( )2
2

1

1 1exp ln 1 ln 1
K

k k
k k

M Z zγ σ β
σ β=

⎧ ⎫⎡ ⎤⎪ ⎪= − + − ⋅⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑ . 

Recall equation (13) established in SectionVI: 
 ( ) ( )G z M P zλ γ= ⎡ ⎤⎣ ⎦  

This equation is still valid in the context of this section and, when M γ  is replaced with its 
new expression, it gives us the PGF of the total normalized loss in the model with correlated 
sectors 

 ( ) ( )( )2
,2

1

1 1exp ln 1 ln 1 ( )
K

k k CORR
k k

G z P z G zλ λσ β
σ β=

⎧ ⎫⎡ ⎤⎪ ⎪= − + − ⋅ ≡⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑ , 
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with: 

 ( ) ( )
1

1n

N
n

k n k
n

P z p zνω
=

= −∑ . 

 
IX.   MODEL SUMMARY 

In this section we provide a summary presentation for the loss distributions of the various 
models described so far. The following equations show the four expressions for the PGF of 
the normalized loss on the portfolio. Each expression corresponds to the PGF of a particular 
model. 

Model 1: ( ) ( ){ }, ,
1

N

B n
n

G z IFFT FFT G zλ λ
=

⎛ ⎞⎡ ⎤= ⎜ ⎟⎣ ⎦
⎝ ⎠
∏ . 

Model 2: ,
1

( ) exp 1j
J

j
FIXED

j

G z zνλ

µ
µ

µ=

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ . 

Model 3: ( )2
, 2

1

1( ) exp ln 1
K

CR k k
k k

G z P zλ σ
σ+

=

⎧ ⎫
⎡ ⎤= − − ⋅⎨ ⎬⎣ ⎦

⎩ ⎭
∑ . 

Model 4: ( )( )2
, 2

1

1 1( ) exp ln 1 ln 1
K

CORR k k
k k

G z P zλ σ β
σ β=

⎧ ⎫⎡ ⎤⎪ ⎪= − + − ⋅⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑ . 

 
• ( ),BG zλ  is the PGF of the normalized loss on the portfolio in the “basic” model with 

Bernoulli defaults events and non-random default probabilities; 

• , ( )FIXEDG zλ  is the PGF of the normalized loss on the portfolio in the model with fixed 
default probabilities as approximated by a Poisson distribution; 

• , ( )CRG zλ +  is the PGF of the normalized loss on the portfolio in the model with 
random probabilities and mutually independent factors—this is the Credit Risk+ 
model; 

• , ( )CORRG zλ  is the PGF of the normalized loss on the portfolio in the model with 
random probabilities and correlated factors—this is an extension of Credit Risk+ 
model. 

The basic model with Bernoulli defaults events and non-random default probabilities is the 
only one that does not rely on the Poisson approximation. Both ( ),BG zλ  and , ( )FIXEDG zλ  
were derived under the assumption that default probabilities are non-random. The Poisson 
approximation is the only source of discrepancies between the resulting loss distributions in 
these two models. Therefore, the accuracy of that approximation can be evaluated by 
comparing , ( )FIXEDG zλ  and ( ),BG zλ . 
 



 - 19 - 

X.   NUMERICAL IMPLEMENTATION 

In this section we discuss numerical issues that arise in the implementation of the models 
described above, and then we present two algorithms that address these problems. 
 
As explained in Section III, the PGF of the portfolio loss in the basic model with Bernoulli 
default events and fixed probabilities is a simple convolution of the individual loss PGFs. 
The models based on the Poisson approximation (including Credit Risk+) are  implemented 
using more sophisticated algorithms. 
 
The original algorithm proposed by CSFP (1997) to implement the Credit Risk+ model is 
based on a recursive formula known as the Panjer recursion.8 In the context of credit risk 
models, the usefulness of the Panjer recursion is limited by two numerical issues. Both issues 
arise from the fact that a computer does not have infinite precision. 
 
First, the Panjer recursion cannot deal with arbitrarily large numbers of obligors: as the 
expected number of defaults in the portfolio increases, the computation of the first term of 
the recursion becomes increasingly imprecise; and above a certain value for the expected 
number of defaults in the portfolio, the value found for the first term of the recursion 
becomes meaningless.9  
 
Second, the Panjer recursion is numerically unstable in the sense that numerical errors 
accumulate as more terms in the recursion are computed. This can result in significant errors 
in the upper-tail of the loss distribution, and hence, in the computation of the portfolio’s VaR. 
 
This section briefly presents two alternative algorithms that can be used to implement Credit 
Risk+ and the other models based on the Poisson approximation.10  
 
The first algorithm is an alternative recursive scheme introduced by Giese (2003). Haaf, Reis 
and Schoenmakers (2003) have shown that this algorithm is numerically stable, in the sense 
that precision errors are not propagated and amplified by the recursive formulas. This 
algorithm can provide a unified implementation of all versions of the model. However, like 
the Panjer recursion, this algorithm can fail for very large numbers of obligors. 
 
The second algorithm is due to Melchiori (2004). It is based on the Fast Fourier Transform 
(FFT), and it can deal with very large numbers of obligors. It can easily be applied to the 
model with non-random default probabilities, and to the model with random probabilities and 
uncorrelated factors. 

                                                 
8 See CSFP (1997). 

9 A criterion to determine whether the Panjer recursion can be applied is provided below. 

10 Gordy (2002) presents a third algorithm based on saddlepoint approximation of the loss distribution. That 
algorithm only computes the cumulative distribution function of the loss distribution—not the probability 
distribution function. Furthermore, it is much more accurate for large portfolios than for small ones. 
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A.   Alternative Recursive Scheme 

Recall the definition of the PGF of the total normalized loss on the portfolio: 

 ( ) ( )
0

x

x
G z P x zλ λ

∞

=

= = ⋅∑ . 

( )G zλ  is a polynomial function of the auxiliary variable z . The coefficients of this 
polynomial are the probabilities associated to all the possible values for λ .  
 
One way to implement a particular version of the model is to derive a polynomial 
representation for the corresponding version of ( )G zλ , and to compute the coefficients of 
that polynomial. 
 
Note that all three versions of ( )G zλ  derived using the Poisson approximation involve 
exponential and/or logarithmic transformations of polynomials in z .11 The first step in the 
computation of  , ( )FIXEDG zλ  is the computation of the coefficients of ( )lG z . Similarly, the 

first step in the computation of ( ),CRG zλ +  and ( ),CORRG zλ  is the computation of the 

coefficients of ( ) ,  for 1, ,kP z k K= K . Once these coefficients have been determined, 

exponential and logarithmic transformations of ( )lG z  and/or ( )kP z must be computed. 
 
Exponential and logarithmic transformations of polynomials can be computed using 
recursive formulas derived from the power series representations of the exponential and 
logarithm functions. 
 
Consider two polynomials of degree maxx  in z , ( )Q z and ( )R z : 

 
( )

( )

max

max

0

0

x
x

x
x

x
x

x
x

Q z q z

R z r z

=

=

= ⋅

= ⋅

∑

∑
 

 
If ( ) ( )expR z Q z= ⎡ ⎤⎣ ⎦ , the coefficients of ( )R z  can be computed using the following 
recursive formula: 

 
( )0 0

1

exp
m

m s m s
s

r q

sr q r
m −

=

=

= ⋅ ⋅∑
 

 

                                                 
11 See Section XI. 
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If ( ) ( )lnR z Q z= ⎡ ⎤⎣ ⎦ , the coefficients of ( )R z  can be computed using the following recursive 
formula: 

 
( )0 0

1

10

ln

1 m

m m s m s
s

r q

sr q q r
q m

−

−
=

=

⎡ ⎤= − ⋅ ⋅⎢ ⎥⎣ ⎦
∑

 

 
These recursive formulas can be used to compute the coefficients of , ( )FIXEDG zλ , ( ),CRG zλ +  

and ( ),CORRG zλ . 
 
This algorithm produces accurate results for portfolios such that: 

 max

1

750        1, ,
N

n
k n k

n

p k Kω µ
=

⋅ < ≈ =∑ K . (17) 

 
For example, if 5K = , 0.05np =  for all obligors, and , 0.2n kω =  for all obligors and all 
sectors, then the maximum number of obligors in the portfolio is approximately 75,000. 
 

B.   FFT-Based Algorithm 

To describe the FFT-based algorithm proposed by Melchiori (2004), we will use the PGF of 
the portfolio loss for the model with Poisson default events and non-random default 
probabilities: 

 ,
1

( ) exp 1j
J

j
FIXED

j
G z zνλ

µ
µ

µ=

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ . 

Define the function ( )lG z  as follows: 

 
1

( ) j
J

j
l

j

G z zν
µ
µ=

=∑ . 

Note that ( )lG z  can be interpreted as the PGF of a random variable l  such that: 

 ( ) j
j jP l

µ
ν π

µ
= = ≡ . 

Using the definition of ( )lG z , , ( )FIXEDG zλ  can be rewritten as follows: 

 [ ]{ }, ( ) exp ( ) 1FIXED lG z G zλ µ= − . (18) 
 
The characteristic function of a random variable X  is defined as : 
 ( ) ( ) ( )exp exp ,  0 1X X Xz E i X z G i z zΦ = ⋅ ⋅ = ⋅ ≤ <⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , 
 
where XE  is the expectation under X ’s probability distribution, and XG  is the PGF of X. 
 Using equation (18) and this definition, we obtain the following expression for the 
characteristic function of the normalized portfolio loss: 
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( ) ( )
( )( ){ }

( ){ }

, , exp

exp exp 1

exp 1

FIXED FIXED

l

l

z G i z

G i z

z

λ λ

µ

µ

Φ = ⋅⎡ ⎤⎣ ⎦

⎡ ⎤= ⋅ −⎣ ⎦

= Φ −⎡ ⎤⎣ ⎦

 (19) 

where ( )l zΦ  is the characteristic function of l . 
 
The characteristic function of a random variable can also be defined as the Fourier transform 
of its density. This fact and equation (19) suggest a simple and efficient algorithm for 
computing the portfolio loss distribution.  
 
Let Π  denote the vector of probabilities representing the distribution of λ , and let 

( )1, , , ,j Jπ π π π= K K  denote the vector of probabilities representing the distribution of l . Π  
can be computed as follows: 
 
 ( ){ }exp 1IFFT FFTµ π⎡ ⎤Π = −⎡ ⎤⎣ ⎦⎣ ⎦ , 

 
where FFT is the Fast Fourier Transform, and IFFT  is the Inverse Fast Fourier Transform. 
 
This algorithm can easily be extended to the model with random default probabilities and 
uncorrelated factors. It has been successfully applied to a portfolio containing 679,000 
obligors. 
 

XI.   NUMERICAL EXAMPLES USING THE CREDIT RISK TOOLBOX 

We have implemented in MATLAB all the models discussed in this paper. In this section, we 
present a short description of the capabilities of the toolbox, and then we offer some 
numerical examples. To illustrate the models presented in this paper, we use the same 
portfolio as in the Credit Risk+ demonstration spreadsheet from CSFP.12 This portfolio is 
presented in Table 1. 
 
In order to run the basic model with fixed probabilities, whether the distribution of the 
default events is assumed to be Bernoulli or Poisson, one needs to have a set of individual 
exposures and a set of individual default probabilities.13 These correspond to the first two 
columns in Table 1. If data are only available in aggregate form for different classes of 
obligors, the programs can still be used by making additional assumptions. For example, 
obligors can be classified according to exposure, rating, or type (corporate vs. individual, for 

                                                 
12 See http://www.csfb.com/institutional/research/credit_risk.shtml. 

13 There are three main approaches to estimating the probabilities of default. One approach is to use historical 
frequencies of default events for different classes of obligors in order to infer the probability of default for each 
class. Alternatively, econometric models such as logit and probit could be used to estimate probabilities of 
default. Finally, when available, one could use probabilities implied by market rates and spreads. 

http://www.csfb.com/institutional/research/credit_risk.shtml
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instance). When the average exposure and the average default probability are the only data 
available in each class, then the program assumes that all obligors in a given class have the 
same exposure and the same default probability. Computation time for the model with 
Bernoulli default events and fixed probabilities is determined by three variables: the number 
of obligors, the total normalized exposure, and the granularity of the exposure bands. The last 
two factors can be adjusted to reduce computation time, at the expense of accuracy. 
Generally speaking, the convolution can be efficiently computed in MATLAB as long as the 
number of obligors does not exceed a few thousands. This model has the advantage of being 
the most accurate when the default probabilities can be treated as non-random. As it will be 
shown later on in this section, this is an important consideration when the default 
probabilities are relatively high. The model of Section V with fixed probabilities and Poisson 
default events has been implemented using both algorithms presented in Section X. 
 
When running the Credit Risk+ model as described in Sections VI and VII, one needs to have 
available the mean individual default probabilities, the standard deviations of the individual 
default probabilities, and the matrix of weights, representing the exposure of each obligor n  
to each factor k . As mentioned above, if individual data are not available, the programs can 
use aggregate data for different classes of obligors by making additional assumptions. Credit 
Risk+ has also been implemented using both algorithms presented in Section X.  
 
When running the Credit Risk+ model with its extension as described in SectionVIII, in 
addition to the data required to implement Credit Risk+, this model requires a value for the 
inter-sector covariance. Thus, one needs to have available the mean individual default 
probabilities, the standard deviations of the individual default probabilities, the matrix of 
weights, and a value for the inter-sector covariance. As mentioned above, if individual data 
are not available, the programs can use aggregate data for different classes of obligors by 
making additional assumptions. The model with correlated factors of Section VIII has been 
implemented using the numerically stable recursive algorithm. Consequently, it presents a 
limitation on the total number of obligors it can handle.14 
 

                                                 
14 See Section X, subsection A for more details. 
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Table 1. Credit Swiss Financial Product Reference Portfolio 
 

(In percent) 
 

Factor weights 
 

Obligor 
exposure 

Mean 
Default rate 

Standard 
deviation of 
default rate Sector 1 Sector 2 Sector3 Sector4 Total 

358,475 30.00 15.00 50 30 10 10 100 
1,089,819 30.00 15.00 25 25 25 25 100 
1,799,710 10.00 5.00 25 25 20 30 100 
1,933,116 15.00 7.50 75 5 10 10 100 
2,317,327 15.00 7.50 50 10 10 30 100 
2,410,929 15.00 7.50 50 20 10 20 100 
2,652,184 30.00 15.00 25 10 10 55 100 
2,957,685 15.00 7.50 25 25 20 30 100 
3,137,989 5.00 2.50 25 25 25 25 100 
3,204,044 5.00 2.50 75 10 5 10 100 
4,727,724 1.50 0.75 50 10 10 30 100 
4,830,517 5.00 2.50 50 20 10 20 100 
4,912,097 5.00 2.50 25 25 25 25 100 
4,928,989 30.00 15.00 25 10 10 55 100 
5,042,312 10.00 5.00 25 25 30 20 100 
5,320,364 7.50 3.75 75 10 5 10 100 
5,435,457 5.00 2.50 50 20 10 20 100 
5,517,586 3.00 1.50 50 10 10 30 100 
5,764,596 7.50 3.75 25 25 20 30 100 
5,847,845 3.00 1.50 25 10 10 55 100 
6,466,533 30.00 15.00 25 25 20 30 100 
6,480,322 30.00 15.00 75 10 5 10 100 
7,727,651 1.60 0.80 25 25 20 30 100 

15,410,906 10.00 5.00 50 20 10 20 100 
20,238,895 7.50 3.75 75 10 10 5 100 
 
 
The exposures in Table 1 correspond to the nE s in this paper; the mean default rates 
correspond to np  in the case with non-random default probabilities, and to np  in the case 
with random default probabilities; the standard deviations correspond to the values of nσ  in 
the models with random probabilities.  
 
The toolbox treats the factors as latent variables and the values for kσ  are estimated from the 
values of nσ . Two estimation methods are compared: least squares (LS) on one hand, and the 
weighted averages used by CSFP on the other hand. 
 
The standard deviations and the sector weights are only required to implement the models 
with random default probabilities; the models with non-random default probabilities only use 
the exposures and the mean default probabilities. Also, in general, individual exposures and 
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default probabilities are not required to run the model; aggregate data per class of obligor can 
be used instead by making additional assumptions. 
 
The loss distribution for the CSFP sample portfolio has been computed using four models. 
The assumptions underlying these models are summarized in Table 2. 

Table 2. Summary of the Assumptions Used in the Different Models 
 

Model Default 
events 

Default 
probabilities 

Correlated 
factors 

Latent 
factors 

2
kσ  

estimation 
method 

1 Bernoulli Fixed N/A N/A N/A 
2 Poisson Fixed N/A N/A N/A 
3a Poisson Random No Yes Averages 
3b Poisson Random No Yes LS 
4 Poisson Random Yes Yes Averages 

 
 
Model 3 is CSFP’s Credit Risk+. By default, the CSFP implementation treats sector 1 as a 
special sector representing diversifiable idiosyncratic risk. This cannot be done in the model 
with correlated factors. Therefore, all the models discussed in this section treat sector 1 as a 
regular sector (which is also an option in CSFP’s Credit Risk+). 
 
The portfolio loss distribution was also computed by Monte Carlo simulation under the 
following assumptions: Bernoulli default events, random default probabilities, and 
independent Gamma-distributed factors, with 2

kσ s estimated by least squares. 
 
This loss distribution computed by Monte Carlo simulation constitutes a benchmark. It can 
be used to assess the impact of the Poisson approximation and of the 2

kσ  estimation method 
on the models’ accuracy. 
 

A.   Effects of Poisson Approximation: Non-Random Default Probabilities  

To assess the impact of the Poisson approximation, we first compare models 1 and 2. The 
only difference between these two models is the distribution of default events: Bernoulli for 
model 1, Poisson for model 2. Figure 1 and Figure 2 present the portfolio’s loss distributions 
for these two models, and the VaR at the 99 percent level for each model. 
 
The VaR is 8.67 percent larger in the model with Poisson defaults than in the model with 
Bernoulli defaults. This is the error introduced by the Poisson approximation for this 
particular portfolio with 25 obligors and with default probabilities ranging from 3 percent to 
30 percent. 
 
The Poisson approximation generally results in an overestimation of the VaR. This result has 
been observed for portfolios with very different structures.  
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Figure 1. Model 1: Fixed Probabilities, Bernoulli Defaults 

 
Figure 2. Model 2: Fixed Probabilities, Poisson Defaults 

 
An additional numerical experiment was performed to illustrate the relationship between the 
magnitude of the default probabilities and the error due to the Poisson approximation. This 
experiment uses the same exposures as in the CSFP portfolio, but it assumes that all obligors 
have the same default probability. The ratio between the bVaR , when the defaults are 
assumed to follow a Bernoulli distribution, and the pVaR , when the defaults are assumed to 
follow a Poisson distribution, ( b pVaR VaR ), is computed for multiple values of the common 
default probability, ranging from 1 to 30 percent. The results of this experiment are presented 
in Figure 3. One can see that b pVaR VaR  decreases steadily from 1 to 0.86 as the common 
default probability increases from 1 to 30 percent. In other words, as could be expected from 
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the derivation of the Poisson approximation, the error due to this approximation increases 
with the magnitude of the default probability. 
 

Figure 3. Ratio of Bernoulli VaR to Poisson VaR for CSFP Portfolio 

 
 

B.   Random Default Probabilities, Uncorrelated Factors 

This section compares the loss distributions for models 3a and 3b to the loss distribution 
computed by Monte Carlo simulation. 
 
Models 3a and 3b only differ by the method used to estimate the kσ s: model 3a uses the 
CSFP weighted average; model 3b uses least squares. With CSFP’s portfolio, the 2

kσ s 
estimated by least squares are all strictly positive. Both models assume Poisson default 
events and random default probabilities driven by Gamma distributed factors.  
 
The Monte Carlo simulation was used to estimate the loss distribution of a model with 
random default probabilities driven by Gamma-distributed factors, but with Bernoulli 
default-events. The Monte Carlo simulation was required because there is no analytical 
solution for the loss distribution when Bernoulli defaults are combined with random default 
probabilities.  
 
To perform the Monte Carlo simulation, the kσ s were estimated from the nσ s using least 
squares. 5000 random draws of the kγ s were then performed to determine the np s. For each 
set of kγ s, 5000 random draws of the nD s (the Bernoulli random variables representing 
default events) were then generated. Therefore, overall, 25 million random combinations 
were used for the Monte Carlo simulation. The loss distribution computed by Monte Carlo 
simulation is presented in Figure 4. The loss distributions for models 3a and 3b are presented 
in Figures 5 and 6, respectively. 
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Figure 4. Bernoulli Defaults, Random Probabilities, Monte Carlo Simulation 

 
 

Figure 5. Model 3a: Poisson Defaults, Uncorrelated Factors, Weighted Average 
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Figure 6. Model 3b: Poisson Defaults, Uncorrelated Factors, Least Squares 

 
The VaR for model 3b is 9 percent higher than the VaR computed by Monte Carlo 
simulation. This is more evidence of the fact that the Poisson estimation results in an 
overestimation of the VaR: the only difference between model 3 and the model used for the 
Monte Carlo simulations is the distribution of default events. 
 
The VaR in model 3a (which does not use a rigorous method to estimate the nσ s) is only 1 
percent higher than the VaR computed by Monte Carlo simulation. This result is actually not 
surprising. Using weighted averages of the nσ s to estimate the kσ s leads to an 
underestimation of the kσ s, and hence, to an underestimation of the VaR. However, this 
underestimation partially offsets the overestimation resulting from the Poisson 
approximation. Overall, using the simple method suggested by CSFP to estimate the kσ s 
gives a value for the VaR that is very close to the value computed by Monte Carlo 
simulation. 
 
Note that the VaR is higher in all the models with random default probabilities than in the 
models with non-random probabilities. This reflects the additional risk resulting from the 
uncertainty concerning the default probabilities. 

 
C.   Random Default Probabilities, Correlated Factors 

In this section we present the portfolio loss distribution computed using model 4, that is, 
using the model with random default probabilities and correlated factors described in Section 
VIII. 
 
The only difference between model 4 and model 3a is the presence of the common factor Γ . 
This common factor affects the distributions of the kγ s. In particular, it introduces some 
correlation between these factors. 
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The portfolio loss distribution was computed for two different values of the variance of Γ  
(which is also the covariance between any two factors): 0.1 and 0.2. The results of these 
numerical experiments are presented in Figure 7 and Figure 8. 
 
Not surprisingly, the VaR is higher in model 4 than in model 3a, and it increases with the 
variance of Γ . This reflects the additional risk of incurring a large loss resulting from the 
positive inter-sector correlation, as well as the increased uncertainty concerning the default 
probabilities. 
 

Figure 7. Model 4: Correlated Sectors, Inter-Sector Covariance = 0.1 

 
Figure 8. Model 4: Correlated Sectors, Inter-Sector Covariance = 0.2 
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XII.   CONCLUSION 

Each of the models presented here has specific features that make it useful in a particular 
situation. The basic model with known probabilities and Bernoulli-distributed default events 
is useful when there is little uncertainty concerning default probabilities, when default 
probabilities are relatively high, and when the portfolio does not contain more than a few 
thousand obligors.  
 
At the cost of some approximations, Credit Risk+ and its extensions provide quasi-
instantaneous solutions—even for very large portfolios—when default probabilities are 
influenced by a number of random latent factors. The alternative to using these models is to 
perform time-consuming Monte Carlo simulations. For our sample portfolio, the results of 
Credit Risk+ are very close to those of Monte Carlo simulations, even though this portfolio 
only contains 25 obligors with default probabilities as high as 30 percent. 
 
Therefore, this paper provides a toolbox that can be used in the Financial Sector Assesment 
Program to determine several credit risk measures, including expected losses and credit VaR. 
The latter is the fundamental risk measure used to determine the economic capital required 
by a certain portfolio. This measure will play an increasingly important role in the Basel II 
framework to be used in the IMF’s surveillance activities. In fact, in the future, the IMF will 
increasingly face the need to understand how the gap between regulatory and economic 
capital could be bridged. The instruments presented in this paper add a rigorous quantitative 
dimension to this process. 
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PROBABILITY AND MOMENT GENERATING FUNCTIONS 

 
Consider a discrete random variable X that can take non-negative integer values. The 
Probability Generating Function (PGF) of X is the function XG  defined by 

 ( ) ( )
0

( ) x x
X

x
G z E z P X x z

∞

=

= = = ⋅∑ , 

with 0 1z≤ < ,if z is real, and 1z < , if z is complex. ( )XG z  is simply a polynomial whose 
coefficients are given by the probability distribution of X . A PGF uniquely identifies a 
probability distribution: if two probability distributions have the same PGF, then they are 
identical. 
 
Consider a second discrete random variable Y  that can take non-negative integer values. If 
X and Y are independent, then the PGF of X Y+ is given by 
 ( ) ( ) ( )X Y X YG z G z G z+ = ⋅ . 
The Moment Generating Function (MGF) of X is the function defined by 

 ( ) ( ) ( )
0

zX zX
X

x
M z E e P X x e

∞

=

= = = ⋅∑ . 

As its name indicates, the MGF of X can be used to compute the moments of X . The m -th 
moment of X about the origin is given by the m -th derivative of XM valued at 0 . This 

implies in particular that ( ) ( )' 0XE X M= and ( ) ( ) ( ) 2'' '0 0X XVar X M M⎡ ⎤= − ⎣ ⎦ . 
 
The joint MGF of two random variables X and Y is defined as: 
 ( ) ( )1 2

, 1 2, z X z Y
X YM z z E e ⋅ + ⋅= , 

where 1z  and 2z  are two auxiliary variables with the same properties as z . 
If X and Y are two independent random variables, then the MGF of X Y+ is given by 
 ( ) ( ) ( )X Y X YM z M z M z+ = ⋅ , 
and the joint MGF of X and Y becomes: 
 ( ) ( ) ( ) ( ) ( )1 2

, 1 2 1 2, z X z Y
X Y X YM z z E e E e M z M z⋅ ⋅= ⋅ = ⋅ . 

If 1 2z z= , then ( ) ( ), 1 2,X Y X YM z z M z+= . 
 



 

 

 
References 

 
Austrian Financial Market Authority and Oesterreichische Nationalbank, 2004, “New 

Quantitative Models of Banking Supervision,” Vienna. 
 
Crouhy, Michel, Dan Galai and Robert Mark, 2000, “A Comparative Analysis of Current 

Credit Risk Models,” Journal of Banking & Finance, Vol. 24, pp. 59–117. 
 
CSFP, 1997, “Credit Risk+: A Credit Risk Management Framework,” Credit Suisse First  

Boston. 
 
Giese, Gotz, 2003, “Enhancing Credit Risk+,” Risk, Vol. 16, No. 4, pp. 73–77. 
 
Gordy, Michael B., 2002, “Saddlepoint Approximation of Credit Risk+,” Journal of Banking 

and Finance, 26, pp. 1335–1353. 
 
Haaf, Hermann, Oliver Reiss and John Schoenmakers, 2003, “Numerically Stable 

Computation of Credit Risk+,” working paper, Weierstrass Institute, Berlin. 
 
Koyluoglu, H. Ugur and Andrew Hickman, 1998, “A Generalized Framework for Credit Risk 

Portfolio Models,” unpublished working paper. 
 
Melchiori, Mario R., 2004, “Credit Risk+ by FFT,” working paper, Universidad Nacional 
            del Litoral, Santa Fe, Argentina  

- 33 -




