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I Introduction

As a method of dealing with model uncertainty, Bayesian Model Averaging (BMA) has
received considerable attention – ever since Raftery (1995) and Hoeting et al. (1999) demon-
strated that inference neglecting model uncertainty leads to overstated confidence in statis-
tical estimates. BMA, in contrast, tackles model uncertainty directly by basing inference
on a weighted average of all potential covariate combinations. In the Bayesian framework,
these weights arise naturally as posterior model probabilities (PMP), akin to the classical
likelihood concept. The PMP for model Ms conditional on data (y,X) is proportional to its
marginal likelihood p(y|Ms, X) times a model prior p(Ms):

p(Ms|y,X) ∝ p(y|Ms, X)p(Ms)

Relying on this framework, numerous authors (e.g. Raftery 1995, Fernández et al. 2001a,
Liang et al. 2008) have demonstrated that BMA outperforms other strategies in terms of
predictive ability. Virtually all of them have so far concentrated on linear models with
model-specific inference based on the natural-conjugate Normal-Gamma framework with
Zellner’s g prior (Zellner, 1986). This approach aims to represent the lack of prior knowledge

by employing a conditional prior on model coefficients β|σ2 ∼ N
(
0, gσ2

(
X ′X

)−1)
that is

partly determined by the scalar hyperparameter g.

The g prior structure has proven universally popular in BMA, since it leads to simple closed
form expressions of posterior statistics and because it reduces prior elicitation to the choice
of a single hyperparameter g. This applies in particular to the resulting marginal likelihood
p(y|Ms, X):1

p(y|Ms, X) ∝ (1 + g)−
ks
2

(
1− g

1+g
R2
s

)−N−1
2 (1)

The elicitation of g is subject to intense debate (e.g. Liang et al. (2008), Hoeting et al. (1999),
Fernández et al. (2001a), Eicher et al. (2009)) and constitutes the focus of the present paper.
So far, literature has discussed the optimal choice of g practically by Monte Carlo simula-
tions, and theoretically by tuning g according to two considerations: First, it focused on
consistency, i.e. the choice of g such that BMA asymptotically uncovers ’the true model’.
Second, the specification of g was studied in terms of its virtues as a model size penalty term
to favor parsimonious models. In this respect, Fernández et al. (2001a) as well as Foster and
George (1994) demonstrate how g can be calibrated to asymptotically mimic popular infor-
mation criteria such as RIC or BIC by adjusting g to their respective model size penalties.

These studies were motivated by asymptotic consistency (as mentioned above), which focuses
on a unique ’true’ model and requires only a g increasing with N . However from a Bayesian
viewpoint, many models might be ’true’, in the sense that they are generating the data
examined.2 In this case, the quest for asymptotic consistency is analytically less clear-cut.

1Here, R2
s denotes the OLS R-squared of model Ms, and (N, ks) the dimensions of its design matrix.

2Therefore, practitioners employing BMA focus much more on model-wise marginal distributions, such
as posterior inclusion probabilities or posterior beta distributions.



4

The virtues of the different g elicitation mechanisms have been subject to debate – however
the use of a constant hyperparameter g as such has been less frequently criticized.

Considered from the perspective of an applied researcher, the practical advantages of Zell-
ner’s g that render it ubiquitous in BMA come at a serious cost: g exerts non-negligible
influence on posterior inference since it governs how posterior mass is spread over the mod-
els. Larger values of g incite posterior mass to concentrate on fewer models, whereas smaller
values of g spread PMPs more evenly, irrespective of model sizes and their penalty terms.
Posterior statistics, and in particular PMP and posterior inclusion probabilities (PIP) are
thus notoriously sensitive to the value of the g prior. In other words, the researcher’s prior
on g plays a considerable role in determining how much posterior mass is attributed to a
few, or the single best performing model – regardless whether these have been generating
the data. Henceforth, we will refer to this concentration of posterior mass on a few models
as the supermodel effect. While crucial in terms of prior sensitivity, this effect went more
or less unnoticed in the focus on consistency as in Fernández et al. (2001a): Focusing on
uncovering a single ’true’ model in Monte Carlo simulations, previous studies longed for set-
tings ascribing the bulk of posterior mass to this data-generating model – a job facilitated
by choosing large values for g.

In our view, the earnest approach in tackling the issue is the introduction of a nondegener-
ate prior distribution on g, and thus ’let the data choose’. Only few papers have attempted
this so far: among them are Cui and George (2008), Strachan and van Dijk (2004), Liang
et al. (2008), with the latter being probably the most comprehensive contribution. Thus we
propose using a hyperprior distribution on g in the vein of Liang et al. (2008). The advan-
tages of a hyperprior are fivefold: First, it greatly reduces the g prior sensitivity of posterior
mass. Second, it does so by adjusting the posterior distribution of g such that it reflects
the data’s signal-to-noise ratio, by shrinking the estimated coefficients more toward zero in
noisier data sets.3 Thus the hyper-g prior allows for data dependent shrinkage, in contrast
to prior structures fixing g to some constant. Third, it still leaves ample space for the re-
searcher to formulate her prior beliefs, but without incurring the risk of unwantedly affecting
posterior statistics. Fourth it is computationally feasible and addresses the same theoretical
considerations complying with asymptotic consistency as does the standard setting. Finally,
the hyper-g prior is not exposed to the aforementioned supermodel effect a priori. It adjusts
the distribution of posterior mass in dependence of the information provided by the data.
Thus if noise dominates the data, PMPs under the hyper-g prior will be distributed more
evenly, whereas in the case of minor noise, posterior mass will be concentrated even more as
in fixed settings that impose large values for g.

In this sense, we complement the contribution of Liang et al. (2008) by providing further
closed-form representations for important posterior quantities. Additionally, we present an-
alytical expressions that allow for a sound numerical implementation in terms of accuracy.
Furthermore we demonstrate the behavior of several prominent prior structures such as the
benchmark prior put forward by Fernández et al. (2001a) under a typical situation where
the data generating process cannot be traced back to one specific model. Our results show
that under noisy data the hyper-g prior dilutes the posterior mass among models whereas
the benchmark prior incorrectly favors one (wrong) model. By means of a simulation study

3i.e. by up- or downweighting the prior beliefs on coefficients β.
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we examine the predictive properties of various settings for g indicating superior predictive
ability for the hyper-g prior under varying signal-to-noise ratios.

The remainder of this study is organized as follows: the next section briefly summarizes
Bayesian model averaging under the natural conjugate framework employing Zellner’s g prior
and reviews the prior settings that have resurfaced most often in the literature so far. Section
III introduces the hyper-g prior and outlines derivations of further posterior quantities as
well as an implementation strategy being of practical relevance. Section IV examines the
supermodel effect inherent to traditional priors and highlights the predictive performance of
flexible priors based on a simulation study. The following section demonstrates the sensitivity
of posterior results to the choice of g by means of an empirical application to a prominent
growth data set. Section VI concludes the paper.

II Bayesian Model Averaging under Zellner’s g Prior

Consider the canonical regression problem of sample size N with the dependent variable in
the N×1 vector y, Xs an N×ks design matrix of covariates, and ε an N -dimensional vector
of residuals in the following, linear model Ms:

y = 1αs +Xsβs + ε

Here α denotes the (scalar) intercept, and the k×1-vector βs the nonzero regression coeffi-
cients. The residuals are assumed to be identically independently normally distributed with
variance σ2, i.e. ε ∼ N(0, σ2I). Note that Xs can be assumed to be centered (X ′s1 = 0)
without loss of generality, as this will only affect the posterior distribution of the constant
αs (Liang et al., 2008, p.412). Bayesian Model Averaging deals with uncertainty about the
model Ms by drawing on the model-specific inference presented above. In the generic lin-
ear BMA problem, model uncertainty focuses on the choice of covariates Xs, which may be
drawn from a set of K potential regressors. Thus there exist 2K unique covariate combina-
tions, as represented by the model candidate space M = {M1,M2, . . . ,M2K} (cf. Hoeting
et al. 1999 for a more detailed account).

The Bayesian framework calls for specifying a prior distribution on the model’s parameters
α, βs, and σ2. The bulk of the BMA literature (Raftery, 1995; Chipman et al., 2001),
favors the natural-conjugate approach, which puts a conditionally normal prior on coefficients
(βs|σ2,Ms) ∼ N(β

s
, σ2V s), where β

s
and V s represent hyperparameters.

With respect to the two other parameters, we depart from earlier tradition and follow Fer-
nández et al. (2001a), who proposed improper priors on α and σ: Let p(α) ∝ 1, which
corresponds best to a complete lack of prior information on the constant. Moreover, put an
equally uninformative prior on p(σ) ∝ σ−1, which (in contrast to the traditional Gamma-
priors) offers the additional advantage of being invariant under scale transformations (Fer-
nández et al., 2001a, p. 391). The popularity of this prior structure is due to its closed-form
solutions for posterior distributions, which allows for efficient coding with respect to large-
scale model selection. Most notably, employing Bayes’ Theorem via

p(βs|y,Xs,Ms) =

∫ ∞
0

p(βs|Ms, y,Xs, σ
2)dp(σ2)
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yields the posterior distribution of β as ks-variate Student-t distribution whose variance

structure is primarily shaped by the expression
(
V −1
s +X ′sXs

)−1
.

The above framework requires explicit formulation of β
s

and V s, the prior hyperparameters

on β|σ2 – which is difficult to elicit given the many combinations possible in model selection
problems. Virtually all linear BMA applications have thus opted for a common uninformative
prior centered at zero, with the variance structure given by Zellner’s g prior, i.e. V s =
g(Xs

′Xs)
−1 (Zellner, 1986). It thus assumes the prior covariance to be proportional to the

posterior covariance expression (X ′sXs)
−1 that arises from the sample, with the scalar g

determining how much importance is attributed to the prior precision V −1
s . Apart from

offering computational efficiency, Zellner’s g thus reduces the elicitation of the covariance
structure to simply choosing the scalar g. The conditional prior on the coefficients

βs|σ2,Ms, g ∼ N
(
0, σ2g(X ′sXs)

−1
)

simplifies the posterior distribution of β such that it follows a k−variate student-t distribution
with the following density function (for N > 2):

p(βs|y,Xs,Ms, g) =
Γ(N−1+ks

2 )

Γ(N−1
2 )
(

(N−1)π
) ks

2

∣∣Σ∣∣− 1
2×

×
(

1 + 1
N−1

(βs − g
1+g

β̂s)
′Σ−1

s (βs − g
1+g

β̂s)
)−N−1+ks

2
(2)

where Σs =
y̆′y̆

N − 1

(
1− g

1+g
R2
s

)
g

1+g

(
X ′sXs)

−1

Here, y̆ = y − 1ȳ is the centered response vector, β̂s the OLS estimator of the coefficient
vector, and R2

s the OLS R-squared of model Ms. Apart from simplifying the posterior
covariance of βs, g also affects its expected value E(βs|y,X,Ms, g) = g

1+g
β̂s which becomes

a convex combination of its OLS estimator and the prior expected value (zero). Note that
the value of the shrinkage factor g

1+g
thus determines the importance of the prior expected

value E(βs) = 0 with respect to the sample estimates.

Furthermore, Zellner’s g yields a simple expression for the marginal likelihood of Ms:
4

p(y|Ms, g) =

∫ ∞
0

∫
B

p(y|βs, σ2,Ms)p(βs, σ
2|g)dβdσ ∝ (y̆′y̆)−

N−1
2 (1 + g)−

ks
2

(
1− g

1+g
R2
s

)−N−1
2

(3)

with B denoting the parameter space of the β-coefficient vector. The Bayesian framework
further calls for defining prior model probabilities p(Mj) for all models contained in the
model space j ∈ {1, 2, . . . , 2K}. While advocates of purism may call for subjective prior
specification of p(Ms), the sheer number of model candidates renders this virtue infeasible.
Consequently, most authors have relied on the uniform model prior p(Ms) = 2−K , whereas
several (Ley and Steel, 2009; Brown et al., 1998; Sala-i-Martin et al., 2004) have proposed

4Note that although the term (y̆′y̆)−
N−1

2 is constant over models, it is frequently included in the marginal
likelihood expression, such as in Fernández et al. (2001a) – while others, such as Liang et al. (2008) omit it.
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to specify model priors in dependence of average model size ks, typically in such a way that
prior elicitation is reduced to choosing the prior expected model size. The beta-binomial
model prior put forward by Ley and Steel (2009) falls into this category,5 and we will rely
on it in the latter part of our study.

Given the prior model probabilities we can calculate the posterior model probabilities p(Ms|y,X, g)
conditional on (y,X, g) serving as the model weights in Bayesian model averaging:

p(Ms|y,X, g) =
p(y|Ms, X, g)p(Ms)

p(y|X)
=

p(y|Ms, X, g)p(Ms)∑2K

j=1 p(y|Mj, X, g)p(Mj)

The key component constituting the PMP is the marginal (or integrated) likelihood p(y|Ms, X).
The Bayes factor (i.e. the ratio of the marginal likelihoods for two competing models) allows
for comparing any two models Ms and Mj by assessing their relative weights:

B(Ms : Mj) ≡
p(y|X,Ms, g)

p(y|X,Mj, g)
= (1 + g)

kj−ks

2

(
1− g

1+g
R2
s

1− g
1+g

R2
j

)−N−1
2

︸ ︷︷ ︸
Dsj

(4)

Multiplied by the prior odds, it yields the posterior odds p(y|Ms, X, g)/p(y|Mj, X, g) =
B(Ms : Mj)p(Ms)/p(Mj). Consequently, the posterior model probability given by the prod-
uct of (3) and the model prior may be expressed as the (nested) Bayes factor with respect
to the null model M0 (times a model prior):

p(Ms|y,X) ∝ (y̆′y̆)−
N−1

2 (1 + g)−
ks
2

(
1− g

1+g
R2
s

)−N−1
2 p(Ms) ∝ B(Ms : M0)p(Ms) (5)

Finally, model averaging comes into play as the marginal posterior distribution of any statis-
tic θ may be obtained as a mixture over posterior model probabilities:

p(θ|y,X) =
2K∑
j=1

p(θ|y,X,Mj)p(Mj|y,X)

This property is particularly useful in computing the posterior moments of the coefficient
vector β as a weighted average over all models.6 Likewise, posterior inclusion probabili-
ties, popular for assessing the importance of single covariates, are obtained as the sum of
probabilities for all models in which the covariate is included.

II.1 Popular Settings for Zellner’s g

In view of equation (5), BMA inference thus hinges on posterior model probabilities and,
in turn, on model priors p(Ms) and marginal likelihoods p(y|Ms, X) (and thus the hyperpa-
rameter g). Since the employed beta-binomial model prior already offers a sound statistical

5Please consult the technical appendix for further details.
6Note that we have retained the improper priors for α and σ as common to all models.
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framework that aims at minimizing the impact of prior arbitrariness on posterior inference
we consequently focus on the characteristics of the prior choice on g.

With respect to the marginal likelihood p(y|Ms, Xs), the discussion has concentrated on the
elicitation of g, with two predominant considerations:

� Consistency: The choice of g such that posterior model probabilities asymptotically
uncover ’the true model’ MT , i.e. p(MT |Y )→ 1 as N →∞

� The importance of g as a penalty term enforcing parameter parsimony (the factor

(1 + g)
kj−ks

2 in (4))

Both issues have already been treated in the classical paper by Fernández et al. (2001a): With
respect to consistency, they prove that a choice of g = w(N) such that limN→∞w(N) = ∞
and limN→∞

w′(N)
w(N)

= 0 ensures consistency as it was mentioned above.

Still, consistency leaves open the exact specification of g, and over the course of more than
a decade, various ’automatic’ or ’default’ specifications have been put forward that typically
specify g in dependence of sample size. Mostly, their theoretical foundations build on the
penalty term (1+g)−

ks
2 in (5) and aim at asymptotically mimicking popular information cri-

teria such as the BIC (cf. for instance Fernández et al. 2001a, p.424). Thus the specification
of g was frequently debated in terms of its virtues as a model size penalty term. How-
ever from a Bayesian viewpoint, subjective and theoretical considerations on such a penalty
should more properly be fused into the formulation of the model prior.7 It is straightforward
to neutralize the factor (1 + g)−

ks
2 in equation (5) by an appropriate model prior p(Mj) and

introduce more or less penalty as one pleases.8

In the remainder of this study, we thus try to appreciate g as what it was intended to be:
a hyperparameter on the prior distribution of β. Consequently, focus on Dsj, the second
factor in (4) (as the first factor might be adjusted by model priors): Cet.par., the larger g,
the more Dsj tends away from unity9 and the more tightly posterior mass is concentrated on
a few ’super models’. The relative distribution of PMPs is therefore crucially affected by the
choice of g. Thus the relative magnitude of the g hyperparameter for two competing prior
structures will determine strength and direction of the supermodel effect.

With respect to the previously mentioned motivations, several studies have compared the
performance of different specifications by means of Monte Carlo simulations, among them
Fernández et al. (2001a), Eicher et al. (2009) and Liang et al. (2008). We briefly reiterate
the most popular concepts in closely following Liang et al. (2008):

� Risk Inflation Criterion Prior (g-RIC): implies setting g = K2. This calibrates the

7In fact, the discussion of model priors has largely focused on model size penalties, as for instance in
Sala-i-Martin et al. (2004).

8Consider, for instance, the model prior p(Ms) = (1+g)ks/2

(
√

1+g+1)K that would completely neutralize the fac-

tor (1 + g)−
ks
2 – and may be combined with other model priors adding more or less model size penalty,

respectively.
9Note, however, that Dij is bounded according to the values of R2

j and R2
s. Nevertheless the exponent

(N − 1)/2 exacerbates any variations in g to quite a large extent.
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posterior model probability to asymptotically match the risk inflation criterion pro-
posed by Foster and George (1994).

� Unit Information Prior (g-UIP): In the linear case, it corresponds to g = N . It
draws on the notion that the ’amount of information’ contained in the prior equalize
the amount of information in one observation (Kass and Wasserman, 1995). For this
setting, Fernández et al. (2001a, p.424) demonstrate that as N → ∞ the log of the
Bayes factor in (4) approaches the ratio of the Bayesian information criterion (BIC)
for the two models Ms and Mj.

� Benchmark Prior (g-BRIC): Corresponds to g = max(N,K2). After an extensive
study on various specifications for g involving different settings for N , K, and ks,
Fernández et al. (2001a) determined this combination of the g-UIP and g-RIC priors
to perform best with respect to predictive performance.

� Empirical Bayes – Local (EBL): gs = arg maxg p(y|Ms, X, g). Authors such as George
and Foster (2000) or Hansen and Yu (2001) advocate an ’Empirical Bayes’ approach by
using information contained in the data (y,X) to elicit g. The latter provide a theoreti-
cal underpinning for doing so locally, i.e. separately for each model. In the formulation
given in Liang et al. (2008), this corresponds to gs = max(0, Fs − 1) where Fs is the

standard F-statistic for testing the OLS formulation of Ms, with Fs = R2
s(N−1−ks)
(1−R2

s)ks
.

Note that this formulation frequently raises objections as the data-dependency of g
runs counter the intuition of a prior.

Several more ’automatic’ specifications for g have been proposed (cf. Fernández et al. 2001a,
George and Foster 2000 or Eicher et al. 2009), but the ones above have resurfaced most
frequently and also serve as a benchmark reference for Liang et al. (2008).

III The Hyper-g Prior: A Beta Prior on the Shrinkage

Factor

Motivated on theoretical grounds,10 Liang et al. (2008) introduce two prior distributions on
the hyperparameter g. One of them, the so-called ’hyper-g’ prior, is particularly interesting
in that it provides closed form solutions for almost all posterior statistics of interest.

While Liang et al. (2008) ingeniously outline the basic features of the hyper-g prior, we
derive further posterior quantities required for a fully Bayesian analysis. Equations (10)–

10Liang et al. (2008) motivate their paper with two ’paradoxes’ that arise with constant g. First, they
raise a BMA formulation of ’Bartlett’s paradox’ stating that if g →∞ for fixed N and K, the Bayes Factor
B(Ms : M0) of any model with respect to the null model eventually goes to zero. Second, they refer to an
’information paradox’ stating that for fixed N and K, if the R-squared of model Ms converges to unity, its
Bayes factor with respect to any other fit-wise inferior model does not go to infinity. Note, however, the
comment by Zellner 2008. Moreover, both arguments bite only in the case when N and K are kept constant:
Bartlett’s paradox in this case may be less relevant as typical specifications for g require it to rise in line
with N . The ’information paradox’ does not contradict the standard consistency argument that requires the
respective Bayes Factor to converge to infinity only when N tends likewise to infinity.
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(12) complement their article by providing the posterior distribution of β|y,X and its second
moments, as well as the second moment of the shrinkage factor.

In addition, equations focus (13)-(15) on facilitating the numerical implementation of the
hyper-g prior. Most notably, posterior expressions given in Liang et al. (2008) involve ratios
of Gaussian hypergeometric functions, which they propose to compute via Laplace approx-
imations for reasons of computational feasibility. This approach gives rise to numerical
inaccuracies, in particular with respect to the mentioned ratios. This section demonstrates
how accurate statistics may be achieved in timely fashion by some algebraic transformations.
We also show how the original hyper-g prior approach may be reconciled with consistency
in the sense of Fernández et al. (2001a) with details given in the appendix.

The hyper-g prior for g translates into a Beta prior on the shrinkage factor g
1+g

that is

common to all model candidates (Liang et al. (2008, p. 415)):

g

1 + g
∼ Beta

(
1,
a

2
− 1
)

i.e. g
1+g

is Beta distributed with E( g
1+g

) = 2
a
.11 The elicitation of g is therefore supplanted

by the choice of the hyperparameter a ∈ (2,∞): a = 4 renders the prior distribution of g
1+g

uniform, while moving a close to 2 concentrates the prior mass on the shrinkage factor close
to 1. Conversely, any a > 4 tends to concentrate prior mass near 0. Liang et al. (2008)
therefore omit those cases and concentrate on a ∈ (2, 4] – a strategy we will follow in this
study.

The authors derive the posterior distribution of g|y,X,Ms and some posterior statistics by
relying on an integral representation for the Gaussian hypergeometric function 2F1(a, b, c, z)
(as, for instance, in Abramowitz and Stegun 1972, p. 563):

2F1(a, b, c, z) =
Γ(c)

Γ(c− b)Γ(b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt c > b > 0

This integral representation is employed to derive the posterior distribution of g:

p(g|y,Xs,Ms) =
ks + a− 2

22F1

(
N−1

2
, 1, ks+a

2
, R2

s

)(1 + g)−
ks+a

2 (1− g

1 + g
R2
s)
−N−1

2 (6)

Moreover, the marginal likelihood may be expressed as (Liang et al., 2008, equation (17)):

p(y|Xs,Ms) ∝ (y̆′y̆)−
N−1

2
a− 2

ks + a− 2
2F1

(
N − 1

2
, 1,

ks + a

2
, R2

s

)
(7)

The posterior expected value of the shrinkage factor is given by (Liang et al. (2008, equation
(19))):12

E

(
g

1 + g

∣∣∣∣y,Xs,Ms

)
=

2

ks + a

2F1

(
N−1

2
, 2, ks+a

2
+ 1, R2

s

)
2F1

(
N−1

2
, 1, ks+a

2
, R2

s

) (8)

11Note that this is equivalent to putting the following prior on g: p(g) = a−2
2 (1 + g)−

a
2 .

12Note that E (βs|y,Xs,Ms) = E
(

g
1+g

∣∣∣y,Xs,Ms

)
β̂s.
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Under this setting, the posterior expected value of the response under the hyper-g prior for
model Ms is given by

E(y|Xs,Ms) = 1E(αs|Xs,Ms) + E
(

g
1+g

∣∣∣y,Xs,Ms

)
Xsβ̂s (9)

with β̂s denoting the OLS estimator for model Ms. From equation (9) the importance of the

shrinkage factor becomes evident with the hyper-g prior allowing for model specific, data
adaptive shrinkage as opposed to fixing the value for the shrinkage factor a priori.

The posterior statistics outlined so far suffice for the analysis in Liang et al. (2008). However,
fully Bayesian inference requires several more expressions, notably with respect to second
moments. Therefore, we provide the second moments of g

1+g
, as well as those of β|y,X and

its posterior distribution below.13 The posterior covariance of βs is given by:

Cov (βs|y,Xs,Ms) =
2

ks + a

y̆′y̆

N − 2

2F1(N−3
2
, 2, ks+a

2
+ 1, R2

s)

2F1(N−1
2
, 1, ks+a

2
, R2

s)
(X ′sXs)

−1 (10)

This covariance corresponds to the posterior distribution of βs that may be represented as
follows:

p(βs|y,Xs,Ms) =

∫ ∞
0

p(βs|y,Xs,Ms, g)p(g|y,Xs,Ms)dg =

=
Γ
(
N−1+ks

2

)
Γ
(
ks+a

2

)
N−1

2

Γ
(
N−1+k+a

2

) √
|X ′sXs|
π

ks
2

(y̆′y̆)
N−1

2 (β′sX
′
sXsβs)

−N−1+ks
2 ×

×
2F1

(
N−1+ks

2
, N−1

2
+ 1, N−1+ks+a

2
, 1− (y−Xsβs)′(y−Xsβs)

β′sX
′
sXsβs

)
2F1

(
N−1

2
, 1, ks+a

2
, R2

s

) (11)

Note that this expression is of close, though not perfect resemblance to a hypergeometric
function distribution of type II.14

Finally, the second posterior moment of the shrinkage factor is given by:15

E

((
g

1 + g

)2
∣∣∣∣∣y,Xs,Ms

)
=

8

(ks + a)(ks + a+ 2)

2F1(N−1
2
, 3, ks+a

2
+ 2, R2

s)

2F1(N−1
2
, 1, ks+a

2
, R2

s)
(12)

The above posterior moments are all characterized by fractions of differing hypergeometric
functions. As computing the value of hypergeometric functions is quite involved, this form

13For completeness, y’s posterior predictive distribution is provided in the appendix.
14See Guptar and Nagar (2000) for the exact definition of the type II hypergeometric distribution.
15Note that with respect to equations (8) and (12) it is straightforward to derive the corresponding ex-

pressions for E(g|y,Xs,Ms) and E(g2|y,Xs,Ms). However E(g|y,Xs,Ms) will only be finite for ks + a > 4
and E(g2|y,Xs,Ms) only for ks +a > 6. We therefore concentrate on the posterior moments of the shrinkage
factor.
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renders numerical implementation extremely difficult in terms of computation time and ac-
curacy. However, they may all be expressed in dependence of F ∗s ≡ 2F1(N−1

2
, 1, ks+a

2
, R2

s)
using Gauss’ relations for contiguous hypergeometric functions (Abramowitz and Stegun,
1972, p.563). Let N̄ ≡ N − 3 and θ̄s ≡ ks + a − 2 represent collected terms. Tedious, but
straightforward algebra then yields the following results for (8),(10), and (12) (as long as
R2
s > 0):16

E

(
g

1 + g

∣∣∣∣y,Xs,Ms

)
=

1

R2
s(N̄ − θ̄s)

(
θ̄s
F ∗s
− θ̄s + N̄R2

s

)
(13)

Cov(β|y,Xs,Ms) =
y̆′y̆

N − 2
(X ′X)−1 N̄

(N̄ − θ̄s − 1)2 − 1

1−R2
s

R2
s

×

×
((

1 +
2

N̄

R2
s

1−R2
s

)
θ̄s
F ∗s

+ ((N̄ − 2)R2
s − θ̄s)

)
(14)

E

((
g

1 + g

)2
∣∣∣∣∣y,Xs,Ms

)
=

1

(R2
s)

2(N̄ − θ̄s)(N̄ − (θ̄s + 2))
×

×
((

(N̄ − 2)R2
s − (θ̄s + 2)

) θ̄s
F ∗s

+
(
N̄R2

s − θ̄s
)2 − 2

(
N̄(R2

s)
2 − θ̄s

))
(15)

Note that the equations above all contain the term θ̄s/F
∗
s which is just 2/(a − 2) times

the integration constant of p(g|y,Xs,Ms) or a−2
BF (Ms:M0)

where BF (Ms : M0) is the null-
based Bayes Factor for model Ms. So for each model’s statistics, a hypergeometric function
(or its Laplace approximation) has to be computed only once, which benefits numerical
implementation in terms of computation speed.

Moreover, equations (13)-(15) reveal a certain resemblance to the respective posterior statis-
tics under the ’Empirical Bayes - Local’ (EBL) approach as outlined in section II.1: the
main difference is the term θ̄s/F

∗
s , which guarantees non-negativity for the above expres-

sions. Considering that the models associated with very low θ̄s/F
∗
s (and thus high PMP) are

disproportionally weighted into model averaging, this term thus virtually disappears from
model-averaged statistics.17 Moreover, the marginal model likelihood in (7) does not differ
too far from its equivalent under EBL.18 Section IV illustrates this effect in showing that
hyper-g results differ far less from EBL than from settings under constant g.

One virtue of the hyper-g prior lies in the fact that the posterior distribution of the shrinkage
factor g

1+g
can be interpreted in terms of goodness-of-fit. Equation (13) presents its model-

specific expected value as close to 1− 1/F̂s, where F̂s represents an adjusted OLS F-statistic

16In case R2
s = 0 (in particular for the null model), the respective quantities follow directly from (8),(10),

and (12) since 2F1(a, b, c, 0) = 1 for any (a, b, c).
17Note that 2F1(N−1

2 , 1, ks+a
2 , R2

s) goes quite rapidly towards infinity as R2
s increases. The term θ̄s/F

∗
s

could thus noticeably affect model-averaged posterior moments only in case the data examined offers a very
low signal-to-noise ratio.

18Please refer to section A.2 in the appendix for a theoretical underpinning of this claim.
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for the model Ms: F̂s = R2
s(N̄−θ̄s)

(1−R2
s)θ̄s

. Larger values of the shrinkage factor hence correspond to

more variance explained by the model Ms.
The model-averaged expected value of the shrinkage factor E( g

1+g
|y,X) may be interpreted

likewise. As long as there are some Bayes factors considerably larger than one, the following
inequality holds:19

1

1− E( g
1+g
|y,X)

≤ R2
F

(1−R2
F )

(N − E(k|y,X)− a− 1)

(E(k|y,X) + a− 2)
(16)

where R2
F is the OLS R-squared of the ’full model’ with K regressors, and E(k|y,X) is the

expected posterior model size. The right-hand side thus constitutes a pseudo F-statistic that
relates R2

F with the ’number of parameters’ E(k|y,X)+a−2. It thus forms an upper bound
for the ’goodness-of-fit’ that can be achieved by BMA. Additionally, (16) gives rise to the
following inequality, which may serve to establish a relationship to the classical interpretation
of R-squared:

R2
F ≥

E(k|y,X) + a− 2

N − E
(

g
1+g

∣∣y,X)(N − E(k|y,X)− a− 1
)

Finally, the hyperparameter a can still be trimmed to represent prior beliefs on the shrinkage
factor. It is straightforward, for instance, to specify the prior beliefs such that the expected
shrinkage factor matches the expressions laid out in section II.1. In general, most popular
settings for g can thus be emulated by a = 2 + 2/w(N), with w(N) > 0 and limn→∞w(N) =

∞, thus positioning the prior expected value at E( g
1+g

) = w(N)
1+w(N)

. Note that in this case,

’consistency’ in the sense of Fernández et al. (2001a, p.6) is ensured for the ’hyper-g’ prior20

(cf. section A.1 in the appendix).
In this light, we propose the following specifications for the prior beliefs on the shrinkage
factor:

� HG-UIP : a= 2+ 2
N

corresponds to the ’g-UIP’-shrinkage factor with E
(

g
1+g

)
= N

1+N
.

Then 95% of the prior mass on the shrinkage factor is contained in the interval [1 −
0.95N , 1]

� HG-RIC : a= 2+ 2
K2 corresponds to ’g-RIC’-shrinkage with E

(
g

1+g

)
= K2

1+K2 . In this

case 95% of the prior mass is contained in the interval [1− 0.95K
2
, 1]

Similarly, other specifications akin to ’classic’ g formulations could be implemented – as long
as they depend on N as defined above, in order to retain asymptotic consistency. However, as
posterior expressions are quite insensitive to the value of a, and most of these formulations
will lead to a close to 2, the resulting posterior statistics will be virtually identical. We
therefore limit our attention to the two specifications above.

19Even though this inequality will hold in virtually all relevant cases, it may not hold in case of less
dependent-covariate correlation than expected under a null hypothesis of no relation. As a rule of thumb,
R2

F > K+a−2
/ N − 3 is sufficient for (16) to hold in any case. Please refer to section A.3 in the appendix for

further details.
20Consistency does not directly apply to the g-RIC prior outlined below. However, throughout the following

sections, g-RIC is in practice identical with the g-BRIC prior (as always K2 > N). Since the latter qualifies
for consistency, the notion may be extended to g-RIC, at least in our case.
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IV A Simulation Study

In this section we carry out a simulation study empirically investigating the supermodel effect
as well as assessing predictive performance of selected prior structures. We can broadly
distinguish two classes of prior settings, the degenerate ones fixing g values (fixed prior
settings) as opposed to model specific and data dependent g prior structures (flexible prior
settings). In the following, we concentrate on the 8 prior structures given in Table 1.

Fixed Prior Settings
g-RIC Risk inflation criterion, g = K2.
g-UIP Unit information prior, g = N .
g-E( g

1+g
|Y ) g

1+g
is set to the posterior mean under the HG-4 prior (i.e. E( g

1+g
|Y )).

Flexible Prior Settings
EBL Local empirical Bayes estimate of g.
HG-3 Hyper-g prior with a = 3.
HG-4 Hyper-g prior with a = 4.
HG-RIC Hyper-g prior with a = 2 + 2/K2.
HG-UIP Hyper-g prior with a = 2 + 2/N .

Table 1: Definition of Prior Settings.

The first two fixed settings correspond to what Fernández et al. (2001a) coined the ”bench-
mark” prior and is widely used in applied work.21 In these the suggestion made by Fernández
et al. (2001a) often results in the g-RIC prior and will hence serve as our reference prior. The
implied (large) value for g under g-RIC is expected to have two consequences: first g-RIC
will favor parsimonious models, and second posterior mass will be concentrated on a small
set of models.22 The unit information prior and the g-E( g

1+g
|Y ) complete the set up for fixed

prior structures on g. For the latter we impose g
1+g

a-priori to equate the (model weighted)

posterior mean of ( g
1+g
|Y ) under the HG-4 setting (the hyperprior with a = 4). We have

chosen this particular prior structure to exemplify the impact of adaptive shrinkage: a prior
both priors are expected to be very similar in posterior mass distribution. However, posterior
results are expected to seriously differ regarding the assignment of PMPs. In principle, the
g-E( g

1+g
|Y ) setting will favor more strongly parsimonious models and those with comparably

small posterior support under the HG-4 due to keeping g constant.

Secondly, we propose more flexible prior structures that embody model specific g values
and data dependent shrinkage. In particular these settings are the local empirical Bayes
estimates and the hyper-g prior corresponding to a fully Bayesian approach. One strength
in placing a prior on g lies in the fact that we can incorporate our prior beliefs following the
rules of Bayesian statistics23 via the hyperparameter a. For the simulation study, we devise

21See for example Fernández et al. (2001b), Masanjala and Papageorgiou (2008) and Koop and Potter
(2003) among others.

22This facilitates quick convergence of stochastic search algorithms such as the MC3 to the target distri-
bution.

23See Laud and Ibrahim (1995) for a model selection approach designing information criteria that allow
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four different values for a: HG-3 (a=3) corresponds to a prior expected shrinkage factor of
2
3
, whereas HG-4 (a=4) corresponds closely to a uniform prior over the shrinkage factor.

We contrast these two settings with two settings calibrated to match the g-RIC and g-UIP
prior structure (HG-RIC, HG-UIP). That is, the prior expected value of the shrinkage factor
E( g

1+g
) conforms to the shrinkage factors induced by g-RIC (K2) or g-UIP (N).

Data-wise, we employ two different settings, where the first set up ”A”is as in Fernández et al.
(2001a). Each Monte Carlo run draws 10 potential explanatory variables (x1, . . . ,x10) with
N =100 observations from a standard normal distribution for each covariate. Additional
5 variables are generated by multiplying the first five regressors by [0.3, 0.5, 0.7, 0.9, 1.1]
inducing a correlation structure among the covariates. Note that this correlation structure
impedes uncovering the data generating model.

The second set-up ”B” is more demanding since the data generating process cannot be traced
back to a single model. This is more in line with Bayesian thinking whose question is not
whether the preferred model is perfectly true (to which the answer is no), but whether under
the assumed model(s) the observed data is a plausible outcome.24 The data generating
process is composed of 5 partially nested models with unequal model weights imposed. This
creates a ”hierarchy” of models with y4 and y5 relatively dominating the remaining models
in terms of explained variation.

Setup ”A”: y = 4 + 2x1 − x5 + 1.5x7 + x11 + 0.5x13 + σε

Setup ”B”: y = 0.2y1 + 0.1y2 + 0.1y3 + 0.3y4 + 0.3y5

y1 = 4 + 2x1 − x5 + 1.5x7 + x11 + 0.5x13 + σε
y2 = 4 + 4x1 − x5 + 1.5x2 + x8 + 0.5x11 + σε
y3 = 4 + 1x5 − x7 + 1.5x3 + x9 + 0.5x6 + σε
y4 = 4 + 2x1 − x2 + 1.5x4 + x7 + 0.5x6 + σε
y5 = 4 + 2x1 − x10 + 1.5x11 + x12 + 0.5x13 − 2x14 + σε

Posterior inference under the different prior structures will be examined with varying signal-
to-noise ratios. In particular we conduct the simulation study for four increasing levels of
noise: σ = 1/2, σ = 1, σ = 2.5, σ = 5. The relatively low number K = 15 allows for
enumerating the model space and basing posterior inference on the results of the full set
of 2K models. This guarantees that differences of results for the competing priors are not
influenced by additional variation due to stochastic search.

Applied research often focuses on the posterior inclusion probabilities (PIPs) of the variables
entering the analysis and the posterior moments of the related coefficients. Table 2 and
3 show PIPs for setting ”A”, averaged over 50 Monte Carlo draws (standard deviations in
parentheses): Under situations characterized by small degrees of noise (σ = 1/2 and σ = 1)
results do not differ considerably between fixed and data dependent priors for g. Under
the σ = 2.5 setting, PIPs corresponding to coefficients of the data generating model exhibit
differences in magnitude but still lead to the same interpretation. Results change when
looking at the σ = 5 setting. Posterior mass under the flexible priors is spread more evenly
as with fixed priors employed. The g-RIC prior shows strong support for the first variable,

for the input of prior knowledge.
24See for example Gelman et al. (1995).
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with a large PIP for β1 of approximately 80%. The remaining variables receive negligible
posterior support tempting the reserarcher to believe that the data generating process is
solely driven by the first variable. In contrast, flexible priors still ’identify’ all variables. As
expected, mass is spread more evenly, and over larger models, resulting in a high share of
covariates with PIP close to 0.5 - which reflect the serious degree of noise in the data.

Besides the PIP, the posterior model probability of the model that was used in generating
the data can be of interest to examine consistency properties in the sense of Fernández et al.
(2001a). Tables 6 and 7 show summary statistics for the posterior model probabilities based
on the 50 Monte Carlo draws. In line with the asymptotic results, more information in the
data leads the hyperprior to uncover the data generating process with highest precision,
whereas increasing noise deteriorates the selection ability of BMA for all settings. The ratio
of the posterior model probability for the data generating process to the one with highest
PMP is given in Table 7. The results show that in situations described by higher degrees
of noise in the data all specifications favor a model different from the one generating the
data. However, the deterioration of PMPs coupled with a surge in the PMP ratio of true to
best model for flexible priors when noise increases indicated that mass is more diluted. In
other words, while flexible priors fail to uncover the data generating model (as do the fixed
ones) the assigned PMP for the best model is small as compared to fixed priors. Hence the
surge of uncertainty is reflected in posterior mass distribution. Figures 1 and 2 exemplify the
differences in PMP ascription for the 8 priors. The first figure shows the cumulative posterior
mass of the 100 best models under the four signal-to-noise settings, averaged over 50 Monte
Carlo draws. From the picture and the figures from Table 6 it becomes evident that flexible
priors uncover the data generating model with highest precision and concentrate most mass
on this model(s) in situations characterized by a high degree of information provided by
the data. This means that the posterior mean E( g

1+g
|y,X) is larger for the flexible priors

than the constant values g
1+g

under the fixed priors. As noise increases, the flexible priors
distribute mass more evenly among explanatory variables reflecting the surge of uncertainty.
In contrast, approaches fixing g are not capable of adjusting posterior mass distribution to
uncertainty inherent in the data. The merits of Bayesian model averaging regarding handling
of model uncertainty and predictive abilities are thus limited in these settings. Figure 2 shows
a QQ-plot for the prior settings with the g-RIC specification as the reference prior. For all
data dependent priors we see that differences increase with noise as is expected.25

Under setting ”B” we view the employed models rather as approximations and uncovering a
”true” model is of minor importance. The results exemplify once again the supermodel effect
behavior of fixed prior settings illustrated in Figures 3 and 4. Small degrees of noise trigger
a concentration of posterior mass under the hyper-g prior and the empirical Bayes approach.
A surge in noise is reflected in a wider spread of posterior mass among models under flexible
priors, whereas fixed priors still concentrate on a small number of models.

Finally we draw attention to the shrinkage factor’s role in weighting prior versus posterior co-
efficients and its implications for prediction. Results from a prediction exercise are expected
to vary considerably between fixed and flexible prior settings, since the latter incorporate
data adaptive shrinkage. Akin to Liang et al. (2008) we calculate the root mean squared
error (rmse) based on 30 out of sample observations, averaged over 50 Monte Carlo steps.

25We have omitted results from the HG-3 setting, since results are very similar to that of HG-4.
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The rmse statistics shown in Table 8 are normalized with respect to forecasting results under
the g-RIC prior. Thus values below 1 indicate better predictive performance (in terms of
accuracy) of the respective prior structure as compared to the g-RIC prior. The top panel of
Table 8 shows mixed results for setting ”A”. As expected, the g-RIC prior excels in nearly all
signal-to-noise settings, concentrating on a single (and luckily the correct data-generating)
model. In the σ = 1/2 test bed, however, the flexible priors concentrate mass even more
tightly than does the g-RIC and consequently yield comparably better predictions in terms
of rmse. As noise increases the g-RIC outperforms the other priors by greater margins ex-
ploiting the comparative advantage that the data generating process is composed of a single
model.

In contrast, predictive merits of flexible priors are more pronounced in the complex data
generating process structure of setting ”B”: Predictive abilities differ by a greater margin,
with flexible priors nearly dominating throughout all signal-to-noise settings. Especially the
HG-3 prior and the empirical Bayes approach demonstrate superior predictive abilities with
the latter one outperforming the g-RIC prior for all signal-to-noise setups. This contrasts
with simulation exercises in the literature, as their data generating processes can be traced
back to single models, which plays in favor of (large) fixed priors because of the supermodel
effect.

V Growth Determinants Revisited

We now apply the different prior settings in order to examine growth determinants in a cross
country growth data set. There is a dense empirical growth literature that has employed
model averaging techniques.26 We use the data set given in Fernández et al. (2001b) and
described in Sala-i-Martin (1997). Following Fernández et al. (2001b) we use 41 potential
growth determinants for 72 countries. The data comprises proxy variables for human capital,
institutional quality indicators, investment variables and regional dummy variables. For the
sake of comparison we employ uniform model priors instead of the beta-binomial model
prior. Results on the posterior inclusion probabilities are shown in Table 9, where we have
used 3,000,000 posterior draws after a burn-in phase of 2,000,000 draws.27 Variables with
posterior inclusion probabilities greater than 0.5 are often identified as ’robustly related’ to
the dependent variable.28 However, note that such a threshold should be allowed to vary
with the information content of the data, as well as with the implied model size penalty of
model priors. As with our model prior structure, the model size penalty term in the marginal
likelihoods has not been adjusted for: a larger posterior shrinkage factor thus corresponds
to more weight being put on a small subset of parsimonious models. A PIP that only

26See Sala-i-Martin et al. (2004), Crespo Cuaresma and Doppelhofer (2007), Sala-i-Martin (1997) for
traditional approaches to model averaging and Fernández et al. (2001b), Eicher et al. (2009) for Bayesian
strategies.

27The computer program is coded in R (R Development Core Team, 2008) and is available from the authors
upon request.

28Eicher et al. (2009) translate the scale of evidence put forward originally by Kass and Raftery (1995) into
four categories: weak (50-75% PIP), substantial (75-95%), strong (95-99%) and decisive (99%+) evidence.
Barbieri and Berger (2003), on the other hand, highlight the predictive merits of the median model, consisting
of those regressors whose PIP exceeds 0.5.
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slightly exceeds the 0.5 threshold coupled with a rather small posterior mean of g
1+g

cannot

be interpreted in the same way as in the case when E( g
1+g
|y,X) is large. In particular this

applies to comparing results with the g-RIC prior, under which the (posterior) shrinkage
factor is much larger than otherwise.

The flexible prior structures identify a range of additional growth determinants as compared
to the g-RIC prior setting manifested in the differences of the posterior mean model sizes
given at the bottom of the table. Figure 5 top right panel illustrates the behavior under the
different prior structures. Due to the degree of noise in the date set, flexible priors distribute
posterior mass more evenly than fixed priors, in particular the g-RIC setting. The following
figures exemplify the variation of posterior inference for the 8 prior settings with variables on
the X-axis ordered according to the posterior inclusion probabilities under the g-RIC setting.
The figures reveal the remarkably small differences within the class of flexible priors, again
illustrating the close inter-relatedness of this group. By virtue of their smaller g-values, the
g-E( g

1+g
|Y ) and the g-UIP are the fixed priors coming closest to the results of the flexible

priors, whereas the g-RIC is far off.

Moreover, the graphs show that inference under the hyper-g priors is insensitive to the prior
choice on the hyperparameter a. Due to the supermodel effect and model size penalty, the g-
RIC prior identifies a smaller subset of growth determinants. However, this holds not true for
all variables: the number of years an economy has been open (YrsOpen) looses significance
under the flexible priors with the g-RIC setting being the only prior structure identifying the
variable as an important growth determinant. The distribution of posterior mass under the
employed prior structures is shown in the top left panel of Figure 5. Due to the degree of
noise in the data, the flexible priors distribute posterior mass more evenly than the fixed ones.
Besides the (robust) identification of growth drivers we are interested in the posterior means
and the standardized coefficients (i.e. posterior mean / posterior standard deviation) as a
further significance indicator given in the bottom panel of Figure 5.29 Disparities in posterior
means emanate from differences in the posterior inclusion probabilities and magnitudes of
the shrinkage factor among the prior settings. As expected for some variables (a regional
dummy (Hindu) and two proxy variables for human capital (HighEnroll and PublicEducpt))
posterior means vary considerably as compared to the g-RIC setting.

Variations of posterior inference are solely due to differences in the value of the g hyperpa-
rameter, thus once again emphasizing the importance of this parameter for Bayesian model
averaging inference. For the growth data exercise, the (posterior) shrinkage factor varies
from 0.999 (g-RIC) to 0.951 (HG-4). Fixing g - in our view - bears the danger of ignoring
the information in the data and exerts non-negligible influence on posterior results.

VI Concluding Remarks

The ubiquity of Zellner’s g prior in linear BMA rests on two reasons: it provides closed-
form solutions and reduces the complexity of prior elicitation to, in practice, one scalar g.

29Table 10 lists results on the posterior means for the whole set of prior structures. Note that we have fully
(response variable and covariates) standardized the coefficients implying that the slopes refer to changes in
terms of standard deviations.
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Consequently, theoretical considerations have mostly focused on the choice of g, in particular
its virtues as a penalty term for model size.

This study deviates in bringing forward two arguments that have been overlooked so far:
First, model size considerations should be decoupled from the prime feature of g (scaling
coefficient covariance) and more properly be fused into the formulation of model priors. The
elicitation of g should thus not interfere with prior desiderata on model size.

Second, we demonstrated that fixing g to arbitrary values may have unintended conse-
quences on posterior model probabilities: The higher g, the more tightly posterior mass will
concentrate on the few best-performing ’super models ’ – regardless of model sizes, number
of observations or signal-to-noise ratios. Ultimately, a large value for g will favor a single
model, thereby acting in a model-selection fashion. As previous studies predominantly have
assessed BMA performance on simulated data generated by a single model, they tended to
favor g-specifications ascribing larger values to g, that effectively select the right model. We
demonstrate in section IV that the g-RIC prior suggested by Fernández et al. (2001a) is
particularly prone to this supermodel behavior.

In order to overcome problems, we propose to put a prior distribution on the g parameter:
Such a hyperprior allows for data-dependent shrinkage, thus adjusting the weight of prior
beliefs more properly according to data quality. In discriminating models only as far as data
quality allows for, a prior on g thus offers a remedy for the supermodel effect. In this manner,
we focus on the hyper-g prior introduced by Liang et al. (2008), whose formulation offers
three main advantages: First, it admits closed form solutions for almost any quantity of
interest, thereby facilitating implementation. Second, it allows for BMA consistency. Third,
its hyperparameter allows for formulating prior beliefs on coefficient variance, but without
incurring the risk of unintended consequences on posterior model mass. We complement the
existing literature on the hyper-g prior by providing additional posterior expressions that
allow for fully Bayesian inference, as well as for sound numerical implementation.

Section IV contrasts various formulations of fixed and hyper-g priors in simulations, con-
centrating on predictive performance under varying signal-to-noise ratios. As expected the
fixed (especially the g-RIC) priors perform considerably well when the data generating pro-
cess rests on a single model that is part of the candidate model space. However, in more
complex settings, the virtues of flexible prior structures become pronounced: Flexible priors
outperform fixed g settings (in particular g-RIC) in terms of forecasting accuracy and exhibit
a more stable structure of posterior model and inclusion probabilities as noise varies.

The final section illustrates these considerations by applying the same priors to a prominent
growth data set. The results demonstrate that fixing g runs the risk of grossly over- or
understating the importance of some variables – the degree of openness, for instance, is not
as important to growth as one may think under the g-RIC prior. In this data set, fixing
g to values larger than implied by flexible priors leads to stronger discrimination among
posterior inclusion probabilities, which may incite overconfidence in BMA results. Finally,
the magnitudes of several coefficients differ markedly between fixed and hyper-g priors, but
are negligible among the hyper-g prior structures.

Concluding, the hyper-g prior offers a sound, fully Bayesian approach that features the
virtues of prior input and predictive gains without incurring the risk of misspecification.
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A Technical Appendix

A.1 Consistency of the Hyper-g Prior

Fernández et al. (2001a) define asymptotic ’consistency’ as follows: Consider that only Model
Ms is true, while all other models Mj 6= Ms are not true. Consistency then requires:

plim
n→∞

p(Ms|y,Xs) = 1 and plim
n→∞

p(Mj|y,Xs) = 0 ∀Mj 6= Ms

Liang et al. (2008, Appendix B) have proven the above for the hyper-g prior except for the
case where the true model Ms is the null model M0. They stop short their proof because in
this case the Bayes factor B(Mj : M0) is (Liang et al., 2008, p.423):

p(Mj|y,Xs)

p(M0|y)
≥
∫ ∞

0

(1 + g)−
kj
2 p(g)dg (A.1)

Moreover they state that if the above integral vanishes as N → ∞, then consistency is
ensured.
Applying the hyper-g setting transforms the right-hand side in (A.1) into the following (by
a > 2): ∫ ∞

0

(1 + g)−
kj
2 p(g)dg =

a− 2

2

∫ 1

0

(1 + g)−
kj+a

2 dg =
a− 2

kj + a− 2

If a = 2 + w(N) with w(N) > 0 and lim
N→∞

w(N) = 0, then the integral vanishes and thus

concludes the proof.

A.2 Relationship between Hyper-g Prior and EBL

Due to perceived numerical difficulties, Liang et al. (2008) propose the use of an Laplace
approximation for the posterior model likelihood under the hyper-g distribution (Liang et al.
(2008, equation (17))). Depending on the data, Laplace approximations can be prone to
substantial numerical inaccuracies. However, they may be useful for the purpose of this
section, namely a tentative approach to establishing a rough equivalence between particular
forms of the hyper-g prior and Empirical Bayes with respect to posterior statistics.
Consider the familiar form of the Laplace approximation∫

Θ

exp(h(θ))dθ ≈
√

2π

−h′′(θ̂)
exph(θ̂)

. . . where θ̂ is the maximizer of the integrand’ logarithm h(θ). Consider in turn the null-based
model Bayes Factor for the hyper-g prior formulation as in (7):

BFh =
a− 2

2

∫ ∞
0

(1 + g)
N−1−k−a

2 (1 + g(1−R2))−
N−1

2 dg

Letting

h(g) =
1

2

(
(N − 1− k − a) log(1 + g)− (N − 1) log(1 + (1−R2)g)

)



24

yields the maximizer:

ĝ = max(
R2(N − 1− k − a)

(1−R2)(k + a)
− 1, 0)

where ĝ = 0 if and only if k + a ≥ R2(N − 1). Liang et al. (2008, p.421) note the similarity
to the local Empirical Bayes (EBL) estimator of g, but abstain from further investigating
the issue.
The second derivative of h(g) is given as

h′′(g) =
1

2

(
−N − 1− k − a

(1 + g)2
+

(N − 1)(1−R2)2

(1 + (1−R2)g)2

)
The Bayes factor is thus approximately equal to:

BFh ≈ (a− 2)

√
π

N−1−k−a
(1+ĝ)2

− (N−1)(1−z)2
(1+(1−z)ĝ)2

(1 + ĝ)
N−1−k−a

2 (1 + ĝ(1−R2))−
N−1

2

In case we have ĝ > 0, then algebraic manipulation of the expression above yields:

BFh ≈ (a−2)
√
π

√
N − 1

(N − 1− k − a)(k + a)

(
R2

(1−R2)

N − 1− k − a
k + a

)− k+a−2
2
(

(1−R2)(N − 1)

N − 1− k − a

)−N−1
2

Now consider the equivalent null-based model Bayes Factor for the EBL approach which is:

BFEBL =

(
R2

1−R2

N − 1− k
k

)− k
2
(

(1−R2)(N − 1)

(N − 1− k)

)−N−1
2

in case if k ≤ R2(N − 1)

Therefore, if k + a ≤ R2(N − 1):

BFh ≈ (a− 2)
√
π
√

N−1
(k+a)(N−1−k−a)

(
(1−z)
z

k+a
N−1−k−a

)a−2
2 (k+a

k

) k
2
(
N−1−k−a
N−1−k

)N−1−k
2 BFEBL

So if a→ 2, the hyper-g Bayes Factor is approximatively equivalent to an EBL Bayes factor
times a k-based model prior (that does not depend on z). Moreover, this model prior is
bounded in a relatively narrow range: Note that

(1 + a)−a/2 ≤
(
k + a

k

) k
2
(
N − 1− k − a
N − 1− k

)N−1−k
2

< 1

The upper bound follows from the fact that ((k+a)/k)k/2 = (1 + a
2
/k

2
)

k
2 < exp(a

2
). Similarly

((N − 1− k− a)/(N − 1− k))
N−1−k

2 < exp(−a
2
). Setting k = 1 and letting N − 1 ≥ k+ a+ 1

performs the lower bound.30 The effect of the term in square roots actually counters the

impact of the latter term, as
√

4
N−1

≤
√

N−1
(N−1−k−a)(k+a)

≤ 1 for k + a < N − 1. The

’model prior’ thus results in an upweighting of models with few or many coefficients, while
intermediate model sizes are downweighted.

30Note that if k = 0, BFEBL = BFh = 1.
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The impact of the k-based ’model prior’, however, is virtually negligible with respect to the
size of BFEBL. Thus, at least as long as R2(N − 1) > k + a, BFh is quite close to BFEBL.
And as long as the signal-to-noise ratio in the data is not too small, BMA posterior statistics
will be disproportionally based on models with large PMPs (and thus (N − 1)R2 � k + a).
Models with large differences between BFh and BFEBL will thus hardly affect posterior
statistics.

A.3 The Shrinkage Factor and Goodness-of-Fit

In order to demonstrate equation (16) consider a reformulation of the posterior expected
value of the shrinkage factor (13)

E

(
g

1 + g

∣∣∣∣y,X) = ε+
2K∑
j=1

p(Ms|y,X)
N̄R2

s − θ̄s
R2
s(N̄ − θ̄s)

(A.2)

where ε =
2K∑
j=1

p(Ms|y,X)
θ̄s

F ∗sR
2
s(N̄ − θ̄s)

The ε term is based on the expression θ̄s/F
∗
s in (13), whose only role is to keep E( g

1+g
|X, y)

non-negative in case of a ’bad’ model, whereas it rapidly vanishes for models with higher
signal-to-noise ratios. As long as the null model is not the single ’true’ model, ε vanishes
as N → ∞ for fixed K – but even in small samples, ε tends rapidly towards zero as data
quality increases. Moreover, in BMA sampling with any viable signal-to-noise ratio, any
models with very low PMP will hardly affect posterior results, and hence the expression ε
will vanish as soon as there exist some models with considerable null-based Bayes factors
(which therefore must have their F ∗s � 1).

In the following, suppose that K + a < N . Now proceed to demonstrating the inequality in
(16) by considering that as long as θ̄s ≤ N̄ , the following holds:31

EM
(

1
N̄−θ̄s

)
≥ 1

EM
(
N̄ − θ̄s

)
where EM(x) =

∑2K

j=1 xp(Mj|y,X) denotes the expected value over model probabilities.

Multiply with N̄ and subtract unity to obtain

EM
(

θs

N̄−θ̄s

)
≥

EM
(
θ̄s
)

EM
(
N̄ − θ̄s

)
Moreover, since any nested model’s R-squared R2

s cannot exceed the R-squared of the full

model R2
F , we have that 1−R2

s

R2
s
≥ 1−R2

F

R2
F

and therefore:

31This stems from the fact that for a random variable x ≥ 0, by the definition of covariance E( 1
x )E(x) =

1− Cov(x, 1
x ), and since x ≥ 0 we have Cov(x, 1

x ) ≤ 0. Therefore E( 1
x ) ≥ 1

E(x) .
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EM
(1−R2

s

R2
s

θs

N̄−θ̄s

)
≥ 1−R2

F

R2
F

EM
(
θ̄s
)

EM
(
N̄ − θ̄s

)
Retransforming and integrating in (A.2) yields another representation of (16) (recall that
N̄ ≡ N − 3 and EM(θ̄s) ≡ EM(ks) + a− 2):

EM
(

g
1+g

∣∣y,X)− ε = 1− EM
(

1−R2
s

R2
s

θs
N̄ − θ̄s

)
≤ R2

F N̄ − EM(θ̄s)

R2
F (N̄ − EM(θ̄s))

How close EM
(

g
1+g

∣∣y,X) comes to this upper bound is mainly determined by the posterior

variance of model size (the less variance, the closer), and by parsimoniousness of the model
priors.Note that the term ε on the left-hand side might break the inequality in rare instances.
However this term tends to be very small: Numerical simulations of a null hypothesis with
varying N , K, a and standard deviations have yielded no single instance in which R2

F >
K+a−2
N̄

and EM( g
1+g
|y,X) larger than the right-hand side above. Therefore, if R2

F >
K+a
N

(>
K+a−2
N−3

)32, then the ε term can be safely omitted from the inequality above.

A.4 The Posterior Predictive Distribution and the Hyper-g Prior

Consider using the data (X, y) to forecast the dependent variable (ŷ conditional on ’pre-
diction’ covariates X̂. Let X be N × k matrix, y be N × 1, while ŷ is l × y and X̂ l × k.
The posterior predictive distribution of ŷ is then given as a a multivariate t-distribution of
dimension l (Eklund and Karlsson, 2007, equation (A.15))33

ŷ|X̂,X, y, g ∼ tl(ȳ + sX̂β̂,Σ, N − 1)

where Σ =
(
Il + sX̂(X ′X)−1X̂ ′

) y′y

N − 1
(1− sR2)

Here, s denotes the shrinkage factor s = g
1+g

, and R2 the (centered) R-squared of y on X,
where ȳ is an N -dimensional vector whose elements are the arithmetic mean of y.
Integrating the density function of ŷ|X̂,X, y, g with respect to the shrinkage factor yields
the integrand of the following equation (after some rearrangement):

32Note that this threshold is just slightly higher than the expected value of R2
F under the classic null

hypothesis of no significant variance explanation by a regression model. As a rule of thumb, if the standard
F-statistic for the full model is ’significant’ by at least 20%, then the inequality above is guaranteed to hold.

33The slight differences with respect to Eklund and Karlsson (2007) are due to the fact that we employ
an improper prior on beta variance sigma and the constant.
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f(ŷ|X̂,X, y) =
Γ
(
N−1+l

2

)
Γ
(
N−1

2

)
π

l
2

a−2
2

1
p(y|X)︷ ︸︸ ︷

(k + a− 2)((y̆′y̆)
N−1

2 )

22F1

(
N−1

2
, 1, k+a

2
, R2

) ×
×
∫ 1

0

∣∣∣Il + sX̂(X ′X)−1X̂ ′
∣∣∣− 1

2
(1− s)

k+a−4
2 ×

×
(
y̆′y̆(1− sR2) + (ŷ − ȳ − sX̂β̂)′

(
Il + sX̂(X ′X)−1X̂ ′

)−1

(ŷ − ȳ − sX̂β̂)

)−N−1+l
2

ds

. . . where y̆ ≡ y − ȳ. To our knowledge, there is no closed-form solution to to the integral
above, neither to its Laplace approximation. We therefore recommend to resort to numerical
integration.

A.5 The Beta-binomial Prior over the Model Space

BMA calls for eliciting a prior distribution of models inM. Two typical prior specifications
have been usually imposed in the literature: a) an uninformative flat prior over all models,
which implies that the posterior odds ratio resembles solely the Bayes factor and comparison
of models is governed by their relative marginal likelihoods, and b) a prior that discriminates
among models according to the number of regressors they include, so that a larger prior prob-
ability mass falls over models of a given size (see Sala-i-Martin et al. (2004)). This second
alternative assumes that each covariate enters a model with probability ϑ, which implies that
the prior mass for model j which includes kj variables amounts to p(Mj) = ϑkj (1− ϑ)K−kj .
The uninformative prior in a) is nested in b) by imposing ϑ = 1/2, which results into equal
model probabilities of 2−K for all models for each matrix.

Ley and Steel (2009) show that fixing ϑ = 1/2 puts most mass on models with K/2 regressors,
since they are dominant in number. Their recommendation is thus to treat ϑ as random and
placing a (hyper)prior on it. The proposal of Ley and Steel (2009) is to impose that the model
size follows a beta-binomial(a, b) distribution (Bernardo and Smith (1994)) with a = 1, so
that

P (k = kj) =
Γ(1 + b)

Γ(1) + Γ(b) + Γ(1 + b+K)

(
K

kj

)
Γ(1+kj)Γ(b+K−kj) kj = 0, . . . , K. (A.3)

The prior can be elicited by anchoring the prior expected model size, m.34 Ley and Steel
(2009) quantify the influence that a poorly specified prior exerts on posterior results when ϑ
is fixed, which leads to the relative merits of BMA being less pronounced and its predictive
power deteriorating. In contrast, the results in Ley and Steel (2009) indicate that the choice
of m has no influential impact on posterior inference and the prior over models is purely
non-informative.

34Note that b is then implicitly defined through b = (K −m)/m.
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A.6 Charts and Tables
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Figure 1: Cumulated posterior model probabilities for Setting A. Top panel corresponds to
a signal-to-noise ratio of σ = 1/2 (left) and σ = 1 (right). Bottom panel to a ratio of σ = 2.5
(left) and σ = 5 (right).



●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●
●
●●●●●

●●
●●

●●
●●
●●
●●
●●
●●
●●
●●●

●●●
●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●

0.5 0.6 0.7 0.8 0.9 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

g−UIP vs. g−RIC

Cumulated Posterior Mass (g−RIC)

C
um

ul
at

ed
 P

os
te

rio
r 

M
as

s 
(g

−
U

IP
)

● σσ == 1 2
σσ == 2
σσ == 2.5
σσ == 5

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●●●●●●
●●

●●●
●●●

●●●
●●●

●●●●
●●●●

●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●

0.5 0.6 0.7 0.8 0.9 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

g−E(g/(1+g)|Y) vs. g−RIC

Cumulated Posterior Mass (g−RIC)

C
um

ul
at

ed
 P

os
te

rio
r 

M
as

s 
(g

−
E

(g
/(

1+
g)

|Y
))

● σσ == 1 2
σσ == 2
σσ == 2.5
σσ == 5

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●

●●●
●●●

●●●
●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●

0.5 0.6 0.7 0.8 0.9 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

EBL vs. g−RIC

Cumulated Posterior Mass (g−RIC)

C
um

ul
at

ed
 P

os
te

rio
r 

M
as

s 
(E

B
L)

● σσ == 1 2
σσ == 2
σσ == 2.5
σσ == 5

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●

●●●
●●●

●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●

0.5 0.6 0.7 0.8 0.9 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

HG−4 vs. g−RIC

Cumulated Posterior Mass (g−RIC)

C
um

ul
at

ed
 P

os
te

rio
r 

M
as

s 
(H

G
−

4)
● σσ == 1 2

σσ == 2
σσ == 2.5
σσ == 5

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●

●●●
●●●

●●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●

0.5 0.6 0.7 0.8 0.9 1.0

0.
7

0.
8

0.
9

1.
0

HG−RIC vs. g−RIC

Cumulated Posterior Mass (g−RIC)

C
um

ul
at

ed
 P

os
te

rio
r 

M
as

s 
(H

G
−

R
IC

)

● σσ == 1 2
σσ == 2
σσ == 2.5
σσ == 5

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●

●●●
●●●

●●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●

0.5 0.6 0.7 0.8 0.9 1.0

0.
7

0.
8

0.
9

1.
0

HG−UIP vs. g−RIC

Cumulated Posterior Mass (g−RIC)

C
um

ul
at

ed
 P

os
te

rio
r 

M
as

s 
(H

G
−

U
IP

)

● σσ == 1 2
σσ == 2
σσ == 2.5
σσ == 5

Figure 2: QQ-plot of cumulated posterior mass for different choices of g against that of the
g-RIC setting (Setting A based on 50 Monte Carlo draws).
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Figure 3: Cumulated posterior model probabilities for Setting B. Top panel corresponds to a
signal-to-noise ratio of σ = 1/2 (left) and σ = 1 (right). Bottom panel to a ratio of σ = 2.5
(left) and σ = 5 (right)

32



●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●●●

●●
●●
●●●

●●●
●●●●

●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

1.
0

g−UIP vs. g−RIC

Cumulated Posterior Mass (g−RIC)

C
um

ul
at

ed
 P

os
te

rio
r 

M
as

s 
(g

−
U

IP
)

● σσ == 1 2
σσ == 2
σσ == 2.5
σσ == 5

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●
●●

●●
●●●

●●●
●●●●

●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

1.
0

g−E(g/(1+g)|Y) vs. g−RIC

Cumulated Posterior Mass (g−RIC)

C
um

ul
at

ed
 P

os
te

rio
r 

M
as

s 
(g

−
E

(g
/(

1+
g)

|Y
))

● σσ == 1 2
σσ == 2
σσ == 2.5
σσ == 5

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●
●●

●●
●●●

●●●●
●●●●●

●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

1.
0

EBL vs. g−RIC

Cumulated Posterior Mass (g−RIC)

C
um

ul
at

ed
 P

os
te

rio
r 

M
as

s 
(E

B
L)

● σσ == 1 2
σσ == 2
σσ == 2.5
σσ == 5

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●
●●

●●
●●●

●●●●
●●●●●

●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

1.
0

HG−4 vs. g−RIC

Cumulated Posterior Mass (g−RIC)

C
um

ul
at

ed
 P

os
te

rio
r 

M
as

s 
(H

G
−

4)
● σσ == 1 2

σσ == 2
σσ == 2.5
σσ == 5

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●
●●

●●
●●●

●●●●
●●●●●

●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

1.
0

HG−RIC vs. g−RIC

Cumulated Posterior Mass (g−RIC)

C
um

ul
at

ed
 P

os
te

rio
r 

M
as

s 
(H

G
−

R
IC

)

● σσ == 1 2
σσ == 2
σσ == 2.5
σσ == 5

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●
●●

●●
●●●

●●●●
●●●●●

●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

1.
0

HG−UIP vs. g−RIC

Cumulated Posterior Mass (g−RIC)

C
um

ul
at

ed
 P

os
te

rio
r 

M
as

s 
(H

G
−

U
IP

)

● σσ == 1 2
σσ == 2
σσ == 2.5
σσ == 5

Figure 4: QQ-plot of cumulated posterior mass for different choices of g against that of the
g-RIC setting (Setting B based on 50 Monte Carlo draws).
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g-RIC g-UIP g-E( g
1+g
|Y ) EBL HG-3 HG-4 HG-RIC HG-UIP

Min. 0.1349 0.1279 0.1573 0.1888 0.1934 0.1809 0.2096 0.2094
Mean 0.4618 0.3725 0.5306 0.5951 0.5973 0.5758 0.6220 0.6217
Max. 0.6297 0.5106 0.7037 0.7669 0.7644 0.7461 0.7845 0.7843
St.Dev. 0.1342 0.1019 0.1482 0.1551 0.1490 0.1487 0.1484 0.1484
Min. 0.0539 0.0317 0.0426 0.0308 0.0320 0.0289 0.0362 0.0362
Mean 0.4433 0.3290 0.3922 0.3944 0.3932 0.3690 0.4219 0.4215
Max. 0.6115 0.4849 0.5578 0.5954 0.5922 0.5658 0.6220 0.6216
St.Dev. 0.1373 0.1138 0.1283 0.1358 0.1342 0.1293 0.1392 0.1392
Min. 0.0021 0.0022 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 0.1201 0.1048 0.0556 0.0665 0.0660 0.0606 0.0721 0.0720
Max. 0.4609 0.3392 0.1493 0.1978 0.1968 0.1768 0.2216 0.2213
St.Dev. 0.1133 0.0834 0.0387 0.0487 0.0478 0.0441 0.0524 0.0524
Min. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 0.0012 0.0023 0.0010 0.0025 0.0024 0.0021 0.0027 0.0028
Max. 0.0215 0.0324 0.0114 0.0323 0.0308 0.0254 0.0347 0.0347
St.Dev. 0.0035 0.0057 0.0026 0.0062 0.0060 0.0051 0.0067 0.0067

Table 6: Summary statistics of posterior model probabilities for true model based on setting
”A” and 50 Monte Carlo Steps. Top panel corresponds to σ = 1/2, second panel to σ = 1,
third panel to σ = 2.5, fourth panel to σ = 5

g-RIC g-UIP g-E( g
1+g
|Y ) EBL HG-3 HG-4 HG-UIP HG-RIC

Min. 0.4752 0.6133 0.4704 0.5192 0.5386 0.5175 0.5695 0.5691
Mean 0.9806 0.9919 0.9807 0.9872 0.9908 0.9902 0.9914 0.9914
Max. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
St.Dev. 0.1342 0.1019 0.1482 0.1551 0.1490 0.1487 0.1484 0.1484
Min. 0.1363 0.1115 0.1226 0.1131 0.1188 0.1158 0.1239 0.1238
Mean 0.9650 0.9552 0.9604 0.9612 0.9626 0.9604 0.9657 0.9656
Max. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
St.Dev. 0.1373 0.1138 0.1283 0.1358 0.1342 0.1293 0.1392 0.1392
Min. 0.0071 0.0076 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 0.4683 0.5202 0.5516 0.5325 0.5331 0.5274 0.5382 0.5383
Max. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
St.Dev. 0.1133 0.0834 0.0387 0.0487 0.0478 0.0441 0.0524 0.0524
Min. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 0.0067 0.0173 0.0070 0.0203 0.0200 0.0147 0.0284 0.0285
Max. 0.1643 0.3744 0.0842 0.2835 0.2737 0.1685 0.4719 0.4688
St.Dev. 0.0035 0.0057 0.0026 0.0062 0.0060 0.0051 0.0067 0.0067

Table 7: Summary statistics of the ratio of posterior model probabilities of true model and
best model for setting ”A”based on 50 Monte Carlo Steps. Top panel corresponds to σ = 1/2,
second panel to σ = 1, third panel to σ = 2.5, fourth panel to σ = 5

g-RIC g-UIP g-E( g
1+g
|Y ) EBL HG-3 HG-4 HG-RIC HG-UIP

σ = 1/2 - 1.00877 0.99754 0.99798 0.99793 0.99817 0.99771 0.99771
σ = 1 - 1.00347 1.00200 1.00128 1.00219 1.00315 1.00126 1.00127
σ = 2.5 - 0.99501 1.00079 1.00556 1.00320 1.00699 1.00039 1.00042
σ = 5 - 0.99034 1.00697 1.00594 1.00720 1.01958 1.01256 1.00692
σ = 1/2 - 0.99754 0.99926 0.99794 0.99948 0.99910 0.99998 0.99998
σ = 1 - 0.98166 0.97396 0.97316 0.97501 0.97398 0.97648 0.97647
σ = 2.5 - 0.98875 0.97284 0.96760 0.97580 0.97847 0.97631 0.97627
σ = 5 - 0.99578 1.00427 0.99968 1.00747 1.02216 1.01853 1.00976

Table 8: Relative Root Mean Squared Error based on 30 out of sample forecasts averaged
over 50 Monte Carlo Steps. Values below 1 indicate superior predictive performance as
compared to the g-RIC setting. Top panel corresponds to setting ”A” and bottom panel to
setting ”B”.
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g-RIC g-UIP g-E( g
1+g
|Y ) EBL HG-3 HG-4 HG-UIP HG-RIC

GDP60 0.9989 1.0000 0.9999 0.9999 0.9998 0.9998 0.9998 0.9999
Confucian 0.9880 0.9990 0.9953 0.9959 0.9955 0.9952 0.9964 0.9961
LifeExp 0.9314 0.9890 0.9751 0.9787 0.9748 0.9746 0.9792 0.9764
EquipInv 0.9271 0.9245 0.8949 0.9031 0.8958 0.8895 0.8996 0.8974
SubSahara 0.7288 0.9480 0.9087 0.9129 0.9096 0.9042 0.9127 0.9151
Muslim 0.6524 0.5196 0.5695 0.5673 0.5646 0.5644 0.5596 0.5592
RuleofLaw 0.4855 0.7569 0.6761 0.6822 0.6697 0.6611 0.6797 0.6826
YrsOpen 0.5172 0.2452 0.3530 0.3433 0.3546 0.3630 0.3384 0.3373
EcoOrg 0.4536 0.6328 0.6400 0.6320 0.6402 0.6370 0.6371 0.6447
Protestants 0.4488 0.5665 0.5795 0.5759 0.5772 0.5825 0.5782 0.5820
Mining 0.4572 0.8975 0.8633 0.8698 0.8638 0.8587 0.8693 0.8656
NequipInv 0.4297 0.7159 0.7207 0.7209 0.7216 0.7185 0.7218 0.7264
LatAmerica 0.2084 0.6297 0.5842 0.5962 0.5870 0.5861 0.5946 0.5956
PrScEnroll 0.2144 0.5114 0.4987 0.5118 0.4964 0.4928 0.5032 0.4960
Buddha 0.1986 0.3526 0.4232 0.4190 0.4223 0.4225 0.4183 0.4135
BlMktPm 0.1796 0.6471 0.6145 0.6197 0.6104 0.6103 0.6176 0.6176
Catholic 0.1277 0.2388 0.3138 0.3066 0.3103 0.3157 0.3019 0.3040
CivlLib 0.1281 0.4559 0.4501 0.4536 0.4484 0.4445 0.4492 0.4485
Hindu 0.1213 0.8613 0.8198 0.8358 0.8259 0.8176 0.8345 0.8331
PrExports 0.1039 0.1828 0.2784 0.2684 0.2762 0.2846 0.2661 0.2679
PolRights 0.0959 0.3354 0.3820 0.3810 0.3821 0.3821 0.3787 0.3819
RFEXDist 0.0836 0.2072 0.2740 0.2742 0.2769 0.2744 0.2700 0.2672
Age 0.0817 0.3064 0.3590 0.3544 0.3583 0.3639 0.3533 0.3553
WarDummy 0.0776 0.2593 0.3380 0.3336 0.3421 0.3447 0.3351 0.3347
LabForce 0.0771 0.8017 0.7414 0.7697 0.7519 0.7392 0.7608 0.7587
Foreign 0.0697 0.1501 0.2248 0.2206 0.2271 0.2346 0.2196 0.2222
English 0.0689 0.3687 0.3822 0.3868 0.3863 0.3835 0.3854 0.3860
EthnoL 0.0584 0.6826 0.6206 0.6461 0.6277 0.6078 0.6299 0.6321
Spanish 0.0563 0.4485 0.4341 0.4496 0.4367 0.4293 0.4386 0.4374
stdBMP 0.0495 0.1264 0.2049 0.2002 0.2030 0.2073 0.1971 0.1971
French 0.0510 0.4092 0.3992 0.4190 0.4055 0.3956 0.4078 0.4004
Abslat 0.0434 0.1529 0.2273 0.2247 0.2243 0.2377 0.2261 0.2236
WorkPop 0.0427 0.1333 0.2064 0.1994 0.2066 0.2135 0.2014 0.2012
HighEnroll 0.0448 0.6947 0.6165 0.6415 0.6169 0.6049 0.6308 0.6261
Popg 0.0368 0.1485 0.2182 0.2135 0.2179 0.2218 0.2093 0.2087
Brit 0.0386 0.3304 0.3298 0.3382 0.3316 0.3260 0.3345 0.3289
OutwarOr 0.0383 0.3387 0.3507 0.3613 0.3489 0.3463 0.3517 0.3501
Jewish 0.0355 0.1289 0.1966 0.1927 0.1995 0.2096 0.1949 0.1922
RevnCoup 0.0300 0.1252 0.1946 0.1924 0.1925 0.1962 0.1877 0.1842
PublEdupct 0.0315 0.2951 0.3152 0.3167 0.3148 0.3182 0.3151 0.3133
Area 0.0298 0.1391 0.2152 0.2097 0.2164 0.2180 0.2101 0.2072
E(k|Y ) 10.442 19.657 20.389 20.518 20.411 20.377 20.395 20.368
E( g

1+g
|Y ) 0.999 0.986 0.955 0.960 0.955 0.951 0.958 0.958

Table 9: Posterior Inclusion Probabilities for different prior settings. Values larger than 0.5
in bold.
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g-RIC g-UIP g-E( g
1+g
|Y ) EBL HG-3 HG-4 HG-UIP HG-RIC

GDP60 -0.7810 -0.8019 -0.7743 -0.7785 -0.7740 -0.7704 -0.7768 -0.7769
Confucian 0.2703 0.3055 0.2881 0.2921 0.2884 0.2858 0.2905 0.2901
LifeExp 0.5267 0.5546 0.5348 0.5411 0.5358 0.5331 0.5386 0.5366
EquipInv 0.3040 0.2361 0.2222 0.2259 0.2227 0.2202 0.2240 0.2230
SubSahara -0.2545 -0.4094 -0.3619 -0.3686 -0.3632 -0.3586 -0.3683 -0.3693
Muslim 0.1448 0.1017 0.1096 0.1089 0.1083 0.1084 0.1073 0.1067
RuleofLaw 0.1322 0.1658 0.1406 0.1422 0.1391 0.1368 0.1418 0.1429
YrsOpen 0.1439 0.0325 0.0482 0.0465 0.0482 0.0502 0.0462 0.0455
EcoOrg 0.0816 0.0888 0.0866 0.0850 0.0861 0.0860 0.0862 0.0875
Protestants -0.0772 -0.0804 -0.0799 -0.0785 -0.0794 -0.0800 -0.0796 -0.0806
Mining 0.0800 0.1486 0.1419 0.1433 0.1421 0.1415 0.1432 0.1426
NequipInv 0.0737 0.1066 0.1066 0.1065 0.1070 0.1064 0.1068 0.1079
LatAmerica -0.0429 -0.1759 -0.1464 -0.1528 -0.1478 -0.1455 -0.1515 -0.1510
PrScEnroll 0.0598 0.1262 0.1099 0.1142 0.1090 0.1066 0.1116 0.1101
Buddha 0.0264 0.0335 0.0410 0.0404 0.0408 0.0410 0.0400 0.0398
BlMktPm -0.0219 -0.0783 -0.0702 -0.0713 -0.0697 -0.0694 -0.0711 -0.0709
Catholic -0.0050 -0.0112 -0.0111 -0.0100 -0.0111 -0.0110 -0.0111 -0.0121
CivlLib -0.0271 -0.0944 -0.0853 -0.0877 -0.0852 -0.0832 -0.0866 -0.0859
Hindu -0.0184 -0.3591 -0.3003 -0.3169 -0.3041 -0.2949 -0.3123 -0.3104
PrExports -0.0168 -0.0162 -0.0271 -0.0252 -0.0264 -0.0273 -0.0250 -0.0252
PolRights -0.0157 -0.0454 -0.0490 -0.0490 -0.0494 -0.0493 -0.0487 -0.0494
RFEXDist -0.0095 -0.0148 -0.0187 -0.0190 -0.0190 -0.0186 -0.0186 -0.0183
Age -0.0078 -0.0252 -0.0282 -0.0280 -0.0283 -0.0287 -0.0279 -0.0282
WarDummy -0.0081 -0.0222 -0.0288 -0.0284 -0.0293 -0.0296 -0.0286 -0.0288
LabForce 0.0102 0.2997 0.2487 0.2646 0.2525 0.2445 0.2599 0.2572
Foreign 0.0068 0.0038 0.0071 0.0068 0.0074 0.0078 0.0069 0.0069
English -0.0057 -0.0350 -0.0337 -0.0346 -0.0342 -0.0336 -0.0344 -0.0344
EthnoL 0.0055 0.1331 0.1084 0.1155 0.1094 0.1045 0.1122 0.1116
Spanish 0.0053 0.1066 0.0821 0.0888 0.0833 0.0792 0.0857 0.0852
stdBMP -0.0034 -0.0021 -0.0037 -0.0035 -0.0036 -0.0039 -0.0035 -0.0035
French 0.0037 0.0585 0.0448 0.0492 0.0458 0.0432 0.0471 0.0464
Abslat 0.0006 -0.0071 -0.0066 -0.0065 -0.0065 -0.0069 -0.0067 -0.0068
WorkPop -0.0030 -0.0035 -0.0062 -0.0060 -0.0062 -0.0064 -0.0062 -0.0061
HighEnroll -0.0044 -0.1871 -0.1441 -0.1551 -0.1453 -0.1393 -0.1513 -0.1492
Popg 0.0027 0.0072 0.0110 0.0104 0.0106 0.0113 0.0105 0.0103
Brit -0.0018 0.0413 0.0263 0.0303 0.0271 0.0249 0.0288 0.0281
OutwarOr -0.0020 -0.0286 -0.0266 -0.0280 -0.0265 -0.0258 -0.0270 -0.0267
Jewish -0.0012 -0.0009 -0.0019 -0.0018 -0.0020 -0.0021 -0.0020 -0.0018
RevnCoup -0.0001 -0.0003 -0.0002 -0.0002 -0.0003 -0.0003 -0.0002 -0.0003
PublEdupct 0.0004 0.0266 0.0229 0.0238 0.0228 0.0226 0.0237 0.0235
Area -0.0005 -0.0026 -0.0030 -0.0031 -0.0031 -0.0030 -0.0031 -0.0031
E(k|Y ) 10.442 19.657 20.389 20.518 20.411 20.377 20.395 20.368
E( g

1+g
|Y ) 0.999 0.986 0.955 0.960 0.955 0.951 0.958 0.958

Table 10: Fully standardized posterior means for different prior settings. Coefficients corre-
sponding to covariates with PIP exceeding 0.5 in bold.
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Figure 5: Top left panel shows the cumulative posterior mass, left panel the posterior in-
clusion probabilities, bottom left panel the standardized coefficients and bottom right panel
the posterior mean for the growth determinants exercise.
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