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I. INTRODUCTION

Financial innovation is “exemplified by new derivative contracts, new corporate securities, new
forms of pooled investment products, [...] or by new means of distributing securities and processing
transactions” (Tufano [2002]). Indeed, in the last two decades, the US have witnessed a tremendous
increase in the types of securities available to investors and a decrease in the cost of holding and
trading them. Traditionally, economists have viewed the process of financial innovation as beneficial
for two sets of reasons. First of all it spurs growth, thanks to the greater easiness with which funds
flow from agents with low productive projects towards agents with high productive projects (Levine
[1997], Rajan and Zingales [1998], Azariadis and Kass [2003], among others). Second, the amount
of risk that investors bear is reduced, as a consequence of the availability of a broader menu of
assets, allowing greater diversification and risk sharing (Merton [1987], Mendoza et al. [2008]). This
traditional view has recently come under attack, particularly on the part where it predicates that
financial development leads to risk reductions for investors. Indeed, some authors wonder whether
financial development has made the world riskier and subject to “excessive risk taking” (Rajan
[2005]), while others plainly state, with respect to securitization, that its “positive role [...] in
dispersing risk” is an “old view, now discredited” (Shin [2009]).

This paper intends to contribute to the ongoing debate by highlighting the role of costly information
collection as a channel, largely neglected by the literature, through which financial innovation shapes
the amount and types of risk that investors choose to hold, the characteristics of aggregate economic
fluctuations and, finally, welfare. Using data provided by French [2008] I find evidence that, for the
US stock market, financial innovation was not accompanied by a reduction in the relative cost of
active (i.e. more informed) trading compared to the cost of passive (less informed) trading. What are
the possible consequences of this phenomenon? To answer this question I develop a theoretical
model where agents learn about the quality of investment opportunities by choosing either to be
active investors and acquire costly private information or to be passive and rely on less costly, but
less precise, public information. Information is valuable because it avoids making low quality
investments, which are investments in excessively risky technologies. Following the literature on
noisy trading (Grossman and Stiglitz [1980], Kyle [1985], Summers and Shleifer [1990]) the overall
amount of private information collected by active investors determines a positive externality on the
precision of the public information. Under various assumptions on assets returns, I show that
financial innovation leads to a decrease in the amount on private information collection whenever it
is not accompanied by a reduction in the cost of investing actively relative to the cost of investing
passively. The reason is that information is a strategic substitute to risk diversification. Financial
innovation has positive welfare effects because it provides “insurance” to investors, by allowing
them to trade a larger set of assets and thus to better diversify risk. However, as in a standard moral
hazard problem, greater insurance reduces incentives to take costly actions, such as collecting private
information, to avoid excessively risky investments. This theoretical finding is supported by a
growing body of literature (Cremers and Petajisto [2009], French[2008]) that shows how US stock
market holdings have consistently shifted form active to passive forms of investment in the past 20
years. Information collection affects welfare and the business cycle properties. The lower amount of

* I would like to thank Fabrizio Perri, Timothy Kehoe, Patrick Kehoe and two anonymous referees for useful
comments. The initial draft of this paper was written while at the Bank of Italy. The views expressed here are those of
the author and not necessarily those of the International Monetary Fund or of the Bank of Italy. Contact information: tel.:
(+001) 202 623 4825; e-mail: rpiazza@imf.org.
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private information collected, working through the externality of public information, has a negative
impact on the welfare of passive investors, thus partly counterbalancing their gains from better risk
sharing. With lower information, agents more often mistakenly invest in technologies characterized
by excessive systemic risk: I derive business cycles statistics which incorporate the effects of
information collection on the volatility and sensitivity to systemic shocks of the aggregate
productivity. With this respect, the model adds a new theoretical perspective to the literature on the
great moderation (Stock and Watson [2002], Fogli and Perri [2006], Dynan et al. [2006], Stiroh
[2009]).
Finally I show how, in a more dynamic setting with time varying risk, information cycles arise.
Financial development tends to reduce information collection in periods where excess risk is mainly
idiosyncratic (and thus “insurable” through better diversification), but has no impact on information
collection in periods when excess risk is mainly systemic. Consequently, financial development
increases the frequency of “liquidation crises”. These are situations when too risky investments are
mistakenly undertaken in periods of idiosyncratic excess risk, only to be suddenly liquidated when
excess risk becomes systemic and information collection soars. If liquidation crises impose
aggregate costs to the economy, then financial development reduces welfare.

The remaining of the paper proceeds as follows. Section II reviews the empirical evidence, Section
III presents technologies, preferences, information revelation mechanism and the equilibrium for the
basic model. Section IV extends the basic model to time varying risk and analyzes liquidation crises.
Section V concludes.

II. EMPIRICAL EVIDENCE

To substantiate our discussion, it is worthwhile to review a few points about financial innovation. To
this end, the US is an interesting reference country for which we have quite abundant empirical
evidence. The three facts that I emphasize are the following: a) there has been a tremendous increase
in the menu of assets and in diversification possibilities available to investors b) liquidity and trading
costs have trended downwards since the ’60s, but c) the cost of active investment strategies has not
decreased relative to the cost of passive strategies. Point a) is easily illustrated with some examples.
High-yield bond issuances went from about $50 billions in 1993, when issuances were entirely in the
US, to $180 billions in 2006, with the US share going down to 70% (BIS [2008]). During the same
period, the value of worldwide buyouts transactions undertaken by private equity funds went from a
scanty $30 billions to more than $800 billions (Kaplan and Strömberg [2009]). The US market for
asset-backed securities, that in 1998 was worth $271 billion, increased four times in only a few years
and reached over $1,200 billions in 2006 (Weaver [2008]). Securitization in the US mortgage
market, virtually absent two decades ago, reached 80.5% of mortgages originated in 2006, for a total
value of $2.4 trillions (Gorton [2008]). For the purpose of our discussion, the most important
conclusion to be drawn is that the successful introduction of these new financial instruments
(high-yield bonds, private equity, mortgage backed securities) opened up to investors new
opportunities in markets (for high risk firms, unlisted companies, housing) that before had more
limited access to external financing, mostly provided by very specialized investors (e.g. banks). A
number of studies (for instance Jones [2002], French [2008]) confirm b) by establishing that trading
costs in the stock market have decreased over time due to reductions in both bid-ask spreads and in
trading fees. Things become more complicated when we want to investigate c), since it requires the
difficult task of ranking investment strategies by their “information content” and then of calculating
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Figure 1. Cost of active and passive investment strategies (in % of investment) and relative cost of active
strategies. Active and passive Defined Benefit pension funds (top). Composite active and passive strategies
(bottom). The data used are from French (2008). Details on strategy construction are in Appendix E.

the corresponding cost. The most comprehensive attempt to estimate information costs has been
done by French (2008), who reports cost series for various investment strategies in the US stock
market. Using these data, I analyze two alternative cost measures for active and passive investments.
The first is the cost of active and passive Defined Benefit pension plans, while the second is the cost
of composite active and passive strategies comprising investments in mutual funds, pension funds,
hedge funds and direct equity holding. Figure 1 presents the two cost measures, and Appendix E
provides more details on their construction. The common message is the following: the absolute cost
of passive strategies has been trending downwards over time, while the absolute cost of active
strategies has decreased to a much lesser extent. Consequently, the relative cost of active strategies
has significantly increased over time, roughly doubling in the period 1991-2006. Certainly, a more
precise measure of information costs would take into consideration the possibility that active
strategies might have become much better in producing information. Measuring information costs
using this sort of quality-adjusted index could indeed reveal that active investment strategies have not
become, relative to passive strategies, as costly as Figure 1 suggests. Nonetheless, as a first order
approximation, it seems reasonable to argue that quality considerations would not be so strong as to
invert the clear trend in Figure 1.
The next section presents the basic model relating information collection to financial innovation. The
model will allow us to highlight the consequences for the agents’ risk taking behavior, for the
business cycle and for welfare of a financial innovation process characterized by a)-b) and c).
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Figure 2. Economy divided in N = 4 markets. Within each market there are two linear technologies j = 1, 2
with random productivity rm,j . The realized type is Θ = (2, 1, 2, 1) so technology j = 2 has excess risk in
markets 1, 3 and j = 1 has excess risk in markets 2, 4.

III. THE BASIC MODEL

A. Technologies and information structure

The economy lasts two periods t = 1, 2 and is endowed with 2N linear production technologies that
use consumption goods at t = 1 as input and produce consumption goods at t = 2 as output.
Technologies are evenly distributed distributed across N markets m = 1, ..., N , so that each market
is associated with exactly two technologies j = 1, 2. Each technology is uniquely identified by a pair
(m, j). In every market m, one technology is low risk and the other excess risk. The return on the
excess risk technology in m is a mean preserving spread of the return on the low risk technology in
m. The realization of a random type θm ∈ {1, 2} decides that technology j = θm is the excess risk
technology in m (and thus j = 3− θm is the low risk technology in m). Call Θ = (θ1, ..., θN) the
vector of types and T = {1, 2}N the set of such vectors. Call rm,j the return between t = 1 and t = 2
of technology (m, j) and assume that

rm,3−θm = im (1)
rm,θm = imemS (2)

The random variables im and em are i.i.d. across markets, while S is the systemic shock common to
all markets. All shocks are independent of each other. I normalize to unity the expected returns by
assuming that E[im] = E[em] = E[S] = 1 and I denote with σ2

i , σ2
e , σ2

S the variances of the shocks.

Figure 2 gives a graphical representation of markets and technologies. The setup is open to various
interpretations. For instance, markets can represent different products, or different groups of
customers segmented by geographical area, wealth or income. For every market, some choices of the
production and marketing technologies are more risky than others. For example, a certain production
technology may rely too much on inputs whose prices are very volatile, or a certain marketing
strategy may target customers whose payment ability is very uncertain. Excess risk is modeled as a
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mean preserving spread over the low risk technology, in fact

rm,θm = rm,3−θm + zm

where the excess risk zm = im(emS − 1) satisfies

E[zm|rm,3−θm ] = 0

Given a realization of rm,3−θm the source of excess risk in zm is twofold: excess idiosyncratic risk em
and excess systemic risk1 S.

The joint distribution of types is summarized by a probability function F (Θ) that satisfies a
symmetry condition

F (Θ) = F (θ1, ..., θN) = F (3− θ1, ..., 3− θN) = F (Θ̄) (3)

for every Θ ∈ T . Condition (3) simply requires that the probability of realization of a type Θ equals
the probability of realization of its opposite type Θ̄ defined as Θ̄ = 3−Θ. The ad hoc assumption
(3) greatly simplifies our calculations but is not very restrictive, since it encompasses a wide range of
behaviors for the joint distribution of types. For instance, consider the case of perfect positive
correlation among market types θm. Here the support of F (·) is the pair of vectors Θ1 = (1, ..., 1)
and Θ2 = (2, ..., 2). Assumption (3) then simply requires that F (Θ1) = F (Θ2) = 1

2
. To the other

extreme, the case of i.i.d. types automatically satisfies (3), since F (Θ) = 1
2N

for any Θ ∈ T .

We are ready to describe the information structure of the economy, i.e. the way in which information
about the realization of Θ flows to the agents in the economy. For now, we conveniently assume that
the information structure is exogenously imposed to the economy, but in Section D I will derive in
detail the microeconomic mechanism that allows this structure to emerge as an equilibrium outcome
of the model.
First of all, at the beginning of time 1 all agents are informed that the current realization of types
satisfies Θ ∈ TΘ where

TΘ ≡ Θ ∪ Θ̄ (4)

In other words, after the types are realized the only initial uncertainty for agents is whether the
realized type is the true Θ or its opposite. Notice that, conditional on this information, assumption
(3) implies that the two types are equally likely. Next, agents have two ways to further refine their
knowledge. The first is to become an active investor, a choice that reduces the investor’s wealth to a
fraction2 1/ξA of its original value, with ξA > 1, and allows the observation of a private signal
IA(Θ) such that

IA(Θ) = Θ (5)

Alternatively, an investor can choose to be passive. Passive investors face investment costs that

1To reduce notation, I normalize to zero the amount of systemic risk in the diversifiable technology technologies. This
has no qualitative effect on the results. A case with systemic risk also in the low risk technology is presented in Section
IV.

2This gives rise to a constant return to scale for information collection. For a analysis of increasing returns technologies
see Van Nieuwerburgh and Veldkamp (2008).
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reduce their wealth to a fraction 1/ξP , with 1 < ξP < ξA, but observe a public signal IP (Θ),

IP (Θ) = IρΘ (6)

where Iρ is a binary random variable, independent on Θ, which equals 1 with probability ρ ∈ [0, 1]
and zero otherwise. Active investors are able to take fully informed investment decisions, but have to
pay a high cost. Instead, passive investors pay a smaller cost but can rely only on the public signal
IP , which is less precise. In fact, IP is informative if and only if Iρ = 1, an event realized with
probability ρ, while if Iρ = 0 the public signal is uninformative and the types Θ and Θ̄ remain
perfectly confounded. The precision of the public information is summarized by the revelation rate
ρ. More formally, signal observation refines an agent’s believe about the true realization of the types.
In particular, an agent who observes a signal I ∈ {0,Θ} learns that Θ ∈ TΘ,I where

TΘ,I =

{
Θ for I = Θ
TΘ for I = 0

(7)

Define η ∈ [0, 1] the fraction of active investors at time 1. To make public information a positive
spillover of private information collection I assume that

ρ = AEη (8)

for AE ∈ (0, 1). As mentioned above, the initial observability (4), the particular binary choices for
the public signal IP ∈ {0,Θ} and the form of the spillover function (8) are all derived from first
principles in Section D.

All agent have to pay a cost to access investment opportunities, but active agents, who have superior
information, face higher costs. For this reason, we can identify with ξ > 1 the relative information
cost, where

ξ =
ξA

ξP

In terms of points b) and c) in Section II, financial innovation appears to be associated with in costs
ξA and ξP , but not with a decrease in ξ. The remaining point a), relating financial innovation to
greater diversification opportunities, can be modeled in the following way. Assume that each
investor draws a specialization h in market h = 1, ..., N . Call ph the fraction of investors with
specialization h. Agents are constrained to invest at most a fraction 1− ᾱ of their portfolio outside
their market of specialization, where ᾱ ∈

[
1
N
, 1
]

is the barrier to diversification.
The degree of financial development of an economy is summarized by the vector of distortions
D = (ξA, ξP , ᾱ). As financial innovation decreases D, investment costs are reduced and
diversification possibilities improve. As a word of caution, it is worthy to emphasize that the separate
treatment of the barriers ᾱ and of the investment costs ξA, ξP is a convenient artifact but should not
be taken too literarily. These variables are all rooted in the same types of market imperfections that
financial innovation, when beneficial, helps to eradicate. For instance, high barriers ᾱ may be due the
presence of asymmetric information and moral hazard preventing investors to venture in unfamiliar
markets, thus forcing them to concentrate their wealth in a few markets; lack of a centralized
financial market for a certain class of assets raises liquidity costs and reduces the number of investors
who trade in those assets; explicit regulatory requirements can restrict the possibility to trade some
types of assets. These same imperfections are also the cause of high investment costs ξA, ξB, which
must be interpreted in a broad sense as to include all “the cost of transmitting information from one
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party to another” (Merton [1987]). Examples are costly contracting schemes needed, in the
framework of a principal-agent problem, to implement a truthful communication and reduce moral
hazard (Holmström and Milgrom [1987], Townsend [1979], Benmelech et al. [2009]).
Finally, it is important to stress that the focus of the paper is not on developing a theory of
endogenous emergence of financial innovation, the distortions D are in fact treated as exogenous to
the economy.

B. Preferences

Agents’ preferences are given by an homothetic utility function, which allows a parametric
separation between risk aversion and intertemporal elasticity of substitution. Call {ct,I} any
consumption process for time t = 1, 2 chosen by the agent after observing a signal I ∈ {0,Θ} at the
beginning of time 1. Conditional on I , consumption c1,I is deterministic, but consumption c2,I is
stochastic, since it depends on the random return at t = 2 of the agent’s investement. A conditional
consumption process yields a value VI given by

VI =

{
c

1− 1
ψ

1,I + β
[
E(c1−γ

2,I )
] 1− 1

ψ
1−γ

} 1

1− 1
ψ

for β ∈ [0, 1]. The ex-ante utility U to the agent is the following,

U =
[
EV 1−γ

I

] 1
1−γ (9)

Similarly to Epstein and Zin (1989), the utility function disentangles the relative risk aversion
coefficient γ > 0, γ 6= 1 from the elasticity of intertemporal substitution ψ > 0, ψ 6= 1. As we will
see, this choice is made to allows a better interpretations of the results. Notice also that by setting
γ = 1

ψ
the usual CRRA utility is obtained.

C. The problem of the investor

At time t = 1, an investor first chooses whether to be active (τ = A) or passive (τ = P ), then
observes the corresponding signal Iτ , and finally makes investment decisions. Investment choices
are given by a saving rate x and a portfolio share αm,j for every technology (m, j) in the economy,
subject to the barrier to diversification ᾱ. Therefore, given an exogenous realization of Θ, an investor
endowed with initial unit wealth and specialization h solves

max
τ

EV 1−γ
I (τ, h)

where,

VI(τ, h) = max
x,{αhm,j}

{
c

1− 1
ψ

1,I + β
[
Ec1−γ

2 (Θ)|Θ ∈ TΘ,I

] 1− 1
ψ

1−γ

} 1

1− 1
ψ

(10)
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s.t. c1,I = (1− xI)/ξτ
c2(Θ) = r̂h(Θ)xI/ξτ

r̂h(Θ) =
∑
(m,j)

αhm,jrm,j(Θ)

αh1,h + αh2,h ≥ ᾱ∑
(m,j)

αhm,j = 1

Refinements (7) imply that for agents with an informative signal I = Θ uncertainty about the
portfolio return r̂h stems only from uncertainty on the realization of the productivity shocks i, e, S.
Agents with an uninformative signal I = 0, instead, face further uncertainty about the types
realization. The solution for the optimal portfolio shares is quite intuitive3. Call αh∗m,j(I) the optimal
portfolio shares of an investor specialized in h when she observes a signal I . When I = Θ the
investor is informed about the true type and avoids investing in excess risk technologies. Moreover,
since the returns of low risk technologies are i.i.d. across markets, the best strategy to minimize the
remaining risk is to distribute the total investment as evenly as possible across markets, conditional
on the barrier ᾱ ≥ 1/N . Therefore,

αh∗m,θm(Θ) = 0 ∀m
αh∗h,3−θh(Θ) = ᾱ
αh∗m,3−θm(Θ) = 1−ᾱ

N−1
m 6= h

(11)

When I = 0 the signal is uninformative and, from the point of view of the investor, returns on all
technologies are identically distributed. Therefore, to minimize risk, the investment is spread as
evenly as possible across technologies, which implies that a share ᾱ/2 is assigned to each of the two
technologies in market h and the remaining share 1− ᾱ is equally distributed across the other
2(N − 1) technologies,

αh∗h,j(0) = ᾱ
2

j = 1, 2
αh∗m,j(0) = 1−ᾱ

2(N−1)
m 6= h, j = 1, 2

(12)

Substituting for the optimal portfolio shares, we conclude that, for a given Θ, the portfolio return r̂hI
of an investor with information I and specialization h is

r̂hΘ = ᾱih +
∑
m6=h

im

r̂h0 =
ᾱ

2
(ih + ihehS) +

1− ᾱ
2(N − 1)

∑
m6=h

(im + imemS)

Notice that r̂hI is independent on Θ. Clearly, an informed investor holds a less risky portfolio than
that of an uninformed investor, in fact

rh0 = rhΘ + εh

where
εh =

ᾱ

2
ih(ehS − 1) +

1− ᾱ
2(N − 1)

∑
m6=h

im(emS − 1)

3For a detailed derivation see Appendix A
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and E[εh|rhΘ] = 0. For a realization Θ, call RI the risk-adjusted return to the portfolio of an investor
with information I and specialization h,

RI = [E(r̂hI )1−γ]
1

1−γ (13)

Risk adjusted returns are independent both on h and on the particular realization Θ. Since r̂h0 is a
mean preserving spread of rhΘ, a simple application of Jensen’s inequality gives

R0 < RΘ

Using the results obtained so far and the homotheticity of the utility function, the optimal saving
rates are found by rewriting VI(τ, h) = 1

ξτ
V̂I where

V̂I = max
x

{
(1− x)1− 1

ψ + βx1− 1
ψR

1− 1
ψ

I

} 1

1− 1
ψ (14)

For every signal I , the first order conditions of the problem give the optimal saving rate x∗I ,

x∗I =
1

1 + β−ψR1−ψ
I

(15)

Since all agents, informed or uninformed, allocate a fraction ᾱ of their investment into their own
market of specialization and a fraction 1−ᾱ

N−1
to each of the other markets, we can derive aggregate

market shares ωm, representing the fraction of aggregate investment devoted by the economy to
market m,

ωm = ᾱpm +
1− ᾱ
N − 1

(1− pm)

For instance, when financial development is at its minimum ᾱ = 1, only the fraction pm of agents
with specialization in m invest in m, and thus ωm = pm. From a diversification perspective, some
markets will receive too little capital and others too much. Instead, when financial development is at
its maximum ᾱ = 1/N investors can perfectly diversify their portfolio beyond their original
specialization, and thus ωm = 1/N for all m.

D. The microfundation of the information structure

When collection of information is costly markets cannot be informationally efficient (Grossman and
Stiglitz [1980]), otherwise the superior information available to active investors would be costlessly
revealed to passive investors by investment choices, which are publicly observable. However, if the
precision of the public information is reduced by the presence of an aggregate noise, then costly
collection of private information can still be valuable. This idea is formalized by assuming that
passive investors observe the investments made by active investors plus a noise. The noise can be
interpreted as created by mistakes in investment choices or in its measurement, or by the activity of
another class of agents, the liquidity investors, whose portfolio decision is influenced by random
factors, such as liquidity needs.

Assume that there is a constant amount L̄ of noisy investment in the economy, distributed across
markets according to the market shares ωm. A random variable | with support [0, L̄] determines the
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total amount of noisy investment which is directed towards excess risk technologies. Call y(m, j) the
sum of active and noisy investment made in technology (m, j). We then have,

y(m, θm) = ωmL

y(m, 3− θm) =
ωm
ξA
x∗Θη + ωm(L̄− L)

where as usual η is the fraction of investors active in each market. Each active investor has a net
wealth 1/ξA and a saving rate x∗Θ. The quantity ωm

ξA
x∗Θη is then the overall amount of active

investment directed to the low risk technology in market m. Call
y = (y(1, 1), y(1, 2), ..., y(N, 1), y(N, 2)) and assume that L̄ < x∗Θ/ξA. Passive investors use the
Bayes rule to deduce the realization of the types from the observation of y. Fix a reference market m
and, for j = 1, 2, define

Lj =
y(m, j)

ωm

The value Lj corresponds to the realization of the noise L consistent with a observation y(m, j) and
a realized type θm = j in our reference market m. For j = 1, 2 define Θj ∈ TΘ the vector of types
consistent with a realization θm = j in our reference market m. Appendix B shows that if (3) holds
then,

Prob{Θj|y} =
u(Lj)

u(Lj) + u(L3−j)
(16)

where u(·) is the probability density function of L. First of all, notice that
Prob{Θ1|y}+ Prob{Θ2|y} = 1 and this is consistent with our initial assumption (4) that agents are
always informed about TΘ = {Θ, Θ̄}. Equation (16) generates the structure (6) for the public signal
if, for instance, L is uniformly distributed on [0, L̄], as the following example shows. Assume that θm
is the true realization of the type in the reference market m, so that Θ = Θθm is the true realization of
the vector of types. If there is a low realization L < η

ξA
x∗Θ then it is easy to verify that L3−θm > L̄.

Therefore u(Lθm) = 1/L̄, u(L3−θm) = 0. Then Prob{Θθm|y} = 1 and Prob{Θ3−θm|y} = 0.
Suppose instead that the realization of the noise is sufficiently large, L ≥ η

ξA
x∗Θ. Then L3−θm ≤ L̄,

u(Lθm) = u(L3−θm) = 1/L̄ and hence Prob{Θθm|y} = Prob{Θ3−θm |y} = 1
2
. In conclusion, if

L < µ
ξA
x∗Θ types are revealed to passive agents by the low level of investment in the excess risk

technologies, while if the noise is sufficiently large the true type Θ = Θθm is undistinguishable from
Θ̄ = Θ3−θm . Notice that the revelation rate is

ρ = Prob
{
L <

ηx∗Θ
ξA

}
=
ηx∗Θ
L̄ξA

The externality function (8) is obtained by setting

AE =
x∗Θ
L̄ξA

E. Equilibrium

In an equilibrium where the revelation rate is strictly positive the fraction of active investors is also
strictly positive. In this situation, the equilibrium revelation rate ρ∗ makes indifferent the marginal
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investor between being active or passive, that is

1

ξ1−γ
A

V̂ 1−γ
Θ =

1

ξ1−γ
P

[ρ∗V̂ 1−γ
Θ + (1− ρ∗)V̂ 1−γ

0 ]

where the left hand side is the utility (9) from being active and the right hand side is the expected
utility from being passive. Solving we obtain

ρ∗ = 1− ξγ−1 − 1(
V̂Θ

V̂0

)γ−1

− 1
(17)

An internal solution ρ∗ ∈ (0, 1) is obtained whenever(
V̂Θ

V̂0

)γ−1

> ξγ−1

Definition 1. An equilibrium is given by

1. investment policies x∗I that solve (15), and portfolio policies αh∗m,j(I) satisfying (11), (12),
given ρ∗.

2. a revelation rate ρ∗ equal to the maximum between zero and the value (17), and a fraction η∗

of active investors satisfying (8).

We have then the following Proposition.

Proposition 1. There exists one and only one equilibrium. Values V̂I are given by

V̂I =
(
βψRψ−1

I + 1
) 1
ψ−1

(18)

for I ∈ {0,Θ}. For interior solutions, the revelation rate is

ρ∗ = 1− ξγ−1 − 1(
βψRψ−1

Θ +1

βψRψ−1
0 +1

) γ−1
ψ−1

− 1

(19)

Proof. Substitute (15) into (14) to obtain (18), which is then substituted into (17) to get
(19). Q.E.D.

The equilibrium revelation rate is ultimately a function of the exogenous vector of distortions D, so
we write ρ∗(D). Since ρ∗ equalizes the value of being active and passive the revelation rate turns out
to be, not surprisingly, a function of the relative information cost ξ and not of ξA and ξB separately.
We can perform comparative statics exercises to see how financial innovation affects ρ∗ through
reductions in the distortions D. In particular, to mimic the stylized facts suggested in Section II, I
consider exogenous reductions in ξA, ξB and ᾱ leaving ξ unchanged. I restrict my attention to two
interesting cases that help us give a clear interpretation of the forces behind the relation ρ∗(D). The
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first case is obtained by setting im = 1, so that the low risk technology is risk free and excess risk is
both idiosyncratic em and systemic S. In the second, I set em = 1 so that all technologies have an
idiosyncratic component im and the excess risk is only systemic S. I will also focus on interior
equilibria ρ∗ > 0.

Proposition 2. Consider changes in D that leave ξ unchanged. Then,

i) If im = 1 a.s. then ρ∗(D) is a strictly increasing function.

ii) If em = 1 a.s. then ρ∗(D) is strictly increasing for ψ < 1 and strictly decreasing for ψ > 1.

Welfare strictly decreases in the distorsions D.

Proposition 2 show that information collection decreases whenever financial innovation favors
mostly passive investors relative to active investors. To explain this point it is useful to analyze the
ratios ζx = xΘ/x0 and ζR = RΘ/R0 representing, respectively, the saving rate and risk adjusted
return of an informed investor relative to those of an uninformed investor. In case i) informed
investors face no risk at all since RΘ = 1, while passive investors face idiosyncratic and system risk.
Financial development decreases the relative return ζR of informed investors by boosting only the
return R0 of uninformed investors, who can better diversify the excess risk they hold. Since active
investors are always informed while passive investors are sometimes uninformed, financial
development favors passive investors relatively more than active investors. In case ii) we have
ζR = Ω−1 where

Ω =
(
ES1−γ) 1

1−γ < 1

The excess risk held by uninformed investors is all systemic, hence the relative return ζR is
unaffected by the degree of diversification. In this case, therefore, the channel that allows D to affect
ρ∗ is not simply the change in ζR, but is the behavior of the relative saving rate ζx. When the
elasticity of intertemporal substitution is smaller than one ζx < 1, because the share of individual
wealth consumed by informed investors, who face a higher return RΘ, is bigger than that of the
uninformed investors, who save relatively more to compensate for their lower return R0. Therefore,
even though financial innovation doesn’t change ζR, it still favors more uninformed investors (and
thus passive investors) who are the ones that are more exposed to investment risk and then reap
overall greater fruits from the improvement in diversification possibilities. The opposite i true when
ψ > 1, but this latter case seems much less relevant for macroeconomics, where both the
econometric (Hall [1988]) and the quantitative (Kydland and Prescott [1982]) literature traditionally
consider values of ψ smaller than 0.5. For em = 1, the elasticity ψ determines the direction
(decrease/increase) in which ρ∗ changes in response to a decrease in D, while the relative risk
aversion γ influences the size of such change. In fact, substituting ζR = Ω−1 into (19) we obtain

ρ′
∗
1−ᾱ ≡

∂ρ∗

∂(1− ᾱ)
= g(RΘ,Ω)

∂RΘ

∂(1− ᾱ)
(1− Ωψ−1)

where g(RΘ,Ω) is a strictly positive function. Risk adjusted returns increase with diversification4, so
∂RΘ

∂(1−ᾱ)
> 0 for any value of the parameters. The elasticity ψ determines the sign of ρ′∗1−ᾱ while, for

4Appendix A proves this point formally.
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given RΘ and Ω, ∂RΘ

∂(1−ᾱ)
> 0 influences its absolute value. The higher the risk aversion, the larger is

∂RΘ

∂(1−ᾱ)
, since the greater is the positive diversification effect on RΘ generated by a small reduction in

the distortion ᾱ. For instance as γ approaches zero investors become risk neutral and RΘ = 1 for any
ᾱ, so that ∂RΘ

∂(1−ᾱ)
= 0. These different roles for ψ and γ cannot be uncovered in the standard

formulation γ = 1
ψ

.

Having established that financial innovation tends to decrease information, it is interesting to assess
how this affects aggregate welfare and the business cycle. For equilibria with interior ρ∗, investors’
welfare is simply given by the welfare of active investors V̂Θ/ξA. Welfare gains from financial
innovation come from lower costs ξA and from a lower barrier ᾱ to diversification, which allows RΘ

in (18) to increase. However, these net positive welfare gains can be greatly reduced by a decrease in
the amount of information ρ∗. The starkest example is provided by case a), where a decrease in ᾱ
does not change V̂Θ. It follows that if we keep ξA and ξB constant, welfare is unaffected by a strict
decrease in the barrier ᾱ. But how is it possible that higher diversification does not rise the welfare of
passive investors, who are likely to be uninformed and thus to face excess idiosyncratic risk? The
answer is that, in this case, the positive effect of a lower ᾱ is exactly offset by an endogenous
decrease in the quality ρ∗ of public information. The mechanism is that of a typical moral hazard
problem, working through the information externality (8). As diversification possibilities increase,
investors become “more insured” against excess risk and thus, ceteris paribus, find it less valuable to
take the costly action of collecting private information to eliminate the chance of facing such risk. In
other words, information collection and diversification are strategic substitutes for investors. The
lower collection of private information reduces the quality ρ∗ of the public signal, and this impacts
negatively on the welfare of passive investors, exaclty counterbalancing the positive effect of a low ᾱ.

Lower public information means that more investors (lower η∗) invest more often (lower ρ∗) in the
“wrong technologies”, i.e. in technologies with excess risk. This result is important and suggests that
the finding of Proposition 1 regarding the positive welfare value of financial innovation could be
quite fragile. Indeed, in Section IV I extend the basic framework to a more dynamic setting in which
risk is time varying and where periods when excess risk is mainly idiosyncratic are followed by
periods when excess risk becomes systemic. I show that financial development increases the
probability of “liquidation crises”, i.e. situations in which investments in excess risk technologies,
initially mistakenly undertaken by uninformed investors, are suddenly liquidated when the increase
in systemic risk triggers a wave of information collection. If liquidation crises impose aggregate
costs to the economy, then financial innovation can reduce welfare.

To present in simple ways the effect of financial innovation on the business cycle, I characterize the
equilibrium values of the statistics σ2

A and γA,S = Cov(A, S)/σ2
S giving, respectively, the volatility

of the multifactor productivity A and the regression parameter measuring the sensitivity of the
productivity to systemic shocks. The productivity A is defined as

A(Θ, IP ) =

∑
h[η
∗x∗Θr̂

h
Θ + (1− η∗)ξx∗IP r̂

h
IP ]ph

η∗x∗Θ + (1− η∗)ξx∗
IP

(20)

The multifactor productivity is the overall output at time 2 of the production technologies divided by
time 1 total investment, and is expressed in (20) as the weighted average of the investors’ portfolio
return divided by total investment. Define Σ2 the volatility of the excess risk technologies minus the
volatility of i and S, and define σ̂2

m the dispersion of the market shares ωm,
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Figure 3. Probability density function of A (left panel) and revelation rate (right panel) for minimum (ᾱ =
1/N ) and maximum (ᾱ = 1) barrier to diversification. With equal probability im ∈ {1.18, 0.82} and em ∈
{1.18, 0.82}; S = 1.1 with probability 0.82 and S = 0.57 otherwise; N = 120; ξ = 1.005; β = 0.97; ψ =
1/γ = 0.5; ph = 0.18 · 0.82h−1. Computed volatilities: σ2

A(ᾱ = 1) = 6.3 · 10−3, σ2
A(ᾱ = 1/N) = 5.5 · 10−3.

Σ2 = Var(rm,θm)− σ2
S − σ2

i

σ̂2
ω =

∑
m

ω2
m

Appendix C shows that when total noise L̄ is small5 the business cycle statistics are given by

σ2
A =σ̂2

ωσ
2
i +

1

4
(σ2

S + σ̂2
ωΣ2)(1− ρ∗) +O(L̄)

γA,S =
1

2
(1− ρ∗) +O(L̄)

(21)

Financial innovation, accompanied by a reduction in ρ∗, has ambiguous effects on aggregate
volatility σ2

A. It is a simple exercise6 to show that a lower barrier to diversification ᾱ always reduces
the dispersion σ̂2

ω of market sizes and thus lowers σ2
A. Dispersion of market shares σ̂2

ω amplifies the
effects of idiosyncratic volatility since it allows idiosyncratic shocks to markets with above average
share ωm to affect aggregate volatility σ2

A. This amplification operates both on the volatility of
shocks i, and to the excess idiosyncratic volatility Σ2 generated when, with probability 1− ρ∗, the
public signal is uninformative and passive investor allocate half of their portfolio to excess risk
technologies. In the limit of perfect diversification (ᾱ = 1/N ) and of a large number of markets
(N =∞), σ̂2

ω = 0 because idiosyncratic volatility is washed away in the aggregate. In this case only
the systemic volatility σ2

S remains and is amplified by reductions in ρ∗.
Clear-cut results are obtained for the sensitivity γA,S which always increases in 1− ᾱ. In fact, the
smaller revelation rate increases the frequency at which aggregate productivity is exposed to the
systemic shock which, for low L̄, affects approximately half of the aggregate investment portfolio.

Figure 3 depicts, for a particular numerical example, how the probability density function of A and
the revelation rate ρ∗ change with ᾱ. In particular, I consider the case where idiosyncratic shocks are
symmetric, while the systematic shock is, most of the time, slightly above it average and rarely much

5If L̄ ' 0 then η∗ ' 0 and A reflects the portfolio choice of only passive investors. This restriction has no qualitative
consequence for our discussion, since the business cycle properties are linked to ρ∗, which does not depend on L̄.

6See Appendix C.
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below it. This generates an asymmetric distribution of S characterized by negative skewness, which
captures the notion that negative systematic events are rare but very destructive since, for instance,
they trigger the disruption of part of the financial market and large scale liquidations. I also use the
standard parametrization ψ = 1

γ
= 0.5 and the relative information cost ξ is set equal 1.005% . As

expected, the equilibrium revelation rate decreases as the barrier ᾱ decreases. Since σ2
A decreases,

the reduction in σ̂2
ω turns out to be the dominating effect on aggregate volatility, while the sensitivity

γA,S to the asymmetric systematic shocks, representing negative “tail risk”, increases.

The next section shows how systemic tail risk can be endogenously generated by financial
innovation.

IV. INFORMATION CYCLES AND LIQUIDATION CRISES

In this section I study the consequences of financial innovation in a multi-period model when the risk
structure of the economy changes over time, creating endogenous information cycles and sudden
liquidations of excess risk technologies. The main setup is similar to the one presented in the
previous section, with three main differences. First, the economy lasts three periods t = 1, 2, 3 and
information and investment choices are made both at the beginning of time 1 and of time 2. Second,
the structure of excess risk is time varying, since it is all idiosyncratic at time 1 and all systemic at
time 2. Third, the systemic shock at time 2 is partly endogenous, since it depends on the possibility
of a “liquidation crisis”. Liquidation shocks take the form of a reduction δ in the time 2 returns of all
technologies and occurs if, at the beginning of time 2, public information reveals the types to
previously uninformed investors, thus triggering a wave of liquidations of their investments in excess
risk technologies. The aggregate liquidation cost δ can be interpreted, for instance, as capital
adjustment costs arising from the liquidation and reinvestment of capital from excess risk
technologies to low risk technologies. Alternatively, δ could be the productivity costs of a banking
crisis, triggered by financial intermediaries losses in the liquidation of excess risk technologies,
similarly to Diamond and Rajan (2009) and Diamond (1991). The probability of a liquidation crisis
is endogenous, since it depends on the public information revelation rates, which are ultimately
related to the vector of distortions D. Under quite general assumptions I will show that, absent a
reduction in the relative cost of information, financial innovation decreases welfare because it
increases the probability of liquidation crises. The reason is that financial development creates
incentives to collect less information during times when excess risk is idiosyncratic, but does not
affect information collection during periods when excess risk is systemic. In the terms of the model,
lower distortions D decrease the revelation rate at time 1, but does not change the revelation rate at
time 2. Consequently, the probability that at time 1 the economy undertakes investments in excess
risk technologies increases, and thus the probability of a liquidation crisis at time 2 raises.
Much of the basic structure of the problem is based on the simple two period model in Section 3.

The timeline is sketched in Figure IV. At the beginning of time 1, agents draw a specialization h and
a type Θ is realized; depending on their choice τ1 = A,P , agents pay the cost ξτ1 , observe the signal
Iτ11 and make investment choices. At the beginning of time 2, time 1 returns are realized and
observed; if, at this point, agents that chose τ1 = P are still uninformed, they have another chance to
choose τ2 = A, pay the cost, and join the group of active investors, or choose τ2 = P and remain
passive; time 2 signals Iτ22 are observed and new investment decisions are made. At the beginning of
time 3 returns from time 2 investments are realized and agents consume all the proceeds.
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Figure 4. The extended model with time varying risk: sequence of actions.

I consider the analytically simplest extension of (9) to the three period case by assuming that the
utility function has the following logarithmic7 form

V1,I = exp{(1− β) ln c1,I + βU2} (22)
V2,I = exp{(1− β) ln c2 + βE ln c3,I} (23)

where, for t = 1, 2
Ut = E lnVt,I

For t = 1, 2 call rm,j,t the return technology (m, j) between time t and t+ 1. Assume that

rm,3−θm,1 = 1 (24)

rm,3−θm,2 = 1− Iλ2 δ (25)
rm,θm,1 = 1 + S1(em − 1) (26)

rm,θm,2 = (1− Iλ2 )S2 (27)

The support of S1 is the set binary {0, 1} and Prob{S1 = 1} = πs. Shocks S2 and em are i.i.d., have
mean equal to 1, satisfy em, S2 6= 1 almost surely and are independent on S1 and on IPt . Notice that
S1 = 1 corresponds to a state of excess idiosyncratic risk at time 1, while if S1 = 0 excess risk is
absent. Moreover, at time t = 2 the economy is overall more risky, since all the excess risk becomes
systemic. This is due to the assumption that S2 and em are identically distributed: the economy is
riskier not because risk increases for any given technology, but because excess risk becomes
perfectly correlated across markets, and it thus not diversifiable. I now turn to the characterization of
a liquidation crisis, with its associated costs δ ∈ (0, 1). The indicator function Iλ2 equals 1 if a

7The qualitative results presented do not depend on the logarithmic form. The full extension of utility (9) to a
multiperiod case can be done using Epstein and Zin (1989) recursive preference. This more general setting is available
upon request from the author.
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liquidation crisis occurs at time 2, and zero otherwise. From our previous discussion it follows that

Iλ2 = (1− Iρ1 )[S1 + (1− S1)Iρ2 ] (28)

Equation (28) implies that a necessary condition for the occurrence of a liquidation crisis at time 2 is
that public information at time 1 is not revealing (Iρ1 = 0), so that passive agents undertake
investments at time t = 1 in the excess risk technologies. Liquidation of these investments takes
place if types are revealed at time 2. This happens either because excess idiosyncratic volatility
(S1 = 1) allows passive investors to learn types from the observation of end-of-period 1 returns8, or
if the time 2 public signal is revealing (Iρ2 = 1). Therefore,

πλ = Prob{Iλ2 = 1} = (1− ρ1)[π + (1− π)ρ2] (29)

where ρt are the revelation rates at time t associated with two mutually independent9 shocks Iρt as in
(6).
The complete solution to the model is provided in Appendix D. The crucial variables to be derived
are the revelation rates ρt. Consistently with the results of Section 3, ρt will depend on the relative
value at t of the risk adjusted returns. Call r̂h1,I the (unadjusted) return at t = 1 to the portfolio of an
informed (I = Θ) and uninformed (I = 0) agent. We have

r̂h1,0 =
1− ᾱ
N − 1

∑
m6=h

1 + rm,θm,1
2

+ ᾱ
1 + rh,θh,2

2
(30)

r̂h1,1 = 1 (31)

The return r̂h2,I at time 2 to the portfolio of an investor with information I = Θ,0 is

r̂h2,0 = (1− Iρ2δ)
1 + S2

2
r̂h2,Θ = 1− Iρ2δ

Corresponding to the unadjusted returns r̂ht,I , the risk-adjusted returns are given by Rt,I , where

Rt,I = expE ln rht,I

for all h.

Proposition 3. Consider an equilibrium with interior revelation rate ρ∗1 > 0. Then,

ρ∗t = 1− ln ξ

β ln
Rt,Θ
Rt,0

(32)

with ρ∗2 > ρ∗1. Moreover ρ∗1 decreases, ρ∗2 is unchanged and welfare decreases if the barrier ᾱ
decreases.

8There is no learning when S1 = 0, since technologies have identical return at time 1.

9This is the case if liquidity noises Lt for t = 1, 2 are independent of each other.
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Proof. Equation (32) is derived in Appendix D. We want to demonstrate that ρ∗2 > ρ∗1, or

ln
R2,0

R2,Θ

= E ln
r̂h2,0
r̂h2,Θ

< ln
R1,0

R1,Θ

= E ln
r̂h1,0
r̂h1,Θ

It suffices to show that these inequalities hold when ᾱ = 1, since R2,I is unaffected by ᾱ while R1,0

is decreasing in ᾱ and RΘ,1 = 1. Since em and S2 are identically distributed we have, for ᾱ = 1,

r̂h2,0
r̂h2,Θ

=
r̂h1,0
r̂h1,Θ

+ εh

where the equality is intended as equality in distribution and εh = (eh − 1)(1− S1). Notice that,
since eh and S1 are independent,

E[εh|r̂h1,0 = 1] = E[εh|S1 = 0] = 0

E[εh|r̂h1,0 6= 1] = E[εh|S1 = 1] = 0

therefore r̂h2,0/r̂
h
2,Θ is a mean preserving spread of r̂h1,0/r̂

h
1,Θ and this proves that ρ∗1 < ρ∗2. Finally, if

µ∗1 = ρ∗1/A
E is the measure of active investors at time 1 then, conditional on Iρ1 + S1 = 0, an extra

measure (ρ∗2 − ρ∗1)/AE of previously passive investors become active at time 2. Q.E.D.

If ᾱ decreases ρ∗2 is unchanged because there is only systemic risk at time 2, while ρ∗1 decreases
because there is idiosyncratic risk at time 1. Consequently, the probability πλ of a liquidation crisis
increases if ᾱ is reduced. The effect on welfare is intuitive. The return at time 1 to the portfolio of an
active investor is always r̂h1,1 = 1, while the return at time 2 equals rh2,1 = 1 if there is no liquidation
crisis and rh2,1 = 1− δ otherwise. As the probability of a liquidation crisis increases it becomes more
likely that an active investor faces low returns 1− δ at time 2, which reduces her time 1 expected
utility.

V. CONCLUSIONS

The empirical evidence suggests that financial innovation increases diversification opportunities and
reduces investment costs, but does not reduce the relative cost of information. I construct an
analytically tractable theoretical model that examines how financial innovation affects incentives to
collect costly information about the riskiness of production technologies. I find that financial
innovation tends to be associated with lower collection of private information and thus, via a
spillover effect, with lower quality of public information. This result has important implications for
the business cycle, since aggregate productivity becomes more subject to systemic shocks, even
when its overall volatility decreases. Recent empirical evidence shows that in the US agents have
indeed shifted over time from active to passive investment strategies. Higher diversification and
lower investment costs improve welfare, even though the lower quality of information has a negative
effects on passive investors. In an extended model where risk is time varying risk, financial
innovation increases the probability of liquidity crises. In fact, financial innovation lowers
information collection during periods in which excess risk is mainly idiosyncratic and thus increases
the frequency at which uninformed agents mistakenly invest in excess risk technologies. Liquidity
crises arise when the excess risk becomes systemic: information collection rises and triggers a wave
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of liquidation. If liquidation crises impose aggregate costs to the economy then financial innovation
can decrease welfare. The paper shows that financial innovation and endogenous information
collection can be intertwined in important ways. More research on this issue is certainly needed.
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Kaplan S. N., Strömberg P., (2009), Leveraged buyouts and private equity, Journal of Economic
Perspectives 23, 121-46.

Kydland F.E., Prescott E.C. (1982), Time to Build and Aggregate Fluctuations, Econometrica 50,
1345-1370.



23

Kyle A.S., (1985), Continuous Auctions and Insider Trading, Econometrica 53, 1315-1335.

Levine R., (1997), Financial development and economic growth: views and agenda, Journal of
Economic Literature 35, 688-726.

Mendoza E., Quadrini V., Rı́os-Rull V., (2008), Financial integration, financial development and
global imbalances, mimeo.

Merton R. C., (1987), A Simple Model of Capital Market Equilibrium with Incomplete Information,
The Journal of Finance 42, 483-509.

Rajan R., Zingales L., (1998), Financial dependence and growth, American Economic Review 88,
559-586.

Rajan R., (2005),Has financial development made the world riskier?, NBER Working Paper No.
11728.

Shin H.S., (2009), Financial intermediation and the post-crisis financial system, presented at the 8th
BIS Annual Conference.

Stiroh K.J., (2009), Volatility accounting: a production perspective on increased economic stability,
Journal of the European Economic Association 7, 671-696.

Stock J., Watson M.W., (2002), Has the Business Cycle Changed and Why?, NBER Working Paper
No. 9127.

Townsend R., (1979). Optimal contracts and competitive markets with costly state verification,
Journal of Economic Theory 21, 265-293.

Tufano (2002), Handbook of Financial Economics.

Van Nieuwerburgh S., Veldkamp L., (2008), Information Acquisition and Under-Diversification
NBER Working Papers 13904.

Weaver K. (2008), US asset-backed securities market review and outlook, mimeo, Deutsche Bank.



24

APPENDIX A

I find the optimal portfolio shares α∗m,j(I) and show that risk adjusted retruns decrease in the barrier
ᾱ. The proof is in five steps.

Step 1) Assume I = 0. From the point of view of a passive investors, all technologies have
identically distributed returns. The return on technology (j,m) can then be written as

rm,j = (1− |j − θm|)imemS + |j − θm|im

Notice that
rm,1 + rm,2 = im(1 + emS)

I show that any choice of portfolio shares νhj,m such that νhh,1 + νhh,2 = ᾱ provides less utility than the
choice α̃hm,j such that

α̃hm,j = 1−ᾱ
2

m 6= h
α̃hj,m = νhm,j m = h

Define

qα̃ =
∑
(m,j)

α̃hm,jrm,j

= (1− ᾱ)
∑
m

im(1 + emS) +
∑
j

νhm,jrm,j

qν =
∑
(m,j)

νhm,jrm,j

z̃ =
∑

(m,j),m6=h

(νhm,j − α̃hm,j)rm,j

Notice that
qν = qα̃ + z̃

Since im and em are i.i.d. across m we have

E[im|qα̃] = E[in|qα̃] m,n 6= h

E[em|qα̃] = E[en|qα̃] m,n 6= h

Therefore,
E[rm,j|qα̃] = E[rn,k|qα̃] ≡ r j, k = 1, 2 m,n 6= h

and then
E[z̃|qα̃] = r

∑
(m,j),m6=h

(νhm,j − α̃hm,j) = 0

qν is a mean preserving spread of qα̃, then by Jensen’s inequality

E[(qα̃)1−γ]
1

1−γ ≥ E[(qν)
1−γ]

1
1−γ
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Step 2) Assume I = 0. I show that the portfolio α̃ constructed in Step 1 is dominated by portfolio α
with

αhm,m = α̃hm,m m 6= h
αhm,j = ᾱ

2
m = h

Similarly to Step 1 define qα and z as

qα = (1− ᾱ)
∑
m

im(1 + emS) +
ᾱ

2
ih(1 + ehS)

z =
∑
j

(α̃hh,j − αhh,j)rh,j

Since qα is independent of Θ it follows that

E[rh,1|qα] = E[rh,2|qα]

and then again E[z|qα] = 0. Since qα̃ = qα + z then qα̃ is a mean preserving spread of qα.

Step 3) Assume I = Θ. I show that any choice of portfolio shares νhm,j such that νhh,1 + νhh,2 = ᾱ

provides less utility than the choice αhm,j such that

αhm,3−θm = νhm,1 + νhm,2 ∀m
αhm,θm = 0 ∀m

Define qν , qα as usual as the returns of portfolios ν and α, and define z as

z =
∑
m

νm,3−θm(emS − 1)im

Since em and S are independent from qα, then E[z|qα = 0]. The portfolio qν = qα + z is a mean
preserving spread of qα.

Step 4) Assume I ∈ {Θ,0}. For any ᾱ I have constructed in Step 2-3 two corresponding portfolios
αhm,j(ᾱ) as a function of the barrier ᾱ. For an agent with specialization h and information I , the
corresponding return qα satisfies qα(ᾱ) = r̂hI (ᾱ), with rhI given in Section 3. We can write

r̂hI (ᾱ) = (1− ᾱ)
∑
m6=h

rm + ᾱrh

where rm is the average return in market m obtained by averaging the contribution of each
technologies j = 1, 2 using weights

αhm,j
αhm,1+αhm,2

. We can write,

r̂hI (ᾱ) = r̂hI (1/N) + φz

φ =
Nᾱ− 1

N

z = rh −
1

N − 1

∑
m6=h

rm

It is easy to show that E[z|r̂hIα(1/N)] = 0. Without loss of generality assume that γ < 1. Choose
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ᾱ′ > ᾱ ≥ 1
N

so that φ′ > φ ≥ 0. Notice that, by concavity,

[r̂hI (1/N) + φz]1−γ =

{
φ

φ′
[r̂hI (1/N) + φ′z] +

(
1− φ

φ′

)
r̂hI (1/N)

}1−γ

>
φ

φ′
[
r̂hI (1/N) + φ′z

]1−γ
+

(
1− φ

φ′

)
[r̂hI (1/N)]1−γ

Conditional on any value of α(1/N), Jensen’s inequality gives

E[r̂hI (1/N) + φz]1−γ >
φ

φ′
E
[
r̂hI (1/N) + φ′z

]1−γ
+

(
1− φ

φ′

)
[r̂hI (1/N)]1−γ

>
φ

φ′
E
[
r̂hI (1/N) + φ′z

]1−γ
+

(
1− φ

φ′

)
E[r̂hI (1/N) + φ′z]1−γ

= E[r̂hI (1/N) + φ′z]1−γ

This proves that as ᾱ decreases the risk adjusted return of the investors’ portfolios increase.
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APPENDIX B

In this appendix I present the signal extraction problem of passive investors. Choose any market m.
For j = 1, 2 define

Lj =
y(m, j)

ωm

The realization of the noise L satisfies L ∈ {L1, L2}. Hence, for every every market m′ and j′ = 1, 2

it must be the case that y(m′,j′)
ωm

∈ {Lθ1, Lθ2}. In particular, suppose that L = Lj , then

y(m′, j′)

ωm
= Lj ⇔ θm = j′

In this way, we associate to each realization L = Lj one and only one vector of types. More
precisely, for a realization ŷ, call Θj the unique vector of types associated with the event
{L = Lj} ∩ {y = ŷ}. Notice that the true type Θ satisfies

Θθm = Θ

where θm is type true realization in our reference market m. Notice also that

Θj = Θ̄3−j (A33)

Using Bayes rule (for continuous variables) and the arguments above we have

Prob {Θ = Θj|y = ŷ} = Prob {L = Lj|y = ŷ}

=
u(Lj)Prob{y = ŷ|Lj}

u(Lj)Prob{y = ŷ|Lj}+ u(L3−j)Prob{y = ŷ|L3−j}

=
u(Lj)F (Θj)

u(Lj)F (Θj) + u(L3−j)F (Θ3−j)

where u is the probability density function of L. Using (3) and (A33) we conclude that

Prob{Θj|y} =
u(Lj)

u(Lj) + u(L3−j)
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APPENDIX C

This appendix computes the business cycle statistics and establishes the monotonicity of σ̂2
ω in ᾱ.

Define

AΘ =
∑
m

ωmim

A0 =
1

2

∑
m

ωmim(1 + emS)

Conditional on an informative signal IP = Θ all the agents invest in the low risk technologies, thus
the productivity A is

A = AΘ

If IP = 0 passive investors split equally their portfolio between the low risk and excess risk
technologies and then

A =
(1− η∗)ξx∗0A0 + η∗x∗ΘAΘ

(1− η∗)ξx∗0 + ηx∗Θ

= A0 +
η∗x∗Θ(AΘ − A0)

(1− η∗)ξx∗0 + η∗x∗Θ

Recalling that η∗ = ρ∗/AE we derive the unconditional covariance Cov(A, S) as

Cov(A, S) =E[Cov(A, S|I = 0)] + E[Cov(A, S|I = Θ)]

=E[Cov(A, S|I = 0)]

=E[Cov(A0, S|I = 0)] +
E [Cov(AΘ − A0, S|I = 0)]x∗Θρ

∗/AE

(1− ρ∗/AE)ξx∗0 + x∗Θρ
∗/AE

=E [Cov(A0, S|I = 0)] +O(L̄)

=(1− ρ∗)Cov(A0, S)

=
1

2
(1− ρ∗)σ2

S

The unconditional variance is

σ2
A =E[V ar(A|I = 0)] + E[V ar(AΘ|I = Θ)]

=E[V ar(A0|I = 0)] +

(
x∗Θρ

∗/AE

(1− ρ∗/AE)ξx∗0 + x∗Θρ
∗/AE

)2

E [V ar(AΘ − A0, S|I = 0)]

+
2x∗Θρ

∗/AE

(1− ρ∗/AE)ξx∗0 + x∗Θρ
∗/AE

E[Cov(A0;AΘ − A0|I = 0] + E[V ar(AΘ|I = Θ)]

=E[V ar(A|I = 0)] + E[V ar(A0|I = Θ)] +O(L̄)

=(1− ρ∗)V ar(A0) + ρ∗V ar(AΘ) +O(L̄)

For the dispersion σ̂2 notice that

ωm ≤
1

N
⇔ pm ≤

1

N
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∂ωm
∂(1− ᾱ)

≥ 0⇔ pm ≤
1

N

Therefore,
∂ωm

∂(1− ᾱ)
≥ 0⇔ ωm ≤

1

N

The above equation established that the variance σ2
ω of ωm is decreasing in 1− ᾱ,

σ2
ω =

1

N

∑
m

(
ωm − 1

N

)2

=
σ̃2
ω

N
− 1

N2

Since σ̂2
ω = Nσ2

ω + 1
N

, then also σ̂2
ω decreases in 1− ᾱ.
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APPENDIX D

Here I provide the solution to the extended model. The revelation rates ρt are solved by backward
induction. Conditional on Iρ1 + S1 = 0, call V2,I(w) the value at time 2 of a passive investor with
information I ∈ {Θ,0} and wealth w,

V2,I(w) = max
x

exp{(1− β) ln(1− x)w + βE lnxwr̂h2,I}

The first order condition gives x∗ = β which implies

V2,I(w) = w(1− β)1−βββ(R2,I)
β

The revelation rate ρ∗2 is found by equalizing at any state the expected continuation value U2, per unit
of wealth, of an active investor to that of an passive,

E lnV2,Θ(1/ξA) = ρ∗2E lnV2,Θ(1/ξP ) + (1− ρ∗2)V2,0(1/ξP )

Recall that, conditional on Iρ1 + S1 = 0, the revelation of information (Iρ2 = 1) at time 2 causes all
technologies to suffer a liquidation cost δ. Solving the equation above gives the revelation rate ρ∗2.
Given a continuation value U2 per unit of wealth, the revelation rate ρ∗1 is found by equating the value
U1, per unit of wealth, of an active and passive investor at the beginning of time 1. Define the values
V1,I(w) as

V1,I(w) = max
x

exp{(1− β) ln(1− x)w + βE lnxwr̂h1,IU2}

The optimal investment is again x = β. The solution is

V2,I(w) = w(1− β)1−βββ(R1,I)
βEUβ

2

The revelation rate ρ∗1 then solves the following equation

lnV1,Θ(w/ξA) = ρ∗1 lnV1,Θ(w/ξP ) + (1− ρ1) lnV1,0(w/ξP )
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APPENDIX E

This appendix provides details for the construction of the series in Figure 1. All data are taken from
the Tables in French (2008). Starting from the top panel, the active and passive costs for DB plans
are reported in Table III. For the bottom panel, the cost of the composite passive strategy is given in
Table VII, column “Total Cost”. I construct the composite active strategy as a weighted average of
investments in mutual funds, pension funds and hedge funds. The weight for the mutual funds is
constructed using the market share for Open-end funds in Table I. This probably slightly
overestimates by how much this component has decreased, since mutual funds has shifted overtime
towards passive strategies, which are less costly. Nonetheless in 2006 as much as 88% of the
Open-end funds are defined as active (Table II). The weight of the pension funds is constructed
summing the shares of DB plans and DC plans in Table I. The weight for hedge funds is constructed
using the share in Table I. The cost of Open-end funds is given in Table II, column “Total”. The costs
of pension funds is the cost of active DB plans in Table III. The cost of the hedge funds is the one
reported in Table IV under “Hedge Fund plus Fund of Funds”; I fill the missing values for dates prior
to 1996 by using 9.27%, which is the 1996 value. This has no significant impact on the estimation of
the cost index, since hedge funds have weights smaller than 2.3% for the years prior to 1996.




